1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 96 struct kernel_lb_addr *); 97 static void udf_load_fileset(struct super_block *, struct buffer_head *, 98 struct kernel_lb_addr *); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 116 offsetof(struct logicalVolIntegrityDesc, impUse)) / 117 (2 * sizeof(uint32_t)) < partnum) { 118 udf_err(sb, "Logical volume integrity descriptor corrupted " 119 "(numOfPartitions = %u)!\n", partnum); 120 return NULL; 121 } 122 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 123 offset = partnum * 2 * sizeof(uint32_t); 124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 125 } 126 127 /* UDF filesystem type */ 128 static struct dentry *udf_mount(struct file_system_type *fs_type, 129 int flags, const char *dev_name, void *data) 130 { 131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 132 } 133 134 static struct file_system_type udf_fstype = { 135 .owner = THIS_MODULE, 136 .name = "udf", 137 .mount = udf_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("udf"); 142 143 static struct kmem_cache *udf_inode_cachep; 144 145 static struct inode *udf_alloc_inode(struct super_block *sb) 146 { 147 struct udf_inode_info *ei; 148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 149 if (!ei) 150 return NULL; 151 152 ei->i_unique = 0; 153 ei->i_lenExtents = 0; 154 ei->i_next_alloc_block = 0; 155 ei->i_next_alloc_goal = 0; 156 ei->i_strat4096 = 0; 157 init_rwsem(&ei->i_data_sem); 158 ei->cached_extent.lstart = -1; 159 spin_lock_init(&ei->i_extent_cache_lock); 160 161 return &ei->vfs_inode; 162 } 163 164 static void udf_i_callback(struct rcu_head *head) 165 { 166 struct inode *inode = container_of(head, struct inode, i_rcu); 167 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 168 } 169 170 static void udf_destroy_inode(struct inode *inode) 171 { 172 call_rcu(&inode->i_rcu, udf_i_callback); 173 } 174 175 static void init_once(void *foo) 176 { 177 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 178 179 ei->i_ext.i_data = NULL; 180 inode_init_once(&ei->vfs_inode); 181 } 182 183 static int __init init_inodecache(void) 184 { 185 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 186 sizeof(struct udf_inode_info), 187 0, (SLAB_RECLAIM_ACCOUNT | 188 SLAB_MEM_SPREAD | 189 SLAB_ACCOUNT), 190 init_once); 191 if (!udf_inode_cachep) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static void destroy_inodecache(void) 197 { 198 /* 199 * Make sure all delayed rcu free inodes are flushed before we 200 * destroy cache. 201 */ 202 rcu_barrier(); 203 kmem_cache_destroy(udf_inode_cachep); 204 } 205 206 /* Superblock operations */ 207 static const struct super_operations udf_sb_ops = { 208 .alloc_inode = udf_alloc_inode, 209 .destroy_inode = udf_destroy_inode, 210 .write_inode = udf_write_inode, 211 .evict_inode = udf_evict_inode, 212 .put_super = udf_put_super, 213 .sync_fs = udf_sync_fs, 214 .statfs = udf_statfs, 215 .remount_fs = udf_remount_fs, 216 .show_options = udf_show_options, 217 }; 218 219 struct udf_options { 220 unsigned char novrs; 221 unsigned int blocksize; 222 unsigned int session; 223 unsigned int lastblock; 224 unsigned int anchor; 225 unsigned int flags; 226 umode_t umask; 227 kgid_t gid; 228 kuid_t uid; 229 umode_t fmode; 230 umode_t dmode; 231 struct nls_table *nls_map; 232 }; 233 234 static int __init init_udf_fs(void) 235 { 236 int err; 237 238 err = init_inodecache(); 239 if (err) 240 goto out1; 241 err = register_filesystem(&udf_fstype); 242 if (err) 243 goto out; 244 245 return 0; 246 247 out: 248 destroy_inodecache(); 249 250 out1: 251 return err; 252 } 253 254 static void __exit exit_udf_fs(void) 255 { 256 unregister_filesystem(&udf_fstype); 257 destroy_inodecache(); 258 } 259 260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 261 { 262 struct udf_sb_info *sbi = UDF_SB(sb); 263 264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 265 if (!sbi->s_partmaps) { 266 sbi->s_partitions = 0; 267 return -ENOMEM; 268 } 269 270 sbi->s_partitions = count; 271 return 0; 272 } 273 274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 275 { 276 int i; 277 int nr_groups = bitmap->s_nr_groups; 278 279 for (i = 0; i < nr_groups; i++) 280 if (bitmap->s_block_bitmap[i]) 281 brelse(bitmap->s_block_bitmap[i]); 282 283 kvfree(bitmap); 284 } 285 286 static void udf_free_partition(struct udf_part_map *map) 287 { 288 int i; 289 struct udf_meta_data *mdata; 290 291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 292 iput(map->s_uspace.s_table); 293 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 294 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 295 if (map->s_partition_type == UDF_SPARABLE_MAP15) 296 for (i = 0; i < 4; i++) 297 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 298 else if (map->s_partition_type == UDF_METADATA_MAP25) { 299 mdata = &map->s_type_specific.s_metadata; 300 iput(mdata->s_metadata_fe); 301 mdata->s_metadata_fe = NULL; 302 303 iput(mdata->s_mirror_fe); 304 mdata->s_mirror_fe = NULL; 305 306 iput(mdata->s_bitmap_fe); 307 mdata->s_bitmap_fe = NULL; 308 } 309 } 310 311 static void udf_sb_free_partitions(struct super_block *sb) 312 { 313 struct udf_sb_info *sbi = UDF_SB(sb); 314 int i; 315 316 if (!sbi->s_partmaps) 317 return; 318 for (i = 0; i < sbi->s_partitions; i++) 319 udf_free_partition(&sbi->s_partmaps[i]); 320 kfree(sbi->s_partmaps); 321 sbi->s_partmaps = NULL; 322 } 323 324 static int udf_show_options(struct seq_file *seq, struct dentry *root) 325 { 326 struct super_block *sb = root->d_sb; 327 struct udf_sb_info *sbi = UDF_SB(sb); 328 329 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 330 seq_puts(seq, ",nostrict"); 331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 332 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 334 seq_puts(seq, ",unhide"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 336 seq_puts(seq, ",undelete"); 337 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 338 seq_puts(seq, ",noadinicb"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 340 seq_puts(seq, ",shortad"); 341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 342 seq_puts(seq, ",uid=forget"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 344 seq_puts(seq, ",gid=forget"); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 346 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 348 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 349 if (sbi->s_umask != 0) 350 seq_printf(seq, ",umask=%ho", sbi->s_umask); 351 if (sbi->s_fmode != UDF_INVALID_MODE) 352 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 353 if (sbi->s_dmode != UDF_INVALID_MODE) 354 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 356 seq_printf(seq, ",session=%d", sbi->s_session); 357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 358 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 359 if (sbi->s_anchor != 0) 360 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 362 seq_puts(seq, ",utf8"); 363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 364 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 365 366 return 0; 367 } 368 369 /* 370 * udf_parse_options 371 * 372 * PURPOSE 373 * Parse mount options. 374 * 375 * DESCRIPTION 376 * The following mount options are supported: 377 * 378 * gid= Set the default group. 379 * umask= Set the default umask. 380 * mode= Set the default file permissions. 381 * dmode= Set the default directory permissions. 382 * uid= Set the default user. 383 * bs= Set the block size. 384 * unhide Show otherwise hidden files. 385 * undelete Show deleted files in lists. 386 * adinicb Embed data in the inode (default) 387 * noadinicb Don't embed data in the inode 388 * shortad Use short ad's 389 * longad Use long ad's (default) 390 * nostrict Unset strict conformance 391 * iocharset= Set the NLS character set 392 * 393 * The remaining are for debugging and disaster recovery: 394 * 395 * novrs Skip volume sequence recognition 396 * 397 * The following expect a offset from 0. 398 * 399 * session= Set the CDROM session (default= last session) 400 * anchor= Override standard anchor location. (default= 256) 401 * volume= Override the VolumeDesc location. (unused) 402 * partition= Override the PartitionDesc location. (unused) 403 * lastblock= Set the last block of the filesystem/ 404 * 405 * The following expect a offset from the partition root. 406 * 407 * fileset= Override the fileset block location. (unused) 408 * rootdir= Override the root directory location. (unused) 409 * WARNING: overriding the rootdir to a non-directory may 410 * yield highly unpredictable results. 411 * 412 * PRE-CONDITIONS 413 * options Pointer to mount options string. 414 * uopts Pointer to mount options variable. 415 * 416 * POST-CONDITIONS 417 * <return> 1 Mount options parsed okay. 418 * <return> 0 Error parsing mount options. 419 * 420 * HISTORY 421 * July 1, 1997 - Andrew E. Mileski 422 * Written, tested, and released. 423 */ 424 425 enum { 426 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 427 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 428 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 429 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 430 Opt_rootdir, Opt_utf8, Opt_iocharset, 431 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 432 Opt_fmode, Opt_dmode 433 }; 434 435 static const match_table_t tokens = { 436 {Opt_novrs, "novrs"}, 437 {Opt_nostrict, "nostrict"}, 438 {Opt_bs, "bs=%u"}, 439 {Opt_unhide, "unhide"}, 440 {Opt_undelete, "undelete"}, 441 {Opt_noadinicb, "noadinicb"}, 442 {Opt_adinicb, "adinicb"}, 443 {Opt_shortad, "shortad"}, 444 {Opt_longad, "longad"}, 445 {Opt_uforget, "uid=forget"}, 446 {Opt_uignore, "uid=ignore"}, 447 {Opt_gforget, "gid=forget"}, 448 {Opt_gignore, "gid=ignore"}, 449 {Opt_gid, "gid=%u"}, 450 {Opt_uid, "uid=%u"}, 451 {Opt_umask, "umask=%o"}, 452 {Opt_session, "session=%u"}, 453 {Opt_lastblock, "lastblock=%u"}, 454 {Opt_anchor, "anchor=%u"}, 455 {Opt_volume, "volume=%u"}, 456 {Opt_partition, "partition=%u"}, 457 {Opt_fileset, "fileset=%u"}, 458 {Opt_rootdir, "rootdir=%u"}, 459 {Opt_utf8, "utf8"}, 460 {Opt_iocharset, "iocharset=%s"}, 461 {Opt_fmode, "mode=%o"}, 462 {Opt_dmode, "dmode=%o"}, 463 {Opt_err, NULL} 464 }; 465 466 static int udf_parse_options(char *options, struct udf_options *uopt, 467 bool remount) 468 { 469 char *p; 470 int option; 471 472 uopt->novrs = 0; 473 uopt->session = 0xFFFFFFFF; 474 uopt->lastblock = 0; 475 uopt->anchor = 0; 476 477 if (!options) 478 return 1; 479 480 while ((p = strsep(&options, ",")) != NULL) { 481 substring_t args[MAX_OPT_ARGS]; 482 int token; 483 unsigned n; 484 if (!*p) 485 continue; 486 487 token = match_token(p, tokens, args); 488 switch (token) { 489 case Opt_novrs: 490 uopt->novrs = 1; 491 break; 492 case Opt_bs: 493 if (match_int(&args[0], &option)) 494 return 0; 495 n = option; 496 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 497 return 0; 498 uopt->blocksize = n; 499 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 500 break; 501 case Opt_unhide: 502 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 503 break; 504 case Opt_undelete: 505 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 506 break; 507 case Opt_noadinicb: 508 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 509 break; 510 case Opt_adinicb: 511 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 512 break; 513 case Opt_shortad: 514 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 515 break; 516 case Opt_longad: 517 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 518 break; 519 case Opt_gid: 520 if (match_int(args, &option)) 521 return 0; 522 uopt->gid = make_kgid(current_user_ns(), option); 523 if (!gid_valid(uopt->gid)) 524 return 0; 525 uopt->flags |= (1 << UDF_FLAG_GID_SET); 526 break; 527 case Opt_uid: 528 if (match_int(args, &option)) 529 return 0; 530 uopt->uid = make_kuid(current_user_ns(), option); 531 if (!uid_valid(uopt->uid)) 532 return 0; 533 uopt->flags |= (1 << UDF_FLAG_UID_SET); 534 break; 535 case Opt_umask: 536 if (match_octal(args, &option)) 537 return 0; 538 uopt->umask = option; 539 break; 540 case Opt_nostrict: 541 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 542 break; 543 case Opt_session: 544 if (match_int(args, &option)) 545 return 0; 546 uopt->session = option; 547 if (!remount) 548 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 549 break; 550 case Opt_lastblock: 551 if (match_int(args, &option)) 552 return 0; 553 uopt->lastblock = option; 554 if (!remount) 555 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 556 break; 557 case Opt_anchor: 558 if (match_int(args, &option)) 559 return 0; 560 uopt->anchor = option; 561 break; 562 case Opt_volume: 563 case Opt_partition: 564 case Opt_fileset: 565 case Opt_rootdir: 566 /* Ignored (never implemented properly) */ 567 break; 568 case Opt_utf8: 569 uopt->flags |= (1 << UDF_FLAG_UTF8); 570 break; 571 case Opt_iocharset: 572 if (!remount) { 573 if (uopt->nls_map) 574 unload_nls(uopt->nls_map); 575 uopt->nls_map = load_nls(args[0].from); 576 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 577 } 578 break; 579 case Opt_uforget: 580 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 581 break; 582 case Opt_uignore: 583 case Opt_gignore: 584 /* These options are superseeded by uid=<number> */ 585 break; 586 case Opt_gforget: 587 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 588 break; 589 case Opt_fmode: 590 if (match_octal(args, &option)) 591 return 0; 592 uopt->fmode = option & 0777; 593 break; 594 case Opt_dmode: 595 if (match_octal(args, &option)) 596 return 0; 597 uopt->dmode = option & 0777; 598 break; 599 default: 600 pr_err("bad mount option \"%s\" or missing value\n", p); 601 return 0; 602 } 603 } 604 return 1; 605 } 606 607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 608 { 609 struct udf_options uopt; 610 struct udf_sb_info *sbi = UDF_SB(sb); 611 int error = 0; 612 613 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 614 return -EACCES; 615 616 sync_filesystem(sb); 617 618 uopt.flags = sbi->s_flags; 619 uopt.uid = sbi->s_uid; 620 uopt.gid = sbi->s_gid; 621 uopt.umask = sbi->s_umask; 622 uopt.fmode = sbi->s_fmode; 623 uopt.dmode = sbi->s_dmode; 624 uopt.nls_map = NULL; 625 626 if (!udf_parse_options(options, &uopt, true)) 627 return -EINVAL; 628 629 write_lock(&sbi->s_cred_lock); 630 sbi->s_flags = uopt.flags; 631 sbi->s_uid = uopt.uid; 632 sbi->s_gid = uopt.gid; 633 sbi->s_umask = uopt.umask; 634 sbi->s_fmode = uopt.fmode; 635 sbi->s_dmode = uopt.dmode; 636 write_unlock(&sbi->s_cred_lock); 637 638 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 639 goto out_unlock; 640 641 if (*flags & SB_RDONLY) 642 udf_close_lvid(sb); 643 else 644 udf_open_lvid(sb); 645 646 out_unlock: 647 return error; 648 } 649 650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 652 static loff_t udf_check_vsd(struct super_block *sb) 653 { 654 struct volStructDesc *vsd = NULL; 655 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 656 int sectorsize; 657 struct buffer_head *bh = NULL; 658 int nsr02 = 0; 659 int nsr03 = 0; 660 struct udf_sb_info *sbi; 661 662 sbi = UDF_SB(sb); 663 if (sb->s_blocksize < sizeof(struct volStructDesc)) 664 sectorsize = sizeof(struct volStructDesc); 665 else 666 sectorsize = sb->s_blocksize; 667 668 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 669 670 udf_debug("Starting at sector %u (%lu byte sectors)\n", 671 (unsigned int)(sector >> sb->s_blocksize_bits), 672 sb->s_blocksize); 673 /* Process the sequence (if applicable). The hard limit on the sector 674 * offset is arbitrary, hopefully large enough so that all valid UDF 675 * filesystems will be recognised. There is no mention of an upper 676 * bound to the size of the volume recognition area in the standard. 677 * The limit will prevent the code to read all the sectors of a 678 * specially crafted image (like a bluray disc full of CD001 sectors), 679 * potentially causing minutes or even hours of uninterruptible I/O 680 * activity. This actually happened with uninitialised SSD partitions 681 * (all 0xFF) before the check for the limit and all valid IDs were 682 * added */ 683 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 684 sector += sectorsize) { 685 /* Read a block */ 686 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 687 if (!bh) 688 break; 689 690 /* Look for ISO descriptors */ 691 vsd = (struct volStructDesc *)(bh->b_data + 692 (sector & (sb->s_blocksize - 1))); 693 694 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 695 VSD_STD_ID_LEN)) { 696 switch (vsd->structType) { 697 case 0: 698 udf_debug("ISO9660 Boot Record found\n"); 699 break; 700 case 1: 701 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 702 break; 703 case 2: 704 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 705 break; 706 case 3: 707 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 708 break; 709 case 255: 710 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 711 break; 712 default: 713 udf_debug("ISO9660 VRS (%u) found\n", 714 vsd->structType); 715 break; 716 } 717 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 718 VSD_STD_ID_LEN)) 719 ; /* nothing */ 720 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 721 VSD_STD_ID_LEN)) { 722 brelse(bh); 723 break; 724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 725 VSD_STD_ID_LEN)) 726 nsr02 = sector; 727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 728 VSD_STD_ID_LEN)) 729 nsr03 = sector; 730 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 731 VSD_STD_ID_LEN)) 732 ; /* nothing */ 733 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 734 VSD_STD_ID_LEN)) 735 ; /* nothing */ 736 else { 737 /* invalid id : end of volume recognition area */ 738 brelse(bh); 739 break; 740 } 741 brelse(bh); 742 } 743 744 if (nsr03) 745 return nsr03; 746 else if (nsr02) 747 return nsr02; 748 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 749 VSD_FIRST_SECTOR_OFFSET) 750 return -1; 751 else 752 return 0; 753 } 754 755 static int udf_find_fileset(struct super_block *sb, 756 struct kernel_lb_addr *fileset, 757 struct kernel_lb_addr *root) 758 { 759 struct buffer_head *bh = NULL; 760 uint16_t ident; 761 762 if (fileset->logicalBlockNum != 0xFFFFFFFF || 763 fileset->partitionReferenceNum != 0xFFFF) { 764 bh = udf_read_ptagged(sb, fileset, 0, &ident); 765 766 if (!bh) { 767 return 1; 768 } else if (ident != TAG_IDENT_FSD) { 769 brelse(bh); 770 return 1; 771 } 772 773 udf_debug("Fileset at block=%u, partition=%u\n", 774 fileset->logicalBlockNum, 775 fileset->partitionReferenceNum); 776 777 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 778 udf_load_fileset(sb, bh, root); 779 brelse(bh); 780 return 0; 781 } 782 return 1; 783 } 784 785 /* 786 * Load primary Volume Descriptor Sequence 787 * 788 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 789 * should be tried. 790 */ 791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 792 { 793 struct primaryVolDesc *pvoldesc; 794 uint8_t *outstr; 795 struct buffer_head *bh; 796 uint16_t ident; 797 int ret = -ENOMEM; 798 #ifdef UDFFS_DEBUG 799 struct timestamp *ts; 800 #endif 801 802 outstr = kmalloc(128, GFP_NOFS); 803 if (!outstr) 804 return -ENOMEM; 805 806 bh = udf_read_tagged(sb, block, block, &ident); 807 if (!bh) { 808 ret = -EAGAIN; 809 goto out2; 810 } 811 812 if (ident != TAG_IDENT_PVD) { 813 ret = -EIO; 814 goto out_bh; 815 } 816 817 pvoldesc = (struct primaryVolDesc *)bh->b_data; 818 819 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 820 pvoldesc->recordingDateAndTime); 821 #ifdef UDFFS_DEBUG 822 ts = &pvoldesc->recordingDateAndTime; 823 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 824 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 825 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 826 #endif 827 828 829 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 830 if (ret < 0) { 831 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 832 pr_warn("incorrect volume identification, setting to " 833 "'InvalidName'\n"); 834 } else { 835 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 836 } 837 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 838 839 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 840 if (ret < 0) { 841 ret = 0; 842 goto out_bh; 843 } 844 outstr[ret] = 0; 845 udf_debug("volSetIdent[] = '%s'\n", outstr); 846 847 ret = 0; 848 out_bh: 849 brelse(bh); 850 out2: 851 kfree(outstr); 852 return ret; 853 } 854 855 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 856 u32 meta_file_loc, u32 partition_ref) 857 { 858 struct kernel_lb_addr addr; 859 struct inode *metadata_fe; 860 861 addr.logicalBlockNum = meta_file_loc; 862 addr.partitionReferenceNum = partition_ref; 863 864 metadata_fe = udf_iget_special(sb, &addr); 865 866 if (IS_ERR(metadata_fe)) { 867 udf_warn(sb, "metadata inode efe not found\n"); 868 return metadata_fe; 869 } 870 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 871 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 872 iput(metadata_fe); 873 return ERR_PTR(-EIO); 874 } 875 876 return metadata_fe; 877 } 878 879 static int udf_load_metadata_files(struct super_block *sb, int partition, 880 int type1_index) 881 { 882 struct udf_sb_info *sbi = UDF_SB(sb); 883 struct udf_part_map *map; 884 struct udf_meta_data *mdata; 885 struct kernel_lb_addr addr; 886 struct inode *fe; 887 888 map = &sbi->s_partmaps[partition]; 889 mdata = &map->s_type_specific.s_metadata; 890 mdata->s_phys_partition_ref = type1_index; 891 892 /* metadata address */ 893 udf_debug("Metadata file location: block = %u part = %u\n", 894 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 895 896 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 897 mdata->s_phys_partition_ref); 898 if (IS_ERR(fe)) { 899 /* mirror file entry */ 900 udf_debug("Mirror metadata file location: block = %u part = %u\n", 901 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 902 903 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 904 mdata->s_phys_partition_ref); 905 906 if (IS_ERR(fe)) { 907 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 908 return PTR_ERR(fe); 909 } 910 mdata->s_mirror_fe = fe; 911 } else 912 mdata->s_metadata_fe = fe; 913 914 915 /* 916 * bitmap file entry 917 * Note: 918 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 919 */ 920 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 921 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 922 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 923 924 udf_debug("Bitmap file location: block = %u part = %u\n", 925 addr.logicalBlockNum, addr.partitionReferenceNum); 926 927 fe = udf_iget_special(sb, &addr); 928 if (IS_ERR(fe)) { 929 if (sb_rdonly(sb)) 930 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 931 else { 932 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 933 return PTR_ERR(fe); 934 } 935 } else 936 mdata->s_bitmap_fe = fe; 937 } 938 939 udf_debug("udf_load_metadata_files Ok\n"); 940 return 0; 941 } 942 943 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 944 struct kernel_lb_addr *root) 945 { 946 struct fileSetDesc *fset; 947 948 fset = (struct fileSetDesc *)bh->b_data; 949 950 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 951 952 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 953 954 udf_debug("Rootdir at block=%u, partition=%u\n", 955 root->logicalBlockNum, root->partitionReferenceNum); 956 } 957 958 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 959 { 960 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 961 return DIV_ROUND_UP(map->s_partition_len + 962 (sizeof(struct spaceBitmapDesc) << 3), 963 sb->s_blocksize * 8); 964 } 965 966 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 967 { 968 struct udf_bitmap *bitmap; 969 int nr_groups; 970 int size; 971 972 nr_groups = udf_compute_nr_groups(sb, index); 973 size = sizeof(struct udf_bitmap) + 974 (sizeof(struct buffer_head *) * nr_groups); 975 976 if (size <= PAGE_SIZE) 977 bitmap = kzalloc(size, GFP_KERNEL); 978 else 979 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 980 981 if (!bitmap) 982 return NULL; 983 984 bitmap->s_nr_groups = nr_groups; 985 return bitmap; 986 } 987 988 static int check_partition_desc(struct super_block *sb, 989 struct partitionDesc *p, 990 struct udf_part_map *map) 991 { 992 bool umap, utable, fmap, ftable; 993 struct partitionHeaderDesc *phd; 994 995 switch (le32_to_cpu(p->accessType)) { 996 case PD_ACCESS_TYPE_READ_ONLY: 997 case PD_ACCESS_TYPE_WRITE_ONCE: 998 case PD_ACCESS_TYPE_REWRITABLE: 999 case PD_ACCESS_TYPE_NONE: 1000 goto force_ro; 1001 } 1002 1003 /* No Partition Header Descriptor? */ 1004 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1005 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1006 goto force_ro; 1007 1008 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1009 utable = phd->unallocSpaceTable.extLength; 1010 umap = phd->unallocSpaceBitmap.extLength; 1011 ftable = phd->freedSpaceTable.extLength; 1012 fmap = phd->freedSpaceBitmap.extLength; 1013 1014 /* No allocation info? */ 1015 if (!utable && !umap && !ftable && !fmap) 1016 goto force_ro; 1017 1018 /* We don't support blocks that require erasing before overwrite */ 1019 if (ftable || fmap) 1020 goto force_ro; 1021 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1022 if (utable && umap) 1023 goto force_ro; 1024 1025 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1026 map->s_partition_type == UDF_VIRTUAL_MAP20) 1027 goto force_ro; 1028 1029 return 0; 1030 force_ro: 1031 if (!sb_rdonly(sb)) 1032 return -EACCES; 1033 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1034 return 0; 1035 } 1036 1037 static int udf_fill_partdesc_info(struct super_block *sb, 1038 struct partitionDesc *p, int p_index) 1039 { 1040 struct udf_part_map *map; 1041 struct udf_sb_info *sbi = UDF_SB(sb); 1042 struct partitionHeaderDesc *phd; 1043 int err; 1044 1045 map = &sbi->s_partmaps[p_index]; 1046 1047 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1048 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1049 1050 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1051 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1052 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1053 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1054 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1055 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1056 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1057 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1058 1059 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1060 p_index, map->s_partition_type, 1061 map->s_partition_root, map->s_partition_len); 1062 1063 err = check_partition_desc(sb, p, map); 1064 if (err) 1065 return err; 1066 1067 /* 1068 * Skip loading allocation info it we cannot ever write to the fs. 1069 * This is a correctness thing as we may have decided to force ro mount 1070 * to avoid allocation info we don't support. 1071 */ 1072 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1073 return 0; 1074 1075 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1076 if (phd->unallocSpaceTable.extLength) { 1077 struct kernel_lb_addr loc = { 1078 .logicalBlockNum = le32_to_cpu( 1079 phd->unallocSpaceTable.extPosition), 1080 .partitionReferenceNum = p_index, 1081 }; 1082 struct inode *inode; 1083 1084 inode = udf_iget_special(sb, &loc); 1085 if (IS_ERR(inode)) { 1086 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1087 p_index); 1088 return PTR_ERR(inode); 1089 } 1090 map->s_uspace.s_table = inode; 1091 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1092 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1093 p_index, map->s_uspace.s_table->i_ino); 1094 } 1095 1096 if (phd->unallocSpaceBitmap.extLength) { 1097 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1098 if (!bitmap) 1099 return -ENOMEM; 1100 map->s_uspace.s_bitmap = bitmap; 1101 bitmap->s_extPosition = le32_to_cpu( 1102 phd->unallocSpaceBitmap.extPosition); 1103 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1104 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1105 p_index, bitmap->s_extPosition); 1106 } 1107 1108 return 0; 1109 } 1110 1111 static void udf_find_vat_block(struct super_block *sb, int p_index, 1112 int type1_index, sector_t start_block) 1113 { 1114 struct udf_sb_info *sbi = UDF_SB(sb); 1115 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1116 sector_t vat_block; 1117 struct kernel_lb_addr ino; 1118 struct inode *inode; 1119 1120 /* 1121 * VAT file entry is in the last recorded block. Some broken disks have 1122 * it a few blocks before so try a bit harder... 1123 */ 1124 ino.partitionReferenceNum = type1_index; 1125 for (vat_block = start_block; 1126 vat_block >= map->s_partition_root && 1127 vat_block >= start_block - 3; vat_block--) { 1128 ino.logicalBlockNum = vat_block - map->s_partition_root; 1129 inode = udf_iget_special(sb, &ino); 1130 if (!IS_ERR(inode)) { 1131 sbi->s_vat_inode = inode; 1132 break; 1133 } 1134 } 1135 } 1136 1137 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1138 { 1139 struct udf_sb_info *sbi = UDF_SB(sb); 1140 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1141 struct buffer_head *bh = NULL; 1142 struct udf_inode_info *vati; 1143 uint32_t pos; 1144 struct virtualAllocationTable20 *vat20; 1145 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1146 sb->s_blocksize_bits; 1147 1148 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1149 if (!sbi->s_vat_inode && 1150 sbi->s_last_block != blocks - 1) { 1151 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1152 (unsigned long)sbi->s_last_block, 1153 (unsigned long)blocks - 1); 1154 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1155 } 1156 if (!sbi->s_vat_inode) 1157 return -EIO; 1158 1159 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1160 map->s_type_specific.s_virtual.s_start_offset = 0; 1161 map->s_type_specific.s_virtual.s_num_entries = 1162 (sbi->s_vat_inode->i_size - 36) >> 2; 1163 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1164 vati = UDF_I(sbi->s_vat_inode); 1165 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1166 pos = udf_block_map(sbi->s_vat_inode, 0); 1167 bh = sb_bread(sb, pos); 1168 if (!bh) 1169 return -EIO; 1170 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1171 } else { 1172 vat20 = (struct virtualAllocationTable20 *) 1173 vati->i_ext.i_data; 1174 } 1175 1176 map->s_type_specific.s_virtual.s_start_offset = 1177 le16_to_cpu(vat20->lengthHeader); 1178 map->s_type_specific.s_virtual.s_num_entries = 1179 (sbi->s_vat_inode->i_size - 1180 map->s_type_specific.s_virtual. 1181 s_start_offset) >> 2; 1182 brelse(bh); 1183 } 1184 return 0; 1185 } 1186 1187 /* 1188 * Load partition descriptor block 1189 * 1190 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1191 * sequence. 1192 */ 1193 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1194 { 1195 struct buffer_head *bh; 1196 struct partitionDesc *p; 1197 struct udf_part_map *map; 1198 struct udf_sb_info *sbi = UDF_SB(sb); 1199 int i, type1_idx; 1200 uint16_t partitionNumber; 1201 uint16_t ident; 1202 int ret; 1203 1204 bh = udf_read_tagged(sb, block, block, &ident); 1205 if (!bh) 1206 return -EAGAIN; 1207 if (ident != TAG_IDENT_PD) { 1208 ret = 0; 1209 goto out_bh; 1210 } 1211 1212 p = (struct partitionDesc *)bh->b_data; 1213 partitionNumber = le16_to_cpu(p->partitionNumber); 1214 1215 /* First scan for TYPE1 and SPARABLE partitions */ 1216 for (i = 0; i < sbi->s_partitions; i++) { 1217 map = &sbi->s_partmaps[i]; 1218 udf_debug("Searching map: (%u == %u)\n", 1219 map->s_partition_num, partitionNumber); 1220 if (map->s_partition_num == partitionNumber && 1221 (map->s_partition_type == UDF_TYPE1_MAP15 || 1222 map->s_partition_type == UDF_SPARABLE_MAP15)) 1223 break; 1224 } 1225 1226 if (i >= sbi->s_partitions) { 1227 udf_debug("Partition (%u) not found in partition map\n", 1228 partitionNumber); 1229 ret = 0; 1230 goto out_bh; 1231 } 1232 1233 ret = udf_fill_partdesc_info(sb, p, i); 1234 if (ret < 0) 1235 goto out_bh; 1236 1237 /* 1238 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1239 * PHYSICAL partitions are already set up 1240 */ 1241 type1_idx = i; 1242 #ifdef UDFFS_DEBUG 1243 map = NULL; /* supress 'maybe used uninitialized' warning */ 1244 #endif 1245 for (i = 0; i < sbi->s_partitions; i++) { 1246 map = &sbi->s_partmaps[i]; 1247 1248 if (map->s_partition_num == partitionNumber && 1249 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1250 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1251 map->s_partition_type == UDF_METADATA_MAP25)) 1252 break; 1253 } 1254 1255 if (i >= sbi->s_partitions) { 1256 ret = 0; 1257 goto out_bh; 1258 } 1259 1260 ret = udf_fill_partdesc_info(sb, p, i); 1261 if (ret < 0) 1262 goto out_bh; 1263 1264 if (map->s_partition_type == UDF_METADATA_MAP25) { 1265 ret = udf_load_metadata_files(sb, i, type1_idx); 1266 if (ret < 0) { 1267 udf_err(sb, "error loading MetaData partition map %d\n", 1268 i); 1269 goto out_bh; 1270 } 1271 } else { 1272 /* 1273 * If we have a partition with virtual map, we don't handle 1274 * writing to it (we overwrite blocks instead of relocating 1275 * them). 1276 */ 1277 if (!sb_rdonly(sb)) { 1278 ret = -EACCES; 1279 goto out_bh; 1280 } 1281 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1282 ret = udf_load_vat(sb, i, type1_idx); 1283 if (ret < 0) 1284 goto out_bh; 1285 } 1286 ret = 0; 1287 out_bh: 1288 /* In case loading failed, we handle cleanup in udf_fill_super */ 1289 brelse(bh); 1290 return ret; 1291 } 1292 1293 static int udf_load_sparable_map(struct super_block *sb, 1294 struct udf_part_map *map, 1295 struct sparablePartitionMap *spm) 1296 { 1297 uint32_t loc; 1298 uint16_t ident; 1299 struct sparingTable *st; 1300 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1301 int i; 1302 struct buffer_head *bh; 1303 1304 map->s_partition_type = UDF_SPARABLE_MAP15; 1305 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1306 if (!is_power_of_2(sdata->s_packet_len)) { 1307 udf_err(sb, "error loading logical volume descriptor: " 1308 "Invalid packet length %u\n", 1309 (unsigned)sdata->s_packet_len); 1310 return -EIO; 1311 } 1312 if (spm->numSparingTables > 4) { 1313 udf_err(sb, "error loading logical volume descriptor: " 1314 "Too many sparing tables (%d)\n", 1315 (int)spm->numSparingTables); 1316 return -EIO; 1317 } 1318 1319 for (i = 0; i < spm->numSparingTables; i++) { 1320 loc = le32_to_cpu(spm->locSparingTable[i]); 1321 bh = udf_read_tagged(sb, loc, loc, &ident); 1322 if (!bh) 1323 continue; 1324 1325 st = (struct sparingTable *)bh->b_data; 1326 if (ident != 0 || 1327 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1328 strlen(UDF_ID_SPARING)) || 1329 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1330 sb->s_blocksize) { 1331 brelse(bh); 1332 continue; 1333 } 1334 1335 sdata->s_spar_map[i] = bh; 1336 } 1337 map->s_partition_func = udf_get_pblock_spar15; 1338 return 0; 1339 } 1340 1341 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1342 struct kernel_lb_addr *fileset) 1343 { 1344 struct logicalVolDesc *lvd; 1345 int i, offset; 1346 uint8_t type; 1347 struct udf_sb_info *sbi = UDF_SB(sb); 1348 struct genericPartitionMap *gpm; 1349 uint16_t ident; 1350 struct buffer_head *bh; 1351 unsigned int table_len; 1352 int ret; 1353 1354 bh = udf_read_tagged(sb, block, block, &ident); 1355 if (!bh) 1356 return -EAGAIN; 1357 BUG_ON(ident != TAG_IDENT_LVD); 1358 lvd = (struct logicalVolDesc *)bh->b_data; 1359 table_len = le32_to_cpu(lvd->mapTableLength); 1360 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1361 udf_err(sb, "error loading logical volume descriptor: " 1362 "Partition table too long (%u > %lu)\n", table_len, 1363 sb->s_blocksize - sizeof(*lvd)); 1364 ret = -EIO; 1365 goto out_bh; 1366 } 1367 1368 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1369 if (ret) 1370 goto out_bh; 1371 1372 for (i = 0, offset = 0; 1373 i < sbi->s_partitions && offset < table_len; 1374 i++, offset += gpm->partitionMapLength) { 1375 struct udf_part_map *map = &sbi->s_partmaps[i]; 1376 gpm = (struct genericPartitionMap *) 1377 &(lvd->partitionMaps[offset]); 1378 type = gpm->partitionMapType; 1379 if (type == 1) { 1380 struct genericPartitionMap1 *gpm1 = 1381 (struct genericPartitionMap1 *)gpm; 1382 map->s_partition_type = UDF_TYPE1_MAP15; 1383 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1384 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1385 map->s_partition_func = NULL; 1386 } else if (type == 2) { 1387 struct udfPartitionMap2 *upm2 = 1388 (struct udfPartitionMap2 *)gpm; 1389 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1390 strlen(UDF_ID_VIRTUAL))) { 1391 u16 suf = 1392 le16_to_cpu(((__le16 *)upm2->partIdent. 1393 identSuffix)[0]); 1394 if (suf < 0x0200) { 1395 map->s_partition_type = 1396 UDF_VIRTUAL_MAP15; 1397 map->s_partition_func = 1398 udf_get_pblock_virt15; 1399 } else { 1400 map->s_partition_type = 1401 UDF_VIRTUAL_MAP20; 1402 map->s_partition_func = 1403 udf_get_pblock_virt20; 1404 } 1405 } else if (!strncmp(upm2->partIdent.ident, 1406 UDF_ID_SPARABLE, 1407 strlen(UDF_ID_SPARABLE))) { 1408 ret = udf_load_sparable_map(sb, map, 1409 (struct sparablePartitionMap *)gpm); 1410 if (ret < 0) 1411 goto out_bh; 1412 } else if (!strncmp(upm2->partIdent.ident, 1413 UDF_ID_METADATA, 1414 strlen(UDF_ID_METADATA))) { 1415 struct udf_meta_data *mdata = 1416 &map->s_type_specific.s_metadata; 1417 struct metadataPartitionMap *mdm = 1418 (struct metadataPartitionMap *) 1419 &(lvd->partitionMaps[offset]); 1420 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1421 i, type, UDF_ID_METADATA); 1422 1423 map->s_partition_type = UDF_METADATA_MAP25; 1424 map->s_partition_func = udf_get_pblock_meta25; 1425 1426 mdata->s_meta_file_loc = 1427 le32_to_cpu(mdm->metadataFileLoc); 1428 mdata->s_mirror_file_loc = 1429 le32_to_cpu(mdm->metadataMirrorFileLoc); 1430 mdata->s_bitmap_file_loc = 1431 le32_to_cpu(mdm->metadataBitmapFileLoc); 1432 mdata->s_alloc_unit_size = 1433 le32_to_cpu(mdm->allocUnitSize); 1434 mdata->s_align_unit_size = 1435 le16_to_cpu(mdm->alignUnitSize); 1436 if (mdm->flags & 0x01) 1437 mdata->s_flags |= MF_DUPLICATE_MD; 1438 1439 udf_debug("Metadata Ident suffix=0x%x\n", 1440 le16_to_cpu(*(__le16 *) 1441 mdm->partIdent.identSuffix)); 1442 udf_debug("Metadata part num=%u\n", 1443 le16_to_cpu(mdm->partitionNum)); 1444 udf_debug("Metadata part alloc unit size=%u\n", 1445 le32_to_cpu(mdm->allocUnitSize)); 1446 udf_debug("Metadata file loc=%u\n", 1447 le32_to_cpu(mdm->metadataFileLoc)); 1448 udf_debug("Mirror file loc=%u\n", 1449 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1450 udf_debug("Bitmap file loc=%u\n", 1451 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1452 udf_debug("Flags: %d %u\n", 1453 mdata->s_flags, mdm->flags); 1454 } else { 1455 udf_debug("Unknown ident: %s\n", 1456 upm2->partIdent.ident); 1457 continue; 1458 } 1459 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1460 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1461 } 1462 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1463 i, map->s_partition_num, type, map->s_volumeseqnum); 1464 } 1465 1466 if (fileset) { 1467 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1468 1469 *fileset = lelb_to_cpu(la->extLocation); 1470 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1471 fileset->logicalBlockNum, 1472 fileset->partitionReferenceNum); 1473 } 1474 if (lvd->integritySeqExt.extLength) 1475 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1476 ret = 0; 1477 1478 if (!sbi->s_lvid_bh) { 1479 /* We can't generate unique IDs without a valid LVID */ 1480 if (sb_rdonly(sb)) { 1481 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1482 } else { 1483 udf_warn(sb, "Damaged or missing LVID, forcing " 1484 "readonly mount\n"); 1485 ret = -EACCES; 1486 } 1487 } 1488 out_bh: 1489 brelse(bh); 1490 return ret; 1491 } 1492 1493 /* 1494 * Find the prevailing Logical Volume Integrity Descriptor. 1495 */ 1496 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1497 { 1498 struct buffer_head *bh, *final_bh; 1499 uint16_t ident; 1500 struct udf_sb_info *sbi = UDF_SB(sb); 1501 struct logicalVolIntegrityDesc *lvid; 1502 int indirections = 0; 1503 1504 while (++indirections <= UDF_MAX_LVID_NESTING) { 1505 final_bh = NULL; 1506 while (loc.extLength > 0 && 1507 (bh = udf_read_tagged(sb, loc.extLocation, 1508 loc.extLocation, &ident))) { 1509 if (ident != TAG_IDENT_LVID) { 1510 brelse(bh); 1511 break; 1512 } 1513 1514 brelse(final_bh); 1515 final_bh = bh; 1516 1517 loc.extLength -= sb->s_blocksize; 1518 loc.extLocation++; 1519 } 1520 1521 if (!final_bh) 1522 return; 1523 1524 brelse(sbi->s_lvid_bh); 1525 sbi->s_lvid_bh = final_bh; 1526 1527 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1528 if (lvid->nextIntegrityExt.extLength == 0) 1529 return; 1530 1531 loc = leea_to_cpu(lvid->nextIntegrityExt); 1532 } 1533 1534 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1535 UDF_MAX_LVID_NESTING); 1536 brelse(sbi->s_lvid_bh); 1537 sbi->s_lvid_bh = NULL; 1538 } 1539 1540 /* 1541 * Step for reallocation of table of partition descriptor sequence numbers. 1542 * Must be power of 2. 1543 */ 1544 #define PART_DESC_ALLOC_STEP 32 1545 1546 struct part_desc_seq_scan_data { 1547 struct udf_vds_record rec; 1548 u32 partnum; 1549 }; 1550 1551 struct desc_seq_scan_data { 1552 struct udf_vds_record vds[VDS_POS_LENGTH]; 1553 unsigned int size_part_descs; 1554 unsigned int num_part_descs; 1555 struct part_desc_seq_scan_data *part_descs_loc; 1556 }; 1557 1558 static struct udf_vds_record *handle_partition_descriptor( 1559 struct buffer_head *bh, 1560 struct desc_seq_scan_data *data) 1561 { 1562 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1563 int partnum; 1564 int i; 1565 1566 partnum = le16_to_cpu(desc->partitionNumber); 1567 for (i = 0; i < data->num_part_descs; i++) 1568 if (partnum == data->part_descs_loc[i].partnum) 1569 return &(data->part_descs_loc[i].rec); 1570 if (data->num_part_descs >= data->size_part_descs) { 1571 struct part_desc_seq_scan_data *new_loc; 1572 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1573 1574 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1575 if (!new_loc) 1576 return ERR_PTR(-ENOMEM); 1577 memcpy(new_loc, data->part_descs_loc, 1578 data->size_part_descs * sizeof(*new_loc)); 1579 kfree(data->part_descs_loc); 1580 data->part_descs_loc = new_loc; 1581 data->size_part_descs = new_size; 1582 } 1583 return &(data->part_descs_loc[data->num_part_descs++].rec); 1584 } 1585 1586 1587 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1588 struct buffer_head *bh, struct desc_seq_scan_data *data) 1589 { 1590 switch (ident) { 1591 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1592 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1593 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1594 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1595 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1596 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1597 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1598 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1599 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1600 return handle_partition_descriptor(bh, data); 1601 } 1602 return NULL; 1603 } 1604 1605 /* 1606 * Process a main/reserve volume descriptor sequence. 1607 * @block First block of first extent of the sequence. 1608 * @lastblock Lastblock of first extent of the sequence. 1609 * @fileset There we store extent containing root fileset 1610 * 1611 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1612 * sequence 1613 */ 1614 static noinline int udf_process_sequence( 1615 struct super_block *sb, 1616 sector_t block, sector_t lastblock, 1617 struct kernel_lb_addr *fileset) 1618 { 1619 struct buffer_head *bh = NULL; 1620 struct udf_vds_record *curr; 1621 struct generic_desc *gd; 1622 struct volDescPtr *vdp; 1623 bool done = false; 1624 uint32_t vdsn; 1625 uint16_t ident; 1626 int ret; 1627 unsigned int indirections = 0; 1628 struct desc_seq_scan_data data; 1629 unsigned int i; 1630 1631 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1632 data.size_part_descs = PART_DESC_ALLOC_STEP; 1633 data.num_part_descs = 0; 1634 data.part_descs_loc = kcalloc(data.size_part_descs, 1635 sizeof(*data.part_descs_loc), 1636 GFP_KERNEL); 1637 if (!data.part_descs_loc) 1638 return -ENOMEM; 1639 1640 /* 1641 * Read the main descriptor sequence and find which descriptors 1642 * are in it. 1643 */ 1644 for (; (!done && block <= lastblock); block++) { 1645 bh = udf_read_tagged(sb, block, block, &ident); 1646 if (!bh) 1647 break; 1648 1649 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1650 gd = (struct generic_desc *)bh->b_data; 1651 vdsn = le32_to_cpu(gd->volDescSeqNum); 1652 switch (ident) { 1653 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1654 if (++indirections > UDF_MAX_TD_NESTING) { 1655 udf_err(sb, "too many Volume Descriptor " 1656 "Pointers (max %u supported)\n", 1657 UDF_MAX_TD_NESTING); 1658 brelse(bh); 1659 return -EIO; 1660 } 1661 1662 vdp = (struct volDescPtr *)bh->b_data; 1663 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1664 lastblock = le32_to_cpu( 1665 vdp->nextVolDescSeqExt.extLength) >> 1666 sb->s_blocksize_bits; 1667 lastblock += block - 1; 1668 /* For loop is going to increment 'block' again */ 1669 block--; 1670 break; 1671 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1672 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1673 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1674 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1675 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1676 curr = get_volume_descriptor_record(ident, bh, &data); 1677 if (IS_ERR(curr)) { 1678 brelse(bh); 1679 return PTR_ERR(curr); 1680 } 1681 /* Descriptor we don't care about? */ 1682 if (!curr) 1683 break; 1684 if (vdsn >= curr->volDescSeqNum) { 1685 curr->volDescSeqNum = vdsn; 1686 curr->block = block; 1687 } 1688 break; 1689 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1690 done = true; 1691 break; 1692 } 1693 brelse(bh); 1694 } 1695 /* 1696 * Now read interesting descriptors again and process them 1697 * in a suitable order 1698 */ 1699 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1700 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1701 return -EAGAIN; 1702 } 1703 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1704 if (ret < 0) 1705 return ret; 1706 1707 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1708 ret = udf_load_logicalvol(sb, 1709 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1710 fileset); 1711 if (ret < 0) 1712 return ret; 1713 } 1714 1715 /* Now handle prevailing Partition Descriptors */ 1716 for (i = 0; i < data.num_part_descs; i++) { 1717 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1718 if (ret < 0) 1719 return ret; 1720 } 1721 1722 return 0; 1723 } 1724 1725 /* 1726 * Load Volume Descriptor Sequence described by anchor in bh 1727 * 1728 * Returns <0 on error, 0 on success 1729 */ 1730 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1731 struct kernel_lb_addr *fileset) 1732 { 1733 struct anchorVolDescPtr *anchor; 1734 sector_t main_s, main_e, reserve_s, reserve_e; 1735 int ret; 1736 1737 anchor = (struct anchorVolDescPtr *)bh->b_data; 1738 1739 /* Locate the main sequence */ 1740 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1741 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1742 main_e = main_e >> sb->s_blocksize_bits; 1743 main_e += main_s - 1; 1744 1745 /* Locate the reserve sequence */ 1746 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1747 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1748 reserve_e = reserve_e >> sb->s_blocksize_bits; 1749 reserve_e += reserve_s - 1; 1750 1751 /* Process the main & reserve sequences */ 1752 /* responsible for finding the PartitionDesc(s) */ 1753 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1754 if (ret != -EAGAIN) 1755 return ret; 1756 udf_sb_free_partitions(sb); 1757 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1758 if (ret < 0) { 1759 udf_sb_free_partitions(sb); 1760 /* No sequence was OK, return -EIO */ 1761 if (ret == -EAGAIN) 1762 ret = -EIO; 1763 } 1764 return ret; 1765 } 1766 1767 /* 1768 * Check whether there is an anchor block in the given block and 1769 * load Volume Descriptor Sequence if so. 1770 * 1771 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1772 * block 1773 */ 1774 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1775 struct kernel_lb_addr *fileset) 1776 { 1777 struct buffer_head *bh; 1778 uint16_t ident; 1779 int ret; 1780 1781 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1782 udf_fixed_to_variable(block) >= 1783 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1784 return -EAGAIN; 1785 1786 bh = udf_read_tagged(sb, block, block, &ident); 1787 if (!bh) 1788 return -EAGAIN; 1789 if (ident != TAG_IDENT_AVDP) { 1790 brelse(bh); 1791 return -EAGAIN; 1792 } 1793 ret = udf_load_sequence(sb, bh, fileset); 1794 brelse(bh); 1795 return ret; 1796 } 1797 1798 /* 1799 * Search for an anchor volume descriptor pointer. 1800 * 1801 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1802 * of anchors. 1803 */ 1804 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1805 struct kernel_lb_addr *fileset) 1806 { 1807 sector_t last[6]; 1808 int i; 1809 struct udf_sb_info *sbi = UDF_SB(sb); 1810 int last_count = 0; 1811 int ret; 1812 1813 /* First try user provided anchor */ 1814 if (sbi->s_anchor) { 1815 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1816 if (ret != -EAGAIN) 1817 return ret; 1818 } 1819 /* 1820 * according to spec, anchor is in either: 1821 * block 256 1822 * lastblock-256 1823 * lastblock 1824 * however, if the disc isn't closed, it could be 512. 1825 */ 1826 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1827 if (ret != -EAGAIN) 1828 return ret; 1829 /* 1830 * The trouble is which block is the last one. Drives often misreport 1831 * this so we try various possibilities. 1832 */ 1833 last[last_count++] = *lastblock; 1834 if (*lastblock >= 1) 1835 last[last_count++] = *lastblock - 1; 1836 last[last_count++] = *lastblock + 1; 1837 if (*lastblock >= 2) 1838 last[last_count++] = *lastblock - 2; 1839 if (*lastblock >= 150) 1840 last[last_count++] = *lastblock - 150; 1841 if (*lastblock >= 152) 1842 last[last_count++] = *lastblock - 152; 1843 1844 for (i = 0; i < last_count; i++) { 1845 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1846 sb->s_blocksize_bits) 1847 continue; 1848 ret = udf_check_anchor_block(sb, last[i], fileset); 1849 if (ret != -EAGAIN) { 1850 if (!ret) 1851 *lastblock = last[i]; 1852 return ret; 1853 } 1854 if (last[i] < 256) 1855 continue; 1856 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1857 if (ret != -EAGAIN) { 1858 if (!ret) 1859 *lastblock = last[i]; 1860 return ret; 1861 } 1862 } 1863 1864 /* Finally try block 512 in case media is open */ 1865 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1866 } 1867 1868 /* 1869 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1870 * area specified by it. The function expects sbi->s_lastblock to be the last 1871 * block on the media. 1872 * 1873 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1874 * was not found. 1875 */ 1876 static int udf_find_anchor(struct super_block *sb, 1877 struct kernel_lb_addr *fileset) 1878 { 1879 struct udf_sb_info *sbi = UDF_SB(sb); 1880 sector_t lastblock = sbi->s_last_block; 1881 int ret; 1882 1883 ret = udf_scan_anchors(sb, &lastblock, fileset); 1884 if (ret != -EAGAIN) 1885 goto out; 1886 1887 /* No anchor found? Try VARCONV conversion of block numbers */ 1888 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1889 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1890 /* Firstly, we try to not convert number of the last block */ 1891 ret = udf_scan_anchors(sb, &lastblock, fileset); 1892 if (ret != -EAGAIN) 1893 goto out; 1894 1895 lastblock = sbi->s_last_block; 1896 /* Secondly, we try with converted number of the last block */ 1897 ret = udf_scan_anchors(sb, &lastblock, fileset); 1898 if (ret < 0) { 1899 /* VARCONV didn't help. Clear it. */ 1900 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1901 } 1902 out: 1903 if (ret == 0) 1904 sbi->s_last_block = lastblock; 1905 return ret; 1906 } 1907 1908 /* 1909 * Check Volume Structure Descriptor, find Anchor block and load Volume 1910 * Descriptor Sequence. 1911 * 1912 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1913 * block was not found. 1914 */ 1915 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1916 int silent, struct kernel_lb_addr *fileset) 1917 { 1918 struct udf_sb_info *sbi = UDF_SB(sb); 1919 loff_t nsr_off; 1920 int ret; 1921 1922 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1923 if (!silent) 1924 udf_warn(sb, "Bad block size\n"); 1925 return -EINVAL; 1926 } 1927 sbi->s_last_block = uopt->lastblock; 1928 if (!uopt->novrs) { 1929 /* Check that it is NSR02 compliant */ 1930 nsr_off = udf_check_vsd(sb); 1931 if (!nsr_off) { 1932 if (!silent) 1933 udf_warn(sb, "No VRS found\n"); 1934 return -EINVAL; 1935 } 1936 if (nsr_off == -1) 1937 udf_debug("Failed to read sector at offset %d. " 1938 "Assuming open disc. Skipping validity " 1939 "check\n", VSD_FIRST_SECTOR_OFFSET); 1940 if (!sbi->s_last_block) 1941 sbi->s_last_block = udf_get_last_block(sb); 1942 } else { 1943 udf_debug("Validity check skipped because of novrs option\n"); 1944 } 1945 1946 /* Look for anchor block and load Volume Descriptor Sequence */ 1947 sbi->s_anchor = uopt->anchor; 1948 ret = udf_find_anchor(sb, fileset); 1949 if (ret < 0) { 1950 if (!silent && ret == -EAGAIN) 1951 udf_warn(sb, "No anchor found\n"); 1952 return ret; 1953 } 1954 return 0; 1955 } 1956 1957 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 1958 { 1959 struct timespec64 ts; 1960 1961 ktime_get_real_ts64(&ts); 1962 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1963 lvid->descTag.descCRC = cpu_to_le16( 1964 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1965 le16_to_cpu(lvid->descTag.descCRCLength))); 1966 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1967 } 1968 1969 static void udf_open_lvid(struct super_block *sb) 1970 { 1971 struct udf_sb_info *sbi = UDF_SB(sb); 1972 struct buffer_head *bh = sbi->s_lvid_bh; 1973 struct logicalVolIntegrityDesc *lvid; 1974 struct logicalVolIntegrityDescImpUse *lvidiu; 1975 1976 if (!bh) 1977 return; 1978 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1979 lvidiu = udf_sb_lvidiu(sb); 1980 if (!lvidiu) 1981 return; 1982 1983 mutex_lock(&sbi->s_alloc_mutex); 1984 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1985 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1986 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 1987 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1988 else 1989 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 1990 1991 udf_finalize_lvid(lvid); 1992 mark_buffer_dirty(bh); 1993 sbi->s_lvid_dirty = 0; 1994 mutex_unlock(&sbi->s_alloc_mutex); 1995 /* Make opening of filesystem visible on the media immediately */ 1996 sync_dirty_buffer(bh); 1997 } 1998 1999 static void udf_close_lvid(struct super_block *sb) 2000 { 2001 struct udf_sb_info *sbi = UDF_SB(sb); 2002 struct buffer_head *bh = sbi->s_lvid_bh; 2003 struct logicalVolIntegrityDesc *lvid; 2004 struct logicalVolIntegrityDescImpUse *lvidiu; 2005 2006 if (!bh) 2007 return; 2008 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2009 lvidiu = udf_sb_lvidiu(sb); 2010 if (!lvidiu) 2011 return; 2012 2013 mutex_lock(&sbi->s_alloc_mutex); 2014 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2015 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2016 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2017 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2018 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2019 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2020 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2021 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2022 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2023 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2024 2025 /* 2026 * We set buffer uptodate unconditionally here to avoid spurious 2027 * warnings from mark_buffer_dirty() when previous EIO has marked 2028 * the buffer as !uptodate 2029 */ 2030 set_buffer_uptodate(bh); 2031 udf_finalize_lvid(lvid); 2032 mark_buffer_dirty(bh); 2033 sbi->s_lvid_dirty = 0; 2034 mutex_unlock(&sbi->s_alloc_mutex); 2035 /* Make closing of filesystem visible on the media immediately */ 2036 sync_dirty_buffer(bh); 2037 } 2038 2039 u64 lvid_get_unique_id(struct super_block *sb) 2040 { 2041 struct buffer_head *bh; 2042 struct udf_sb_info *sbi = UDF_SB(sb); 2043 struct logicalVolIntegrityDesc *lvid; 2044 struct logicalVolHeaderDesc *lvhd; 2045 u64 uniqueID; 2046 u64 ret; 2047 2048 bh = sbi->s_lvid_bh; 2049 if (!bh) 2050 return 0; 2051 2052 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2053 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2054 2055 mutex_lock(&sbi->s_alloc_mutex); 2056 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2057 if (!(++uniqueID & 0xFFFFFFFF)) 2058 uniqueID += 16; 2059 lvhd->uniqueID = cpu_to_le64(uniqueID); 2060 udf_updated_lvid(sb); 2061 mutex_unlock(&sbi->s_alloc_mutex); 2062 2063 return ret; 2064 } 2065 2066 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2067 { 2068 int ret = -EINVAL; 2069 struct inode *inode = NULL; 2070 struct udf_options uopt; 2071 struct kernel_lb_addr rootdir, fileset; 2072 struct udf_sb_info *sbi; 2073 bool lvid_open = false; 2074 2075 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2076 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2077 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2078 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2079 uopt.umask = 0; 2080 uopt.fmode = UDF_INVALID_MODE; 2081 uopt.dmode = UDF_INVALID_MODE; 2082 uopt.nls_map = NULL; 2083 2084 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2085 if (!sbi) 2086 return -ENOMEM; 2087 2088 sb->s_fs_info = sbi; 2089 2090 mutex_init(&sbi->s_alloc_mutex); 2091 2092 if (!udf_parse_options((char *)options, &uopt, false)) 2093 goto parse_options_failure; 2094 2095 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2096 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2097 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2098 goto parse_options_failure; 2099 } 2100 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2101 uopt.nls_map = load_nls_default(); 2102 if (!uopt.nls_map) 2103 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2104 else 2105 udf_debug("Using default NLS map\n"); 2106 } 2107 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2108 uopt.flags |= (1 << UDF_FLAG_UTF8); 2109 2110 fileset.logicalBlockNum = 0xFFFFFFFF; 2111 fileset.partitionReferenceNum = 0xFFFF; 2112 2113 sbi->s_flags = uopt.flags; 2114 sbi->s_uid = uopt.uid; 2115 sbi->s_gid = uopt.gid; 2116 sbi->s_umask = uopt.umask; 2117 sbi->s_fmode = uopt.fmode; 2118 sbi->s_dmode = uopt.dmode; 2119 sbi->s_nls_map = uopt.nls_map; 2120 rwlock_init(&sbi->s_cred_lock); 2121 2122 if (uopt.session == 0xFFFFFFFF) 2123 sbi->s_session = udf_get_last_session(sb); 2124 else 2125 sbi->s_session = uopt.session; 2126 2127 udf_debug("Multi-session=%d\n", sbi->s_session); 2128 2129 /* Fill in the rest of the superblock */ 2130 sb->s_op = &udf_sb_ops; 2131 sb->s_export_op = &udf_export_ops; 2132 2133 sb->s_magic = UDF_SUPER_MAGIC; 2134 sb->s_time_gran = 1000; 2135 2136 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2137 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2138 } else { 2139 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2140 while (uopt.blocksize <= 4096) { 2141 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2142 if (ret < 0) { 2143 if (!silent && ret != -EACCES) { 2144 pr_notice("Scanning with blocksize %u failed\n", 2145 uopt.blocksize); 2146 } 2147 brelse(sbi->s_lvid_bh); 2148 sbi->s_lvid_bh = NULL; 2149 /* 2150 * EACCES is special - we want to propagate to 2151 * upper layers that we cannot handle RW mount. 2152 */ 2153 if (ret == -EACCES) 2154 break; 2155 } else 2156 break; 2157 2158 uopt.blocksize <<= 1; 2159 } 2160 } 2161 if (ret < 0) { 2162 if (ret == -EAGAIN) { 2163 udf_warn(sb, "No partition found (1)\n"); 2164 ret = -EINVAL; 2165 } 2166 goto error_out; 2167 } 2168 2169 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2170 2171 if (sbi->s_lvid_bh) { 2172 struct logicalVolIntegrityDescImpUse *lvidiu = 2173 udf_sb_lvidiu(sb); 2174 uint16_t minUDFReadRev; 2175 uint16_t minUDFWriteRev; 2176 2177 if (!lvidiu) { 2178 ret = -EINVAL; 2179 goto error_out; 2180 } 2181 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2182 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2183 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2184 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2185 minUDFReadRev, 2186 UDF_MAX_READ_VERSION); 2187 ret = -EINVAL; 2188 goto error_out; 2189 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2190 if (!sb_rdonly(sb)) { 2191 ret = -EACCES; 2192 goto error_out; 2193 } 2194 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2195 } 2196 2197 sbi->s_udfrev = minUDFWriteRev; 2198 2199 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2200 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2201 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2202 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2203 } 2204 2205 if (!sbi->s_partitions) { 2206 udf_warn(sb, "No partition found (2)\n"); 2207 ret = -EINVAL; 2208 goto error_out; 2209 } 2210 2211 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2212 UDF_PART_FLAG_READ_ONLY) { 2213 if (!sb_rdonly(sb)) { 2214 ret = -EACCES; 2215 goto error_out; 2216 } 2217 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2218 } 2219 2220 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2221 udf_warn(sb, "No fileset found\n"); 2222 ret = -EINVAL; 2223 goto error_out; 2224 } 2225 2226 if (!silent) { 2227 struct timestamp ts; 2228 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2229 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2230 sbi->s_volume_ident, 2231 le16_to_cpu(ts.year), ts.month, ts.day, 2232 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2233 } 2234 if (!sb_rdonly(sb)) { 2235 udf_open_lvid(sb); 2236 lvid_open = true; 2237 } 2238 2239 /* Assign the root inode */ 2240 /* assign inodes by physical block number */ 2241 /* perhaps it's not extensible enough, but for now ... */ 2242 inode = udf_iget(sb, &rootdir); 2243 if (IS_ERR(inode)) { 2244 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2245 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2246 ret = PTR_ERR(inode); 2247 goto error_out; 2248 } 2249 2250 /* Allocate a dentry for the root inode */ 2251 sb->s_root = d_make_root(inode); 2252 if (!sb->s_root) { 2253 udf_err(sb, "Couldn't allocate root dentry\n"); 2254 ret = -ENOMEM; 2255 goto error_out; 2256 } 2257 sb->s_maxbytes = MAX_LFS_FILESIZE; 2258 sb->s_max_links = UDF_MAX_LINKS; 2259 return 0; 2260 2261 error_out: 2262 iput(sbi->s_vat_inode); 2263 parse_options_failure: 2264 if (uopt.nls_map) 2265 unload_nls(uopt.nls_map); 2266 if (lvid_open) 2267 udf_close_lvid(sb); 2268 brelse(sbi->s_lvid_bh); 2269 udf_sb_free_partitions(sb); 2270 kfree(sbi); 2271 sb->s_fs_info = NULL; 2272 2273 return ret; 2274 } 2275 2276 void _udf_err(struct super_block *sb, const char *function, 2277 const char *fmt, ...) 2278 { 2279 struct va_format vaf; 2280 va_list args; 2281 2282 va_start(args, fmt); 2283 2284 vaf.fmt = fmt; 2285 vaf.va = &args; 2286 2287 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2288 2289 va_end(args); 2290 } 2291 2292 void _udf_warn(struct super_block *sb, const char *function, 2293 const char *fmt, ...) 2294 { 2295 struct va_format vaf; 2296 va_list args; 2297 2298 va_start(args, fmt); 2299 2300 vaf.fmt = fmt; 2301 vaf.va = &args; 2302 2303 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2304 2305 va_end(args); 2306 } 2307 2308 static void udf_put_super(struct super_block *sb) 2309 { 2310 struct udf_sb_info *sbi; 2311 2312 sbi = UDF_SB(sb); 2313 2314 iput(sbi->s_vat_inode); 2315 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2316 unload_nls(sbi->s_nls_map); 2317 if (!sb_rdonly(sb)) 2318 udf_close_lvid(sb); 2319 brelse(sbi->s_lvid_bh); 2320 udf_sb_free_partitions(sb); 2321 mutex_destroy(&sbi->s_alloc_mutex); 2322 kfree(sb->s_fs_info); 2323 sb->s_fs_info = NULL; 2324 } 2325 2326 static int udf_sync_fs(struct super_block *sb, int wait) 2327 { 2328 struct udf_sb_info *sbi = UDF_SB(sb); 2329 2330 mutex_lock(&sbi->s_alloc_mutex); 2331 if (sbi->s_lvid_dirty) { 2332 struct buffer_head *bh = sbi->s_lvid_bh; 2333 struct logicalVolIntegrityDesc *lvid; 2334 2335 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2336 udf_finalize_lvid(lvid); 2337 2338 /* 2339 * Blockdevice will be synced later so we don't have to submit 2340 * the buffer for IO 2341 */ 2342 mark_buffer_dirty(bh); 2343 sbi->s_lvid_dirty = 0; 2344 } 2345 mutex_unlock(&sbi->s_alloc_mutex); 2346 2347 return 0; 2348 } 2349 2350 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2351 { 2352 struct super_block *sb = dentry->d_sb; 2353 struct udf_sb_info *sbi = UDF_SB(sb); 2354 struct logicalVolIntegrityDescImpUse *lvidiu; 2355 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2356 2357 lvidiu = udf_sb_lvidiu(sb); 2358 buf->f_type = UDF_SUPER_MAGIC; 2359 buf->f_bsize = sb->s_blocksize; 2360 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2361 buf->f_bfree = udf_count_free(sb); 2362 buf->f_bavail = buf->f_bfree; 2363 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2364 le32_to_cpu(lvidiu->numDirs)) : 0) 2365 + buf->f_bfree; 2366 buf->f_ffree = buf->f_bfree; 2367 buf->f_namelen = UDF_NAME_LEN; 2368 buf->f_fsid.val[0] = (u32)id; 2369 buf->f_fsid.val[1] = (u32)(id >> 32); 2370 2371 return 0; 2372 } 2373 2374 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2375 struct udf_bitmap *bitmap) 2376 { 2377 struct buffer_head *bh = NULL; 2378 unsigned int accum = 0; 2379 int index; 2380 udf_pblk_t block = 0, newblock; 2381 struct kernel_lb_addr loc; 2382 uint32_t bytes; 2383 uint8_t *ptr; 2384 uint16_t ident; 2385 struct spaceBitmapDesc *bm; 2386 2387 loc.logicalBlockNum = bitmap->s_extPosition; 2388 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2389 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2390 2391 if (!bh) { 2392 udf_err(sb, "udf_count_free failed\n"); 2393 goto out; 2394 } else if (ident != TAG_IDENT_SBD) { 2395 brelse(bh); 2396 udf_err(sb, "udf_count_free failed\n"); 2397 goto out; 2398 } 2399 2400 bm = (struct spaceBitmapDesc *)bh->b_data; 2401 bytes = le32_to_cpu(bm->numOfBytes); 2402 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2403 ptr = (uint8_t *)bh->b_data; 2404 2405 while (bytes > 0) { 2406 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2407 accum += bitmap_weight((const unsigned long *)(ptr + index), 2408 cur_bytes * 8); 2409 bytes -= cur_bytes; 2410 if (bytes) { 2411 brelse(bh); 2412 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2413 bh = udf_tread(sb, newblock); 2414 if (!bh) { 2415 udf_debug("read failed\n"); 2416 goto out; 2417 } 2418 index = 0; 2419 ptr = (uint8_t *)bh->b_data; 2420 } 2421 } 2422 brelse(bh); 2423 out: 2424 return accum; 2425 } 2426 2427 static unsigned int udf_count_free_table(struct super_block *sb, 2428 struct inode *table) 2429 { 2430 unsigned int accum = 0; 2431 uint32_t elen; 2432 struct kernel_lb_addr eloc; 2433 int8_t etype; 2434 struct extent_position epos; 2435 2436 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2437 epos.block = UDF_I(table)->i_location; 2438 epos.offset = sizeof(struct unallocSpaceEntry); 2439 epos.bh = NULL; 2440 2441 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2442 accum += (elen >> table->i_sb->s_blocksize_bits); 2443 2444 brelse(epos.bh); 2445 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2446 2447 return accum; 2448 } 2449 2450 static unsigned int udf_count_free(struct super_block *sb) 2451 { 2452 unsigned int accum = 0; 2453 struct udf_sb_info *sbi; 2454 struct udf_part_map *map; 2455 2456 sbi = UDF_SB(sb); 2457 if (sbi->s_lvid_bh) { 2458 struct logicalVolIntegrityDesc *lvid = 2459 (struct logicalVolIntegrityDesc *) 2460 sbi->s_lvid_bh->b_data; 2461 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2462 accum = le32_to_cpu( 2463 lvid->freeSpaceTable[sbi->s_partition]); 2464 if (accum == 0xFFFFFFFF) 2465 accum = 0; 2466 } 2467 } 2468 2469 if (accum) 2470 return accum; 2471 2472 map = &sbi->s_partmaps[sbi->s_partition]; 2473 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2474 accum += udf_count_free_bitmap(sb, 2475 map->s_uspace.s_bitmap); 2476 } 2477 if (accum) 2478 return accum; 2479 2480 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2481 accum += udf_count_free_table(sb, 2482 map->s_uspace.s_table); 2483 } 2484 return accum; 2485 } 2486 2487 MODULE_AUTHOR("Ben Fennema"); 2488 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2489 MODULE_LICENSE("GPL"); 2490 module_init(init_udf_fs) 2491 module_exit(exit_udf_fs) 2492