xref: /linux/fs/udf/inode.c (revision df561f6688fef775baa341a0f5d960becd248b11)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!inode->i_nlink && !is_bad_inode(inode)) {
143 		want_delete = 1;
144 		udf_setsize(inode, 0);
145 		udf_update_inode(inode, IS_SYNC(inode));
146 	}
147 	truncate_inode_pages_final(&inode->i_data);
148 	invalidate_inode_buffers(inode);
149 	clear_inode(inode);
150 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
151 	    inode->i_size != iinfo->i_lenExtents) {
152 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
153 			 inode->i_ino, inode->i_mode,
154 			 (unsigned long long)inode->i_size,
155 			 (unsigned long long)iinfo->i_lenExtents);
156 	}
157 	kfree(iinfo->i_ext.i_data);
158 	iinfo->i_ext.i_data = NULL;
159 	udf_clear_extent_cache(inode);
160 	if (want_delete) {
161 		udf_free_inode(inode);
162 	}
163 }
164 
165 static void udf_write_failed(struct address_space *mapping, loff_t to)
166 {
167 	struct inode *inode = mapping->host;
168 	struct udf_inode_info *iinfo = UDF_I(inode);
169 	loff_t isize = inode->i_size;
170 
171 	if (to > isize) {
172 		truncate_pagecache(inode, isize);
173 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
174 			down_write(&iinfo->i_data_sem);
175 			udf_clear_extent_cache(inode);
176 			udf_truncate_extents(inode);
177 			up_write(&iinfo->i_data_sem);
178 		}
179 	}
180 }
181 
182 static int udf_writepage(struct page *page, struct writeback_control *wbc)
183 {
184 	return block_write_full_page(page, udf_get_block, wbc);
185 }
186 
187 static int udf_writepages(struct address_space *mapping,
188 			struct writeback_control *wbc)
189 {
190 	return mpage_writepages(mapping, wbc, udf_get_block);
191 }
192 
193 static int udf_readpage(struct file *file, struct page *page)
194 {
195 	return mpage_readpage(page, udf_get_block);
196 }
197 
198 static void udf_readahead(struct readahead_control *rac)
199 {
200 	mpage_readahead(rac, udf_get_block);
201 }
202 
203 static int udf_write_begin(struct file *file, struct address_space *mapping,
204 			loff_t pos, unsigned len, unsigned flags,
205 			struct page **pagep, void **fsdata)
206 {
207 	int ret;
208 
209 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
210 	if (unlikely(ret))
211 		udf_write_failed(mapping, pos + len);
212 	return ret;
213 }
214 
215 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
216 {
217 	struct file *file = iocb->ki_filp;
218 	struct address_space *mapping = file->f_mapping;
219 	struct inode *inode = mapping->host;
220 	size_t count = iov_iter_count(iter);
221 	ssize_t ret;
222 
223 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
224 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
225 		udf_write_failed(mapping, iocb->ki_pos + count);
226 	return ret;
227 }
228 
229 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
230 {
231 	return generic_block_bmap(mapping, block, udf_get_block);
232 }
233 
234 const struct address_space_operations udf_aops = {
235 	.readpage	= udf_readpage,
236 	.readahead	= udf_readahead,
237 	.writepage	= udf_writepage,
238 	.writepages	= udf_writepages,
239 	.write_begin	= udf_write_begin,
240 	.write_end	= generic_write_end,
241 	.direct_IO	= udf_direct_IO,
242 	.bmap		= udf_bmap,
243 };
244 
245 /*
246  * Expand file stored in ICB to a normal one-block-file
247  *
248  * This function requires i_data_sem for writing and releases it.
249  * This function requires i_mutex held
250  */
251 int udf_expand_file_adinicb(struct inode *inode)
252 {
253 	struct page *page;
254 	char *kaddr;
255 	struct udf_inode_info *iinfo = UDF_I(inode);
256 	int err;
257 	struct writeback_control udf_wbc = {
258 		.sync_mode = WB_SYNC_NONE,
259 		.nr_to_write = 1,
260 	};
261 
262 	WARN_ON_ONCE(!inode_is_locked(inode));
263 	if (!iinfo->i_lenAlloc) {
264 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
265 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
266 		else
267 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
268 		/* from now on we have normal address_space methods */
269 		inode->i_data.a_ops = &udf_aops;
270 		up_write(&iinfo->i_data_sem);
271 		mark_inode_dirty(inode);
272 		return 0;
273 	}
274 	/*
275 	 * Release i_data_sem so that we can lock a page - page lock ranks
276 	 * above i_data_sem. i_mutex still protects us against file changes.
277 	 */
278 	up_write(&iinfo->i_data_sem);
279 
280 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
281 	if (!page)
282 		return -ENOMEM;
283 
284 	if (!PageUptodate(page)) {
285 		kaddr = kmap_atomic(page);
286 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
287 		       PAGE_SIZE - iinfo->i_lenAlloc);
288 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
289 			iinfo->i_lenAlloc);
290 		flush_dcache_page(page);
291 		SetPageUptodate(page);
292 		kunmap_atomic(kaddr);
293 	}
294 	down_write(&iinfo->i_data_sem);
295 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
296 	       iinfo->i_lenAlloc);
297 	iinfo->i_lenAlloc = 0;
298 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
299 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
300 	else
301 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
302 	/* from now on we have normal address_space methods */
303 	inode->i_data.a_ops = &udf_aops;
304 	up_write(&iinfo->i_data_sem);
305 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
306 	if (err) {
307 		/* Restore everything back so that we don't lose data... */
308 		lock_page(page);
309 		down_write(&iinfo->i_data_sem);
310 		kaddr = kmap_atomic(page);
311 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
312 		       inode->i_size);
313 		kunmap_atomic(kaddr);
314 		unlock_page(page);
315 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
316 		inode->i_data.a_ops = &udf_adinicb_aops;
317 		up_write(&iinfo->i_data_sem);
318 	}
319 	put_page(page);
320 	mark_inode_dirty(inode);
321 
322 	return err;
323 }
324 
325 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
326 					    udf_pblk_t *block, int *err)
327 {
328 	udf_pblk_t newblock;
329 	struct buffer_head *dbh = NULL;
330 	struct kernel_lb_addr eloc;
331 	uint8_t alloctype;
332 	struct extent_position epos;
333 
334 	struct udf_fileident_bh sfibh, dfibh;
335 	loff_t f_pos = udf_ext0_offset(inode);
336 	int size = udf_ext0_offset(inode) + inode->i_size;
337 	struct fileIdentDesc cfi, *sfi, *dfi;
338 	struct udf_inode_info *iinfo = UDF_I(inode);
339 
340 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
341 		alloctype = ICBTAG_FLAG_AD_SHORT;
342 	else
343 		alloctype = ICBTAG_FLAG_AD_LONG;
344 
345 	if (!inode->i_size) {
346 		iinfo->i_alloc_type = alloctype;
347 		mark_inode_dirty(inode);
348 		return NULL;
349 	}
350 
351 	/* alloc block, and copy data to it */
352 	*block = udf_new_block(inode->i_sb, inode,
353 			       iinfo->i_location.partitionReferenceNum,
354 			       iinfo->i_location.logicalBlockNum, err);
355 	if (!(*block))
356 		return NULL;
357 	newblock = udf_get_pblock(inode->i_sb, *block,
358 				  iinfo->i_location.partitionReferenceNum,
359 				0);
360 	if (!newblock)
361 		return NULL;
362 	dbh = udf_tgetblk(inode->i_sb, newblock);
363 	if (!dbh)
364 		return NULL;
365 	lock_buffer(dbh);
366 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
367 	set_buffer_uptodate(dbh);
368 	unlock_buffer(dbh);
369 	mark_buffer_dirty_inode(dbh, inode);
370 
371 	sfibh.soffset = sfibh.eoffset =
372 			f_pos & (inode->i_sb->s_blocksize - 1);
373 	sfibh.sbh = sfibh.ebh = NULL;
374 	dfibh.soffset = dfibh.eoffset = 0;
375 	dfibh.sbh = dfibh.ebh = dbh;
376 	while (f_pos < size) {
377 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
378 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
379 					 NULL, NULL, NULL);
380 		if (!sfi) {
381 			brelse(dbh);
382 			return NULL;
383 		}
384 		iinfo->i_alloc_type = alloctype;
385 		sfi->descTag.tagLocation = cpu_to_le32(*block);
386 		dfibh.soffset = dfibh.eoffset;
387 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
388 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
389 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
390 				 sfi->fileIdent +
391 					le16_to_cpu(sfi->lengthOfImpUse))) {
392 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
393 			brelse(dbh);
394 			return NULL;
395 		}
396 	}
397 	mark_buffer_dirty_inode(dbh, inode);
398 
399 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
400 		iinfo->i_lenAlloc);
401 	iinfo->i_lenAlloc = 0;
402 	eloc.logicalBlockNum = *block;
403 	eloc.partitionReferenceNum =
404 				iinfo->i_location.partitionReferenceNum;
405 	iinfo->i_lenExtents = inode->i_size;
406 	epos.bh = NULL;
407 	epos.block = iinfo->i_location;
408 	epos.offset = udf_file_entry_alloc_offset(inode);
409 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 	/* UniqueID stuff */
411 
412 	brelse(epos.bh);
413 	mark_inode_dirty(inode);
414 	return dbh;
415 }
416 
417 static int udf_get_block(struct inode *inode, sector_t block,
418 			 struct buffer_head *bh_result, int create)
419 {
420 	int err, new;
421 	sector_t phys = 0;
422 	struct udf_inode_info *iinfo;
423 
424 	if (!create) {
425 		phys = udf_block_map(inode, block);
426 		if (phys)
427 			map_bh(bh_result, inode->i_sb, phys);
428 		return 0;
429 	}
430 
431 	err = -EIO;
432 	new = 0;
433 	iinfo = UDF_I(inode);
434 
435 	down_write(&iinfo->i_data_sem);
436 	if (block == iinfo->i_next_alloc_block + 1) {
437 		iinfo->i_next_alloc_block++;
438 		iinfo->i_next_alloc_goal++;
439 	}
440 
441 	udf_clear_extent_cache(inode);
442 	phys = inode_getblk(inode, block, &err, &new);
443 	if (!phys)
444 		goto abort;
445 
446 	if (new)
447 		set_buffer_new(bh_result);
448 	map_bh(bh_result, inode->i_sb, phys);
449 
450 abort:
451 	up_write(&iinfo->i_data_sem);
452 	return err;
453 }
454 
455 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
456 				      int create, int *err)
457 {
458 	struct buffer_head *bh;
459 	struct buffer_head dummy;
460 
461 	dummy.b_state = 0;
462 	dummy.b_blocknr = -1000;
463 	*err = udf_get_block(inode, block, &dummy, create);
464 	if (!*err && buffer_mapped(&dummy)) {
465 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
466 		if (buffer_new(&dummy)) {
467 			lock_buffer(bh);
468 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
469 			set_buffer_uptodate(bh);
470 			unlock_buffer(bh);
471 			mark_buffer_dirty_inode(bh, inode);
472 		}
473 		return bh;
474 	}
475 
476 	return NULL;
477 }
478 
479 /* Extend the file with new blocks totaling 'new_block_bytes',
480  * return the number of extents added
481  */
482 static int udf_do_extend_file(struct inode *inode,
483 			      struct extent_position *last_pos,
484 			      struct kernel_long_ad *last_ext,
485 			      loff_t new_block_bytes)
486 {
487 	uint32_t add;
488 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
489 	struct super_block *sb = inode->i_sb;
490 	struct kernel_lb_addr prealloc_loc = {};
491 	uint32_t prealloc_len = 0;
492 	struct udf_inode_info *iinfo;
493 	int err;
494 
495 	/* The previous extent is fake and we should not extend by anything
496 	 * - there's nothing to do... */
497 	if (!new_block_bytes && fake)
498 		return 0;
499 
500 	iinfo = UDF_I(inode);
501 	/* Round the last extent up to a multiple of block size */
502 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 		last_ext->extLength =
504 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 		iinfo->i_lenExtents =
508 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 			~(sb->s_blocksize - 1);
510 	}
511 
512 	/* Last extent are just preallocated blocks? */
513 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 						EXT_NOT_RECORDED_ALLOCATED) {
515 		/* Save the extent so that we can reattach it to the end */
516 		prealloc_loc = last_ext->extLocation;
517 		prealloc_len = last_ext->extLength;
518 		/* Mark the extent as a hole */
519 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
520 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 		last_ext->extLocation.logicalBlockNum = 0;
522 		last_ext->extLocation.partitionReferenceNum = 0;
523 	}
524 
525 	/* Can we merge with the previous extent? */
526 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
527 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
528 		add = (1 << 30) - sb->s_blocksize -
529 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
530 		if (add > new_block_bytes)
531 			add = new_block_bytes;
532 		new_block_bytes -= add;
533 		last_ext->extLength += add;
534 	}
535 
536 	if (fake) {
537 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
538 			     last_ext->extLength, 1);
539 		count++;
540 	} else {
541 		struct kernel_lb_addr tmploc;
542 		uint32_t tmplen;
543 
544 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
545 				last_ext->extLength, 1);
546 		/*
547 		 * We've rewritten the last extent but there may be empty
548 		 * indirect extent after it - enter it.
549 		 */
550 		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
551 	}
552 
553 	/* Managed to do everything necessary? */
554 	if (!new_block_bytes)
555 		goto out;
556 
557 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
558 	last_ext->extLocation.logicalBlockNum = 0;
559 	last_ext->extLocation.partitionReferenceNum = 0;
560 	add = (1 << 30) - sb->s_blocksize;
561 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
562 
563 	/* Create enough extents to cover the whole hole */
564 	while (new_block_bytes > add) {
565 		new_block_bytes -= add;
566 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
567 				   last_ext->extLength, 1);
568 		if (err)
569 			return err;
570 		count++;
571 	}
572 	if (new_block_bytes) {
573 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
574 			new_block_bytes;
575 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
576 				   last_ext->extLength, 1);
577 		if (err)
578 			return err;
579 		count++;
580 	}
581 
582 out:
583 	/* Do we have some preallocated blocks saved? */
584 	if (prealloc_len) {
585 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
586 				   prealloc_len, 1);
587 		if (err)
588 			return err;
589 		last_ext->extLocation = prealloc_loc;
590 		last_ext->extLength = prealloc_len;
591 		count++;
592 	}
593 
594 	/* last_pos should point to the last written extent... */
595 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596 		last_pos->offset -= sizeof(struct short_ad);
597 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598 		last_pos->offset -= sizeof(struct long_ad);
599 	else
600 		return -EIO;
601 
602 	return count;
603 }
604 
605 /* Extend the final block of the file to final_block_len bytes */
606 static void udf_do_extend_final_block(struct inode *inode,
607 				      struct extent_position *last_pos,
608 				      struct kernel_long_ad *last_ext,
609 				      uint32_t final_block_len)
610 {
611 	struct super_block *sb = inode->i_sb;
612 	uint32_t added_bytes;
613 
614 	added_bytes = final_block_len -
615 		      (last_ext->extLength & (sb->s_blocksize - 1));
616 	last_ext->extLength += added_bytes;
617 	UDF_I(inode)->i_lenExtents += added_bytes;
618 
619 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
620 			last_ext->extLength, 1);
621 }
622 
623 static int udf_extend_file(struct inode *inode, loff_t newsize)
624 {
625 
626 	struct extent_position epos;
627 	struct kernel_lb_addr eloc;
628 	uint32_t elen;
629 	int8_t etype;
630 	struct super_block *sb = inode->i_sb;
631 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
632 	unsigned long partial_final_block;
633 	int adsize;
634 	struct udf_inode_info *iinfo = UDF_I(inode);
635 	struct kernel_long_ad extent;
636 	int err = 0;
637 	int within_final_block;
638 
639 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
640 		adsize = sizeof(struct short_ad);
641 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
642 		adsize = sizeof(struct long_ad);
643 	else
644 		BUG();
645 
646 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
647 	within_final_block = (etype != -1);
648 
649 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
650 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
651 		/* File has no extents at all or has empty last
652 		 * indirect extent! Create a fake extent... */
653 		extent.extLocation.logicalBlockNum = 0;
654 		extent.extLocation.partitionReferenceNum = 0;
655 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
656 	} else {
657 		epos.offset -= adsize;
658 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
659 				      &extent.extLength, 0);
660 		extent.extLength |= etype << 30;
661 	}
662 
663 	partial_final_block = newsize & (sb->s_blocksize - 1);
664 
665 	/* File has extent covering the new size (could happen when extending
666 	 * inside a block)?
667 	 */
668 	if (within_final_block) {
669 		/* Extending file within the last file block */
670 		udf_do_extend_final_block(inode, &epos, &extent,
671 					  partial_final_block);
672 	} else {
673 		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
674 			     partial_final_block;
675 		err = udf_do_extend_file(inode, &epos, &extent, add);
676 	}
677 
678 	if (err < 0)
679 		goto out;
680 	err = 0;
681 	iinfo->i_lenExtents = newsize;
682 out:
683 	brelse(epos.bh);
684 	return err;
685 }
686 
687 static sector_t inode_getblk(struct inode *inode, sector_t block,
688 			     int *err, int *new)
689 {
690 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
691 	struct extent_position prev_epos, cur_epos, next_epos;
692 	int count = 0, startnum = 0, endnum = 0;
693 	uint32_t elen = 0, tmpelen;
694 	struct kernel_lb_addr eloc, tmpeloc;
695 	int c = 1;
696 	loff_t lbcount = 0, b_off = 0;
697 	udf_pblk_t newblocknum, newblock;
698 	sector_t offset = 0;
699 	int8_t etype;
700 	struct udf_inode_info *iinfo = UDF_I(inode);
701 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
702 	int lastblock = 0;
703 	bool isBeyondEOF;
704 
705 	*err = 0;
706 	*new = 0;
707 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
708 	prev_epos.block = iinfo->i_location;
709 	prev_epos.bh = NULL;
710 	cur_epos = next_epos = prev_epos;
711 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
712 
713 	/* find the extent which contains the block we are looking for.
714 	   alternate between laarr[0] and laarr[1] for locations of the
715 	   current extent, and the previous extent */
716 	do {
717 		if (prev_epos.bh != cur_epos.bh) {
718 			brelse(prev_epos.bh);
719 			get_bh(cur_epos.bh);
720 			prev_epos.bh = cur_epos.bh;
721 		}
722 		if (cur_epos.bh != next_epos.bh) {
723 			brelse(cur_epos.bh);
724 			get_bh(next_epos.bh);
725 			cur_epos.bh = next_epos.bh;
726 		}
727 
728 		lbcount += elen;
729 
730 		prev_epos.block = cur_epos.block;
731 		cur_epos.block = next_epos.block;
732 
733 		prev_epos.offset = cur_epos.offset;
734 		cur_epos.offset = next_epos.offset;
735 
736 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
737 		if (etype == -1)
738 			break;
739 
740 		c = !c;
741 
742 		laarr[c].extLength = (etype << 30) | elen;
743 		laarr[c].extLocation = eloc;
744 
745 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
746 			pgoal = eloc.logicalBlockNum +
747 				((elen + inode->i_sb->s_blocksize - 1) >>
748 				 inode->i_sb->s_blocksize_bits);
749 
750 		count++;
751 	} while (lbcount + elen <= b_off);
752 
753 	b_off -= lbcount;
754 	offset = b_off >> inode->i_sb->s_blocksize_bits;
755 	/*
756 	 * Move prev_epos and cur_epos into indirect extent if we are at
757 	 * the pointer to it
758 	 */
759 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
760 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
761 
762 	/* if the extent is allocated and recorded, return the block
763 	   if the extent is not a multiple of the blocksize, round up */
764 
765 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
766 		if (elen & (inode->i_sb->s_blocksize - 1)) {
767 			elen = EXT_RECORDED_ALLOCATED |
768 				((elen + inode->i_sb->s_blocksize - 1) &
769 				 ~(inode->i_sb->s_blocksize - 1));
770 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
771 		}
772 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
773 		goto out_free;
774 	}
775 
776 	/* Are we beyond EOF? */
777 	if (etype == -1) {
778 		int ret;
779 		loff_t hole_len;
780 		isBeyondEOF = true;
781 		if (count) {
782 			if (c)
783 				laarr[0] = laarr[1];
784 			startnum = 1;
785 		} else {
786 			/* Create a fake extent when there's not one */
787 			memset(&laarr[0].extLocation, 0x00,
788 				sizeof(struct kernel_lb_addr));
789 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
790 			/* Will udf_do_extend_file() create real extent from
791 			   a fake one? */
792 			startnum = (offset > 0);
793 		}
794 		/* Create extents for the hole between EOF and offset */
795 		hole_len = (loff_t)offset << inode->i_blkbits;
796 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
797 		if (ret < 0) {
798 			*err = ret;
799 			newblock = 0;
800 			goto out_free;
801 		}
802 		c = 0;
803 		offset = 0;
804 		count += ret;
805 		/* We are not covered by a preallocated extent? */
806 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
807 						EXT_NOT_RECORDED_ALLOCATED) {
808 			/* Is there any real extent? - otherwise we overwrite
809 			 * the fake one... */
810 			if (count)
811 				c = !c;
812 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
813 				inode->i_sb->s_blocksize;
814 			memset(&laarr[c].extLocation, 0x00,
815 				sizeof(struct kernel_lb_addr));
816 			count++;
817 		}
818 		endnum = c + 1;
819 		lastblock = 1;
820 	} else {
821 		isBeyondEOF = false;
822 		endnum = startnum = ((count > 2) ? 2 : count);
823 
824 		/* if the current extent is in position 0,
825 		   swap it with the previous */
826 		if (!c && count != 1) {
827 			laarr[2] = laarr[0];
828 			laarr[0] = laarr[1];
829 			laarr[1] = laarr[2];
830 			c = 1;
831 		}
832 
833 		/* if the current block is located in an extent,
834 		   read the next extent */
835 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
836 		if (etype != -1) {
837 			laarr[c + 1].extLength = (etype << 30) | elen;
838 			laarr[c + 1].extLocation = eloc;
839 			count++;
840 			startnum++;
841 			endnum++;
842 		} else
843 			lastblock = 1;
844 	}
845 
846 	/* if the current extent is not recorded but allocated, get the
847 	 * block in the extent corresponding to the requested block */
848 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
849 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
850 	else { /* otherwise, allocate a new block */
851 		if (iinfo->i_next_alloc_block == block)
852 			goal = iinfo->i_next_alloc_goal;
853 
854 		if (!goal) {
855 			if (!(goal = pgoal)) /* XXX: what was intended here? */
856 				goal = iinfo->i_location.logicalBlockNum + 1;
857 		}
858 
859 		newblocknum = udf_new_block(inode->i_sb, inode,
860 				iinfo->i_location.partitionReferenceNum,
861 				goal, err);
862 		if (!newblocknum) {
863 			*err = -ENOSPC;
864 			newblock = 0;
865 			goto out_free;
866 		}
867 		if (isBeyondEOF)
868 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
869 	}
870 
871 	/* if the extent the requsted block is located in contains multiple
872 	 * blocks, split the extent into at most three extents. blocks prior
873 	 * to requested block, requested block, and blocks after requested
874 	 * block */
875 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
876 
877 	/* We preallocate blocks only for regular files. It also makes sense
878 	 * for directories but there's a problem when to drop the
879 	 * preallocation. We might use some delayed work for that but I feel
880 	 * it's overengineering for a filesystem like UDF. */
881 	if (S_ISREG(inode->i_mode))
882 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
883 
884 	/* merge any continuous blocks in laarr */
885 	udf_merge_extents(inode, laarr, &endnum);
886 
887 	/* write back the new extents, inserting new extents if the new number
888 	 * of extents is greater than the old number, and deleting extents if
889 	 * the new number of extents is less than the old number */
890 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
891 
892 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
893 				iinfo->i_location.partitionReferenceNum, 0);
894 	if (!newblock) {
895 		*err = -EIO;
896 		goto out_free;
897 	}
898 	*new = 1;
899 	iinfo->i_next_alloc_block = block;
900 	iinfo->i_next_alloc_goal = newblocknum;
901 	inode->i_ctime = current_time(inode);
902 
903 	if (IS_SYNC(inode))
904 		udf_sync_inode(inode);
905 	else
906 		mark_inode_dirty(inode);
907 out_free:
908 	brelse(prev_epos.bh);
909 	brelse(cur_epos.bh);
910 	brelse(next_epos.bh);
911 	return newblock;
912 }
913 
914 static void udf_split_extents(struct inode *inode, int *c, int offset,
915 			       udf_pblk_t newblocknum,
916 			       struct kernel_long_ad *laarr, int *endnum)
917 {
918 	unsigned long blocksize = inode->i_sb->s_blocksize;
919 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
920 
921 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
922 	    (laarr[*c].extLength >> 30) ==
923 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
924 		int curr = *c;
925 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
926 			    blocksize - 1) >> blocksize_bits;
927 		int8_t etype = (laarr[curr].extLength >> 30);
928 
929 		if (blen == 1)
930 			;
931 		else if (!offset || blen == offset + 1) {
932 			laarr[curr + 2] = laarr[curr + 1];
933 			laarr[curr + 1] = laarr[curr];
934 		} else {
935 			laarr[curr + 3] = laarr[curr + 1];
936 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
937 		}
938 
939 		if (offset) {
940 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
941 				udf_free_blocks(inode->i_sb, inode,
942 						&laarr[curr].extLocation,
943 						0, offset);
944 				laarr[curr].extLength =
945 					EXT_NOT_RECORDED_NOT_ALLOCATED |
946 					(offset << blocksize_bits);
947 				laarr[curr].extLocation.logicalBlockNum = 0;
948 				laarr[curr].extLocation.
949 						partitionReferenceNum = 0;
950 			} else
951 				laarr[curr].extLength = (etype << 30) |
952 					(offset << blocksize_bits);
953 			curr++;
954 			(*c)++;
955 			(*endnum)++;
956 		}
957 
958 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
959 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
960 			laarr[curr].extLocation.partitionReferenceNum =
961 				UDF_I(inode)->i_location.partitionReferenceNum;
962 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
963 			blocksize;
964 		curr++;
965 
966 		if (blen != offset + 1) {
967 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
968 				laarr[curr].extLocation.logicalBlockNum +=
969 								offset + 1;
970 			laarr[curr].extLength = (etype << 30) |
971 				((blen - (offset + 1)) << blocksize_bits);
972 			curr++;
973 			(*endnum)++;
974 		}
975 	}
976 }
977 
978 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
979 				 struct kernel_long_ad *laarr,
980 				 int *endnum)
981 {
982 	int start, length = 0, currlength = 0, i;
983 
984 	if (*endnum >= (c + 1)) {
985 		if (!lastblock)
986 			return;
987 		else
988 			start = c;
989 	} else {
990 		if ((laarr[c + 1].extLength >> 30) ==
991 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
992 			start = c + 1;
993 			length = currlength =
994 				(((laarr[c + 1].extLength &
995 					UDF_EXTENT_LENGTH_MASK) +
996 				inode->i_sb->s_blocksize - 1) >>
997 				inode->i_sb->s_blocksize_bits);
998 		} else
999 			start = c;
1000 	}
1001 
1002 	for (i = start + 1; i <= *endnum; i++) {
1003 		if (i == *endnum) {
1004 			if (lastblock)
1005 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006 		} else if ((laarr[i].extLength >> 30) ==
1007 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008 			length += (((laarr[i].extLength &
1009 						UDF_EXTENT_LENGTH_MASK) +
1010 				    inode->i_sb->s_blocksize - 1) >>
1011 				    inode->i_sb->s_blocksize_bits);
1012 		} else
1013 			break;
1014 	}
1015 
1016 	if (length) {
1017 		int next = laarr[start].extLocation.logicalBlockNum +
1018 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019 			  inode->i_sb->s_blocksize - 1) >>
1020 			  inode->i_sb->s_blocksize_bits);
1021 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022 				laarr[start].extLocation.partitionReferenceNum,
1023 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025 				currlength);
1026 		if (numalloc) 	{
1027 			if (start == (c + 1))
1028 				laarr[start].extLength +=
1029 					(numalloc <<
1030 					 inode->i_sb->s_blocksize_bits);
1031 			else {
1032 				memmove(&laarr[c + 2], &laarr[c + 1],
1033 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1034 				(*endnum)++;
1035 				laarr[c + 1].extLocation.logicalBlockNum = next;
1036 				laarr[c + 1].extLocation.partitionReferenceNum =
1037 					laarr[c].extLocation.
1038 							partitionReferenceNum;
1039 				laarr[c + 1].extLength =
1040 					EXT_NOT_RECORDED_ALLOCATED |
1041 					(numalloc <<
1042 					 inode->i_sb->s_blocksize_bits);
1043 				start = c + 1;
1044 			}
1045 
1046 			for (i = start + 1; numalloc && i < *endnum; i++) {
1047 				int elen = ((laarr[i].extLength &
1048 						UDF_EXTENT_LENGTH_MASK) +
1049 					    inode->i_sb->s_blocksize - 1) >>
1050 					    inode->i_sb->s_blocksize_bits;
1051 
1052 				if (elen > numalloc) {
1053 					laarr[i].extLength -=
1054 						(numalloc <<
1055 						 inode->i_sb->s_blocksize_bits);
1056 					numalloc = 0;
1057 				} else {
1058 					numalloc -= elen;
1059 					if (*endnum > (i + 1))
1060 						memmove(&laarr[i],
1061 							&laarr[i + 1],
1062 							sizeof(struct long_ad) *
1063 							(*endnum - (i + 1)));
1064 					i--;
1065 					(*endnum)--;
1066 				}
1067 			}
1068 			UDF_I(inode)->i_lenExtents +=
1069 				numalloc << inode->i_sb->s_blocksize_bits;
1070 		}
1071 	}
1072 }
1073 
1074 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075 			      int *endnum)
1076 {
1077 	int i;
1078 	unsigned long blocksize = inode->i_sb->s_blocksize;
1079 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080 
1081 	for (i = 0; i < (*endnum - 1); i++) {
1082 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084 
1085 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086 			(((li->extLength >> 30) ==
1087 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088 			((lip1->extLocation.logicalBlockNum -
1089 			  li->extLocation.logicalBlockNum) ==
1090 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091 			blocksize - 1) >> blocksize_bits)))) {
1092 
1093 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1096 				lip1->extLength = (lip1->extLength -
1097 						  (li->extLength &
1098 						   UDF_EXTENT_LENGTH_MASK) +
1099 						   UDF_EXTENT_LENGTH_MASK) &
1100 							~(blocksize - 1);
1101 				li->extLength = (li->extLength &
1102 						 UDF_EXTENT_FLAG_MASK) +
1103 						(UDF_EXTENT_LENGTH_MASK + 1) -
1104 						blocksize;
1105 				lip1->extLocation.logicalBlockNum =
1106 					li->extLocation.logicalBlockNum +
1107 					((li->extLength &
1108 						UDF_EXTENT_LENGTH_MASK) >>
1109 						blocksize_bits);
1110 			} else {
1111 				li->extLength = lip1->extLength +
1112 					(((li->extLength &
1113 						UDF_EXTENT_LENGTH_MASK) +
1114 					 blocksize - 1) & ~(blocksize - 1));
1115 				if (*endnum > (i + 2))
1116 					memmove(&laarr[i + 1], &laarr[i + 2],
1117 						sizeof(struct long_ad) *
1118 						(*endnum - (i + 2)));
1119 				i--;
1120 				(*endnum)--;
1121 			}
1122 		} else if (((li->extLength >> 30) ==
1123 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1124 			   ((lip1->extLength >> 30) ==
1125 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1126 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1127 					((li->extLength &
1128 					  UDF_EXTENT_LENGTH_MASK) +
1129 					 blocksize - 1) >> blocksize_bits);
1130 			li->extLocation.logicalBlockNum = 0;
1131 			li->extLocation.partitionReferenceNum = 0;
1132 
1133 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1134 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1135 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1136 				lip1->extLength = (lip1->extLength -
1137 						   (li->extLength &
1138 						   UDF_EXTENT_LENGTH_MASK) +
1139 						   UDF_EXTENT_LENGTH_MASK) &
1140 						   ~(blocksize - 1);
1141 				li->extLength = (li->extLength &
1142 						 UDF_EXTENT_FLAG_MASK) +
1143 						(UDF_EXTENT_LENGTH_MASK + 1) -
1144 						blocksize;
1145 			} else {
1146 				li->extLength = lip1->extLength +
1147 					(((li->extLength &
1148 						UDF_EXTENT_LENGTH_MASK) +
1149 					  blocksize - 1) & ~(blocksize - 1));
1150 				if (*endnum > (i + 2))
1151 					memmove(&laarr[i + 1], &laarr[i + 2],
1152 						sizeof(struct long_ad) *
1153 						(*endnum - (i + 2)));
1154 				i--;
1155 				(*endnum)--;
1156 			}
1157 		} else if ((li->extLength >> 30) ==
1158 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1159 			udf_free_blocks(inode->i_sb, inode,
1160 					&li->extLocation, 0,
1161 					((li->extLength &
1162 						UDF_EXTENT_LENGTH_MASK) +
1163 					 blocksize - 1) >> blocksize_bits);
1164 			li->extLocation.logicalBlockNum = 0;
1165 			li->extLocation.partitionReferenceNum = 0;
1166 			li->extLength = (li->extLength &
1167 						UDF_EXTENT_LENGTH_MASK) |
1168 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1169 		}
1170 	}
1171 }
1172 
1173 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1174 			       int startnum, int endnum,
1175 			       struct extent_position *epos)
1176 {
1177 	int start = 0, i;
1178 	struct kernel_lb_addr tmploc;
1179 	uint32_t tmplen;
1180 
1181 	if (startnum > endnum) {
1182 		for (i = 0; i < (startnum - endnum); i++)
1183 			udf_delete_aext(inode, *epos);
1184 	} else if (startnum < endnum) {
1185 		for (i = 0; i < (endnum - startnum); i++) {
1186 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1187 					laarr[i].extLength);
1188 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1189 				      &laarr[i].extLength, 1);
1190 			start++;
1191 		}
1192 	}
1193 
1194 	for (i = start; i < endnum; i++) {
1195 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1196 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1197 			       laarr[i].extLength, 1);
1198 	}
1199 }
1200 
1201 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1202 			      int create, int *err)
1203 {
1204 	struct buffer_head *bh = NULL;
1205 
1206 	bh = udf_getblk(inode, block, create, err);
1207 	if (!bh)
1208 		return NULL;
1209 
1210 	if (buffer_uptodate(bh))
1211 		return bh;
1212 
1213 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1214 
1215 	wait_on_buffer(bh);
1216 	if (buffer_uptodate(bh))
1217 		return bh;
1218 
1219 	brelse(bh);
1220 	*err = -EIO;
1221 	return NULL;
1222 }
1223 
1224 int udf_setsize(struct inode *inode, loff_t newsize)
1225 {
1226 	int err;
1227 	struct udf_inode_info *iinfo;
1228 	unsigned int bsize = i_blocksize(inode);
1229 
1230 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1231 	      S_ISLNK(inode->i_mode)))
1232 		return -EINVAL;
1233 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1234 		return -EPERM;
1235 
1236 	iinfo = UDF_I(inode);
1237 	if (newsize > inode->i_size) {
1238 		down_write(&iinfo->i_data_sem);
1239 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1240 			if (bsize <
1241 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1242 				err = udf_expand_file_adinicb(inode);
1243 				if (err)
1244 					return err;
1245 				down_write(&iinfo->i_data_sem);
1246 			} else {
1247 				iinfo->i_lenAlloc = newsize;
1248 				goto set_size;
1249 			}
1250 		}
1251 		err = udf_extend_file(inode, newsize);
1252 		if (err) {
1253 			up_write(&iinfo->i_data_sem);
1254 			return err;
1255 		}
1256 set_size:
1257 		up_write(&iinfo->i_data_sem);
1258 		truncate_setsize(inode, newsize);
1259 	} else {
1260 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1261 			down_write(&iinfo->i_data_sem);
1262 			udf_clear_extent_cache(inode);
1263 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1264 			       0x00, bsize - newsize -
1265 			       udf_file_entry_alloc_offset(inode));
1266 			iinfo->i_lenAlloc = newsize;
1267 			truncate_setsize(inode, newsize);
1268 			up_write(&iinfo->i_data_sem);
1269 			goto update_time;
1270 		}
1271 		err = block_truncate_page(inode->i_mapping, newsize,
1272 					  udf_get_block);
1273 		if (err)
1274 			return err;
1275 		truncate_setsize(inode, newsize);
1276 		down_write(&iinfo->i_data_sem);
1277 		udf_clear_extent_cache(inode);
1278 		err = udf_truncate_extents(inode);
1279 		up_write(&iinfo->i_data_sem);
1280 		if (err)
1281 			return err;
1282 	}
1283 update_time:
1284 	inode->i_mtime = inode->i_ctime = current_time(inode);
1285 	if (IS_SYNC(inode))
1286 		udf_sync_inode(inode);
1287 	else
1288 		mark_inode_dirty(inode);
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1294  * arbitrary - just that we hopefully don't limit any real use of rewritten
1295  * inode on write-once media but avoid looping for too long on corrupted media.
1296  */
1297 #define UDF_MAX_ICB_NESTING 1024
1298 
1299 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1300 {
1301 	struct buffer_head *bh = NULL;
1302 	struct fileEntry *fe;
1303 	struct extendedFileEntry *efe;
1304 	uint16_t ident;
1305 	struct udf_inode_info *iinfo = UDF_I(inode);
1306 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1307 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1308 	unsigned int link_count;
1309 	unsigned int indirections = 0;
1310 	int bs = inode->i_sb->s_blocksize;
1311 	int ret = -EIO;
1312 	uint32_t uid, gid;
1313 
1314 reread:
1315 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1316 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1317 			  iloc->partitionReferenceNum, sbi->s_partitions);
1318 		return -EIO;
1319 	}
1320 
1321 	if (iloc->logicalBlockNum >=
1322 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1323 		udf_debug("block=%u, partition=%u out of range\n",
1324 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1325 		return -EIO;
1326 	}
1327 
1328 	/*
1329 	 * Set defaults, but the inode is still incomplete!
1330 	 * Note: get_new_inode() sets the following on a new inode:
1331 	 *      i_sb = sb
1332 	 *      i_no = ino
1333 	 *      i_flags = sb->s_flags
1334 	 *      i_state = 0
1335 	 * clean_inode(): zero fills and sets
1336 	 *      i_count = 1
1337 	 *      i_nlink = 1
1338 	 *      i_op = NULL;
1339 	 */
1340 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1341 	if (!bh) {
1342 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1343 		return -EIO;
1344 	}
1345 
1346 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1347 	    ident != TAG_IDENT_USE) {
1348 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1349 			inode->i_ino, ident);
1350 		goto out;
1351 	}
1352 
1353 	fe = (struct fileEntry *)bh->b_data;
1354 	efe = (struct extendedFileEntry *)bh->b_data;
1355 
1356 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1357 		struct buffer_head *ibh;
1358 
1359 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1360 		if (ident == TAG_IDENT_IE && ibh) {
1361 			struct kernel_lb_addr loc;
1362 			struct indirectEntry *ie;
1363 
1364 			ie = (struct indirectEntry *)ibh->b_data;
1365 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1366 
1367 			if (ie->indirectICB.extLength) {
1368 				brelse(ibh);
1369 				memcpy(&iinfo->i_location, &loc,
1370 				       sizeof(struct kernel_lb_addr));
1371 				if (++indirections > UDF_MAX_ICB_NESTING) {
1372 					udf_err(inode->i_sb,
1373 						"too many ICBs in ICB hierarchy"
1374 						" (max %d supported)\n",
1375 						UDF_MAX_ICB_NESTING);
1376 					goto out;
1377 				}
1378 				brelse(bh);
1379 				goto reread;
1380 			}
1381 		}
1382 		brelse(ibh);
1383 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1384 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1385 			le16_to_cpu(fe->icbTag.strategyType));
1386 		goto out;
1387 	}
1388 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1389 		iinfo->i_strat4096 = 0;
1390 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1391 		iinfo->i_strat4096 = 1;
1392 
1393 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1394 							ICBTAG_FLAG_AD_MASK;
1395 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1396 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1397 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1398 		ret = -EIO;
1399 		goto out;
1400 	}
1401 	iinfo->i_unique = 0;
1402 	iinfo->i_lenEAttr = 0;
1403 	iinfo->i_lenExtents = 0;
1404 	iinfo->i_lenAlloc = 0;
1405 	iinfo->i_next_alloc_block = 0;
1406 	iinfo->i_next_alloc_goal = 0;
1407 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1408 		iinfo->i_efe = 1;
1409 		iinfo->i_use = 0;
1410 		ret = udf_alloc_i_data(inode, bs -
1411 					sizeof(struct extendedFileEntry));
1412 		if (ret)
1413 			goto out;
1414 		memcpy(iinfo->i_ext.i_data,
1415 		       bh->b_data + sizeof(struct extendedFileEntry),
1416 		       bs - sizeof(struct extendedFileEntry));
1417 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1418 		iinfo->i_efe = 0;
1419 		iinfo->i_use = 0;
1420 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1421 		if (ret)
1422 			goto out;
1423 		memcpy(iinfo->i_ext.i_data,
1424 		       bh->b_data + sizeof(struct fileEntry),
1425 		       bs - sizeof(struct fileEntry));
1426 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1427 		iinfo->i_efe = 0;
1428 		iinfo->i_use = 1;
1429 		iinfo->i_lenAlloc = le32_to_cpu(
1430 				((struct unallocSpaceEntry *)bh->b_data)->
1431 				 lengthAllocDescs);
1432 		ret = udf_alloc_i_data(inode, bs -
1433 					sizeof(struct unallocSpaceEntry));
1434 		if (ret)
1435 			goto out;
1436 		memcpy(iinfo->i_ext.i_data,
1437 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1438 		       bs - sizeof(struct unallocSpaceEntry));
1439 		return 0;
1440 	}
1441 
1442 	ret = -EIO;
1443 	read_lock(&sbi->s_cred_lock);
1444 	uid = le32_to_cpu(fe->uid);
1445 	if (uid == UDF_INVALID_ID ||
1446 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1447 		inode->i_uid = sbi->s_uid;
1448 	else
1449 		i_uid_write(inode, uid);
1450 
1451 	gid = le32_to_cpu(fe->gid);
1452 	if (gid == UDF_INVALID_ID ||
1453 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1454 		inode->i_gid = sbi->s_gid;
1455 	else
1456 		i_gid_write(inode, gid);
1457 
1458 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1459 			sbi->s_fmode != UDF_INVALID_MODE)
1460 		inode->i_mode = sbi->s_fmode;
1461 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1462 			sbi->s_dmode != UDF_INVALID_MODE)
1463 		inode->i_mode = sbi->s_dmode;
1464 	else
1465 		inode->i_mode = udf_convert_permissions(fe);
1466 	inode->i_mode &= ~sbi->s_umask;
1467 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1468 
1469 	read_unlock(&sbi->s_cred_lock);
1470 
1471 	link_count = le16_to_cpu(fe->fileLinkCount);
1472 	if (!link_count) {
1473 		if (!hidden_inode) {
1474 			ret = -ESTALE;
1475 			goto out;
1476 		}
1477 		link_count = 1;
1478 	}
1479 	set_nlink(inode, link_count);
1480 
1481 	inode->i_size = le64_to_cpu(fe->informationLength);
1482 	iinfo->i_lenExtents = inode->i_size;
1483 
1484 	if (iinfo->i_efe == 0) {
1485 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1486 			(inode->i_sb->s_blocksize_bits - 9);
1487 
1488 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1489 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1490 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1491 
1492 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1493 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1494 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1495 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1496 		iinfo->i_streamdir = 0;
1497 		iinfo->i_lenStreams = 0;
1498 	} else {
1499 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1500 		    (inode->i_sb->s_blocksize_bits - 9);
1501 
1502 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1503 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1504 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1505 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1506 
1507 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1508 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1509 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1510 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1511 
1512 		/* Named streams */
1513 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1514 		iinfo->i_locStreamdir =
1515 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1516 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1517 		if (iinfo->i_lenStreams >= inode->i_size)
1518 			iinfo->i_lenStreams -= inode->i_size;
1519 		else
1520 			iinfo->i_lenStreams = 0;
1521 	}
1522 	inode->i_generation = iinfo->i_unique;
1523 
1524 	/*
1525 	 * Sanity check length of allocation descriptors and extended attrs to
1526 	 * avoid integer overflows
1527 	 */
1528 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1529 		goto out;
1530 	/* Now do exact checks */
1531 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1532 		goto out;
1533 	/* Sanity checks for files in ICB so that we don't get confused later */
1534 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1535 		/*
1536 		 * For file in ICB data is stored in allocation descriptor
1537 		 * so sizes should match
1538 		 */
1539 		if (iinfo->i_lenAlloc != inode->i_size)
1540 			goto out;
1541 		/* File in ICB has to fit in there... */
1542 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1543 			goto out;
1544 	}
1545 
1546 	switch (fe->icbTag.fileType) {
1547 	case ICBTAG_FILE_TYPE_DIRECTORY:
1548 		inode->i_op = &udf_dir_inode_operations;
1549 		inode->i_fop = &udf_dir_operations;
1550 		inode->i_mode |= S_IFDIR;
1551 		inc_nlink(inode);
1552 		break;
1553 	case ICBTAG_FILE_TYPE_REALTIME:
1554 	case ICBTAG_FILE_TYPE_REGULAR:
1555 	case ICBTAG_FILE_TYPE_UNDEF:
1556 	case ICBTAG_FILE_TYPE_VAT20:
1557 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1558 			inode->i_data.a_ops = &udf_adinicb_aops;
1559 		else
1560 			inode->i_data.a_ops = &udf_aops;
1561 		inode->i_op = &udf_file_inode_operations;
1562 		inode->i_fop = &udf_file_operations;
1563 		inode->i_mode |= S_IFREG;
1564 		break;
1565 	case ICBTAG_FILE_TYPE_BLOCK:
1566 		inode->i_mode |= S_IFBLK;
1567 		break;
1568 	case ICBTAG_FILE_TYPE_CHAR:
1569 		inode->i_mode |= S_IFCHR;
1570 		break;
1571 	case ICBTAG_FILE_TYPE_FIFO:
1572 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1573 		break;
1574 	case ICBTAG_FILE_TYPE_SOCKET:
1575 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1576 		break;
1577 	case ICBTAG_FILE_TYPE_SYMLINK:
1578 		inode->i_data.a_ops = &udf_symlink_aops;
1579 		inode->i_op = &udf_symlink_inode_operations;
1580 		inode_nohighmem(inode);
1581 		inode->i_mode = S_IFLNK | 0777;
1582 		break;
1583 	case ICBTAG_FILE_TYPE_MAIN:
1584 		udf_debug("METADATA FILE-----\n");
1585 		break;
1586 	case ICBTAG_FILE_TYPE_MIRROR:
1587 		udf_debug("METADATA MIRROR FILE-----\n");
1588 		break;
1589 	case ICBTAG_FILE_TYPE_BITMAP:
1590 		udf_debug("METADATA BITMAP FILE-----\n");
1591 		break;
1592 	default:
1593 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1594 			inode->i_ino, fe->icbTag.fileType);
1595 		goto out;
1596 	}
1597 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1598 		struct deviceSpec *dsea =
1599 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600 		if (dsea) {
1601 			init_special_inode(inode, inode->i_mode,
1602 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1603 				      le32_to_cpu(dsea->minorDeviceIdent)));
1604 			/* Developer ID ??? */
1605 		} else
1606 			goto out;
1607 	}
1608 	ret = 0;
1609 out:
1610 	brelse(bh);
1611 	return ret;
1612 }
1613 
1614 static int udf_alloc_i_data(struct inode *inode, size_t size)
1615 {
1616 	struct udf_inode_info *iinfo = UDF_I(inode);
1617 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1618 	if (!iinfo->i_ext.i_data)
1619 		return -ENOMEM;
1620 	return 0;
1621 }
1622 
1623 static umode_t udf_convert_permissions(struct fileEntry *fe)
1624 {
1625 	umode_t mode;
1626 	uint32_t permissions;
1627 	uint32_t flags;
1628 
1629 	permissions = le32_to_cpu(fe->permissions);
1630 	flags = le16_to_cpu(fe->icbTag.flags);
1631 
1632 	mode =	((permissions) & 0007) |
1633 		((permissions >> 2) & 0070) |
1634 		((permissions >> 4) & 0700) |
1635 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1636 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1637 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1638 
1639 	return mode;
1640 }
1641 
1642 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1643 {
1644 	struct udf_inode_info *iinfo = UDF_I(inode);
1645 
1646 	/*
1647 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1648 	 * In Unix, delete permission tracks write
1649 	 */
1650 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1651 	if (mode & 0200)
1652 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1653 	if (mode & 0020)
1654 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1655 	if (mode & 0002)
1656 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1657 }
1658 
1659 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1660 {
1661 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1662 }
1663 
1664 static int udf_sync_inode(struct inode *inode)
1665 {
1666 	return udf_update_inode(inode, 1);
1667 }
1668 
1669 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1670 {
1671 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1672 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1673 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1674 		iinfo->i_crtime = time;
1675 }
1676 
1677 static int udf_update_inode(struct inode *inode, int do_sync)
1678 {
1679 	struct buffer_head *bh = NULL;
1680 	struct fileEntry *fe;
1681 	struct extendedFileEntry *efe;
1682 	uint64_t lb_recorded;
1683 	uint32_t udfperms;
1684 	uint16_t icbflags;
1685 	uint16_t crclen;
1686 	int err = 0;
1687 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1688 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1689 	struct udf_inode_info *iinfo = UDF_I(inode);
1690 
1691 	bh = udf_tgetblk(inode->i_sb,
1692 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1693 	if (!bh) {
1694 		udf_debug("getblk failure\n");
1695 		return -EIO;
1696 	}
1697 
1698 	lock_buffer(bh);
1699 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1700 	fe = (struct fileEntry *)bh->b_data;
1701 	efe = (struct extendedFileEntry *)bh->b_data;
1702 
1703 	if (iinfo->i_use) {
1704 		struct unallocSpaceEntry *use =
1705 			(struct unallocSpaceEntry *)bh->b_data;
1706 
1707 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1708 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1709 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1710 					sizeof(struct unallocSpaceEntry));
1711 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1712 		crclen = sizeof(struct unallocSpaceEntry);
1713 
1714 		goto finish;
1715 	}
1716 
1717 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1718 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1719 	else
1720 		fe->uid = cpu_to_le32(i_uid_read(inode));
1721 
1722 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1723 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1724 	else
1725 		fe->gid = cpu_to_le32(i_gid_read(inode));
1726 
1727 	udfperms = ((inode->i_mode & 0007)) |
1728 		   ((inode->i_mode & 0070) << 2) |
1729 		   ((inode->i_mode & 0700) << 4);
1730 
1731 	udfperms |= iinfo->i_extraPerms;
1732 	fe->permissions = cpu_to_le32(udfperms);
1733 
1734 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1735 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1736 	else
1737 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1738 
1739 	fe->informationLength = cpu_to_le64(inode->i_size);
1740 
1741 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742 		struct regid *eid;
1743 		struct deviceSpec *dsea =
1744 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745 		if (!dsea) {
1746 			dsea = (struct deviceSpec *)
1747 				udf_add_extendedattr(inode,
1748 						     sizeof(struct deviceSpec) +
1749 						     sizeof(struct regid), 12, 0x3);
1750 			dsea->attrType = cpu_to_le32(12);
1751 			dsea->attrSubtype = 1;
1752 			dsea->attrLength = cpu_to_le32(
1753 						sizeof(struct deviceSpec) +
1754 						sizeof(struct regid));
1755 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756 		}
1757 		eid = (struct regid *)dsea->impUse;
1758 		memset(eid, 0, sizeof(*eid));
1759 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1760 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764 	}
1765 
1766 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767 		lb_recorded = 0; /* No extents => no blocks! */
1768 	else
1769 		lb_recorded =
1770 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771 			(blocksize_bits - 9);
1772 
1773 	if (iinfo->i_efe == 0) {
1774 		memcpy(bh->b_data + sizeof(struct fileEntry),
1775 		       iinfo->i_ext.i_data,
1776 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778 
1779 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1783 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791 		crclen = sizeof(struct fileEntry);
1792 	} else {
1793 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794 		       iinfo->i_ext.i_data,
1795 		       inode->i_sb->s_blocksize -
1796 					sizeof(struct extendedFileEntry));
1797 		efe->objectSize =
1798 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800 
1801 		if (iinfo->i_streamdir) {
1802 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803 
1804 			icb_lad->extLocation =
1805 				cpu_to_lelb(iinfo->i_locStreamdir);
1806 			icb_lad->extLength =
1807 				cpu_to_le32(inode->i_sb->s_blocksize);
1808 		}
1809 
1810 		udf_adjust_time(iinfo, inode->i_atime);
1811 		udf_adjust_time(iinfo, inode->i_mtime);
1812 		udf_adjust_time(iinfo, inode->i_ctime);
1813 
1814 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818 
1819 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828 		crclen = sizeof(struct extendedFileEntry);
1829 	}
1830 
1831 finish:
1832 	if (iinfo->i_strat4096) {
1833 		fe->icbTag.strategyType = cpu_to_le16(4096);
1834 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1835 		fe->icbTag.numEntries = cpu_to_le16(2);
1836 	} else {
1837 		fe->icbTag.strategyType = cpu_to_le16(4);
1838 		fe->icbTag.numEntries = cpu_to_le16(1);
1839 	}
1840 
1841 	if (iinfo->i_use)
1842 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843 	else if (S_ISDIR(inode->i_mode))
1844 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845 	else if (S_ISREG(inode->i_mode))
1846 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847 	else if (S_ISLNK(inode->i_mode))
1848 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849 	else if (S_ISBLK(inode->i_mode))
1850 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851 	else if (S_ISCHR(inode->i_mode))
1852 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853 	else if (S_ISFIFO(inode->i_mode))
1854 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855 	else if (S_ISSOCK(inode->i_mode))
1856 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857 
1858 	icbflags =	iinfo->i_alloc_type |
1859 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862 			(le16_to_cpu(fe->icbTag.flags) &
1863 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865 
1866 	fe->icbTag.flags = cpu_to_le16(icbflags);
1867 	if (sbi->s_udfrev >= 0x0200)
1868 		fe->descTag.descVersion = cpu_to_le16(3);
1869 	else
1870 		fe->descTag.descVersion = cpu_to_le16(2);
1871 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872 	fe->descTag.tagLocation = cpu_to_le32(
1873 					iinfo->i_location.logicalBlockNum);
1874 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877 						  crclen));
1878 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879 
1880 	set_buffer_uptodate(bh);
1881 	unlock_buffer(bh);
1882 
1883 	/* write the data blocks */
1884 	mark_buffer_dirty(bh);
1885 	if (do_sync) {
1886 		sync_dirty_buffer(bh);
1887 		if (buffer_write_io_error(bh)) {
1888 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889 				 inode->i_ino);
1890 			err = -EIO;
1891 		}
1892 	}
1893 	brelse(bh);
1894 
1895 	return err;
1896 }
1897 
1898 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899 			 bool hidden_inode)
1900 {
1901 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902 	struct inode *inode = iget_locked(sb, block);
1903 	int err;
1904 
1905 	if (!inode)
1906 		return ERR_PTR(-ENOMEM);
1907 
1908 	if (!(inode->i_state & I_NEW))
1909 		return inode;
1910 
1911 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912 	err = udf_read_inode(inode, hidden_inode);
1913 	if (err < 0) {
1914 		iget_failed(inode);
1915 		return ERR_PTR(err);
1916 	}
1917 	unlock_new_inode(inode);
1918 
1919 	return inode;
1920 }
1921 
1922 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923 			    struct extent_position *epos)
1924 {
1925 	struct super_block *sb = inode->i_sb;
1926 	struct buffer_head *bh;
1927 	struct allocExtDesc *aed;
1928 	struct extent_position nepos;
1929 	struct kernel_lb_addr neloc;
1930 	int ver, adsize;
1931 
1932 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933 		adsize = sizeof(struct short_ad);
1934 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935 		adsize = sizeof(struct long_ad);
1936 	else
1937 		return -EIO;
1938 
1939 	neloc.logicalBlockNum = block;
1940 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941 
1942 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943 	if (!bh)
1944 		return -EIO;
1945 	lock_buffer(bh);
1946 	memset(bh->b_data, 0x00, sb->s_blocksize);
1947 	set_buffer_uptodate(bh);
1948 	unlock_buffer(bh);
1949 	mark_buffer_dirty_inode(bh, inode);
1950 
1951 	aed = (struct allocExtDesc *)(bh->b_data);
1952 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953 		aed->previousAllocExtLocation =
1954 				cpu_to_le32(epos->block.logicalBlockNum);
1955 	}
1956 	aed->lengthAllocDescs = cpu_to_le32(0);
1957 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958 		ver = 3;
1959 	else
1960 		ver = 2;
1961 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962 		    sizeof(struct tag));
1963 
1964 	nepos.block = neloc;
1965 	nepos.offset = sizeof(struct allocExtDesc);
1966 	nepos.bh = bh;
1967 
1968 	/*
1969 	 * Do we have to copy current last extent to make space for indirect
1970 	 * one?
1971 	 */
1972 	if (epos->offset + adsize > sb->s_blocksize) {
1973 		struct kernel_lb_addr cp_loc;
1974 		uint32_t cp_len;
1975 		int cp_type;
1976 
1977 		epos->offset -= adsize;
1978 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979 		cp_len |= ((uint32_t)cp_type) << 30;
1980 
1981 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982 		udf_write_aext(inode, epos, &nepos.block,
1983 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984 	} else {
1985 		__udf_add_aext(inode, epos, &nepos.block,
1986 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987 	}
1988 
1989 	brelse(epos->bh);
1990 	*epos = nepos;
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * Append extent at the given position - should be the first free one in inode
1997  * / indirect extent. This function assumes there is enough space in the inode
1998  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999  */
2000 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002 {
2003 	struct udf_inode_info *iinfo = UDF_I(inode);
2004 	struct allocExtDesc *aed;
2005 	int adsize;
2006 
2007 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008 		adsize = sizeof(struct short_ad);
2009 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010 		adsize = sizeof(struct long_ad);
2011 	else
2012 		return -EIO;
2013 
2014 	if (!epos->bh) {
2015 		WARN_ON(iinfo->i_lenAlloc !=
2016 			epos->offset - udf_file_entry_alloc_offset(inode));
2017 	} else {
2018 		aed = (struct allocExtDesc *)epos->bh->b_data;
2019 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020 			epos->offset - sizeof(struct allocExtDesc));
2021 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022 	}
2023 
2024 	udf_write_aext(inode, epos, eloc, elen, inc);
2025 
2026 	if (!epos->bh) {
2027 		iinfo->i_lenAlloc += adsize;
2028 		mark_inode_dirty(inode);
2029 	} else {
2030 		aed = (struct allocExtDesc *)epos->bh->b_data;
2031 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034 			udf_update_tag(epos->bh->b_data,
2035 					epos->offset + (inc ? 0 : adsize));
2036 		else
2037 			udf_update_tag(epos->bh->b_data,
2038 					sizeof(struct allocExtDesc));
2039 		mark_buffer_dirty_inode(epos->bh, inode);
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 /*
2046  * Append extent at given position - should be the first free one in inode
2047  * / indirect extent. Takes care of allocating and linking indirect blocks.
2048  */
2049 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051 {
2052 	int adsize;
2053 	struct super_block *sb = inode->i_sb;
2054 
2055 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056 		adsize = sizeof(struct short_ad);
2057 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058 		adsize = sizeof(struct long_ad);
2059 	else
2060 		return -EIO;
2061 
2062 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063 		int err;
2064 		udf_pblk_t new_block;
2065 
2066 		new_block = udf_new_block(sb, NULL,
2067 					  epos->block.partitionReferenceNum,
2068 					  epos->block.logicalBlockNum, &err);
2069 		if (!new_block)
2070 			return -ENOSPC;
2071 
2072 		err = udf_setup_indirect_aext(inode, new_block, epos);
2073 		if (err)
2074 			return err;
2075 	}
2076 
2077 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2078 }
2079 
2080 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082 {
2083 	int adsize;
2084 	uint8_t *ptr;
2085 	struct short_ad *sad;
2086 	struct long_ad *lad;
2087 	struct udf_inode_info *iinfo = UDF_I(inode);
2088 
2089 	if (!epos->bh)
2090 		ptr = iinfo->i_ext.i_data + epos->offset -
2091 			udf_file_entry_alloc_offset(inode) +
2092 			iinfo->i_lenEAttr;
2093 	else
2094 		ptr = epos->bh->b_data + epos->offset;
2095 
2096 	switch (iinfo->i_alloc_type) {
2097 	case ICBTAG_FLAG_AD_SHORT:
2098 		sad = (struct short_ad *)ptr;
2099 		sad->extLength = cpu_to_le32(elen);
2100 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101 		adsize = sizeof(struct short_ad);
2102 		break;
2103 	case ICBTAG_FLAG_AD_LONG:
2104 		lad = (struct long_ad *)ptr;
2105 		lad->extLength = cpu_to_le32(elen);
2106 		lad->extLocation = cpu_to_lelb(*eloc);
2107 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108 		adsize = sizeof(struct long_ad);
2109 		break;
2110 	default:
2111 		return;
2112 	}
2113 
2114 	if (epos->bh) {
2115 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117 			struct allocExtDesc *aed =
2118 				(struct allocExtDesc *)epos->bh->b_data;
2119 			udf_update_tag(epos->bh->b_data,
2120 				       le32_to_cpu(aed->lengthAllocDescs) +
2121 				       sizeof(struct allocExtDesc));
2122 		}
2123 		mark_buffer_dirty_inode(epos->bh, inode);
2124 	} else {
2125 		mark_inode_dirty(inode);
2126 	}
2127 
2128 	if (inc)
2129 		epos->offset += adsize;
2130 }
2131 
2132 /*
2133  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134  * someone does some weird stuff.
2135  */
2136 #define UDF_MAX_INDIR_EXTS 16
2137 
2138 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140 {
2141 	int8_t etype;
2142 	unsigned int indirections = 0;
2143 
2144 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146 		udf_pblk_t block;
2147 
2148 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2149 			udf_err(inode->i_sb,
2150 				"too many indirect extents in inode %lu\n",
2151 				inode->i_ino);
2152 			return -1;
2153 		}
2154 
2155 		epos->block = *eloc;
2156 		epos->offset = sizeof(struct allocExtDesc);
2157 		brelse(epos->bh);
2158 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159 		epos->bh = udf_tread(inode->i_sb, block);
2160 		if (!epos->bh) {
2161 			udf_debug("reading block %u failed!\n", block);
2162 			return -1;
2163 		}
2164 	}
2165 
2166 	return etype;
2167 }
2168 
2169 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171 {
2172 	int alen;
2173 	int8_t etype;
2174 	uint8_t *ptr;
2175 	struct short_ad *sad;
2176 	struct long_ad *lad;
2177 	struct udf_inode_info *iinfo = UDF_I(inode);
2178 
2179 	if (!epos->bh) {
2180 		if (!epos->offset)
2181 			epos->offset = udf_file_entry_alloc_offset(inode);
2182 		ptr = iinfo->i_ext.i_data + epos->offset -
2183 			udf_file_entry_alloc_offset(inode) +
2184 			iinfo->i_lenEAttr;
2185 		alen = udf_file_entry_alloc_offset(inode) +
2186 							iinfo->i_lenAlloc;
2187 	} else {
2188 		if (!epos->offset)
2189 			epos->offset = sizeof(struct allocExtDesc);
2190 		ptr = epos->bh->b_data + epos->offset;
2191 		alen = sizeof(struct allocExtDesc) +
2192 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193 							lengthAllocDescs);
2194 	}
2195 
2196 	switch (iinfo->i_alloc_type) {
2197 	case ICBTAG_FLAG_AD_SHORT:
2198 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199 		if (!sad)
2200 			return -1;
2201 		etype = le32_to_cpu(sad->extLength) >> 30;
2202 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203 		eloc->partitionReferenceNum =
2204 				iinfo->i_location.partitionReferenceNum;
2205 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206 		break;
2207 	case ICBTAG_FLAG_AD_LONG:
2208 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209 		if (!lad)
2210 			return -1;
2211 		etype = le32_to_cpu(lad->extLength) >> 30;
2212 		*eloc = lelb_to_cpu(lad->extLocation);
2213 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214 		break;
2215 	default:
2216 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217 		return -1;
2218 	}
2219 
2220 	return etype;
2221 }
2222 
2223 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2224 			      struct kernel_lb_addr neloc, uint32_t nelen)
2225 {
2226 	struct kernel_lb_addr oeloc;
2227 	uint32_t oelen;
2228 	int8_t etype;
2229 
2230 	if (epos.bh)
2231 		get_bh(epos.bh);
2232 
2233 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2234 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2235 		neloc = oeloc;
2236 		nelen = (etype << 30) | oelen;
2237 	}
2238 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2239 	brelse(epos.bh);
2240 
2241 	return (nelen >> 30);
2242 }
2243 
2244 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2245 {
2246 	struct extent_position oepos;
2247 	int adsize;
2248 	int8_t etype;
2249 	struct allocExtDesc *aed;
2250 	struct udf_inode_info *iinfo;
2251 	struct kernel_lb_addr eloc;
2252 	uint32_t elen;
2253 
2254 	if (epos.bh) {
2255 		get_bh(epos.bh);
2256 		get_bh(epos.bh);
2257 	}
2258 
2259 	iinfo = UDF_I(inode);
2260 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2261 		adsize = sizeof(struct short_ad);
2262 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2263 		adsize = sizeof(struct long_ad);
2264 	else
2265 		adsize = 0;
2266 
2267 	oepos = epos;
2268 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2269 		return -1;
2270 
2271 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2272 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2273 		if (oepos.bh != epos.bh) {
2274 			oepos.block = epos.block;
2275 			brelse(oepos.bh);
2276 			get_bh(epos.bh);
2277 			oepos.bh = epos.bh;
2278 			oepos.offset = epos.offset - adsize;
2279 		}
2280 	}
2281 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2282 	elen = 0;
2283 
2284 	if (epos.bh != oepos.bh) {
2285 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2286 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2287 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 		if (!oepos.bh) {
2289 			iinfo->i_lenAlloc -= (adsize * 2);
2290 			mark_inode_dirty(inode);
2291 		} else {
2292 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2293 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2294 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296 				udf_update_tag(oepos.bh->b_data,
2297 						oepos.offset - (2 * adsize));
2298 			else
2299 				udf_update_tag(oepos.bh->b_data,
2300 						sizeof(struct allocExtDesc));
2301 			mark_buffer_dirty_inode(oepos.bh, inode);
2302 		}
2303 	} else {
2304 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2305 		if (!oepos.bh) {
2306 			iinfo->i_lenAlloc -= adsize;
2307 			mark_inode_dirty(inode);
2308 		} else {
2309 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2310 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2311 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2312 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2313 				udf_update_tag(oepos.bh->b_data,
2314 						epos.offset - adsize);
2315 			else
2316 				udf_update_tag(oepos.bh->b_data,
2317 						sizeof(struct allocExtDesc));
2318 			mark_buffer_dirty_inode(oepos.bh, inode);
2319 		}
2320 	}
2321 
2322 	brelse(epos.bh);
2323 	brelse(oepos.bh);
2324 
2325 	return (elen >> 30);
2326 }
2327 
2328 int8_t inode_bmap(struct inode *inode, sector_t block,
2329 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2330 		  uint32_t *elen, sector_t *offset)
2331 {
2332 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2333 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2334 	int8_t etype;
2335 	struct udf_inode_info *iinfo;
2336 
2337 	iinfo = UDF_I(inode);
2338 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2339 		pos->offset = 0;
2340 		pos->block = iinfo->i_location;
2341 		pos->bh = NULL;
2342 	}
2343 	*elen = 0;
2344 	do {
2345 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2346 		if (etype == -1) {
2347 			*offset = (bcount - lbcount) >> blocksize_bits;
2348 			iinfo->i_lenExtents = lbcount;
2349 			return -1;
2350 		}
2351 		lbcount += *elen;
2352 	} while (lbcount <= bcount);
2353 	/* update extent cache */
2354 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2355 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2356 
2357 	return etype;
2358 }
2359 
2360 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2361 {
2362 	struct kernel_lb_addr eloc;
2363 	uint32_t elen;
2364 	sector_t offset;
2365 	struct extent_position epos = {};
2366 	udf_pblk_t ret;
2367 
2368 	down_read(&UDF_I(inode)->i_data_sem);
2369 
2370 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2371 						(EXT_RECORDED_ALLOCATED >> 30))
2372 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2373 	else
2374 		ret = 0;
2375 
2376 	up_read(&UDF_I(inode)->i_data_sem);
2377 	brelse(epos.bh);
2378 
2379 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2380 		return udf_fixed_to_variable(ret);
2381 	else
2382 		return ret;
2383 }
2384