xref: /linux/fs/udf/inode.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
57 					sector_t *, int *);
58 static int8_t udf_insert_aext(struct inode *, struct extent_position,
59 			      struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, int,
61 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_merge_extents(struct inode *,
65 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
66 static void udf_update_extents(struct inode *,
67 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
68 			       struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 
72 void udf_evict_inode(struct inode *inode)
73 {
74 	struct udf_inode_info *iinfo = UDF_I(inode);
75 	int want_delete = 0;
76 
77 	if (!inode->i_nlink && !is_bad_inode(inode)) {
78 		want_delete = 1;
79 		udf_setsize(inode, 0);
80 		udf_update_inode(inode, IS_SYNC(inode));
81 	} else
82 		truncate_inode_pages(&inode->i_data, 0);
83 	invalidate_inode_buffers(inode);
84 	end_writeback(inode);
85 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
86 	    inode->i_size != iinfo->i_lenExtents) {
87 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
88 			 inode->i_ino, inode->i_mode,
89 			 (unsigned long long)inode->i_size,
90 			 (unsigned long long)iinfo->i_lenExtents);
91 	}
92 	kfree(iinfo->i_ext.i_data);
93 	iinfo->i_ext.i_data = NULL;
94 	if (want_delete) {
95 		udf_free_inode(inode);
96 	}
97 }
98 
99 static int udf_writepage(struct page *page, struct writeback_control *wbc)
100 {
101 	return block_write_full_page(page, udf_get_block, wbc);
102 }
103 
104 static int udf_readpage(struct file *file, struct page *page)
105 {
106 	return mpage_readpage(page, udf_get_block);
107 }
108 
109 static int udf_readpages(struct file *file, struct address_space *mapping,
110 			struct list_head *pages, unsigned nr_pages)
111 {
112 	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
113 }
114 
115 static int udf_write_begin(struct file *file, struct address_space *mapping,
116 			loff_t pos, unsigned len, unsigned flags,
117 			struct page **pagep, void **fsdata)
118 {
119 	int ret;
120 
121 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
122 	if (unlikely(ret)) {
123 		struct inode *inode = mapping->host;
124 		struct udf_inode_info *iinfo = UDF_I(inode);
125 		loff_t isize = inode->i_size;
126 
127 		if (pos + len > isize) {
128 			truncate_pagecache(inode, pos + len, isize);
129 			if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
130 				down_write(&iinfo->i_data_sem);
131 				udf_truncate_extents(inode);
132 				up_write(&iinfo->i_data_sem);
133 			}
134 		}
135 	}
136 
137 	return ret;
138 }
139 
140 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
141 {
142 	return generic_block_bmap(mapping, block, udf_get_block);
143 }
144 
145 const struct address_space_operations udf_aops = {
146 	.readpage	= udf_readpage,
147 	.readpages	= udf_readpages,
148 	.writepage	= udf_writepage,
149 	.write_begin		= udf_write_begin,
150 	.write_end		= generic_write_end,
151 	.bmap		= udf_bmap,
152 };
153 
154 int udf_expand_file_adinicb(struct inode *inode)
155 {
156 	struct page *page;
157 	char *kaddr;
158 	struct udf_inode_info *iinfo = UDF_I(inode);
159 	int err;
160 	struct writeback_control udf_wbc = {
161 		.sync_mode = WB_SYNC_NONE,
162 		.nr_to_write = 1,
163 	};
164 
165 	if (!iinfo->i_lenAlloc) {
166 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
167 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
168 		else
169 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
170 		/* from now on we have normal address_space methods */
171 		inode->i_data.a_ops = &udf_aops;
172 		mark_inode_dirty(inode);
173 		return 0;
174 	}
175 
176 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
177 	if (!page)
178 		return -ENOMEM;
179 
180 	if (!PageUptodate(page)) {
181 		kaddr = kmap(page);
182 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
183 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
184 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
185 			iinfo->i_lenAlloc);
186 		flush_dcache_page(page);
187 		SetPageUptodate(page);
188 		kunmap(page);
189 	}
190 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
191 	       iinfo->i_lenAlloc);
192 	iinfo->i_lenAlloc = 0;
193 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
194 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
195 	else
196 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
197 	/* from now on we have normal address_space methods */
198 	inode->i_data.a_ops = &udf_aops;
199 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
200 	if (err) {
201 		/* Restore everything back so that we don't lose data... */
202 		lock_page(page);
203 		kaddr = kmap(page);
204 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
205 		       inode->i_size);
206 		kunmap(page);
207 		unlock_page(page);
208 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
209 		inode->i_data.a_ops = &udf_adinicb_aops;
210 	}
211 	page_cache_release(page);
212 	mark_inode_dirty(inode);
213 
214 	return err;
215 }
216 
217 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
218 					   int *err)
219 {
220 	int newblock;
221 	struct buffer_head *dbh = NULL;
222 	struct kernel_lb_addr eloc;
223 	uint8_t alloctype;
224 	struct extent_position epos;
225 
226 	struct udf_fileident_bh sfibh, dfibh;
227 	loff_t f_pos = udf_ext0_offset(inode);
228 	int size = udf_ext0_offset(inode) + inode->i_size;
229 	struct fileIdentDesc cfi, *sfi, *dfi;
230 	struct udf_inode_info *iinfo = UDF_I(inode);
231 
232 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
233 		alloctype = ICBTAG_FLAG_AD_SHORT;
234 	else
235 		alloctype = ICBTAG_FLAG_AD_LONG;
236 
237 	if (!inode->i_size) {
238 		iinfo->i_alloc_type = alloctype;
239 		mark_inode_dirty(inode);
240 		return NULL;
241 	}
242 
243 	/* alloc block, and copy data to it */
244 	*block = udf_new_block(inode->i_sb, inode,
245 			       iinfo->i_location.partitionReferenceNum,
246 			       iinfo->i_location.logicalBlockNum, err);
247 	if (!(*block))
248 		return NULL;
249 	newblock = udf_get_pblock(inode->i_sb, *block,
250 				  iinfo->i_location.partitionReferenceNum,
251 				0);
252 	if (!newblock)
253 		return NULL;
254 	dbh = udf_tgetblk(inode->i_sb, newblock);
255 	if (!dbh)
256 		return NULL;
257 	lock_buffer(dbh);
258 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
259 	set_buffer_uptodate(dbh);
260 	unlock_buffer(dbh);
261 	mark_buffer_dirty_inode(dbh, inode);
262 
263 	sfibh.soffset = sfibh.eoffset =
264 			f_pos & (inode->i_sb->s_blocksize - 1);
265 	sfibh.sbh = sfibh.ebh = NULL;
266 	dfibh.soffset = dfibh.eoffset = 0;
267 	dfibh.sbh = dfibh.ebh = dbh;
268 	while (f_pos < size) {
269 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
270 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
271 					 NULL, NULL, NULL);
272 		if (!sfi) {
273 			brelse(dbh);
274 			return NULL;
275 		}
276 		iinfo->i_alloc_type = alloctype;
277 		sfi->descTag.tagLocation = cpu_to_le32(*block);
278 		dfibh.soffset = dfibh.eoffset;
279 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
280 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
281 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
282 				 sfi->fileIdent +
283 					le16_to_cpu(sfi->lengthOfImpUse))) {
284 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
285 			brelse(dbh);
286 			return NULL;
287 		}
288 	}
289 	mark_buffer_dirty_inode(dbh, inode);
290 
291 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
292 		iinfo->i_lenAlloc);
293 	iinfo->i_lenAlloc = 0;
294 	eloc.logicalBlockNum = *block;
295 	eloc.partitionReferenceNum =
296 				iinfo->i_location.partitionReferenceNum;
297 	iinfo->i_lenExtents = inode->i_size;
298 	epos.bh = NULL;
299 	epos.block = iinfo->i_location;
300 	epos.offset = udf_file_entry_alloc_offset(inode);
301 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
302 	/* UniqueID stuff */
303 
304 	brelse(epos.bh);
305 	mark_inode_dirty(inode);
306 	return dbh;
307 }
308 
309 static int udf_get_block(struct inode *inode, sector_t block,
310 			 struct buffer_head *bh_result, int create)
311 {
312 	int err, new;
313 	struct buffer_head *bh;
314 	sector_t phys = 0;
315 	struct udf_inode_info *iinfo;
316 
317 	if (!create) {
318 		phys = udf_block_map(inode, block);
319 		if (phys)
320 			map_bh(bh_result, inode->i_sb, phys);
321 		return 0;
322 	}
323 
324 	err = -EIO;
325 	new = 0;
326 	bh = NULL;
327 	iinfo = UDF_I(inode);
328 
329 	down_write(&iinfo->i_data_sem);
330 	if (block == iinfo->i_next_alloc_block + 1) {
331 		iinfo->i_next_alloc_block++;
332 		iinfo->i_next_alloc_goal++;
333 	}
334 
335 	err = 0;
336 
337 	bh = inode_getblk(inode, block, &err, &phys, &new);
338 	BUG_ON(bh);
339 	if (err)
340 		goto abort;
341 	BUG_ON(!phys);
342 
343 	if (new)
344 		set_buffer_new(bh_result);
345 	map_bh(bh_result, inode->i_sb, phys);
346 
347 abort:
348 	up_write(&iinfo->i_data_sem);
349 	return err;
350 }
351 
352 static struct buffer_head *udf_getblk(struct inode *inode, long block,
353 				      int create, int *err)
354 {
355 	struct buffer_head *bh;
356 	struct buffer_head dummy;
357 
358 	dummy.b_state = 0;
359 	dummy.b_blocknr = -1000;
360 	*err = udf_get_block(inode, block, &dummy, create);
361 	if (!*err && buffer_mapped(&dummy)) {
362 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
363 		if (buffer_new(&dummy)) {
364 			lock_buffer(bh);
365 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
366 			set_buffer_uptodate(bh);
367 			unlock_buffer(bh);
368 			mark_buffer_dirty_inode(bh, inode);
369 		}
370 		return bh;
371 	}
372 
373 	return NULL;
374 }
375 
376 /* Extend the file by 'blocks' blocks, return the number of extents added */
377 static int udf_do_extend_file(struct inode *inode,
378 			      struct extent_position *last_pos,
379 			      struct kernel_long_ad *last_ext,
380 			      sector_t blocks)
381 {
382 	sector_t add;
383 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
384 	struct super_block *sb = inode->i_sb;
385 	struct kernel_lb_addr prealloc_loc = {};
386 	int prealloc_len = 0;
387 	struct udf_inode_info *iinfo;
388 	int err;
389 
390 	/* The previous extent is fake and we should not extend by anything
391 	 * - there's nothing to do... */
392 	if (!blocks && fake)
393 		return 0;
394 
395 	iinfo = UDF_I(inode);
396 	/* Round the last extent up to a multiple of block size */
397 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
398 		last_ext->extLength =
399 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
400 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
401 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
402 		iinfo->i_lenExtents =
403 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
404 			~(sb->s_blocksize - 1);
405 	}
406 
407 	/* Last extent are just preallocated blocks? */
408 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
409 						EXT_NOT_RECORDED_ALLOCATED) {
410 		/* Save the extent so that we can reattach it to the end */
411 		prealloc_loc = last_ext->extLocation;
412 		prealloc_len = last_ext->extLength;
413 		/* Mark the extent as a hole */
414 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
415 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
416 		last_ext->extLocation.logicalBlockNum = 0;
417 		last_ext->extLocation.partitionReferenceNum = 0;
418 	}
419 
420 	/* Can we merge with the previous extent? */
421 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
422 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
423 		add = ((1 << 30) - sb->s_blocksize -
424 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
425 			sb->s_blocksize_bits;
426 		if (add > blocks)
427 			add = blocks;
428 		blocks -= add;
429 		last_ext->extLength += add << sb->s_blocksize_bits;
430 	}
431 
432 	if (fake) {
433 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
434 			     last_ext->extLength, 1);
435 		count++;
436 	} else
437 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
438 				last_ext->extLength, 1);
439 
440 	/* Managed to do everything necessary? */
441 	if (!blocks)
442 		goto out;
443 
444 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
445 	last_ext->extLocation.logicalBlockNum = 0;
446 	last_ext->extLocation.partitionReferenceNum = 0;
447 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
448 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
449 				(add << sb->s_blocksize_bits);
450 
451 	/* Create enough extents to cover the whole hole */
452 	while (blocks > add) {
453 		blocks -= add;
454 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
455 				   last_ext->extLength, 1);
456 		if (err)
457 			return err;
458 		count++;
459 	}
460 	if (blocks) {
461 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
462 			(blocks << sb->s_blocksize_bits);
463 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
464 				   last_ext->extLength, 1);
465 		if (err)
466 			return err;
467 		count++;
468 	}
469 
470 out:
471 	/* Do we have some preallocated blocks saved? */
472 	if (prealloc_len) {
473 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
474 				   prealloc_len, 1);
475 		if (err)
476 			return err;
477 		last_ext->extLocation = prealloc_loc;
478 		last_ext->extLength = prealloc_len;
479 		count++;
480 	}
481 
482 	/* last_pos should point to the last written extent... */
483 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
484 		last_pos->offset -= sizeof(struct short_ad);
485 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
486 		last_pos->offset -= sizeof(struct long_ad);
487 	else
488 		return -EIO;
489 
490 	return count;
491 }
492 
493 static int udf_extend_file(struct inode *inode, loff_t newsize)
494 {
495 
496 	struct extent_position epos;
497 	struct kernel_lb_addr eloc;
498 	uint32_t elen;
499 	int8_t etype;
500 	struct super_block *sb = inode->i_sb;
501 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
502 	int adsize;
503 	struct udf_inode_info *iinfo = UDF_I(inode);
504 	struct kernel_long_ad extent;
505 	int err;
506 
507 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
508 		adsize = sizeof(struct short_ad);
509 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
510 		adsize = sizeof(struct long_ad);
511 	else
512 		BUG();
513 
514 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
515 
516 	/* File has extent covering the new size (could happen when extending
517 	 * inside a block)? */
518 	if (etype != -1)
519 		return 0;
520 	if (newsize & (sb->s_blocksize - 1))
521 		offset++;
522 	/* Extended file just to the boundary of the last file block? */
523 	if (offset == 0)
524 		return 0;
525 
526 	/* Truncate is extending the file by 'offset' blocks */
527 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
528 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
529 		/* File has no extents at all or has empty last
530 		 * indirect extent! Create a fake extent... */
531 		extent.extLocation.logicalBlockNum = 0;
532 		extent.extLocation.partitionReferenceNum = 0;
533 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
534 	} else {
535 		epos.offset -= adsize;
536 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
537 				      &extent.extLength, 0);
538 		extent.extLength |= etype << 30;
539 	}
540 	err = udf_do_extend_file(inode, &epos, &extent, offset);
541 	if (err < 0)
542 		goto out;
543 	err = 0;
544 	iinfo->i_lenExtents = newsize;
545 out:
546 	brelse(epos.bh);
547 	return err;
548 }
549 
550 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
551 					int *err, sector_t *phys, int *new)
552 {
553 	static sector_t last_block;
554 	struct buffer_head *result = NULL;
555 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
556 	struct extent_position prev_epos, cur_epos, next_epos;
557 	int count = 0, startnum = 0, endnum = 0;
558 	uint32_t elen = 0, tmpelen;
559 	struct kernel_lb_addr eloc, tmpeloc;
560 	int c = 1;
561 	loff_t lbcount = 0, b_off = 0;
562 	uint32_t newblocknum, newblock;
563 	sector_t offset = 0;
564 	int8_t etype;
565 	struct udf_inode_info *iinfo = UDF_I(inode);
566 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
567 	int lastblock = 0;
568 
569 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
570 	prev_epos.block = iinfo->i_location;
571 	prev_epos.bh = NULL;
572 	cur_epos = next_epos = prev_epos;
573 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
574 
575 	/* find the extent which contains the block we are looking for.
576 	   alternate between laarr[0] and laarr[1] for locations of the
577 	   current extent, and the previous extent */
578 	do {
579 		if (prev_epos.bh != cur_epos.bh) {
580 			brelse(prev_epos.bh);
581 			get_bh(cur_epos.bh);
582 			prev_epos.bh = cur_epos.bh;
583 		}
584 		if (cur_epos.bh != next_epos.bh) {
585 			brelse(cur_epos.bh);
586 			get_bh(next_epos.bh);
587 			cur_epos.bh = next_epos.bh;
588 		}
589 
590 		lbcount += elen;
591 
592 		prev_epos.block = cur_epos.block;
593 		cur_epos.block = next_epos.block;
594 
595 		prev_epos.offset = cur_epos.offset;
596 		cur_epos.offset = next_epos.offset;
597 
598 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
599 		if (etype == -1)
600 			break;
601 
602 		c = !c;
603 
604 		laarr[c].extLength = (etype << 30) | elen;
605 		laarr[c].extLocation = eloc;
606 
607 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
608 			pgoal = eloc.logicalBlockNum +
609 				((elen + inode->i_sb->s_blocksize - 1) >>
610 				 inode->i_sb->s_blocksize_bits);
611 
612 		count++;
613 	} while (lbcount + elen <= b_off);
614 
615 	b_off -= lbcount;
616 	offset = b_off >> inode->i_sb->s_blocksize_bits;
617 	/*
618 	 * Move prev_epos and cur_epos into indirect extent if we are at
619 	 * the pointer to it
620 	 */
621 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
622 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
623 
624 	/* if the extent is allocated and recorded, return the block
625 	   if the extent is not a multiple of the blocksize, round up */
626 
627 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
628 		if (elen & (inode->i_sb->s_blocksize - 1)) {
629 			elen = EXT_RECORDED_ALLOCATED |
630 				((elen + inode->i_sb->s_blocksize - 1) &
631 				 ~(inode->i_sb->s_blocksize - 1));
632 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
633 		}
634 		brelse(prev_epos.bh);
635 		brelse(cur_epos.bh);
636 		brelse(next_epos.bh);
637 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
638 		*phys = newblock;
639 		return NULL;
640 	}
641 
642 	last_block = block;
643 	/* Are we beyond EOF? */
644 	if (etype == -1) {
645 		int ret;
646 
647 		if (count) {
648 			if (c)
649 				laarr[0] = laarr[1];
650 			startnum = 1;
651 		} else {
652 			/* Create a fake extent when there's not one */
653 			memset(&laarr[0].extLocation, 0x00,
654 				sizeof(struct kernel_lb_addr));
655 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
656 			/* Will udf_do_extend_file() create real extent from
657 			   a fake one? */
658 			startnum = (offset > 0);
659 		}
660 		/* Create extents for the hole between EOF and offset */
661 		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
662 		if (ret < 0) {
663 			brelse(prev_epos.bh);
664 			brelse(cur_epos.bh);
665 			brelse(next_epos.bh);
666 			*err = ret;
667 			return NULL;
668 		}
669 		c = 0;
670 		offset = 0;
671 		count += ret;
672 		/* We are not covered by a preallocated extent? */
673 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
674 						EXT_NOT_RECORDED_ALLOCATED) {
675 			/* Is there any real extent? - otherwise we overwrite
676 			 * the fake one... */
677 			if (count)
678 				c = !c;
679 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
680 				inode->i_sb->s_blocksize;
681 			memset(&laarr[c].extLocation, 0x00,
682 				sizeof(struct kernel_lb_addr));
683 			count++;
684 			endnum++;
685 		}
686 		endnum = c + 1;
687 		lastblock = 1;
688 	} else {
689 		endnum = startnum = ((count > 2) ? 2 : count);
690 
691 		/* if the current extent is in position 0,
692 		   swap it with the previous */
693 		if (!c && count != 1) {
694 			laarr[2] = laarr[0];
695 			laarr[0] = laarr[1];
696 			laarr[1] = laarr[2];
697 			c = 1;
698 		}
699 
700 		/* if the current block is located in an extent,
701 		   read the next extent */
702 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
703 		if (etype != -1) {
704 			laarr[c + 1].extLength = (etype << 30) | elen;
705 			laarr[c + 1].extLocation = eloc;
706 			count++;
707 			startnum++;
708 			endnum++;
709 		} else
710 			lastblock = 1;
711 	}
712 
713 	/* if the current extent is not recorded but allocated, get the
714 	 * block in the extent corresponding to the requested block */
715 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
716 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
717 	else { /* otherwise, allocate a new block */
718 		if (iinfo->i_next_alloc_block == block)
719 			goal = iinfo->i_next_alloc_goal;
720 
721 		if (!goal) {
722 			if (!(goal = pgoal)) /* XXX: what was intended here? */
723 				goal = iinfo->i_location.logicalBlockNum + 1;
724 		}
725 
726 		newblocknum = udf_new_block(inode->i_sb, inode,
727 				iinfo->i_location.partitionReferenceNum,
728 				goal, err);
729 		if (!newblocknum) {
730 			brelse(prev_epos.bh);
731 			*err = -ENOSPC;
732 			return NULL;
733 		}
734 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
735 	}
736 
737 	/* if the extent the requsted block is located in contains multiple
738 	 * blocks, split the extent into at most three extents. blocks prior
739 	 * to requested block, requested block, and blocks after requested
740 	 * block */
741 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
742 
743 #ifdef UDF_PREALLOCATE
744 	/* We preallocate blocks only for regular files. It also makes sense
745 	 * for directories but there's a problem when to drop the
746 	 * preallocation. We might use some delayed work for that but I feel
747 	 * it's overengineering for a filesystem like UDF. */
748 	if (S_ISREG(inode->i_mode))
749 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
750 #endif
751 
752 	/* merge any continuous blocks in laarr */
753 	udf_merge_extents(inode, laarr, &endnum);
754 
755 	/* write back the new extents, inserting new extents if the new number
756 	 * of extents is greater than the old number, and deleting extents if
757 	 * the new number of extents is less than the old number */
758 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
759 
760 	brelse(prev_epos.bh);
761 
762 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
763 				iinfo->i_location.partitionReferenceNum, 0);
764 	if (!newblock)
765 		return NULL;
766 	*phys = newblock;
767 	*err = 0;
768 	*new = 1;
769 	iinfo->i_next_alloc_block = block;
770 	iinfo->i_next_alloc_goal = newblocknum;
771 	inode->i_ctime = current_fs_time(inode->i_sb);
772 
773 	if (IS_SYNC(inode))
774 		udf_sync_inode(inode);
775 	else
776 		mark_inode_dirty(inode);
777 
778 	return result;
779 }
780 
781 static void udf_split_extents(struct inode *inode, int *c, int offset,
782 			      int newblocknum,
783 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
784 			      int *endnum)
785 {
786 	unsigned long blocksize = inode->i_sb->s_blocksize;
787 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
788 
789 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
790 	    (laarr[*c].extLength >> 30) ==
791 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
792 		int curr = *c;
793 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
794 			    blocksize - 1) >> blocksize_bits;
795 		int8_t etype = (laarr[curr].extLength >> 30);
796 
797 		if (blen == 1)
798 			;
799 		else if (!offset || blen == offset + 1) {
800 			laarr[curr + 2] = laarr[curr + 1];
801 			laarr[curr + 1] = laarr[curr];
802 		} else {
803 			laarr[curr + 3] = laarr[curr + 1];
804 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
805 		}
806 
807 		if (offset) {
808 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
809 				udf_free_blocks(inode->i_sb, inode,
810 						&laarr[curr].extLocation,
811 						0, offset);
812 				laarr[curr].extLength =
813 					EXT_NOT_RECORDED_NOT_ALLOCATED |
814 					(offset << blocksize_bits);
815 				laarr[curr].extLocation.logicalBlockNum = 0;
816 				laarr[curr].extLocation.
817 						partitionReferenceNum = 0;
818 			} else
819 				laarr[curr].extLength = (etype << 30) |
820 					(offset << blocksize_bits);
821 			curr++;
822 			(*c)++;
823 			(*endnum)++;
824 		}
825 
826 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
827 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
828 			laarr[curr].extLocation.partitionReferenceNum =
829 				UDF_I(inode)->i_location.partitionReferenceNum;
830 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
831 			blocksize;
832 		curr++;
833 
834 		if (blen != offset + 1) {
835 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
836 				laarr[curr].extLocation.logicalBlockNum +=
837 								offset + 1;
838 			laarr[curr].extLength = (etype << 30) |
839 				((blen - (offset + 1)) << blocksize_bits);
840 			curr++;
841 			(*endnum)++;
842 		}
843 	}
844 }
845 
846 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
847 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
848 				 int *endnum)
849 {
850 	int start, length = 0, currlength = 0, i;
851 
852 	if (*endnum >= (c + 1)) {
853 		if (!lastblock)
854 			return;
855 		else
856 			start = c;
857 	} else {
858 		if ((laarr[c + 1].extLength >> 30) ==
859 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
860 			start = c + 1;
861 			length = currlength =
862 				(((laarr[c + 1].extLength &
863 					UDF_EXTENT_LENGTH_MASK) +
864 				inode->i_sb->s_blocksize - 1) >>
865 				inode->i_sb->s_blocksize_bits);
866 		} else
867 			start = c;
868 	}
869 
870 	for (i = start + 1; i <= *endnum; i++) {
871 		if (i == *endnum) {
872 			if (lastblock)
873 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
874 		} else if ((laarr[i].extLength >> 30) ==
875 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
876 			length += (((laarr[i].extLength &
877 						UDF_EXTENT_LENGTH_MASK) +
878 				    inode->i_sb->s_blocksize - 1) >>
879 				    inode->i_sb->s_blocksize_bits);
880 		} else
881 			break;
882 	}
883 
884 	if (length) {
885 		int next = laarr[start].extLocation.logicalBlockNum +
886 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
887 			  inode->i_sb->s_blocksize - 1) >>
888 			  inode->i_sb->s_blocksize_bits);
889 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
890 				laarr[start].extLocation.partitionReferenceNum,
891 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
892 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
893 				currlength);
894 		if (numalloc) 	{
895 			if (start == (c + 1))
896 				laarr[start].extLength +=
897 					(numalloc <<
898 					 inode->i_sb->s_blocksize_bits);
899 			else {
900 				memmove(&laarr[c + 2], &laarr[c + 1],
901 					sizeof(struct long_ad) * (*endnum - (c + 1)));
902 				(*endnum)++;
903 				laarr[c + 1].extLocation.logicalBlockNum = next;
904 				laarr[c + 1].extLocation.partitionReferenceNum =
905 					laarr[c].extLocation.
906 							partitionReferenceNum;
907 				laarr[c + 1].extLength =
908 					EXT_NOT_RECORDED_ALLOCATED |
909 					(numalloc <<
910 					 inode->i_sb->s_blocksize_bits);
911 				start = c + 1;
912 			}
913 
914 			for (i = start + 1; numalloc && i < *endnum; i++) {
915 				int elen = ((laarr[i].extLength &
916 						UDF_EXTENT_LENGTH_MASK) +
917 					    inode->i_sb->s_blocksize - 1) >>
918 					    inode->i_sb->s_blocksize_bits;
919 
920 				if (elen > numalloc) {
921 					laarr[i].extLength -=
922 						(numalloc <<
923 						 inode->i_sb->s_blocksize_bits);
924 					numalloc = 0;
925 				} else {
926 					numalloc -= elen;
927 					if (*endnum > (i + 1))
928 						memmove(&laarr[i],
929 							&laarr[i + 1],
930 							sizeof(struct long_ad) *
931 							(*endnum - (i + 1)));
932 					i--;
933 					(*endnum)--;
934 				}
935 			}
936 			UDF_I(inode)->i_lenExtents +=
937 				numalloc << inode->i_sb->s_blocksize_bits;
938 		}
939 	}
940 }
941 
942 static void udf_merge_extents(struct inode *inode,
943 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
944 			      int *endnum)
945 {
946 	int i;
947 	unsigned long blocksize = inode->i_sb->s_blocksize;
948 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
949 
950 	for (i = 0; i < (*endnum - 1); i++) {
951 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
952 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
953 
954 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
955 			(((li->extLength >> 30) ==
956 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
957 			((lip1->extLocation.logicalBlockNum -
958 			  li->extLocation.logicalBlockNum) ==
959 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
960 			blocksize - 1) >> blocksize_bits)))) {
961 
962 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
963 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
964 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
965 				lip1->extLength = (lip1->extLength -
966 						  (li->extLength &
967 						   UDF_EXTENT_LENGTH_MASK) +
968 						   UDF_EXTENT_LENGTH_MASK) &
969 							~(blocksize - 1);
970 				li->extLength = (li->extLength &
971 						 UDF_EXTENT_FLAG_MASK) +
972 						(UDF_EXTENT_LENGTH_MASK + 1) -
973 						blocksize;
974 				lip1->extLocation.logicalBlockNum =
975 					li->extLocation.logicalBlockNum +
976 					((li->extLength &
977 						UDF_EXTENT_LENGTH_MASK) >>
978 						blocksize_bits);
979 			} else {
980 				li->extLength = lip1->extLength +
981 					(((li->extLength &
982 						UDF_EXTENT_LENGTH_MASK) +
983 					 blocksize - 1) & ~(blocksize - 1));
984 				if (*endnum > (i + 2))
985 					memmove(&laarr[i + 1], &laarr[i + 2],
986 						sizeof(struct long_ad) *
987 						(*endnum - (i + 2)));
988 				i--;
989 				(*endnum)--;
990 			}
991 		} else if (((li->extLength >> 30) ==
992 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
993 			   ((lip1->extLength >> 30) ==
994 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
995 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
996 					((li->extLength &
997 					  UDF_EXTENT_LENGTH_MASK) +
998 					 blocksize - 1) >> blocksize_bits);
999 			li->extLocation.logicalBlockNum = 0;
1000 			li->extLocation.partitionReferenceNum = 0;
1001 
1002 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1003 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1004 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1005 				lip1->extLength = (lip1->extLength -
1006 						   (li->extLength &
1007 						   UDF_EXTENT_LENGTH_MASK) +
1008 						   UDF_EXTENT_LENGTH_MASK) &
1009 						   ~(blocksize - 1);
1010 				li->extLength = (li->extLength &
1011 						 UDF_EXTENT_FLAG_MASK) +
1012 						(UDF_EXTENT_LENGTH_MASK + 1) -
1013 						blocksize;
1014 			} else {
1015 				li->extLength = lip1->extLength +
1016 					(((li->extLength &
1017 						UDF_EXTENT_LENGTH_MASK) +
1018 					  blocksize - 1) & ~(blocksize - 1));
1019 				if (*endnum > (i + 2))
1020 					memmove(&laarr[i + 1], &laarr[i + 2],
1021 						sizeof(struct long_ad) *
1022 						(*endnum - (i + 2)));
1023 				i--;
1024 				(*endnum)--;
1025 			}
1026 		} else if ((li->extLength >> 30) ==
1027 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1028 			udf_free_blocks(inode->i_sb, inode,
1029 					&li->extLocation, 0,
1030 					((li->extLength &
1031 						UDF_EXTENT_LENGTH_MASK) +
1032 					 blocksize - 1) >> blocksize_bits);
1033 			li->extLocation.logicalBlockNum = 0;
1034 			li->extLocation.partitionReferenceNum = 0;
1035 			li->extLength = (li->extLength &
1036 						UDF_EXTENT_LENGTH_MASK) |
1037 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1038 		}
1039 	}
1040 }
1041 
1042 static void udf_update_extents(struct inode *inode,
1043 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1044 			       int startnum, int endnum,
1045 			       struct extent_position *epos)
1046 {
1047 	int start = 0, i;
1048 	struct kernel_lb_addr tmploc;
1049 	uint32_t tmplen;
1050 
1051 	if (startnum > endnum) {
1052 		for (i = 0; i < (startnum - endnum); i++)
1053 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1054 					laarr[i].extLength);
1055 	} else if (startnum < endnum) {
1056 		for (i = 0; i < (endnum - startnum); i++) {
1057 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1058 					laarr[i].extLength);
1059 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1060 				      &laarr[i].extLength, 1);
1061 			start++;
1062 		}
1063 	}
1064 
1065 	for (i = start; i < endnum; i++) {
1066 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1067 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1068 			       laarr[i].extLength, 1);
1069 	}
1070 }
1071 
1072 struct buffer_head *udf_bread(struct inode *inode, int block,
1073 			      int create, int *err)
1074 {
1075 	struct buffer_head *bh = NULL;
1076 
1077 	bh = udf_getblk(inode, block, create, err);
1078 	if (!bh)
1079 		return NULL;
1080 
1081 	if (buffer_uptodate(bh))
1082 		return bh;
1083 
1084 	ll_rw_block(READ, 1, &bh);
1085 
1086 	wait_on_buffer(bh);
1087 	if (buffer_uptodate(bh))
1088 		return bh;
1089 
1090 	brelse(bh);
1091 	*err = -EIO;
1092 	return NULL;
1093 }
1094 
1095 int udf_setsize(struct inode *inode, loff_t newsize)
1096 {
1097 	int err;
1098 	struct udf_inode_info *iinfo;
1099 	int bsize = 1 << inode->i_blkbits;
1100 
1101 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1102 	      S_ISLNK(inode->i_mode)))
1103 		return -EINVAL;
1104 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1105 		return -EPERM;
1106 
1107 	iinfo = UDF_I(inode);
1108 	if (newsize > inode->i_size) {
1109 		down_write(&iinfo->i_data_sem);
1110 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1111 			if (bsize <
1112 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1113 				err = udf_expand_file_adinicb(inode);
1114 				if (err) {
1115 					up_write(&iinfo->i_data_sem);
1116 					return err;
1117 				}
1118 			} else
1119 				iinfo->i_lenAlloc = newsize;
1120 		}
1121 		err = udf_extend_file(inode, newsize);
1122 		if (err) {
1123 			up_write(&iinfo->i_data_sem);
1124 			return err;
1125 		}
1126 		truncate_setsize(inode, newsize);
1127 		up_write(&iinfo->i_data_sem);
1128 	} else {
1129 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1130 			down_write(&iinfo->i_data_sem);
1131 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1132 			       0x00, bsize - newsize -
1133 			       udf_file_entry_alloc_offset(inode));
1134 			iinfo->i_lenAlloc = newsize;
1135 			truncate_setsize(inode, newsize);
1136 			up_write(&iinfo->i_data_sem);
1137 			goto update_time;
1138 		}
1139 		err = block_truncate_page(inode->i_mapping, newsize,
1140 					  udf_get_block);
1141 		if (err)
1142 			return err;
1143 		down_write(&iinfo->i_data_sem);
1144 		truncate_setsize(inode, newsize);
1145 		udf_truncate_extents(inode);
1146 		up_write(&iinfo->i_data_sem);
1147 	}
1148 update_time:
1149 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1150 	if (IS_SYNC(inode))
1151 		udf_sync_inode(inode);
1152 	else
1153 		mark_inode_dirty(inode);
1154 	return 0;
1155 }
1156 
1157 static void __udf_read_inode(struct inode *inode)
1158 {
1159 	struct buffer_head *bh = NULL;
1160 	struct fileEntry *fe;
1161 	uint16_t ident;
1162 	struct udf_inode_info *iinfo = UDF_I(inode);
1163 
1164 	/*
1165 	 * Set defaults, but the inode is still incomplete!
1166 	 * Note: get_new_inode() sets the following on a new inode:
1167 	 *      i_sb = sb
1168 	 *      i_no = ino
1169 	 *      i_flags = sb->s_flags
1170 	 *      i_state = 0
1171 	 * clean_inode(): zero fills and sets
1172 	 *      i_count = 1
1173 	 *      i_nlink = 1
1174 	 *      i_op = NULL;
1175 	 */
1176 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1177 	if (!bh) {
1178 		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1179 		make_bad_inode(inode);
1180 		return;
1181 	}
1182 
1183 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1184 	    ident != TAG_IDENT_USE) {
1185 		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1186 			inode->i_ino, ident);
1187 		brelse(bh);
1188 		make_bad_inode(inode);
1189 		return;
1190 	}
1191 
1192 	fe = (struct fileEntry *)bh->b_data;
1193 
1194 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1195 		struct buffer_head *ibh;
1196 
1197 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1198 					&ident);
1199 		if (ident == TAG_IDENT_IE && ibh) {
1200 			struct buffer_head *nbh = NULL;
1201 			struct kernel_lb_addr loc;
1202 			struct indirectEntry *ie;
1203 
1204 			ie = (struct indirectEntry *)ibh->b_data;
1205 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1206 
1207 			if (ie->indirectICB.extLength &&
1208 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1209 							&ident))) {
1210 				if (ident == TAG_IDENT_FE ||
1211 					ident == TAG_IDENT_EFE) {
1212 					memcpy(&iinfo->i_location,
1213 						&loc,
1214 						sizeof(struct kernel_lb_addr));
1215 					brelse(bh);
1216 					brelse(ibh);
1217 					brelse(nbh);
1218 					__udf_read_inode(inode);
1219 					return;
1220 				}
1221 				brelse(nbh);
1222 			}
1223 		}
1224 		brelse(ibh);
1225 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1226 		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1227 			le16_to_cpu(fe->icbTag.strategyType));
1228 		brelse(bh);
1229 		make_bad_inode(inode);
1230 		return;
1231 	}
1232 	udf_fill_inode(inode, bh);
1233 
1234 	brelse(bh);
1235 }
1236 
1237 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1238 {
1239 	struct fileEntry *fe;
1240 	struct extendedFileEntry *efe;
1241 	int offset;
1242 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1243 	struct udf_inode_info *iinfo = UDF_I(inode);
1244 	unsigned int link_count;
1245 
1246 	fe = (struct fileEntry *)bh->b_data;
1247 	efe = (struct extendedFileEntry *)bh->b_data;
1248 
1249 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1250 		iinfo->i_strat4096 = 0;
1251 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1252 		iinfo->i_strat4096 = 1;
1253 
1254 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1255 							ICBTAG_FLAG_AD_MASK;
1256 	iinfo->i_unique = 0;
1257 	iinfo->i_lenEAttr = 0;
1258 	iinfo->i_lenExtents = 0;
1259 	iinfo->i_lenAlloc = 0;
1260 	iinfo->i_next_alloc_block = 0;
1261 	iinfo->i_next_alloc_goal = 0;
1262 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1263 		iinfo->i_efe = 1;
1264 		iinfo->i_use = 0;
1265 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1266 					sizeof(struct extendedFileEntry))) {
1267 			make_bad_inode(inode);
1268 			return;
1269 		}
1270 		memcpy(iinfo->i_ext.i_data,
1271 		       bh->b_data + sizeof(struct extendedFileEntry),
1272 		       inode->i_sb->s_blocksize -
1273 					sizeof(struct extendedFileEntry));
1274 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1275 		iinfo->i_efe = 0;
1276 		iinfo->i_use = 0;
1277 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1278 						sizeof(struct fileEntry))) {
1279 			make_bad_inode(inode);
1280 			return;
1281 		}
1282 		memcpy(iinfo->i_ext.i_data,
1283 		       bh->b_data + sizeof(struct fileEntry),
1284 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1285 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1286 		iinfo->i_efe = 0;
1287 		iinfo->i_use = 1;
1288 		iinfo->i_lenAlloc = le32_to_cpu(
1289 				((struct unallocSpaceEntry *)bh->b_data)->
1290 				 lengthAllocDescs);
1291 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1292 					sizeof(struct unallocSpaceEntry))) {
1293 			make_bad_inode(inode);
1294 			return;
1295 		}
1296 		memcpy(iinfo->i_ext.i_data,
1297 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1298 		       inode->i_sb->s_blocksize -
1299 					sizeof(struct unallocSpaceEntry));
1300 		return;
1301 	}
1302 
1303 	read_lock(&sbi->s_cred_lock);
1304 	inode->i_uid = le32_to_cpu(fe->uid);
1305 	if (inode->i_uid == -1 ||
1306 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1307 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1308 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1309 
1310 	inode->i_gid = le32_to_cpu(fe->gid);
1311 	if (inode->i_gid == -1 ||
1312 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1313 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1314 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1315 
1316 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1317 			sbi->s_fmode != UDF_INVALID_MODE)
1318 		inode->i_mode = sbi->s_fmode;
1319 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1320 			sbi->s_dmode != UDF_INVALID_MODE)
1321 		inode->i_mode = sbi->s_dmode;
1322 	else
1323 		inode->i_mode = udf_convert_permissions(fe);
1324 	inode->i_mode &= ~sbi->s_umask;
1325 	read_unlock(&sbi->s_cred_lock);
1326 
1327 	link_count = le16_to_cpu(fe->fileLinkCount);
1328 	if (!link_count)
1329 		link_count = 1;
1330 	set_nlink(inode, link_count);
1331 
1332 	inode->i_size = le64_to_cpu(fe->informationLength);
1333 	iinfo->i_lenExtents = inode->i_size;
1334 
1335 	if (iinfo->i_efe == 0) {
1336 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1337 			(inode->i_sb->s_blocksize_bits - 9);
1338 
1339 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1340 			inode->i_atime = sbi->s_record_time;
1341 
1342 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1343 					    fe->modificationTime))
1344 			inode->i_mtime = sbi->s_record_time;
1345 
1346 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1347 			inode->i_ctime = sbi->s_record_time;
1348 
1349 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1350 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1351 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1352 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1353 	} else {
1354 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1355 		    (inode->i_sb->s_blocksize_bits - 9);
1356 
1357 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1358 			inode->i_atime = sbi->s_record_time;
1359 
1360 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1361 					    efe->modificationTime))
1362 			inode->i_mtime = sbi->s_record_time;
1363 
1364 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1365 			iinfo->i_crtime = sbi->s_record_time;
1366 
1367 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1368 			inode->i_ctime = sbi->s_record_time;
1369 
1370 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1371 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1372 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1373 		offset = sizeof(struct extendedFileEntry) +
1374 							iinfo->i_lenEAttr;
1375 	}
1376 
1377 	switch (fe->icbTag.fileType) {
1378 	case ICBTAG_FILE_TYPE_DIRECTORY:
1379 		inode->i_op = &udf_dir_inode_operations;
1380 		inode->i_fop = &udf_dir_operations;
1381 		inode->i_mode |= S_IFDIR;
1382 		inc_nlink(inode);
1383 		break;
1384 	case ICBTAG_FILE_TYPE_REALTIME:
1385 	case ICBTAG_FILE_TYPE_REGULAR:
1386 	case ICBTAG_FILE_TYPE_UNDEF:
1387 	case ICBTAG_FILE_TYPE_VAT20:
1388 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1389 			inode->i_data.a_ops = &udf_adinicb_aops;
1390 		else
1391 			inode->i_data.a_ops = &udf_aops;
1392 		inode->i_op = &udf_file_inode_operations;
1393 		inode->i_fop = &udf_file_operations;
1394 		inode->i_mode |= S_IFREG;
1395 		break;
1396 	case ICBTAG_FILE_TYPE_BLOCK:
1397 		inode->i_mode |= S_IFBLK;
1398 		break;
1399 	case ICBTAG_FILE_TYPE_CHAR:
1400 		inode->i_mode |= S_IFCHR;
1401 		break;
1402 	case ICBTAG_FILE_TYPE_FIFO:
1403 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1404 		break;
1405 	case ICBTAG_FILE_TYPE_SOCKET:
1406 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1407 		break;
1408 	case ICBTAG_FILE_TYPE_SYMLINK:
1409 		inode->i_data.a_ops = &udf_symlink_aops;
1410 		inode->i_op = &udf_symlink_inode_operations;
1411 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1412 		break;
1413 	case ICBTAG_FILE_TYPE_MAIN:
1414 		udf_debug("METADATA FILE-----\n");
1415 		break;
1416 	case ICBTAG_FILE_TYPE_MIRROR:
1417 		udf_debug("METADATA MIRROR FILE-----\n");
1418 		break;
1419 	case ICBTAG_FILE_TYPE_BITMAP:
1420 		udf_debug("METADATA BITMAP FILE-----\n");
1421 		break;
1422 	default:
1423 		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1424 			inode->i_ino, fe->icbTag.fileType);
1425 		make_bad_inode(inode);
1426 		return;
1427 	}
1428 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1429 		struct deviceSpec *dsea =
1430 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1431 		if (dsea) {
1432 			init_special_inode(inode, inode->i_mode,
1433 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1434 				      le32_to_cpu(dsea->minorDeviceIdent)));
1435 			/* Developer ID ??? */
1436 		} else
1437 			make_bad_inode(inode);
1438 	}
1439 }
1440 
1441 static int udf_alloc_i_data(struct inode *inode, size_t size)
1442 {
1443 	struct udf_inode_info *iinfo = UDF_I(inode);
1444 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1445 
1446 	if (!iinfo->i_ext.i_data) {
1447 		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1448 			inode->i_ino);
1449 		return -ENOMEM;
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static mode_t udf_convert_permissions(struct fileEntry *fe)
1456 {
1457 	mode_t mode;
1458 	uint32_t permissions;
1459 	uint32_t flags;
1460 
1461 	permissions = le32_to_cpu(fe->permissions);
1462 	flags = le16_to_cpu(fe->icbTag.flags);
1463 
1464 	mode =	((permissions) & S_IRWXO) |
1465 		((permissions >> 2) & S_IRWXG) |
1466 		((permissions >> 4) & S_IRWXU) |
1467 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1468 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1469 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1470 
1471 	return mode;
1472 }
1473 
1474 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1475 {
1476 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1477 }
1478 
1479 static int udf_sync_inode(struct inode *inode)
1480 {
1481 	return udf_update_inode(inode, 1);
1482 }
1483 
1484 static int udf_update_inode(struct inode *inode, int do_sync)
1485 {
1486 	struct buffer_head *bh = NULL;
1487 	struct fileEntry *fe;
1488 	struct extendedFileEntry *efe;
1489 	uint32_t udfperms;
1490 	uint16_t icbflags;
1491 	uint16_t crclen;
1492 	int err = 0;
1493 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1494 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1495 	struct udf_inode_info *iinfo = UDF_I(inode);
1496 
1497 	bh = udf_tgetblk(inode->i_sb,
1498 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1499 	if (!bh) {
1500 		udf_debug("getblk failure\n");
1501 		return -ENOMEM;
1502 	}
1503 
1504 	lock_buffer(bh);
1505 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1506 	fe = (struct fileEntry *)bh->b_data;
1507 	efe = (struct extendedFileEntry *)bh->b_data;
1508 
1509 	if (iinfo->i_use) {
1510 		struct unallocSpaceEntry *use =
1511 			(struct unallocSpaceEntry *)bh->b_data;
1512 
1513 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1514 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1515 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1516 					sizeof(struct unallocSpaceEntry));
1517 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1518 		use->descTag.tagLocation =
1519 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1520 		crclen = sizeof(struct unallocSpaceEntry) +
1521 				iinfo->i_lenAlloc - sizeof(struct tag);
1522 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1523 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1524 							   sizeof(struct tag),
1525 							   crclen));
1526 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1527 
1528 		goto out;
1529 	}
1530 
1531 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1532 		fe->uid = cpu_to_le32(-1);
1533 	else
1534 		fe->uid = cpu_to_le32(inode->i_uid);
1535 
1536 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1537 		fe->gid = cpu_to_le32(-1);
1538 	else
1539 		fe->gid = cpu_to_le32(inode->i_gid);
1540 
1541 	udfperms = ((inode->i_mode & S_IRWXO)) |
1542 		   ((inode->i_mode & S_IRWXG) << 2) |
1543 		   ((inode->i_mode & S_IRWXU) << 4);
1544 
1545 	udfperms |= (le32_to_cpu(fe->permissions) &
1546 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1547 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1548 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1549 	fe->permissions = cpu_to_le32(udfperms);
1550 
1551 	if (S_ISDIR(inode->i_mode))
1552 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1553 	else
1554 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1555 
1556 	fe->informationLength = cpu_to_le64(inode->i_size);
1557 
1558 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1559 		struct regid *eid;
1560 		struct deviceSpec *dsea =
1561 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1562 		if (!dsea) {
1563 			dsea = (struct deviceSpec *)
1564 				udf_add_extendedattr(inode,
1565 						     sizeof(struct deviceSpec) +
1566 						     sizeof(struct regid), 12, 0x3);
1567 			dsea->attrType = cpu_to_le32(12);
1568 			dsea->attrSubtype = 1;
1569 			dsea->attrLength = cpu_to_le32(
1570 						sizeof(struct deviceSpec) +
1571 						sizeof(struct regid));
1572 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1573 		}
1574 		eid = (struct regid *)dsea->impUse;
1575 		memset(eid, 0, sizeof(struct regid));
1576 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1577 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1578 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1579 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1580 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1581 	}
1582 
1583 	if (iinfo->i_efe == 0) {
1584 		memcpy(bh->b_data + sizeof(struct fileEntry),
1585 		       iinfo->i_ext.i_data,
1586 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1587 		fe->logicalBlocksRecorded = cpu_to_le64(
1588 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1589 			(blocksize_bits - 9));
1590 
1591 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1592 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1593 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1594 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1595 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1596 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1597 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1598 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1599 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1600 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1601 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1602 		crclen = sizeof(struct fileEntry);
1603 	} else {
1604 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1605 		       iinfo->i_ext.i_data,
1606 		       inode->i_sb->s_blocksize -
1607 					sizeof(struct extendedFileEntry));
1608 		efe->objectSize = cpu_to_le64(inode->i_size);
1609 		efe->logicalBlocksRecorded = cpu_to_le64(
1610 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1611 			(blocksize_bits - 9));
1612 
1613 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1614 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1615 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1616 			iinfo->i_crtime = inode->i_atime;
1617 
1618 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1619 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1620 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1621 			iinfo->i_crtime = inode->i_mtime;
1622 
1623 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1624 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1625 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1626 			iinfo->i_crtime = inode->i_ctime;
1627 
1628 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1629 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1630 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1631 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1632 
1633 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1634 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1635 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1636 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1637 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1638 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1639 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1640 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1641 		crclen = sizeof(struct extendedFileEntry);
1642 	}
1643 	if (iinfo->i_strat4096) {
1644 		fe->icbTag.strategyType = cpu_to_le16(4096);
1645 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1646 		fe->icbTag.numEntries = cpu_to_le16(2);
1647 	} else {
1648 		fe->icbTag.strategyType = cpu_to_le16(4);
1649 		fe->icbTag.numEntries = cpu_to_le16(1);
1650 	}
1651 
1652 	if (S_ISDIR(inode->i_mode))
1653 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1654 	else if (S_ISREG(inode->i_mode))
1655 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1656 	else if (S_ISLNK(inode->i_mode))
1657 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1658 	else if (S_ISBLK(inode->i_mode))
1659 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1660 	else if (S_ISCHR(inode->i_mode))
1661 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1662 	else if (S_ISFIFO(inode->i_mode))
1663 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1664 	else if (S_ISSOCK(inode->i_mode))
1665 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1666 
1667 	icbflags =	iinfo->i_alloc_type |
1668 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1669 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1670 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1671 			(le16_to_cpu(fe->icbTag.flags) &
1672 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1673 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1674 
1675 	fe->icbTag.flags = cpu_to_le16(icbflags);
1676 	if (sbi->s_udfrev >= 0x0200)
1677 		fe->descTag.descVersion = cpu_to_le16(3);
1678 	else
1679 		fe->descTag.descVersion = cpu_to_le16(2);
1680 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1681 	fe->descTag.tagLocation = cpu_to_le32(
1682 					iinfo->i_location.logicalBlockNum);
1683 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1684 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1685 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1686 						  crclen));
1687 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1688 
1689 out:
1690 	set_buffer_uptodate(bh);
1691 	unlock_buffer(bh);
1692 
1693 	/* write the data blocks */
1694 	mark_buffer_dirty(bh);
1695 	if (do_sync) {
1696 		sync_dirty_buffer(bh);
1697 		if (buffer_write_io_error(bh)) {
1698 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1699 				 inode->i_ino);
1700 			err = -EIO;
1701 		}
1702 	}
1703 	brelse(bh);
1704 
1705 	return err;
1706 }
1707 
1708 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1709 {
1710 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1711 	struct inode *inode = iget_locked(sb, block);
1712 
1713 	if (!inode)
1714 		return NULL;
1715 
1716 	if (inode->i_state & I_NEW) {
1717 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1718 		__udf_read_inode(inode);
1719 		unlock_new_inode(inode);
1720 	}
1721 
1722 	if (is_bad_inode(inode))
1723 		goto out_iput;
1724 
1725 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1726 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1727 		udf_debug("block=%d, partition=%d out of range\n",
1728 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1729 		make_bad_inode(inode);
1730 		goto out_iput;
1731 	}
1732 
1733 	return inode;
1734 
1735  out_iput:
1736 	iput(inode);
1737 	return NULL;
1738 }
1739 
1740 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1741 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1742 {
1743 	int adsize;
1744 	struct short_ad *sad = NULL;
1745 	struct long_ad *lad = NULL;
1746 	struct allocExtDesc *aed;
1747 	uint8_t *ptr;
1748 	struct udf_inode_info *iinfo = UDF_I(inode);
1749 
1750 	if (!epos->bh)
1751 		ptr = iinfo->i_ext.i_data + epos->offset -
1752 			udf_file_entry_alloc_offset(inode) +
1753 			iinfo->i_lenEAttr;
1754 	else
1755 		ptr = epos->bh->b_data + epos->offset;
1756 
1757 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1758 		adsize = sizeof(struct short_ad);
1759 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1760 		adsize = sizeof(struct long_ad);
1761 	else
1762 		return -EIO;
1763 
1764 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1765 		unsigned char *sptr, *dptr;
1766 		struct buffer_head *nbh;
1767 		int err, loffset;
1768 		struct kernel_lb_addr obloc = epos->block;
1769 
1770 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1771 						obloc.partitionReferenceNum,
1772 						obloc.logicalBlockNum, &err);
1773 		if (!epos->block.logicalBlockNum)
1774 			return -ENOSPC;
1775 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1776 								 &epos->block,
1777 								 0));
1778 		if (!nbh)
1779 			return -EIO;
1780 		lock_buffer(nbh);
1781 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1782 		set_buffer_uptodate(nbh);
1783 		unlock_buffer(nbh);
1784 		mark_buffer_dirty_inode(nbh, inode);
1785 
1786 		aed = (struct allocExtDesc *)(nbh->b_data);
1787 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1788 			aed->previousAllocExtLocation =
1789 					cpu_to_le32(obloc.logicalBlockNum);
1790 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1791 			loffset = epos->offset;
1792 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1793 			sptr = ptr - adsize;
1794 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1795 			memcpy(dptr, sptr, adsize);
1796 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1797 		} else {
1798 			loffset = epos->offset + adsize;
1799 			aed->lengthAllocDescs = cpu_to_le32(0);
1800 			sptr = ptr;
1801 			epos->offset = sizeof(struct allocExtDesc);
1802 
1803 			if (epos->bh) {
1804 				aed = (struct allocExtDesc *)epos->bh->b_data;
1805 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1806 			} else {
1807 				iinfo->i_lenAlloc += adsize;
1808 				mark_inode_dirty(inode);
1809 			}
1810 		}
1811 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1812 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1813 				    epos->block.logicalBlockNum, sizeof(struct tag));
1814 		else
1815 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1816 				    epos->block.logicalBlockNum, sizeof(struct tag));
1817 		switch (iinfo->i_alloc_type) {
1818 		case ICBTAG_FLAG_AD_SHORT:
1819 			sad = (struct short_ad *)sptr;
1820 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1821 						     inode->i_sb->s_blocksize);
1822 			sad->extPosition =
1823 				cpu_to_le32(epos->block.logicalBlockNum);
1824 			break;
1825 		case ICBTAG_FLAG_AD_LONG:
1826 			lad = (struct long_ad *)sptr;
1827 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1828 						     inode->i_sb->s_blocksize);
1829 			lad->extLocation = cpu_to_lelb(epos->block);
1830 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1831 			break;
1832 		}
1833 		if (epos->bh) {
1834 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1835 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1836 				udf_update_tag(epos->bh->b_data, loffset);
1837 			else
1838 				udf_update_tag(epos->bh->b_data,
1839 						sizeof(struct allocExtDesc));
1840 			mark_buffer_dirty_inode(epos->bh, inode);
1841 			brelse(epos->bh);
1842 		} else {
1843 			mark_inode_dirty(inode);
1844 		}
1845 		epos->bh = nbh;
1846 	}
1847 
1848 	udf_write_aext(inode, epos, eloc, elen, inc);
1849 
1850 	if (!epos->bh) {
1851 		iinfo->i_lenAlloc += adsize;
1852 		mark_inode_dirty(inode);
1853 	} else {
1854 		aed = (struct allocExtDesc *)epos->bh->b_data;
1855 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1856 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1857 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1858 			udf_update_tag(epos->bh->b_data,
1859 					epos->offset + (inc ? 0 : adsize));
1860 		else
1861 			udf_update_tag(epos->bh->b_data,
1862 					sizeof(struct allocExtDesc));
1863 		mark_buffer_dirty_inode(epos->bh, inode);
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1870 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1871 {
1872 	int adsize;
1873 	uint8_t *ptr;
1874 	struct short_ad *sad;
1875 	struct long_ad *lad;
1876 	struct udf_inode_info *iinfo = UDF_I(inode);
1877 
1878 	if (!epos->bh)
1879 		ptr = iinfo->i_ext.i_data + epos->offset -
1880 			udf_file_entry_alloc_offset(inode) +
1881 			iinfo->i_lenEAttr;
1882 	else
1883 		ptr = epos->bh->b_data + epos->offset;
1884 
1885 	switch (iinfo->i_alloc_type) {
1886 	case ICBTAG_FLAG_AD_SHORT:
1887 		sad = (struct short_ad *)ptr;
1888 		sad->extLength = cpu_to_le32(elen);
1889 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1890 		adsize = sizeof(struct short_ad);
1891 		break;
1892 	case ICBTAG_FLAG_AD_LONG:
1893 		lad = (struct long_ad *)ptr;
1894 		lad->extLength = cpu_to_le32(elen);
1895 		lad->extLocation = cpu_to_lelb(*eloc);
1896 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1897 		adsize = sizeof(struct long_ad);
1898 		break;
1899 	default:
1900 		return;
1901 	}
1902 
1903 	if (epos->bh) {
1904 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1905 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1906 			struct allocExtDesc *aed =
1907 				(struct allocExtDesc *)epos->bh->b_data;
1908 			udf_update_tag(epos->bh->b_data,
1909 				       le32_to_cpu(aed->lengthAllocDescs) +
1910 				       sizeof(struct allocExtDesc));
1911 		}
1912 		mark_buffer_dirty_inode(epos->bh, inode);
1913 	} else {
1914 		mark_inode_dirty(inode);
1915 	}
1916 
1917 	if (inc)
1918 		epos->offset += adsize;
1919 }
1920 
1921 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1922 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1923 {
1924 	int8_t etype;
1925 
1926 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1927 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1928 		int block;
1929 		epos->block = *eloc;
1930 		epos->offset = sizeof(struct allocExtDesc);
1931 		brelse(epos->bh);
1932 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1933 		epos->bh = udf_tread(inode->i_sb, block);
1934 		if (!epos->bh) {
1935 			udf_debug("reading block %d failed!\n", block);
1936 			return -1;
1937 		}
1938 	}
1939 
1940 	return etype;
1941 }
1942 
1943 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1944 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1945 {
1946 	int alen;
1947 	int8_t etype;
1948 	uint8_t *ptr;
1949 	struct short_ad *sad;
1950 	struct long_ad *lad;
1951 	struct udf_inode_info *iinfo = UDF_I(inode);
1952 
1953 	if (!epos->bh) {
1954 		if (!epos->offset)
1955 			epos->offset = udf_file_entry_alloc_offset(inode);
1956 		ptr = iinfo->i_ext.i_data + epos->offset -
1957 			udf_file_entry_alloc_offset(inode) +
1958 			iinfo->i_lenEAttr;
1959 		alen = udf_file_entry_alloc_offset(inode) +
1960 							iinfo->i_lenAlloc;
1961 	} else {
1962 		if (!epos->offset)
1963 			epos->offset = sizeof(struct allocExtDesc);
1964 		ptr = epos->bh->b_data + epos->offset;
1965 		alen = sizeof(struct allocExtDesc) +
1966 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1967 							lengthAllocDescs);
1968 	}
1969 
1970 	switch (iinfo->i_alloc_type) {
1971 	case ICBTAG_FLAG_AD_SHORT:
1972 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1973 		if (!sad)
1974 			return -1;
1975 		etype = le32_to_cpu(sad->extLength) >> 30;
1976 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1977 		eloc->partitionReferenceNum =
1978 				iinfo->i_location.partitionReferenceNum;
1979 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1980 		break;
1981 	case ICBTAG_FLAG_AD_LONG:
1982 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1983 		if (!lad)
1984 			return -1;
1985 		etype = le32_to_cpu(lad->extLength) >> 30;
1986 		*eloc = lelb_to_cpu(lad->extLocation);
1987 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1988 		break;
1989 	default:
1990 		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
1991 		return -1;
1992 	}
1993 
1994 	return etype;
1995 }
1996 
1997 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1998 			      struct kernel_lb_addr neloc, uint32_t nelen)
1999 {
2000 	struct kernel_lb_addr oeloc;
2001 	uint32_t oelen;
2002 	int8_t etype;
2003 
2004 	if (epos.bh)
2005 		get_bh(epos.bh);
2006 
2007 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2008 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2009 		neloc = oeloc;
2010 		nelen = (etype << 30) | oelen;
2011 	}
2012 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2013 	brelse(epos.bh);
2014 
2015 	return (nelen >> 30);
2016 }
2017 
2018 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2019 		       struct kernel_lb_addr eloc, uint32_t elen)
2020 {
2021 	struct extent_position oepos;
2022 	int adsize;
2023 	int8_t etype;
2024 	struct allocExtDesc *aed;
2025 	struct udf_inode_info *iinfo;
2026 
2027 	if (epos.bh) {
2028 		get_bh(epos.bh);
2029 		get_bh(epos.bh);
2030 	}
2031 
2032 	iinfo = UDF_I(inode);
2033 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2034 		adsize = sizeof(struct short_ad);
2035 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2036 		adsize = sizeof(struct long_ad);
2037 	else
2038 		adsize = 0;
2039 
2040 	oepos = epos;
2041 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2042 		return -1;
2043 
2044 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2045 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2046 		if (oepos.bh != epos.bh) {
2047 			oepos.block = epos.block;
2048 			brelse(oepos.bh);
2049 			get_bh(epos.bh);
2050 			oepos.bh = epos.bh;
2051 			oepos.offset = epos.offset - adsize;
2052 		}
2053 	}
2054 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2055 	elen = 0;
2056 
2057 	if (epos.bh != oepos.bh) {
2058 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2059 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2060 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2061 		if (!oepos.bh) {
2062 			iinfo->i_lenAlloc -= (adsize * 2);
2063 			mark_inode_dirty(inode);
2064 		} else {
2065 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2066 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2067 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2068 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2069 				udf_update_tag(oepos.bh->b_data,
2070 						oepos.offset - (2 * adsize));
2071 			else
2072 				udf_update_tag(oepos.bh->b_data,
2073 						sizeof(struct allocExtDesc));
2074 			mark_buffer_dirty_inode(oepos.bh, inode);
2075 		}
2076 	} else {
2077 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2078 		if (!oepos.bh) {
2079 			iinfo->i_lenAlloc -= adsize;
2080 			mark_inode_dirty(inode);
2081 		} else {
2082 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2083 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2084 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2085 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2086 				udf_update_tag(oepos.bh->b_data,
2087 						epos.offset - adsize);
2088 			else
2089 				udf_update_tag(oepos.bh->b_data,
2090 						sizeof(struct allocExtDesc));
2091 			mark_buffer_dirty_inode(oepos.bh, inode);
2092 		}
2093 	}
2094 
2095 	brelse(epos.bh);
2096 	brelse(oepos.bh);
2097 
2098 	return (elen >> 30);
2099 }
2100 
2101 int8_t inode_bmap(struct inode *inode, sector_t block,
2102 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2103 		  uint32_t *elen, sector_t *offset)
2104 {
2105 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2106 	loff_t lbcount = 0, bcount =
2107 	    (loff_t) block << blocksize_bits;
2108 	int8_t etype;
2109 	struct udf_inode_info *iinfo;
2110 
2111 	iinfo = UDF_I(inode);
2112 	pos->offset = 0;
2113 	pos->block = iinfo->i_location;
2114 	pos->bh = NULL;
2115 	*elen = 0;
2116 
2117 	do {
2118 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2119 		if (etype == -1) {
2120 			*offset = (bcount - lbcount) >> blocksize_bits;
2121 			iinfo->i_lenExtents = lbcount;
2122 			return -1;
2123 		}
2124 		lbcount += *elen;
2125 	} while (lbcount <= bcount);
2126 
2127 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2128 
2129 	return etype;
2130 }
2131 
2132 long udf_block_map(struct inode *inode, sector_t block)
2133 {
2134 	struct kernel_lb_addr eloc;
2135 	uint32_t elen;
2136 	sector_t offset;
2137 	struct extent_position epos = {};
2138 	int ret;
2139 
2140 	down_read(&UDF_I(inode)->i_data_sem);
2141 
2142 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2143 						(EXT_RECORDED_ALLOCATED >> 30))
2144 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2145 	else
2146 		ret = 0;
2147 
2148 	up_read(&UDF_I(inode)->i_data_sem);
2149 	brelse(epos.bh);
2150 
2151 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2152 		return udf_fixed_to_variable(ret);
2153 	else
2154 		return ret;
2155 }
2156