1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_readpage(struct page *page) 212 { 213 struct inode *inode = page->mapping->host; 214 char *kaddr; 215 struct udf_inode_info *iinfo = UDF_I(inode); 216 loff_t isize = i_size_read(inode); 217 218 kaddr = kmap_local_page(page); 219 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 220 memset(kaddr + isize, 0, PAGE_SIZE - isize); 221 flush_dcache_page(page); 222 SetPageUptodate(page); 223 kunmap_local(kaddr); 224 } 225 226 static int udf_read_folio(struct file *file, struct folio *folio) 227 { 228 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 229 230 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 231 udf_adinicb_readpage(&folio->page); 232 folio_unlock(folio); 233 return 0; 234 } 235 return mpage_read_folio(folio, udf_get_block); 236 } 237 238 static void udf_readahead(struct readahead_control *rac) 239 { 240 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 241 242 /* 243 * No readahead needed for in-ICB files and udf_get_block() would get 244 * confused for such file anyway. 245 */ 246 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 247 return; 248 249 mpage_readahead(rac, udf_get_block); 250 } 251 252 static int udf_write_begin(struct file *file, struct address_space *mapping, 253 loff_t pos, unsigned len, 254 struct page **pagep, void **fsdata) 255 { 256 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 257 struct page *page; 258 int ret; 259 260 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 261 ret = block_write_begin(mapping, pos, len, pagep, 262 udf_get_block); 263 if (unlikely(ret)) 264 udf_write_failed(mapping, pos + len); 265 return ret; 266 } 267 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 268 return -EIO; 269 page = grab_cache_page_write_begin(mapping, 0); 270 if (!page) 271 return -ENOMEM; 272 *pagep = page; 273 if (!PageUptodate(page)) 274 udf_adinicb_readpage(page); 275 return 0; 276 } 277 278 static int udf_write_end(struct file *file, struct address_space *mapping, 279 loff_t pos, unsigned len, unsigned copied, 280 struct page *page, void *fsdata) 281 { 282 struct inode *inode = file_inode(file); 283 loff_t last_pos; 284 285 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 286 return generic_write_end(file, mapping, pos, len, copied, page, 287 fsdata); 288 last_pos = pos + copied; 289 if (last_pos > inode->i_size) 290 i_size_write(inode, last_pos); 291 set_page_dirty(page); 292 unlock_page(page); 293 put_page(page); 294 295 return copied; 296 } 297 298 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 299 { 300 struct file *file = iocb->ki_filp; 301 struct address_space *mapping = file->f_mapping; 302 struct inode *inode = mapping->host; 303 size_t count = iov_iter_count(iter); 304 ssize_t ret; 305 306 /* Fallback to buffered IO for in-ICB files */ 307 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 308 return 0; 309 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 310 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 311 udf_write_failed(mapping, iocb->ki_pos + count); 312 return ret; 313 } 314 315 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 316 { 317 struct udf_inode_info *iinfo = UDF_I(mapping->host); 318 319 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 320 return -EINVAL; 321 return generic_block_bmap(mapping, block, udf_get_block); 322 } 323 324 const struct address_space_operations udf_aops = { 325 .dirty_folio = block_dirty_folio, 326 .invalidate_folio = block_invalidate_folio, 327 .read_folio = udf_read_folio, 328 .readahead = udf_readahead, 329 .writepages = udf_writepages, 330 .write_begin = udf_write_begin, 331 .write_end = udf_write_end, 332 .direct_IO = udf_direct_IO, 333 .bmap = udf_bmap, 334 .migrate_folio = buffer_migrate_folio, 335 }; 336 337 /* 338 * Expand file stored in ICB to a normal one-block-file 339 * 340 * This function requires i_mutex held 341 */ 342 int udf_expand_file_adinicb(struct inode *inode) 343 { 344 struct page *page; 345 struct udf_inode_info *iinfo = UDF_I(inode); 346 int err; 347 348 WARN_ON_ONCE(!inode_is_locked(inode)); 349 if (!iinfo->i_lenAlloc) { 350 down_write(&iinfo->i_data_sem); 351 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 353 else 354 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 355 up_write(&iinfo->i_data_sem); 356 mark_inode_dirty(inode); 357 return 0; 358 } 359 360 page = find_or_create_page(inode->i_mapping, 0, GFP_KERNEL); 361 if (!page) 362 return -ENOMEM; 363 364 if (!PageUptodate(page)) 365 udf_adinicb_readpage(page); 366 down_write(&iinfo->i_data_sem); 367 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 368 iinfo->i_lenAlloc); 369 iinfo->i_lenAlloc = 0; 370 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 372 else 373 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 374 set_page_dirty(page); 375 unlock_page(page); 376 up_write(&iinfo->i_data_sem); 377 err = filemap_fdatawrite(inode->i_mapping); 378 if (err) { 379 /* Restore everything back so that we don't lose data... */ 380 lock_page(page); 381 down_write(&iinfo->i_data_sem); 382 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr, 383 inode->i_size); 384 unlock_page(page); 385 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 386 iinfo->i_lenAlloc = inode->i_size; 387 up_write(&iinfo->i_data_sem); 388 } 389 put_page(page); 390 mark_inode_dirty(inode); 391 392 return err; 393 } 394 395 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 396 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 397 398 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 399 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 400 401 struct udf_map_rq { 402 sector_t lblk; 403 udf_pblk_t pblk; 404 int iflags; /* UDF_MAP_ flags determining behavior */ 405 int oflags; /* UDF_BLK_ flags reporting results */ 406 }; 407 408 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 409 { 410 int err; 411 struct udf_inode_info *iinfo = UDF_I(inode); 412 413 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 414 return -EFSCORRUPTED; 415 416 map->oflags = 0; 417 if (!(map->iflags & UDF_MAP_CREATE)) { 418 struct kernel_lb_addr eloc; 419 uint32_t elen; 420 sector_t offset; 421 struct extent_position epos = {}; 422 423 down_read(&iinfo->i_data_sem); 424 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 425 == (EXT_RECORDED_ALLOCATED >> 30)) { 426 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 427 offset); 428 map->oflags |= UDF_BLK_MAPPED; 429 } 430 up_read(&iinfo->i_data_sem); 431 brelse(epos.bh); 432 433 return 0; 434 } 435 436 down_write(&iinfo->i_data_sem); 437 /* 438 * Block beyond EOF and prealloc extents? Just discard preallocation 439 * as it is not useful and complicates things. 440 */ 441 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 442 udf_discard_prealloc(inode); 443 udf_clear_extent_cache(inode); 444 err = inode_getblk(inode, map); 445 up_write(&iinfo->i_data_sem); 446 return err; 447 } 448 449 static int __udf_get_block(struct inode *inode, sector_t block, 450 struct buffer_head *bh_result, int flags) 451 { 452 int err; 453 struct udf_map_rq map = { 454 .lblk = block, 455 .iflags = flags, 456 }; 457 458 err = udf_map_block(inode, &map); 459 if (err < 0) 460 return err; 461 if (map.oflags & UDF_BLK_MAPPED) { 462 map_bh(bh_result, inode->i_sb, map.pblk); 463 if (map.oflags & UDF_BLK_NEW) 464 set_buffer_new(bh_result); 465 } 466 return 0; 467 } 468 469 int udf_get_block(struct inode *inode, sector_t block, 470 struct buffer_head *bh_result, int create) 471 { 472 int flags = create ? UDF_MAP_CREATE : 0; 473 474 /* 475 * We preallocate blocks only for regular files. It also makes sense 476 * for directories but there's a problem when to drop the 477 * preallocation. We might use some delayed work for that but I feel 478 * it's overengineering for a filesystem like UDF. 479 */ 480 if (!S_ISREG(inode->i_mode)) 481 flags |= UDF_MAP_NOPREALLOC; 482 return __udf_get_block(inode, block, bh_result, flags); 483 } 484 485 /* 486 * We shouldn't be allocating blocks on page writeback since we allocate them 487 * on page fault. We can spot dirty buffers without allocated blocks though 488 * when truncate expands file. These however don't have valid data so we can 489 * safely ignore them. So never allocate blocks from page writeback. 490 */ 491 static int udf_get_block_wb(struct inode *inode, sector_t block, 492 struct buffer_head *bh_result, int create) 493 { 494 return __udf_get_block(inode, block, bh_result, 0); 495 } 496 497 /* Extend the file with new blocks totaling 'new_block_bytes', 498 * return the number of extents added 499 */ 500 static int udf_do_extend_file(struct inode *inode, 501 struct extent_position *last_pos, 502 struct kernel_long_ad *last_ext, 503 loff_t new_block_bytes) 504 { 505 uint32_t add; 506 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 507 struct super_block *sb = inode->i_sb; 508 struct udf_inode_info *iinfo; 509 int err; 510 511 /* The previous extent is fake and we should not extend by anything 512 * - there's nothing to do... */ 513 if (!new_block_bytes && fake) 514 return 0; 515 516 iinfo = UDF_I(inode); 517 /* Round the last extent up to a multiple of block size */ 518 if (last_ext->extLength & (sb->s_blocksize - 1)) { 519 last_ext->extLength = 520 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 521 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 522 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 523 iinfo->i_lenExtents = 524 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 525 ~(sb->s_blocksize - 1); 526 } 527 528 add = 0; 529 /* Can we merge with the previous extent? */ 530 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 531 EXT_NOT_RECORDED_NOT_ALLOCATED) { 532 add = (1 << 30) - sb->s_blocksize - 533 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 534 if (add > new_block_bytes) 535 add = new_block_bytes; 536 new_block_bytes -= add; 537 last_ext->extLength += add; 538 } 539 540 if (fake) { 541 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 542 last_ext->extLength, 1); 543 if (err < 0) 544 goto out_err; 545 count++; 546 } else { 547 struct kernel_lb_addr tmploc; 548 uint32_t tmplen; 549 550 udf_write_aext(inode, last_pos, &last_ext->extLocation, 551 last_ext->extLength, 1); 552 553 /* 554 * We've rewritten the last extent. If we are going to add 555 * more extents, we may need to enter possible following 556 * empty indirect extent. 557 */ 558 if (new_block_bytes) 559 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 560 } 561 iinfo->i_lenExtents += add; 562 563 /* Managed to do everything necessary? */ 564 if (!new_block_bytes) 565 goto out; 566 567 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 568 last_ext->extLocation.logicalBlockNum = 0; 569 last_ext->extLocation.partitionReferenceNum = 0; 570 add = (1 << 30) - sb->s_blocksize; 571 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 572 573 /* Create enough extents to cover the whole hole */ 574 while (new_block_bytes > add) { 575 new_block_bytes -= add; 576 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 577 last_ext->extLength, 1); 578 if (err) 579 goto out_err; 580 iinfo->i_lenExtents += add; 581 count++; 582 } 583 if (new_block_bytes) { 584 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 585 new_block_bytes; 586 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 587 last_ext->extLength, 1); 588 if (err) 589 goto out_err; 590 iinfo->i_lenExtents += new_block_bytes; 591 count++; 592 } 593 594 out: 595 /* last_pos should point to the last written extent... */ 596 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 597 last_pos->offset -= sizeof(struct short_ad); 598 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 599 last_pos->offset -= sizeof(struct long_ad); 600 else 601 return -EIO; 602 603 return count; 604 out_err: 605 /* Remove extents we've created so far */ 606 udf_clear_extent_cache(inode); 607 udf_truncate_extents(inode); 608 return err; 609 } 610 611 /* Extend the final block of the file to final_block_len bytes */ 612 static void udf_do_extend_final_block(struct inode *inode, 613 struct extent_position *last_pos, 614 struct kernel_long_ad *last_ext, 615 uint32_t new_elen) 616 { 617 uint32_t added_bytes; 618 619 /* 620 * Extent already large enough? It may be already rounded up to block 621 * size... 622 */ 623 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 624 return; 625 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 626 last_ext->extLength += added_bytes; 627 UDF_I(inode)->i_lenExtents += added_bytes; 628 629 udf_write_aext(inode, last_pos, &last_ext->extLocation, 630 last_ext->extLength, 1); 631 } 632 633 static int udf_extend_file(struct inode *inode, loff_t newsize) 634 { 635 636 struct extent_position epos; 637 struct kernel_lb_addr eloc; 638 uint32_t elen; 639 int8_t etype; 640 struct super_block *sb = inode->i_sb; 641 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 642 loff_t new_elen; 643 int adsize; 644 struct udf_inode_info *iinfo = UDF_I(inode); 645 struct kernel_long_ad extent; 646 int err = 0; 647 bool within_last_ext; 648 649 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 650 adsize = sizeof(struct short_ad); 651 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 652 adsize = sizeof(struct long_ad); 653 else 654 BUG(); 655 656 down_write(&iinfo->i_data_sem); 657 /* 658 * When creating hole in file, just don't bother with preserving 659 * preallocation. It likely won't be very useful anyway. 660 */ 661 udf_discard_prealloc(inode); 662 663 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 664 within_last_ext = (etype != -1); 665 /* We don't expect extents past EOF... */ 666 WARN_ON_ONCE(within_last_ext && 667 elen > ((loff_t)offset + 1) << inode->i_blkbits); 668 669 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 670 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 671 /* File has no extents at all or has empty last 672 * indirect extent! Create a fake extent... */ 673 extent.extLocation.logicalBlockNum = 0; 674 extent.extLocation.partitionReferenceNum = 0; 675 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 676 } else { 677 epos.offset -= adsize; 678 etype = udf_next_aext(inode, &epos, &extent.extLocation, 679 &extent.extLength, 0); 680 extent.extLength |= etype << 30; 681 } 682 683 new_elen = ((loff_t)offset << inode->i_blkbits) | 684 (newsize & (sb->s_blocksize - 1)); 685 686 /* File has extent covering the new size (could happen when extending 687 * inside a block)? 688 */ 689 if (within_last_ext) { 690 /* Extending file within the last file block */ 691 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 692 } else { 693 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 694 } 695 696 if (err < 0) 697 goto out; 698 err = 0; 699 out: 700 brelse(epos.bh); 701 up_write(&iinfo->i_data_sem); 702 return err; 703 } 704 705 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 706 { 707 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 708 struct extent_position prev_epos, cur_epos, next_epos; 709 int count = 0, startnum = 0, endnum = 0; 710 uint32_t elen = 0, tmpelen; 711 struct kernel_lb_addr eloc, tmpeloc; 712 int c = 1; 713 loff_t lbcount = 0, b_off = 0; 714 udf_pblk_t newblocknum; 715 sector_t offset = 0; 716 int8_t etype; 717 struct udf_inode_info *iinfo = UDF_I(inode); 718 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 719 int lastblock = 0; 720 bool isBeyondEOF; 721 int ret = 0; 722 723 prev_epos.offset = udf_file_entry_alloc_offset(inode); 724 prev_epos.block = iinfo->i_location; 725 prev_epos.bh = NULL; 726 cur_epos = next_epos = prev_epos; 727 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 728 729 /* find the extent which contains the block we are looking for. 730 alternate between laarr[0] and laarr[1] for locations of the 731 current extent, and the previous extent */ 732 do { 733 if (prev_epos.bh != cur_epos.bh) { 734 brelse(prev_epos.bh); 735 get_bh(cur_epos.bh); 736 prev_epos.bh = cur_epos.bh; 737 } 738 if (cur_epos.bh != next_epos.bh) { 739 brelse(cur_epos.bh); 740 get_bh(next_epos.bh); 741 cur_epos.bh = next_epos.bh; 742 } 743 744 lbcount += elen; 745 746 prev_epos.block = cur_epos.block; 747 cur_epos.block = next_epos.block; 748 749 prev_epos.offset = cur_epos.offset; 750 cur_epos.offset = next_epos.offset; 751 752 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 753 if (etype == -1) 754 break; 755 756 c = !c; 757 758 laarr[c].extLength = (etype << 30) | elen; 759 laarr[c].extLocation = eloc; 760 761 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 762 pgoal = eloc.logicalBlockNum + 763 ((elen + inode->i_sb->s_blocksize - 1) >> 764 inode->i_sb->s_blocksize_bits); 765 766 count++; 767 } while (lbcount + elen <= b_off); 768 769 b_off -= lbcount; 770 offset = b_off >> inode->i_sb->s_blocksize_bits; 771 /* 772 * Move prev_epos and cur_epos into indirect extent if we are at 773 * the pointer to it 774 */ 775 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 776 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 777 778 /* if the extent is allocated and recorded, return the block 779 if the extent is not a multiple of the blocksize, round up */ 780 781 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 782 if (elen & (inode->i_sb->s_blocksize - 1)) { 783 elen = EXT_RECORDED_ALLOCATED | 784 ((elen + inode->i_sb->s_blocksize - 1) & 785 ~(inode->i_sb->s_blocksize - 1)); 786 iinfo->i_lenExtents = 787 ALIGN(iinfo->i_lenExtents, 788 inode->i_sb->s_blocksize); 789 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 790 } 791 map->oflags = UDF_BLK_MAPPED; 792 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 793 goto out_free; 794 } 795 796 /* Are we beyond EOF and preallocated extent? */ 797 if (etype == -1) { 798 loff_t hole_len; 799 800 isBeyondEOF = true; 801 if (count) { 802 if (c) 803 laarr[0] = laarr[1]; 804 startnum = 1; 805 } else { 806 /* Create a fake extent when there's not one */ 807 memset(&laarr[0].extLocation, 0x00, 808 sizeof(struct kernel_lb_addr)); 809 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 810 /* Will udf_do_extend_file() create real extent from 811 a fake one? */ 812 startnum = (offset > 0); 813 } 814 /* Create extents for the hole between EOF and offset */ 815 hole_len = (loff_t)offset << inode->i_blkbits; 816 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 817 if (ret < 0) 818 goto out_free; 819 c = 0; 820 offset = 0; 821 count += ret; 822 /* 823 * Is there any real extent? - otherwise we overwrite the fake 824 * one... 825 */ 826 if (count) 827 c = !c; 828 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 829 inode->i_sb->s_blocksize; 830 memset(&laarr[c].extLocation, 0x00, 831 sizeof(struct kernel_lb_addr)); 832 count++; 833 endnum = c + 1; 834 lastblock = 1; 835 } else { 836 isBeyondEOF = false; 837 endnum = startnum = ((count > 2) ? 2 : count); 838 839 /* if the current extent is in position 0, 840 swap it with the previous */ 841 if (!c && count != 1) { 842 laarr[2] = laarr[0]; 843 laarr[0] = laarr[1]; 844 laarr[1] = laarr[2]; 845 c = 1; 846 } 847 848 /* if the current block is located in an extent, 849 read the next extent */ 850 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 851 if (etype != -1) { 852 laarr[c + 1].extLength = (etype << 30) | elen; 853 laarr[c + 1].extLocation = eloc; 854 count++; 855 startnum++; 856 endnum++; 857 } else 858 lastblock = 1; 859 } 860 861 /* if the current extent is not recorded but allocated, get the 862 * block in the extent corresponding to the requested block */ 863 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 864 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 865 else { /* otherwise, allocate a new block */ 866 if (iinfo->i_next_alloc_block == map->lblk) 867 goal = iinfo->i_next_alloc_goal; 868 869 if (!goal) { 870 if (!(goal = pgoal)) /* XXX: what was intended here? */ 871 goal = iinfo->i_location.logicalBlockNum + 1; 872 } 873 874 newblocknum = udf_new_block(inode->i_sb, inode, 875 iinfo->i_location.partitionReferenceNum, 876 goal, &ret); 877 if (!newblocknum) 878 goto out_free; 879 if (isBeyondEOF) 880 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 881 } 882 883 /* if the extent the requsted block is located in contains multiple 884 * blocks, split the extent into at most three extents. blocks prior 885 * to requested block, requested block, and blocks after requested 886 * block */ 887 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 888 889 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 890 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 891 892 /* merge any continuous blocks in laarr */ 893 udf_merge_extents(inode, laarr, &endnum); 894 895 /* write back the new extents, inserting new extents if the new number 896 * of extents is greater than the old number, and deleting extents if 897 * the new number of extents is less than the old number */ 898 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 899 if (ret < 0) 900 goto out_free; 901 902 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 903 iinfo->i_location.partitionReferenceNum, 0); 904 if (!map->pblk) { 905 ret = -EFSCORRUPTED; 906 goto out_free; 907 } 908 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 909 iinfo->i_next_alloc_block = map->lblk + 1; 910 iinfo->i_next_alloc_goal = newblocknum + 1; 911 inode_set_ctime_current(inode); 912 913 if (IS_SYNC(inode)) 914 udf_sync_inode(inode); 915 else 916 mark_inode_dirty(inode); 917 ret = 0; 918 out_free: 919 brelse(prev_epos.bh); 920 brelse(cur_epos.bh); 921 brelse(next_epos.bh); 922 return ret; 923 } 924 925 static void udf_split_extents(struct inode *inode, int *c, int offset, 926 udf_pblk_t newblocknum, 927 struct kernel_long_ad *laarr, int *endnum) 928 { 929 unsigned long blocksize = inode->i_sb->s_blocksize; 930 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 931 932 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 933 (laarr[*c].extLength >> 30) == 934 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 935 int curr = *c; 936 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 937 blocksize - 1) >> blocksize_bits; 938 int8_t etype = (laarr[curr].extLength >> 30); 939 940 if (blen == 1) 941 ; 942 else if (!offset || blen == offset + 1) { 943 laarr[curr + 2] = laarr[curr + 1]; 944 laarr[curr + 1] = laarr[curr]; 945 } else { 946 laarr[curr + 3] = laarr[curr + 1]; 947 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 948 } 949 950 if (offset) { 951 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 952 udf_free_blocks(inode->i_sb, inode, 953 &laarr[curr].extLocation, 954 0, offset); 955 laarr[curr].extLength = 956 EXT_NOT_RECORDED_NOT_ALLOCATED | 957 (offset << blocksize_bits); 958 laarr[curr].extLocation.logicalBlockNum = 0; 959 laarr[curr].extLocation. 960 partitionReferenceNum = 0; 961 } else 962 laarr[curr].extLength = (etype << 30) | 963 (offset << blocksize_bits); 964 curr++; 965 (*c)++; 966 (*endnum)++; 967 } 968 969 laarr[curr].extLocation.logicalBlockNum = newblocknum; 970 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 971 laarr[curr].extLocation.partitionReferenceNum = 972 UDF_I(inode)->i_location.partitionReferenceNum; 973 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 974 blocksize; 975 curr++; 976 977 if (blen != offset + 1) { 978 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 979 laarr[curr].extLocation.logicalBlockNum += 980 offset + 1; 981 laarr[curr].extLength = (etype << 30) | 982 ((blen - (offset + 1)) << blocksize_bits); 983 curr++; 984 (*endnum)++; 985 } 986 } 987 } 988 989 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 990 struct kernel_long_ad *laarr, 991 int *endnum) 992 { 993 int start, length = 0, currlength = 0, i; 994 995 if (*endnum >= (c + 1)) { 996 if (!lastblock) 997 return; 998 else 999 start = c; 1000 } else { 1001 if ((laarr[c + 1].extLength >> 30) == 1002 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1003 start = c + 1; 1004 length = currlength = 1005 (((laarr[c + 1].extLength & 1006 UDF_EXTENT_LENGTH_MASK) + 1007 inode->i_sb->s_blocksize - 1) >> 1008 inode->i_sb->s_blocksize_bits); 1009 } else 1010 start = c; 1011 } 1012 1013 for (i = start + 1; i <= *endnum; i++) { 1014 if (i == *endnum) { 1015 if (lastblock) 1016 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1017 } else if ((laarr[i].extLength >> 30) == 1018 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1019 length += (((laarr[i].extLength & 1020 UDF_EXTENT_LENGTH_MASK) + 1021 inode->i_sb->s_blocksize - 1) >> 1022 inode->i_sb->s_blocksize_bits); 1023 } else 1024 break; 1025 } 1026 1027 if (length) { 1028 int next = laarr[start].extLocation.logicalBlockNum + 1029 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1030 inode->i_sb->s_blocksize - 1) >> 1031 inode->i_sb->s_blocksize_bits); 1032 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1033 laarr[start].extLocation.partitionReferenceNum, 1034 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1035 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1036 currlength); 1037 if (numalloc) { 1038 if (start == (c + 1)) 1039 laarr[start].extLength += 1040 (numalloc << 1041 inode->i_sb->s_blocksize_bits); 1042 else { 1043 memmove(&laarr[c + 2], &laarr[c + 1], 1044 sizeof(struct long_ad) * (*endnum - (c + 1))); 1045 (*endnum)++; 1046 laarr[c + 1].extLocation.logicalBlockNum = next; 1047 laarr[c + 1].extLocation.partitionReferenceNum = 1048 laarr[c].extLocation. 1049 partitionReferenceNum; 1050 laarr[c + 1].extLength = 1051 EXT_NOT_RECORDED_ALLOCATED | 1052 (numalloc << 1053 inode->i_sb->s_blocksize_bits); 1054 start = c + 1; 1055 } 1056 1057 for (i = start + 1; numalloc && i < *endnum; i++) { 1058 int elen = ((laarr[i].extLength & 1059 UDF_EXTENT_LENGTH_MASK) + 1060 inode->i_sb->s_blocksize - 1) >> 1061 inode->i_sb->s_blocksize_bits; 1062 1063 if (elen > numalloc) { 1064 laarr[i].extLength -= 1065 (numalloc << 1066 inode->i_sb->s_blocksize_bits); 1067 numalloc = 0; 1068 } else { 1069 numalloc -= elen; 1070 if (*endnum > (i + 1)) 1071 memmove(&laarr[i], 1072 &laarr[i + 1], 1073 sizeof(struct long_ad) * 1074 (*endnum - (i + 1))); 1075 i--; 1076 (*endnum)--; 1077 } 1078 } 1079 UDF_I(inode)->i_lenExtents += 1080 numalloc << inode->i_sb->s_blocksize_bits; 1081 } 1082 } 1083 } 1084 1085 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1086 int *endnum) 1087 { 1088 int i; 1089 unsigned long blocksize = inode->i_sb->s_blocksize; 1090 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1091 1092 for (i = 0; i < (*endnum - 1); i++) { 1093 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1094 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1095 1096 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1097 (((li->extLength >> 30) == 1098 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1099 ((lip1->extLocation.logicalBlockNum - 1100 li->extLocation.logicalBlockNum) == 1101 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1102 blocksize - 1) >> blocksize_bits)))) { 1103 1104 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1105 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1106 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1107 li->extLength = lip1->extLength + 1108 (((li->extLength & 1109 UDF_EXTENT_LENGTH_MASK) + 1110 blocksize - 1) & ~(blocksize - 1)); 1111 if (*endnum > (i + 2)) 1112 memmove(&laarr[i + 1], &laarr[i + 2], 1113 sizeof(struct long_ad) * 1114 (*endnum - (i + 2))); 1115 i--; 1116 (*endnum)--; 1117 } 1118 } else if (((li->extLength >> 30) == 1119 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1120 ((lip1->extLength >> 30) == 1121 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1122 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1123 ((li->extLength & 1124 UDF_EXTENT_LENGTH_MASK) + 1125 blocksize - 1) >> blocksize_bits); 1126 li->extLocation.logicalBlockNum = 0; 1127 li->extLocation.partitionReferenceNum = 0; 1128 1129 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1130 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1131 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1132 lip1->extLength = (lip1->extLength - 1133 (li->extLength & 1134 UDF_EXTENT_LENGTH_MASK) + 1135 UDF_EXTENT_LENGTH_MASK) & 1136 ~(blocksize - 1); 1137 li->extLength = (li->extLength & 1138 UDF_EXTENT_FLAG_MASK) + 1139 (UDF_EXTENT_LENGTH_MASK + 1) - 1140 blocksize; 1141 } else { 1142 li->extLength = lip1->extLength + 1143 (((li->extLength & 1144 UDF_EXTENT_LENGTH_MASK) + 1145 blocksize - 1) & ~(blocksize - 1)); 1146 if (*endnum > (i + 2)) 1147 memmove(&laarr[i + 1], &laarr[i + 2], 1148 sizeof(struct long_ad) * 1149 (*endnum - (i + 2))); 1150 i--; 1151 (*endnum)--; 1152 } 1153 } else if ((li->extLength >> 30) == 1154 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1155 udf_free_blocks(inode->i_sb, inode, 1156 &li->extLocation, 0, 1157 ((li->extLength & 1158 UDF_EXTENT_LENGTH_MASK) + 1159 blocksize - 1) >> blocksize_bits); 1160 li->extLocation.logicalBlockNum = 0; 1161 li->extLocation.partitionReferenceNum = 0; 1162 li->extLength = (li->extLength & 1163 UDF_EXTENT_LENGTH_MASK) | 1164 EXT_NOT_RECORDED_NOT_ALLOCATED; 1165 } 1166 } 1167 } 1168 1169 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1170 int startnum, int endnum, 1171 struct extent_position *epos) 1172 { 1173 int start = 0, i; 1174 struct kernel_lb_addr tmploc; 1175 uint32_t tmplen; 1176 int err; 1177 1178 if (startnum > endnum) { 1179 for (i = 0; i < (startnum - endnum); i++) 1180 udf_delete_aext(inode, *epos); 1181 } else if (startnum < endnum) { 1182 for (i = 0; i < (endnum - startnum); i++) { 1183 err = udf_insert_aext(inode, *epos, 1184 laarr[i].extLocation, 1185 laarr[i].extLength); 1186 /* 1187 * If we fail here, we are likely corrupting the extent 1188 * list and leaking blocks. At least stop early to 1189 * limit the damage. 1190 */ 1191 if (err < 0) 1192 return err; 1193 udf_next_aext(inode, epos, &laarr[i].extLocation, 1194 &laarr[i].extLength, 1); 1195 start++; 1196 } 1197 } 1198 1199 for (i = start; i < endnum; i++) { 1200 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1201 udf_write_aext(inode, epos, &laarr[i].extLocation, 1202 laarr[i].extLength, 1); 1203 } 1204 return 0; 1205 } 1206 1207 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1208 int create, int *err) 1209 { 1210 struct buffer_head *bh = NULL; 1211 struct udf_map_rq map = { 1212 .lblk = block, 1213 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1214 }; 1215 1216 *err = udf_map_block(inode, &map); 1217 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1218 return NULL; 1219 1220 bh = sb_getblk(inode->i_sb, map.pblk); 1221 if (!bh) { 1222 *err = -ENOMEM; 1223 return NULL; 1224 } 1225 if (map.oflags & UDF_BLK_NEW) { 1226 lock_buffer(bh); 1227 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1228 set_buffer_uptodate(bh); 1229 unlock_buffer(bh); 1230 mark_buffer_dirty_inode(bh, inode); 1231 return bh; 1232 } 1233 1234 if (bh_read(bh, 0) >= 0) 1235 return bh; 1236 1237 brelse(bh); 1238 *err = -EIO; 1239 return NULL; 1240 } 1241 1242 int udf_setsize(struct inode *inode, loff_t newsize) 1243 { 1244 int err = 0; 1245 struct udf_inode_info *iinfo; 1246 unsigned int bsize = i_blocksize(inode); 1247 1248 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1249 S_ISLNK(inode->i_mode))) 1250 return -EINVAL; 1251 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1252 return -EPERM; 1253 1254 filemap_invalidate_lock(inode->i_mapping); 1255 iinfo = UDF_I(inode); 1256 if (newsize > inode->i_size) { 1257 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1258 if (bsize >= 1259 (udf_file_entry_alloc_offset(inode) + newsize)) { 1260 down_write(&iinfo->i_data_sem); 1261 iinfo->i_lenAlloc = newsize; 1262 up_write(&iinfo->i_data_sem); 1263 goto set_size; 1264 } 1265 err = udf_expand_file_adinicb(inode); 1266 if (err) 1267 goto out_unlock; 1268 } 1269 err = udf_extend_file(inode, newsize); 1270 if (err) 1271 goto out_unlock; 1272 set_size: 1273 truncate_setsize(inode, newsize); 1274 } else { 1275 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1276 down_write(&iinfo->i_data_sem); 1277 udf_clear_extent_cache(inode); 1278 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1279 0x00, bsize - newsize - 1280 udf_file_entry_alloc_offset(inode)); 1281 iinfo->i_lenAlloc = newsize; 1282 truncate_setsize(inode, newsize); 1283 up_write(&iinfo->i_data_sem); 1284 goto update_time; 1285 } 1286 err = block_truncate_page(inode->i_mapping, newsize, 1287 udf_get_block); 1288 if (err) 1289 goto out_unlock; 1290 truncate_setsize(inode, newsize); 1291 down_write(&iinfo->i_data_sem); 1292 udf_clear_extent_cache(inode); 1293 err = udf_truncate_extents(inode); 1294 up_write(&iinfo->i_data_sem); 1295 if (err) 1296 goto out_unlock; 1297 } 1298 update_time: 1299 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1300 if (IS_SYNC(inode)) 1301 udf_sync_inode(inode); 1302 else 1303 mark_inode_dirty(inode); 1304 out_unlock: 1305 filemap_invalidate_unlock(inode->i_mapping); 1306 return err; 1307 } 1308 1309 /* 1310 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1311 * arbitrary - just that we hopefully don't limit any real use of rewritten 1312 * inode on write-once media but avoid looping for too long on corrupted media. 1313 */ 1314 #define UDF_MAX_ICB_NESTING 1024 1315 1316 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1317 { 1318 struct buffer_head *bh = NULL; 1319 struct fileEntry *fe; 1320 struct extendedFileEntry *efe; 1321 uint16_t ident; 1322 struct udf_inode_info *iinfo = UDF_I(inode); 1323 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1324 struct kernel_lb_addr *iloc = &iinfo->i_location; 1325 unsigned int link_count; 1326 unsigned int indirections = 0; 1327 int bs = inode->i_sb->s_blocksize; 1328 int ret = -EIO; 1329 uint32_t uid, gid; 1330 struct timespec64 ts; 1331 1332 reread: 1333 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1334 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1335 iloc->partitionReferenceNum, sbi->s_partitions); 1336 return -EIO; 1337 } 1338 1339 if (iloc->logicalBlockNum >= 1340 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1341 udf_debug("block=%u, partition=%u out of range\n", 1342 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1343 return -EIO; 1344 } 1345 1346 /* 1347 * Set defaults, but the inode is still incomplete! 1348 * Note: get_new_inode() sets the following on a new inode: 1349 * i_sb = sb 1350 * i_no = ino 1351 * i_flags = sb->s_flags 1352 * i_state = 0 1353 * clean_inode(): zero fills and sets 1354 * i_count = 1 1355 * i_nlink = 1 1356 * i_op = NULL; 1357 */ 1358 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1359 if (!bh) { 1360 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1361 return -EIO; 1362 } 1363 1364 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1365 ident != TAG_IDENT_USE) { 1366 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1367 inode->i_ino, ident); 1368 goto out; 1369 } 1370 1371 fe = (struct fileEntry *)bh->b_data; 1372 efe = (struct extendedFileEntry *)bh->b_data; 1373 1374 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1375 struct buffer_head *ibh; 1376 1377 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1378 if (ident == TAG_IDENT_IE && ibh) { 1379 struct kernel_lb_addr loc; 1380 struct indirectEntry *ie; 1381 1382 ie = (struct indirectEntry *)ibh->b_data; 1383 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1384 1385 if (ie->indirectICB.extLength) { 1386 brelse(ibh); 1387 memcpy(&iinfo->i_location, &loc, 1388 sizeof(struct kernel_lb_addr)); 1389 if (++indirections > UDF_MAX_ICB_NESTING) { 1390 udf_err(inode->i_sb, 1391 "too many ICBs in ICB hierarchy" 1392 " (max %d supported)\n", 1393 UDF_MAX_ICB_NESTING); 1394 goto out; 1395 } 1396 brelse(bh); 1397 goto reread; 1398 } 1399 } 1400 brelse(ibh); 1401 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1402 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1403 le16_to_cpu(fe->icbTag.strategyType)); 1404 goto out; 1405 } 1406 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1407 iinfo->i_strat4096 = 0; 1408 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1409 iinfo->i_strat4096 = 1; 1410 1411 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1412 ICBTAG_FLAG_AD_MASK; 1413 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1414 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1415 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1416 ret = -EIO; 1417 goto out; 1418 } 1419 iinfo->i_hidden = hidden_inode; 1420 iinfo->i_unique = 0; 1421 iinfo->i_lenEAttr = 0; 1422 iinfo->i_lenExtents = 0; 1423 iinfo->i_lenAlloc = 0; 1424 iinfo->i_next_alloc_block = 0; 1425 iinfo->i_next_alloc_goal = 0; 1426 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1427 iinfo->i_efe = 1; 1428 iinfo->i_use = 0; 1429 ret = udf_alloc_i_data(inode, bs - 1430 sizeof(struct extendedFileEntry)); 1431 if (ret) 1432 goto out; 1433 memcpy(iinfo->i_data, 1434 bh->b_data + sizeof(struct extendedFileEntry), 1435 bs - sizeof(struct extendedFileEntry)); 1436 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1437 iinfo->i_efe = 0; 1438 iinfo->i_use = 0; 1439 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1440 if (ret) 1441 goto out; 1442 memcpy(iinfo->i_data, 1443 bh->b_data + sizeof(struct fileEntry), 1444 bs - sizeof(struct fileEntry)); 1445 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1446 iinfo->i_efe = 0; 1447 iinfo->i_use = 1; 1448 iinfo->i_lenAlloc = le32_to_cpu( 1449 ((struct unallocSpaceEntry *)bh->b_data)-> 1450 lengthAllocDescs); 1451 ret = udf_alloc_i_data(inode, bs - 1452 sizeof(struct unallocSpaceEntry)); 1453 if (ret) 1454 goto out; 1455 memcpy(iinfo->i_data, 1456 bh->b_data + sizeof(struct unallocSpaceEntry), 1457 bs - sizeof(struct unallocSpaceEntry)); 1458 return 0; 1459 } 1460 1461 ret = -EIO; 1462 read_lock(&sbi->s_cred_lock); 1463 uid = le32_to_cpu(fe->uid); 1464 if (uid == UDF_INVALID_ID || 1465 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1466 inode->i_uid = sbi->s_uid; 1467 else 1468 i_uid_write(inode, uid); 1469 1470 gid = le32_to_cpu(fe->gid); 1471 if (gid == UDF_INVALID_ID || 1472 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1473 inode->i_gid = sbi->s_gid; 1474 else 1475 i_gid_write(inode, gid); 1476 1477 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1478 sbi->s_fmode != UDF_INVALID_MODE) 1479 inode->i_mode = sbi->s_fmode; 1480 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1481 sbi->s_dmode != UDF_INVALID_MODE) 1482 inode->i_mode = sbi->s_dmode; 1483 else 1484 inode->i_mode = udf_convert_permissions(fe); 1485 inode->i_mode &= ~sbi->s_umask; 1486 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1487 1488 read_unlock(&sbi->s_cred_lock); 1489 1490 link_count = le16_to_cpu(fe->fileLinkCount); 1491 if (!link_count) { 1492 if (!hidden_inode) { 1493 ret = -ESTALE; 1494 goto out; 1495 } 1496 link_count = 1; 1497 } 1498 set_nlink(inode, link_count); 1499 1500 inode->i_size = le64_to_cpu(fe->informationLength); 1501 iinfo->i_lenExtents = inode->i_size; 1502 1503 if (iinfo->i_efe == 0) { 1504 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1505 (inode->i_sb->s_blocksize_bits - 9); 1506 1507 udf_disk_stamp_to_time(&ts, fe->accessTime); 1508 inode_set_atime_to_ts(inode, ts); 1509 udf_disk_stamp_to_time(&ts, fe->modificationTime); 1510 inode_set_mtime_to_ts(inode, ts); 1511 udf_disk_stamp_to_time(&ts, fe->attrTime); 1512 inode_set_ctime_to_ts(inode, ts); 1513 1514 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1515 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1516 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1517 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1518 iinfo->i_streamdir = 0; 1519 iinfo->i_lenStreams = 0; 1520 } else { 1521 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1522 (inode->i_sb->s_blocksize_bits - 9); 1523 1524 udf_disk_stamp_to_time(&ts, efe->accessTime); 1525 inode_set_atime_to_ts(inode, ts); 1526 udf_disk_stamp_to_time(&ts, efe->modificationTime); 1527 inode_set_mtime_to_ts(inode, ts); 1528 udf_disk_stamp_to_time(&ts, efe->attrTime); 1529 inode_set_ctime_to_ts(inode, ts); 1530 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1531 1532 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1533 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1534 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1535 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1536 1537 /* Named streams */ 1538 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1539 iinfo->i_locStreamdir = 1540 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1541 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1542 if (iinfo->i_lenStreams >= inode->i_size) 1543 iinfo->i_lenStreams -= inode->i_size; 1544 else 1545 iinfo->i_lenStreams = 0; 1546 } 1547 inode->i_generation = iinfo->i_unique; 1548 1549 /* 1550 * Sanity check length of allocation descriptors and extended attrs to 1551 * avoid integer overflows 1552 */ 1553 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1554 goto out; 1555 /* Now do exact checks */ 1556 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1557 goto out; 1558 /* Sanity checks for files in ICB so that we don't get confused later */ 1559 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1560 /* 1561 * For file in ICB data is stored in allocation descriptor 1562 * so sizes should match 1563 */ 1564 if (iinfo->i_lenAlloc != inode->i_size) 1565 goto out; 1566 /* File in ICB has to fit in there... */ 1567 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1568 goto out; 1569 } 1570 1571 switch (fe->icbTag.fileType) { 1572 case ICBTAG_FILE_TYPE_DIRECTORY: 1573 inode->i_op = &udf_dir_inode_operations; 1574 inode->i_fop = &udf_dir_operations; 1575 inode->i_mode |= S_IFDIR; 1576 inc_nlink(inode); 1577 break; 1578 case ICBTAG_FILE_TYPE_REALTIME: 1579 case ICBTAG_FILE_TYPE_REGULAR: 1580 case ICBTAG_FILE_TYPE_UNDEF: 1581 case ICBTAG_FILE_TYPE_VAT20: 1582 inode->i_data.a_ops = &udf_aops; 1583 inode->i_op = &udf_file_inode_operations; 1584 inode->i_fop = &udf_file_operations; 1585 inode->i_mode |= S_IFREG; 1586 break; 1587 case ICBTAG_FILE_TYPE_BLOCK: 1588 inode->i_mode |= S_IFBLK; 1589 break; 1590 case ICBTAG_FILE_TYPE_CHAR: 1591 inode->i_mode |= S_IFCHR; 1592 break; 1593 case ICBTAG_FILE_TYPE_FIFO: 1594 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1595 break; 1596 case ICBTAG_FILE_TYPE_SOCKET: 1597 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1598 break; 1599 case ICBTAG_FILE_TYPE_SYMLINK: 1600 inode->i_data.a_ops = &udf_symlink_aops; 1601 inode->i_op = &udf_symlink_inode_operations; 1602 inode_nohighmem(inode); 1603 inode->i_mode = S_IFLNK | 0777; 1604 break; 1605 case ICBTAG_FILE_TYPE_MAIN: 1606 udf_debug("METADATA FILE-----\n"); 1607 break; 1608 case ICBTAG_FILE_TYPE_MIRROR: 1609 udf_debug("METADATA MIRROR FILE-----\n"); 1610 break; 1611 case ICBTAG_FILE_TYPE_BITMAP: 1612 udf_debug("METADATA BITMAP FILE-----\n"); 1613 break; 1614 default: 1615 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1616 inode->i_ino, fe->icbTag.fileType); 1617 goto out; 1618 } 1619 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1620 struct deviceSpec *dsea = 1621 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1622 if (dsea) { 1623 init_special_inode(inode, inode->i_mode, 1624 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1625 le32_to_cpu(dsea->minorDeviceIdent))); 1626 /* Developer ID ??? */ 1627 } else 1628 goto out; 1629 } 1630 ret = 0; 1631 out: 1632 brelse(bh); 1633 return ret; 1634 } 1635 1636 static int udf_alloc_i_data(struct inode *inode, size_t size) 1637 { 1638 struct udf_inode_info *iinfo = UDF_I(inode); 1639 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1640 if (!iinfo->i_data) 1641 return -ENOMEM; 1642 return 0; 1643 } 1644 1645 static umode_t udf_convert_permissions(struct fileEntry *fe) 1646 { 1647 umode_t mode; 1648 uint32_t permissions; 1649 uint32_t flags; 1650 1651 permissions = le32_to_cpu(fe->permissions); 1652 flags = le16_to_cpu(fe->icbTag.flags); 1653 1654 mode = ((permissions) & 0007) | 1655 ((permissions >> 2) & 0070) | 1656 ((permissions >> 4) & 0700) | 1657 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1658 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1659 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1660 1661 return mode; 1662 } 1663 1664 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1665 { 1666 struct udf_inode_info *iinfo = UDF_I(inode); 1667 1668 /* 1669 * UDF 2.01 sec. 3.3.3.3 Note 2: 1670 * In Unix, delete permission tracks write 1671 */ 1672 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1673 if (mode & 0200) 1674 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1675 if (mode & 0020) 1676 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1677 if (mode & 0002) 1678 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1679 } 1680 1681 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1682 { 1683 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1684 } 1685 1686 static int udf_sync_inode(struct inode *inode) 1687 { 1688 return udf_update_inode(inode, 1); 1689 } 1690 1691 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1692 { 1693 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1694 (iinfo->i_crtime.tv_sec == time.tv_sec && 1695 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1696 iinfo->i_crtime = time; 1697 } 1698 1699 static int udf_update_inode(struct inode *inode, int do_sync) 1700 { 1701 struct buffer_head *bh = NULL; 1702 struct fileEntry *fe; 1703 struct extendedFileEntry *efe; 1704 uint64_t lb_recorded; 1705 uint32_t udfperms; 1706 uint16_t icbflags; 1707 uint16_t crclen; 1708 int err = 0; 1709 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1710 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1711 struct udf_inode_info *iinfo = UDF_I(inode); 1712 1713 bh = sb_getblk(inode->i_sb, 1714 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1715 if (!bh) { 1716 udf_debug("getblk failure\n"); 1717 return -EIO; 1718 } 1719 1720 lock_buffer(bh); 1721 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1722 fe = (struct fileEntry *)bh->b_data; 1723 efe = (struct extendedFileEntry *)bh->b_data; 1724 1725 if (iinfo->i_use) { 1726 struct unallocSpaceEntry *use = 1727 (struct unallocSpaceEntry *)bh->b_data; 1728 1729 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1730 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1731 iinfo->i_data, inode->i_sb->s_blocksize - 1732 sizeof(struct unallocSpaceEntry)); 1733 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1734 crclen = sizeof(struct unallocSpaceEntry); 1735 1736 goto finish; 1737 } 1738 1739 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1740 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1741 else 1742 fe->uid = cpu_to_le32(i_uid_read(inode)); 1743 1744 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1745 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1746 else 1747 fe->gid = cpu_to_le32(i_gid_read(inode)); 1748 1749 udfperms = ((inode->i_mode & 0007)) | 1750 ((inode->i_mode & 0070) << 2) | 1751 ((inode->i_mode & 0700) << 4); 1752 1753 udfperms |= iinfo->i_extraPerms; 1754 fe->permissions = cpu_to_le32(udfperms); 1755 1756 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1757 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1758 else { 1759 if (iinfo->i_hidden) 1760 fe->fileLinkCount = cpu_to_le16(0); 1761 else 1762 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1763 } 1764 1765 fe->informationLength = cpu_to_le64(inode->i_size); 1766 1767 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1768 struct regid *eid; 1769 struct deviceSpec *dsea = 1770 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1771 if (!dsea) { 1772 dsea = (struct deviceSpec *) 1773 udf_add_extendedattr(inode, 1774 sizeof(struct deviceSpec) + 1775 sizeof(struct regid), 12, 0x3); 1776 dsea->attrType = cpu_to_le32(12); 1777 dsea->attrSubtype = 1; 1778 dsea->attrLength = cpu_to_le32( 1779 sizeof(struct deviceSpec) + 1780 sizeof(struct regid)); 1781 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1782 } 1783 eid = (struct regid *)dsea->impUse; 1784 memset(eid, 0, sizeof(*eid)); 1785 strcpy(eid->ident, UDF_ID_DEVELOPER); 1786 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1787 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1788 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1789 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1790 } 1791 1792 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1793 lb_recorded = 0; /* No extents => no blocks! */ 1794 else 1795 lb_recorded = 1796 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1797 (blocksize_bits - 9); 1798 1799 if (iinfo->i_efe == 0) { 1800 memcpy(bh->b_data + sizeof(struct fileEntry), 1801 iinfo->i_data, 1802 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1803 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1804 1805 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode)); 1806 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode)); 1807 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1808 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1809 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1810 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1811 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1812 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1813 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1814 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1815 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1816 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1817 crclen = sizeof(struct fileEntry); 1818 } else { 1819 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1820 iinfo->i_data, 1821 inode->i_sb->s_blocksize - 1822 sizeof(struct extendedFileEntry)); 1823 efe->objectSize = 1824 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1825 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1826 1827 if (iinfo->i_streamdir) { 1828 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1829 1830 icb_lad->extLocation = 1831 cpu_to_lelb(iinfo->i_locStreamdir); 1832 icb_lad->extLength = 1833 cpu_to_le32(inode->i_sb->s_blocksize); 1834 } 1835 1836 udf_adjust_time(iinfo, inode_get_atime(inode)); 1837 udf_adjust_time(iinfo, inode_get_mtime(inode)); 1838 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1839 1840 udf_time_to_disk_stamp(&efe->accessTime, 1841 inode_get_atime(inode)); 1842 udf_time_to_disk_stamp(&efe->modificationTime, 1843 inode_get_mtime(inode)); 1844 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1845 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1846 1847 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1848 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1849 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1850 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1851 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1852 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1853 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1854 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1855 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1856 crclen = sizeof(struct extendedFileEntry); 1857 } 1858 1859 finish: 1860 if (iinfo->i_strat4096) { 1861 fe->icbTag.strategyType = cpu_to_le16(4096); 1862 fe->icbTag.strategyParameter = cpu_to_le16(1); 1863 fe->icbTag.numEntries = cpu_to_le16(2); 1864 } else { 1865 fe->icbTag.strategyType = cpu_to_le16(4); 1866 fe->icbTag.numEntries = cpu_to_le16(1); 1867 } 1868 1869 if (iinfo->i_use) 1870 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1871 else if (S_ISDIR(inode->i_mode)) 1872 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1873 else if (S_ISREG(inode->i_mode)) 1874 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1875 else if (S_ISLNK(inode->i_mode)) 1876 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1877 else if (S_ISBLK(inode->i_mode)) 1878 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1879 else if (S_ISCHR(inode->i_mode)) 1880 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1881 else if (S_ISFIFO(inode->i_mode)) 1882 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1883 else if (S_ISSOCK(inode->i_mode)) 1884 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1885 1886 icbflags = iinfo->i_alloc_type | 1887 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1888 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1889 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1890 (le16_to_cpu(fe->icbTag.flags) & 1891 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1892 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1893 1894 fe->icbTag.flags = cpu_to_le16(icbflags); 1895 if (sbi->s_udfrev >= 0x0200) 1896 fe->descTag.descVersion = cpu_to_le16(3); 1897 else 1898 fe->descTag.descVersion = cpu_to_le16(2); 1899 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1900 fe->descTag.tagLocation = cpu_to_le32( 1901 iinfo->i_location.logicalBlockNum); 1902 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1903 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1904 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1905 crclen)); 1906 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1907 1908 set_buffer_uptodate(bh); 1909 unlock_buffer(bh); 1910 1911 /* write the data blocks */ 1912 mark_buffer_dirty(bh); 1913 if (do_sync) { 1914 sync_dirty_buffer(bh); 1915 if (buffer_write_io_error(bh)) { 1916 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1917 inode->i_ino); 1918 err = -EIO; 1919 } 1920 } 1921 brelse(bh); 1922 1923 return err; 1924 } 1925 1926 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1927 bool hidden_inode) 1928 { 1929 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1930 struct inode *inode = iget_locked(sb, block); 1931 int err; 1932 1933 if (!inode) 1934 return ERR_PTR(-ENOMEM); 1935 1936 if (!(inode->i_state & I_NEW)) { 1937 if (UDF_I(inode)->i_hidden != hidden_inode) { 1938 iput(inode); 1939 return ERR_PTR(-EFSCORRUPTED); 1940 } 1941 return inode; 1942 } 1943 1944 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1945 err = udf_read_inode(inode, hidden_inode); 1946 if (err < 0) { 1947 iget_failed(inode); 1948 return ERR_PTR(err); 1949 } 1950 unlock_new_inode(inode); 1951 1952 return inode; 1953 } 1954 1955 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1956 struct extent_position *epos) 1957 { 1958 struct super_block *sb = inode->i_sb; 1959 struct buffer_head *bh; 1960 struct allocExtDesc *aed; 1961 struct extent_position nepos; 1962 struct kernel_lb_addr neloc; 1963 int ver, adsize; 1964 1965 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1966 adsize = sizeof(struct short_ad); 1967 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1968 adsize = sizeof(struct long_ad); 1969 else 1970 return -EIO; 1971 1972 neloc.logicalBlockNum = block; 1973 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1974 1975 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1976 if (!bh) 1977 return -EIO; 1978 lock_buffer(bh); 1979 memset(bh->b_data, 0x00, sb->s_blocksize); 1980 set_buffer_uptodate(bh); 1981 unlock_buffer(bh); 1982 mark_buffer_dirty_inode(bh, inode); 1983 1984 aed = (struct allocExtDesc *)(bh->b_data); 1985 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1986 aed->previousAllocExtLocation = 1987 cpu_to_le32(epos->block.logicalBlockNum); 1988 } 1989 aed->lengthAllocDescs = cpu_to_le32(0); 1990 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1991 ver = 3; 1992 else 1993 ver = 2; 1994 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1995 sizeof(struct tag)); 1996 1997 nepos.block = neloc; 1998 nepos.offset = sizeof(struct allocExtDesc); 1999 nepos.bh = bh; 2000 2001 /* 2002 * Do we have to copy current last extent to make space for indirect 2003 * one? 2004 */ 2005 if (epos->offset + adsize > sb->s_blocksize) { 2006 struct kernel_lb_addr cp_loc; 2007 uint32_t cp_len; 2008 int cp_type; 2009 2010 epos->offset -= adsize; 2011 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2012 cp_len |= ((uint32_t)cp_type) << 30; 2013 2014 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2015 udf_write_aext(inode, epos, &nepos.block, 2016 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2017 } else { 2018 __udf_add_aext(inode, epos, &nepos.block, 2019 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2020 } 2021 2022 brelse(epos->bh); 2023 *epos = nepos; 2024 2025 return 0; 2026 } 2027 2028 /* 2029 * Append extent at the given position - should be the first free one in inode 2030 * / indirect extent. This function assumes there is enough space in the inode 2031 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2032 */ 2033 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2034 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2035 { 2036 struct udf_inode_info *iinfo = UDF_I(inode); 2037 struct allocExtDesc *aed; 2038 int adsize; 2039 2040 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2041 adsize = sizeof(struct short_ad); 2042 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2043 adsize = sizeof(struct long_ad); 2044 else 2045 return -EIO; 2046 2047 if (!epos->bh) { 2048 WARN_ON(iinfo->i_lenAlloc != 2049 epos->offset - udf_file_entry_alloc_offset(inode)); 2050 } else { 2051 aed = (struct allocExtDesc *)epos->bh->b_data; 2052 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2053 epos->offset - sizeof(struct allocExtDesc)); 2054 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2055 } 2056 2057 udf_write_aext(inode, epos, eloc, elen, inc); 2058 2059 if (!epos->bh) { 2060 iinfo->i_lenAlloc += adsize; 2061 mark_inode_dirty(inode); 2062 } else { 2063 aed = (struct allocExtDesc *)epos->bh->b_data; 2064 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2065 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2066 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2067 udf_update_tag(epos->bh->b_data, 2068 epos->offset + (inc ? 0 : adsize)); 2069 else 2070 udf_update_tag(epos->bh->b_data, 2071 sizeof(struct allocExtDesc)); 2072 mark_buffer_dirty_inode(epos->bh, inode); 2073 } 2074 2075 return 0; 2076 } 2077 2078 /* 2079 * Append extent at given position - should be the first free one in inode 2080 * / indirect extent. Takes care of allocating and linking indirect blocks. 2081 */ 2082 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2083 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2084 { 2085 int adsize; 2086 struct super_block *sb = inode->i_sb; 2087 2088 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2089 adsize = sizeof(struct short_ad); 2090 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2091 adsize = sizeof(struct long_ad); 2092 else 2093 return -EIO; 2094 2095 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2096 int err; 2097 udf_pblk_t new_block; 2098 2099 new_block = udf_new_block(sb, NULL, 2100 epos->block.partitionReferenceNum, 2101 epos->block.logicalBlockNum, &err); 2102 if (!new_block) 2103 return -ENOSPC; 2104 2105 err = udf_setup_indirect_aext(inode, new_block, epos); 2106 if (err) 2107 return err; 2108 } 2109 2110 return __udf_add_aext(inode, epos, eloc, elen, inc); 2111 } 2112 2113 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2114 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2115 { 2116 int adsize; 2117 uint8_t *ptr; 2118 struct short_ad *sad; 2119 struct long_ad *lad; 2120 struct udf_inode_info *iinfo = UDF_I(inode); 2121 2122 if (!epos->bh) 2123 ptr = iinfo->i_data + epos->offset - 2124 udf_file_entry_alloc_offset(inode) + 2125 iinfo->i_lenEAttr; 2126 else 2127 ptr = epos->bh->b_data + epos->offset; 2128 2129 switch (iinfo->i_alloc_type) { 2130 case ICBTAG_FLAG_AD_SHORT: 2131 sad = (struct short_ad *)ptr; 2132 sad->extLength = cpu_to_le32(elen); 2133 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2134 adsize = sizeof(struct short_ad); 2135 break; 2136 case ICBTAG_FLAG_AD_LONG: 2137 lad = (struct long_ad *)ptr; 2138 lad->extLength = cpu_to_le32(elen); 2139 lad->extLocation = cpu_to_lelb(*eloc); 2140 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2141 adsize = sizeof(struct long_ad); 2142 break; 2143 default: 2144 return; 2145 } 2146 2147 if (epos->bh) { 2148 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2149 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2150 struct allocExtDesc *aed = 2151 (struct allocExtDesc *)epos->bh->b_data; 2152 udf_update_tag(epos->bh->b_data, 2153 le32_to_cpu(aed->lengthAllocDescs) + 2154 sizeof(struct allocExtDesc)); 2155 } 2156 mark_buffer_dirty_inode(epos->bh, inode); 2157 } else { 2158 mark_inode_dirty(inode); 2159 } 2160 2161 if (inc) 2162 epos->offset += adsize; 2163 } 2164 2165 /* 2166 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2167 * someone does some weird stuff. 2168 */ 2169 #define UDF_MAX_INDIR_EXTS 16 2170 2171 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2172 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2173 { 2174 int8_t etype; 2175 unsigned int indirections = 0; 2176 2177 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2178 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2179 udf_pblk_t block; 2180 2181 if (++indirections > UDF_MAX_INDIR_EXTS) { 2182 udf_err(inode->i_sb, 2183 "too many indirect extents in inode %lu\n", 2184 inode->i_ino); 2185 return -1; 2186 } 2187 2188 epos->block = *eloc; 2189 epos->offset = sizeof(struct allocExtDesc); 2190 brelse(epos->bh); 2191 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2192 epos->bh = sb_bread(inode->i_sb, block); 2193 if (!epos->bh) { 2194 udf_debug("reading block %u failed!\n", block); 2195 return -1; 2196 } 2197 } 2198 2199 return etype; 2200 } 2201 2202 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2203 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2204 { 2205 int alen; 2206 int8_t etype; 2207 uint8_t *ptr; 2208 struct short_ad *sad; 2209 struct long_ad *lad; 2210 struct udf_inode_info *iinfo = UDF_I(inode); 2211 2212 if (!epos->bh) { 2213 if (!epos->offset) 2214 epos->offset = udf_file_entry_alloc_offset(inode); 2215 ptr = iinfo->i_data + epos->offset - 2216 udf_file_entry_alloc_offset(inode) + 2217 iinfo->i_lenEAttr; 2218 alen = udf_file_entry_alloc_offset(inode) + 2219 iinfo->i_lenAlloc; 2220 } else { 2221 if (!epos->offset) 2222 epos->offset = sizeof(struct allocExtDesc); 2223 ptr = epos->bh->b_data + epos->offset; 2224 alen = sizeof(struct allocExtDesc) + 2225 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2226 lengthAllocDescs); 2227 } 2228 2229 switch (iinfo->i_alloc_type) { 2230 case ICBTAG_FLAG_AD_SHORT: 2231 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2232 if (!sad) 2233 return -1; 2234 etype = le32_to_cpu(sad->extLength) >> 30; 2235 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2236 eloc->partitionReferenceNum = 2237 iinfo->i_location.partitionReferenceNum; 2238 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2239 break; 2240 case ICBTAG_FLAG_AD_LONG: 2241 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2242 if (!lad) 2243 return -1; 2244 etype = le32_to_cpu(lad->extLength) >> 30; 2245 *eloc = lelb_to_cpu(lad->extLocation); 2246 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2247 break; 2248 default: 2249 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2250 return -1; 2251 } 2252 2253 return etype; 2254 } 2255 2256 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2257 struct kernel_lb_addr neloc, uint32_t nelen) 2258 { 2259 struct kernel_lb_addr oeloc; 2260 uint32_t oelen; 2261 int8_t etype; 2262 int err; 2263 2264 if (epos.bh) 2265 get_bh(epos.bh); 2266 2267 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2268 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2269 neloc = oeloc; 2270 nelen = (etype << 30) | oelen; 2271 } 2272 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2273 brelse(epos.bh); 2274 2275 return err; 2276 } 2277 2278 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2279 { 2280 struct extent_position oepos; 2281 int adsize; 2282 int8_t etype; 2283 struct allocExtDesc *aed; 2284 struct udf_inode_info *iinfo; 2285 struct kernel_lb_addr eloc; 2286 uint32_t elen; 2287 2288 if (epos.bh) { 2289 get_bh(epos.bh); 2290 get_bh(epos.bh); 2291 } 2292 2293 iinfo = UDF_I(inode); 2294 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2295 adsize = sizeof(struct short_ad); 2296 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2297 adsize = sizeof(struct long_ad); 2298 else 2299 adsize = 0; 2300 2301 oepos = epos; 2302 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2303 return -1; 2304 2305 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2306 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2307 if (oepos.bh != epos.bh) { 2308 oepos.block = epos.block; 2309 brelse(oepos.bh); 2310 get_bh(epos.bh); 2311 oepos.bh = epos.bh; 2312 oepos.offset = epos.offset - adsize; 2313 } 2314 } 2315 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2316 elen = 0; 2317 2318 if (epos.bh != oepos.bh) { 2319 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2320 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2321 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2322 if (!oepos.bh) { 2323 iinfo->i_lenAlloc -= (adsize * 2); 2324 mark_inode_dirty(inode); 2325 } else { 2326 aed = (struct allocExtDesc *)oepos.bh->b_data; 2327 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2328 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2329 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2330 udf_update_tag(oepos.bh->b_data, 2331 oepos.offset - (2 * adsize)); 2332 else 2333 udf_update_tag(oepos.bh->b_data, 2334 sizeof(struct allocExtDesc)); 2335 mark_buffer_dirty_inode(oepos.bh, inode); 2336 } 2337 } else { 2338 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2339 if (!oepos.bh) { 2340 iinfo->i_lenAlloc -= adsize; 2341 mark_inode_dirty(inode); 2342 } else { 2343 aed = (struct allocExtDesc *)oepos.bh->b_data; 2344 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2345 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2346 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2347 udf_update_tag(oepos.bh->b_data, 2348 epos.offset - adsize); 2349 else 2350 udf_update_tag(oepos.bh->b_data, 2351 sizeof(struct allocExtDesc)); 2352 mark_buffer_dirty_inode(oepos.bh, inode); 2353 } 2354 } 2355 2356 brelse(epos.bh); 2357 brelse(oepos.bh); 2358 2359 return (elen >> 30); 2360 } 2361 2362 int8_t inode_bmap(struct inode *inode, sector_t block, 2363 struct extent_position *pos, struct kernel_lb_addr *eloc, 2364 uint32_t *elen, sector_t *offset) 2365 { 2366 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2367 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2368 int8_t etype; 2369 struct udf_inode_info *iinfo; 2370 2371 iinfo = UDF_I(inode); 2372 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2373 pos->offset = 0; 2374 pos->block = iinfo->i_location; 2375 pos->bh = NULL; 2376 } 2377 *elen = 0; 2378 do { 2379 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2380 if (etype == -1) { 2381 *offset = (bcount - lbcount) >> blocksize_bits; 2382 iinfo->i_lenExtents = lbcount; 2383 return -1; 2384 } 2385 lbcount += *elen; 2386 } while (lbcount <= bcount); 2387 /* update extent cache */ 2388 udf_update_extent_cache(inode, lbcount - *elen, pos); 2389 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2390 2391 return etype; 2392 } 2393