1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 #include <linux/crc-itu-t.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static mode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 56 sector_t *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_evict_inode(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 int want_delete = 0; 75 76 truncate_inode_pages(&inode->i_data, 0); 77 78 if (!inode->i_nlink && !is_bad_inode(inode)) { 79 want_delete = 1; 80 inode->i_size = 0; 81 udf_truncate(inode); 82 lock_kernel(); 83 udf_update_inode(inode, IS_SYNC(inode)); 84 unlock_kernel(); 85 } 86 invalidate_inode_buffers(inode); 87 end_writeback(inode); 88 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 89 inode->i_size != iinfo->i_lenExtents) { 90 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has " 91 "inode size %llu different from extent length %llu. " 92 "Filesystem need not be standards compliant.\n", 93 inode->i_sb->s_id, inode->i_ino, inode->i_mode, 94 (unsigned long long)inode->i_size, 95 (unsigned long long)iinfo->i_lenExtents); 96 } 97 kfree(iinfo->i_ext.i_data); 98 iinfo->i_ext.i_data = NULL; 99 if (want_delete) { 100 lock_kernel(); 101 udf_free_inode(inode); 102 unlock_kernel(); 103 } 104 } 105 106 static int udf_writepage(struct page *page, struct writeback_control *wbc) 107 { 108 return block_write_full_page(page, udf_get_block, wbc); 109 } 110 111 static int udf_readpage(struct file *file, struct page *page) 112 { 113 return block_read_full_page(page, udf_get_block); 114 } 115 116 static int udf_write_begin(struct file *file, struct address_space *mapping, 117 loff_t pos, unsigned len, unsigned flags, 118 struct page **pagep, void **fsdata) 119 { 120 int ret; 121 122 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 123 if (unlikely(ret)) { 124 loff_t isize = mapping->host->i_size; 125 if (pos + len > isize) 126 vmtruncate(mapping->host, isize); 127 } 128 129 return ret; 130 } 131 132 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 133 { 134 return generic_block_bmap(mapping, block, udf_get_block); 135 } 136 137 const struct address_space_operations udf_aops = { 138 .readpage = udf_readpage, 139 .writepage = udf_writepage, 140 .sync_page = block_sync_page, 141 .write_begin = udf_write_begin, 142 .write_end = generic_write_end, 143 .bmap = udf_bmap, 144 }; 145 146 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 147 { 148 struct page *page; 149 char *kaddr; 150 struct udf_inode_info *iinfo = UDF_I(inode); 151 struct writeback_control udf_wbc = { 152 .sync_mode = WB_SYNC_NONE, 153 .nr_to_write = 1, 154 }; 155 156 /* from now on we have normal address_space methods */ 157 inode->i_data.a_ops = &udf_aops; 158 159 if (!iinfo->i_lenAlloc) { 160 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 161 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 162 else 163 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 164 mark_inode_dirty(inode); 165 return; 166 } 167 168 page = grab_cache_page(inode->i_mapping, 0); 169 BUG_ON(!PageLocked(page)); 170 171 if (!PageUptodate(page)) { 172 kaddr = kmap(page); 173 memset(kaddr + iinfo->i_lenAlloc, 0x00, 174 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 175 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 176 iinfo->i_lenAlloc); 177 flush_dcache_page(page); 178 SetPageUptodate(page); 179 kunmap(page); 180 } 181 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 182 iinfo->i_lenAlloc); 183 iinfo->i_lenAlloc = 0; 184 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 185 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 186 else 187 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 188 189 inode->i_data.a_ops->writepage(page, &udf_wbc); 190 page_cache_release(page); 191 192 mark_inode_dirty(inode); 193 } 194 195 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 196 int *err) 197 { 198 int newblock; 199 struct buffer_head *dbh = NULL; 200 struct kernel_lb_addr eloc; 201 uint8_t alloctype; 202 struct extent_position epos; 203 204 struct udf_fileident_bh sfibh, dfibh; 205 loff_t f_pos = udf_ext0_offset(inode); 206 int size = udf_ext0_offset(inode) + inode->i_size; 207 struct fileIdentDesc cfi, *sfi, *dfi; 208 struct udf_inode_info *iinfo = UDF_I(inode); 209 210 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 211 alloctype = ICBTAG_FLAG_AD_SHORT; 212 else 213 alloctype = ICBTAG_FLAG_AD_LONG; 214 215 if (!inode->i_size) { 216 iinfo->i_alloc_type = alloctype; 217 mark_inode_dirty(inode); 218 return NULL; 219 } 220 221 /* alloc block, and copy data to it */ 222 *block = udf_new_block(inode->i_sb, inode, 223 iinfo->i_location.partitionReferenceNum, 224 iinfo->i_location.logicalBlockNum, err); 225 if (!(*block)) 226 return NULL; 227 newblock = udf_get_pblock(inode->i_sb, *block, 228 iinfo->i_location.partitionReferenceNum, 229 0); 230 if (!newblock) 231 return NULL; 232 dbh = udf_tgetblk(inode->i_sb, newblock); 233 if (!dbh) 234 return NULL; 235 lock_buffer(dbh); 236 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 237 set_buffer_uptodate(dbh); 238 unlock_buffer(dbh); 239 mark_buffer_dirty_inode(dbh, inode); 240 241 sfibh.soffset = sfibh.eoffset = 242 f_pos & (inode->i_sb->s_blocksize - 1); 243 sfibh.sbh = sfibh.ebh = NULL; 244 dfibh.soffset = dfibh.eoffset = 0; 245 dfibh.sbh = dfibh.ebh = dbh; 246 while (f_pos < size) { 247 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 248 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 249 NULL, NULL, NULL); 250 if (!sfi) { 251 brelse(dbh); 252 return NULL; 253 } 254 iinfo->i_alloc_type = alloctype; 255 sfi->descTag.tagLocation = cpu_to_le32(*block); 256 dfibh.soffset = dfibh.eoffset; 257 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 258 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 259 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 260 sfi->fileIdent + 261 le16_to_cpu(sfi->lengthOfImpUse))) { 262 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 263 brelse(dbh); 264 return NULL; 265 } 266 } 267 mark_buffer_dirty_inode(dbh, inode); 268 269 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 270 iinfo->i_lenAlloc); 271 iinfo->i_lenAlloc = 0; 272 eloc.logicalBlockNum = *block; 273 eloc.partitionReferenceNum = 274 iinfo->i_location.partitionReferenceNum; 275 iinfo->i_lenExtents = inode->i_size; 276 epos.bh = NULL; 277 epos.block = iinfo->i_location; 278 epos.offset = udf_file_entry_alloc_offset(inode); 279 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 280 /* UniqueID stuff */ 281 282 brelse(epos.bh); 283 mark_inode_dirty(inode); 284 return dbh; 285 } 286 287 static int udf_get_block(struct inode *inode, sector_t block, 288 struct buffer_head *bh_result, int create) 289 { 290 int err, new; 291 struct buffer_head *bh; 292 sector_t phys = 0; 293 struct udf_inode_info *iinfo; 294 295 if (!create) { 296 phys = udf_block_map(inode, block); 297 if (phys) 298 map_bh(bh_result, inode->i_sb, phys); 299 return 0; 300 } 301 302 err = -EIO; 303 new = 0; 304 bh = NULL; 305 306 lock_kernel(); 307 308 iinfo = UDF_I(inode); 309 if (block == iinfo->i_next_alloc_block + 1) { 310 iinfo->i_next_alloc_block++; 311 iinfo->i_next_alloc_goal++; 312 } 313 314 err = 0; 315 316 bh = inode_getblk(inode, block, &err, &phys, &new); 317 BUG_ON(bh); 318 if (err) 319 goto abort; 320 BUG_ON(!phys); 321 322 if (new) 323 set_buffer_new(bh_result); 324 map_bh(bh_result, inode->i_sb, phys); 325 326 abort: 327 unlock_kernel(); 328 return err; 329 } 330 331 static struct buffer_head *udf_getblk(struct inode *inode, long block, 332 int create, int *err) 333 { 334 struct buffer_head *bh; 335 struct buffer_head dummy; 336 337 dummy.b_state = 0; 338 dummy.b_blocknr = -1000; 339 *err = udf_get_block(inode, block, &dummy, create); 340 if (!*err && buffer_mapped(&dummy)) { 341 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 342 if (buffer_new(&dummy)) { 343 lock_buffer(bh); 344 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 345 set_buffer_uptodate(bh); 346 unlock_buffer(bh); 347 mark_buffer_dirty_inode(bh, inode); 348 } 349 return bh; 350 } 351 352 return NULL; 353 } 354 355 /* Extend the file by 'blocks' blocks, return the number of extents added */ 356 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 357 struct kernel_long_ad *last_ext, sector_t blocks) 358 { 359 sector_t add; 360 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 361 struct super_block *sb = inode->i_sb; 362 struct kernel_lb_addr prealloc_loc = {}; 363 int prealloc_len = 0; 364 struct udf_inode_info *iinfo; 365 366 /* The previous extent is fake and we should not extend by anything 367 * - there's nothing to do... */ 368 if (!blocks && fake) 369 return 0; 370 371 iinfo = UDF_I(inode); 372 /* Round the last extent up to a multiple of block size */ 373 if (last_ext->extLength & (sb->s_blocksize - 1)) { 374 last_ext->extLength = 375 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 376 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 377 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 378 iinfo->i_lenExtents = 379 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 380 ~(sb->s_blocksize - 1); 381 } 382 383 /* Last extent are just preallocated blocks? */ 384 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 385 EXT_NOT_RECORDED_ALLOCATED) { 386 /* Save the extent so that we can reattach it to the end */ 387 prealloc_loc = last_ext->extLocation; 388 prealloc_len = last_ext->extLength; 389 /* Mark the extent as a hole */ 390 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 391 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 392 last_ext->extLocation.logicalBlockNum = 0; 393 last_ext->extLocation.partitionReferenceNum = 0; 394 } 395 396 /* Can we merge with the previous extent? */ 397 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 398 EXT_NOT_RECORDED_NOT_ALLOCATED) { 399 add = ((1 << 30) - sb->s_blocksize - 400 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 401 sb->s_blocksize_bits; 402 if (add > blocks) 403 add = blocks; 404 blocks -= add; 405 last_ext->extLength += add << sb->s_blocksize_bits; 406 } 407 408 if (fake) { 409 udf_add_aext(inode, last_pos, &last_ext->extLocation, 410 last_ext->extLength, 1); 411 count++; 412 } else 413 udf_write_aext(inode, last_pos, &last_ext->extLocation, 414 last_ext->extLength, 1); 415 416 /* Managed to do everything necessary? */ 417 if (!blocks) 418 goto out; 419 420 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 421 last_ext->extLocation.logicalBlockNum = 0; 422 last_ext->extLocation.partitionReferenceNum = 0; 423 add = (1 << (30-sb->s_blocksize_bits)) - 1; 424 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 425 (add << sb->s_blocksize_bits); 426 427 /* Create enough extents to cover the whole hole */ 428 while (blocks > add) { 429 blocks -= add; 430 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 431 last_ext->extLength, 1) == -1) 432 return -1; 433 count++; 434 } 435 if (blocks) { 436 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 437 (blocks << sb->s_blocksize_bits); 438 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 439 last_ext->extLength, 1) == -1) 440 return -1; 441 count++; 442 } 443 444 out: 445 /* Do we have some preallocated blocks saved? */ 446 if (prealloc_len) { 447 if (udf_add_aext(inode, last_pos, &prealloc_loc, 448 prealloc_len, 1) == -1) 449 return -1; 450 last_ext->extLocation = prealloc_loc; 451 last_ext->extLength = prealloc_len; 452 count++; 453 } 454 455 /* last_pos should point to the last written extent... */ 456 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 457 last_pos->offset -= sizeof(struct short_ad); 458 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 459 last_pos->offset -= sizeof(struct long_ad); 460 else 461 return -1; 462 463 return count; 464 } 465 466 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 467 int *err, sector_t *phys, int *new) 468 { 469 static sector_t last_block; 470 struct buffer_head *result = NULL; 471 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 472 struct extent_position prev_epos, cur_epos, next_epos; 473 int count = 0, startnum = 0, endnum = 0; 474 uint32_t elen = 0, tmpelen; 475 struct kernel_lb_addr eloc, tmpeloc; 476 int c = 1; 477 loff_t lbcount = 0, b_off = 0; 478 uint32_t newblocknum, newblock; 479 sector_t offset = 0; 480 int8_t etype; 481 struct udf_inode_info *iinfo = UDF_I(inode); 482 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 483 int lastblock = 0; 484 485 prev_epos.offset = udf_file_entry_alloc_offset(inode); 486 prev_epos.block = iinfo->i_location; 487 prev_epos.bh = NULL; 488 cur_epos = next_epos = prev_epos; 489 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 490 491 /* find the extent which contains the block we are looking for. 492 alternate between laarr[0] and laarr[1] for locations of the 493 current extent, and the previous extent */ 494 do { 495 if (prev_epos.bh != cur_epos.bh) { 496 brelse(prev_epos.bh); 497 get_bh(cur_epos.bh); 498 prev_epos.bh = cur_epos.bh; 499 } 500 if (cur_epos.bh != next_epos.bh) { 501 brelse(cur_epos.bh); 502 get_bh(next_epos.bh); 503 cur_epos.bh = next_epos.bh; 504 } 505 506 lbcount += elen; 507 508 prev_epos.block = cur_epos.block; 509 cur_epos.block = next_epos.block; 510 511 prev_epos.offset = cur_epos.offset; 512 cur_epos.offset = next_epos.offset; 513 514 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 515 if (etype == -1) 516 break; 517 518 c = !c; 519 520 laarr[c].extLength = (etype << 30) | elen; 521 laarr[c].extLocation = eloc; 522 523 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 524 pgoal = eloc.logicalBlockNum + 525 ((elen + inode->i_sb->s_blocksize - 1) >> 526 inode->i_sb->s_blocksize_bits); 527 528 count++; 529 } while (lbcount + elen <= b_off); 530 531 b_off -= lbcount; 532 offset = b_off >> inode->i_sb->s_blocksize_bits; 533 /* 534 * Move prev_epos and cur_epos into indirect extent if we are at 535 * the pointer to it 536 */ 537 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 538 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 539 540 /* if the extent is allocated and recorded, return the block 541 if the extent is not a multiple of the blocksize, round up */ 542 543 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 544 if (elen & (inode->i_sb->s_blocksize - 1)) { 545 elen = EXT_RECORDED_ALLOCATED | 546 ((elen + inode->i_sb->s_blocksize - 1) & 547 ~(inode->i_sb->s_blocksize - 1)); 548 etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 549 } 550 brelse(prev_epos.bh); 551 brelse(cur_epos.bh); 552 brelse(next_epos.bh); 553 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 554 *phys = newblock; 555 return NULL; 556 } 557 558 last_block = block; 559 /* Are we beyond EOF? */ 560 if (etype == -1) { 561 int ret; 562 563 if (count) { 564 if (c) 565 laarr[0] = laarr[1]; 566 startnum = 1; 567 } else { 568 /* Create a fake extent when there's not one */ 569 memset(&laarr[0].extLocation, 0x00, 570 sizeof(struct kernel_lb_addr)); 571 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 572 /* Will udf_extend_file() create real extent from 573 a fake one? */ 574 startnum = (offset > 0); 575 } 576 /* Create extents for the hole between EOF and offset */ 577 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 578 if (ret == -1) { 579 brelse(prev_epos.bh); 580 brelse(cur_epos.bh); 581 brelse(next_epos.bh); 582 /* We don't really know the error here so we just make 583 * something up */ 584 *err = -ENOSPC; 585 return NULL; 586 } 587 c = 0; 588 offset = 0; 589 count += ret; 590 /* We are not covered by a preallocated extent? */ 591 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 592 EXT_NOT_RECORDED_ALLOCATED) { 593 /* Is there any real extent? - otherwise we overwrite 594 * the fake one... */ 595 if (count) 596 c = !c; 597 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 598 inode->i_sb->s_blocksize; 599 memset(&laarr[c].extLocation, 0x00, 600 sizeof(struct kernel_lb_addr)); 601 count++; 602 endnum++; 603 } 604 endnum = c + 1; 605 lastblock = 1; 606 } else { 607 endnum = startnum = ((count > 2) ? 2 : count); 608 609 /* if the current extent is in position 0, 610 swap it with the previous */ 611 if (!c && count != 1) { 612 laarr[2] = laarr[0]; 613 laarr[0] = laarr[1]; 614 laarr[1] = laarr[2]; 615 c = 1; 616 } 617 618 /* if the current block is located in an extent, 619 read the next extent */ 620 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 621 if (etype != -1) { 622 laarr[c + 1].extLength = (etype << 30) | elen; 623 laarr[c + 1].extLocation = eloc; 624 count++; 625 startnum++; 626 endnum++; 627 } else 628 lastblock = 1; 629 } 630 631 /* if the current extent is not recorded but allocated, get the 632 * block in the extent corresponding to the requested block */ 633 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 634 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 635 else { /* otherwise, allocate a new block */ 636 if (iinfo->i_next_alloc_block == block) 637 goal = iinfo->i_next_alloc_goal; 638 639 if (!goal) { 640 if (!(goal = pgoal)) /* XXX: what was intended here? */ 641 goal = iinfo->i_location.logicalBlockNum + 1; 642 } 643 644 newblocknum = udf_new_block(inode->i_sb, inode, 645 iinfo->i_location.partitionReferenceNum, 646 goal, err); 647 if (!newblocknum) { 648 brelse(prev_epos.bh); 649 *err = -ENOSPC; 650 return NULL; 651 } 652 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 653 } 654 655 /* if the extent the requsted block is located in contains multiple 656 * blocks, split the extent into at most three extents. blocks prior 657 * to requested block, requested block, and blocks after requested 658 * block */ 659 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 660 661 #ifdef UDF_PREALLOCATE 662 /* We preallocate blocks only for regular files. It also makes sense 663 * for directories but there's a problem when to drop the 664 * preallocation. We might use some delayed work for that but I feel 665 * it's overengineering for a filesystem like UDF. */ 666 if (S_ISREG(inode->i_mode)) 667 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 668 #endif 669 670 /* merge any continuous blocks in laarr */ 671 udf_merge_extents(inode, laarr, &endnum); 672 673 /* write back the new extents, inserting new extents if the new number 674 * of extents is greater than the old number, and deleting extents if 675 * the new number of extents is less than the old number */ 676 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 677 678 brelse(prev_epos.bh); 679 680 newblock = udf_get_pblock(inode->i_sb, newblocknum, 681 iinfo->i_location.partitionReferenceNum, 0); 682 if (!newblock) 683 return NULL; 684 *phys = newblock; 685 *err = 0; 686 *new = 1; 687 iinfo->i_next_alloc_block = block; 688 iinfo->i_next_alloc_goal = newblocknum; 689 inode->i_ctime = current_fs_time(inode->i_sb); 690 691 if (IS_SYNC(inode)) 692 udf_sync_inode(inode); 693 else 694 mark_inode_dirty(inode); 695 696 return result; 697 } 698 699 static void udf_split_extents(struct inode *inode, int *c, int offset, 700 int newblocknum, 701 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 702 int *endnum) 703 { 704 unsigned long blocksize = inode->i_sb->s_blocksize; 705 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 706 707 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 708 (laarr[*c].extLength >> 30) == 709 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 710 int curr = *c; 711 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 712 blocksize - 1) >> blocksize_bits; 713 int8_t etype = (laarr[curr].extLength >> 30); 714 715 if (blen == 1) 716 ; 717 else if (!offset || blen == offset + 1) { 718 laarr[curr + 2] = laarr[curr + 1]; 719 laarr[curr + 1] = laarr[curr]; 720 } else { 721 laarr[curr + 3] = laarr[curr + 1]; 722 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 723 } 724 725 if (offset) { 726 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 727 udf_free_blocks(inode->i_sb, inode, 728 &laarr[curr].extLocation, 729 0, offset); 730 laarr[curr].extLength = 731 EXT_NOT_RECORDED_NOT_ALLOCATED | 732 (offset << blocksize_bits); 733 laarr[curr].extLocation.logicalBlockNum = 0; 734 laarr[curr].extLocation. 735 partitionReferenceNum = 0; 736 } else 737 laarr[curr].extLength = (etype << 30) | 738 (offset << blocksize_bits); 739 curr++; 740 (*c)++; 741 (*endnum)++; 742 } 743 744 laarr[curr].extLocation.logicalBlockNum = newblocknum; 745 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 746 laarr[curr].extLocation.partitionReferenceNum = 747 UDF_I(inode)->i_location.partitionReferenceNum; 748 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 749 blocksize; 750 curr++; 751 752 if (blen != offset + 1) { 753 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 754 laarr[curr].extLocation.logicalBlockNum += 755 offset + 1; 756 laarr[curr].extLength = (etype << 30) | 757 ((blen - (offset + 1)) << blocksize_bits); 758 curr++; 759 (*endnum)++; 760 } 761 } 762 } 763 764 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 765 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 766 int *endnum) 767 { 768 int start, length = 0, currlength = 0, i; 769 770 if (*endnum >= (c + 1)) { 771 if (!lastblock) 772 return; 773 else 774 start = c; 775 } else { 776 if ((laarr[c + 1].extLength >> 30) == 777 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 778 start = c + 1; 779 length = currlength = 780 (((laarr[c + 1].extLength & 781 UDF_EXTENT_LENGTH_MASK) + 782 inode->i_sb->s_blocksize - 1) >> 783 inode->i_sb->s_blocksize_bits); 784 } else 785 start = c; 786 } 787 788 for (i = start + 1; i <= *endnum; i++) { 789 if (i == *endnum) { 790 if (lastblock) 791 length += UDF_DEFAULT_PREALLOC_BLOCKS; 792 } else if ((laarr[i].extLength >> 30) == 793 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 794 length += (((laarr[i].extLength & 795 UDF_EXTENT_LENGTH_MASK) + 796 inode->i_sb->s_blocksize - 1) >> 797 inode->i_sb->s_blocksize_bits); 798 } else 799 break; 800 } 801 802 if (length) { 803 int next = laarr[start].extLocation.logicalBlockNum + 804 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 805 inode->i_sb->s_blocksize - 1) >> 806 inode->i_sb->s_blocksize_bits); 807 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 808 laarr[start].extLocation.partitionReferenceNum, 809 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 810 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 811 currlength); 812 if (numalloc) { 813 if (start == (c + 1)) 814 laarr[start].extLength += 815 (numalloc << 816 inode->i_sb->s_blocksize_bits); 817 else { 818 memmove(&laarr[c + 2], &laarr[c + 1], 819 sizeof(struct long_ad) * (*endnum - (c + 1))); 820 (*endnum)++; 821 laarr[c + 1].extLocation.logicalBlockNum = next; 822 laarr[c + 1].extLocation.partitionReferenceNum = 823 laarr[c].extLocation. 824 partitionReferenceNum; 825 laarr[c + 1].extLength = 826 EXT_NOT_RECORDED_ALLOCATED | 827 (numalloc << 828 inode->i_sb->s_blocksize_bits); 829 start = c + 1; 830 } 831 832 for (i = start + 1; numalloc && i < *endnum; i++) { 833 int elen = ((laarr[i].extLength & 834 UDF_EXTENT_LENGTH_MASK) + 835 inode->i_sb->s_blocksize - 1) >> 836 inode->i_sb->s_blocksize_bits; 837 838 if (elen > numalloc) { 839 laarr[i].extLength -= 840 (numalloc << 841 inode->i_sb->s_blocksize_bits); 842 numalloc = 0; 843 } else { 844 numalloc -= elen; 845 if (*endnum > (i + 1)) 846 memmove(&laarr[i], 847 &laarr[i + 1], 848 sizeof(struct long_ad) * 849 (*endnum - (i + 1))); 850 i--; 851 (*endnum)--; 852 } 853 } 854 UDF_I(inode)->i_lenExtents += 855 numalloc << inode->i_sb->s_blocksize_bits; 856 } 857 } 858 } 859 860 static void udf_merge_extents(struct inode *inode, 861 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 862 int *endnum) 863 { 864 int i; 865 unsigned long blocksize = inode->i_sb->s_blocksize; 866 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 867 868 for (i = 0; i < (*endnum - 1); i++) { 869 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 870 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 871 872 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 873 (((li->extLength >> 30) == 874 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 875 ((lip1->extLocation.logicalBlockNum - 876 li->extLocation.logicalBlockNum) == 877 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 878 blocksize - 1) >> blocksize_bits)))) { 879 880 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 881 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 882 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 883 lip1->extLength = (lip1->extLength - 884 (li->extLength & 885 UDF_EXTENT_LENGTH_MASK) + 886 UDF_EXTENT_LENGTH_MASK) & 887 ~(blocksize - 1); 888 li->extLength = (li->extLength & 889 UDF_EXTENT_FLAG_MASK) + 890 (UDF_EXTENT_LENGTH_MASK + 1) - 891 blocksize; 892 lip1->extLocation.logicalBlockNum = 893 li->extLocation.logicalBlockNum + 894 ((li->extLength & 895 UDF_EXTENT_LENGTH_MASK) >> 896 blocksize_bits); 897 } else { 898 li->extLength = lip1->extLength + 899 (((li->extLength & 900 UDF_EXTENT_LENGTH_MASK) + 901 blocksize - 1) & ~(blocksize - 1)); 902 if (*endnum > (i + 2)) 903 memmove(&laarr[i + 1], &laarr[i + 2], 904 sizeof(struct long_ad) * 905 (*endnum - (i + 2))); 906 i--; 907 (*endnum)--; 908 } 909 } else if (((li->extLength >> 30) == 910 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 911 ((lip1->extLength >> 30) == 912 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 913 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 914 ((li->extLength & 915 UDF_EXTENT_LENGTH_MASK) + 916 blocksize - 1) >> blocksize_bits); 917 li->extLocation.logicalBlockNum = 0; 918 li->extLocation.partitionReferenceNum = 0; 919 920 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 921 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 922 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 923 lip1->extLength = (lip1->extLength - 924 (li->extLength & 925 UDF_EXTENT_LENGTH_MASK) + 926 UDF_EXTENT_LENGTH_MASK) & 927 ~(blocksize - 1); 928 li->extLength = (li->extLength & 929 UDF_EXTENT_FLAG_MASK) + 930 (UDF_EXTENT_LENGTH_MASK + 1) - 931 blocksize; 932 } else { 933 li->extLength = lip1->extLength + 934 (((li->extLength & 935 UDF_EXTENT_LENGTH_MASK) + 936 blocksize - 1) & ~(blocksize - 1)); 937 if (*endnum > (i + 2)) 938 memmove(&laarr[i + 1], &laarr[i + 2], 939 sizeof(struct long_ad) * 940 (*endnum - (i + 2))); 941 i--; 942 (*endnum)--; 943 } 944 } else if ((li->extLength >> 30) == 945 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 946 udf_free_blocks(inode->i_sb, inode, 947 &li->extLocation, 0, 948 ((li->extLength & 949 UDF_EXTENT_LENGTH_MASK) + 950 blocksize - 1) >> blocksize_bits); 951 li->extLocation.logicalBlockNum = 0; 952 li->extLocation.partitionReferenceNum = 0; 953 li->extLength = (li->extLength & 954 UDF_EXTENT_LENGTH_MASK) | 955 EXT_NOT_RECORDED_NOT_ALLOCATED; 956 } 957 } 958 } 959 960 static void udf_update_extents(struct inode *inode, 961 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 962 int startnum, int endnum, 963 struct extent_position *epos) 964 { 965 int start = 0, i; 966 struct kernel_lb_addr tmploc; 967 uint32_t tmplen; 968 969 if (startnum > endnum) { 970 for (i = 0; i < (startnum - endnum); i++) 971 udf_delete_aext(inode, *epos, laarr[i].extLocation, 972 laarr[i].extLength); 973 } else if (startnum < endnum) { 974 for (i = 0; i < (endnum - startnum); i++) { 975 udf_insert_aext(inode, *epos, laarr[i].extLocation, 976 laarr[i].extLength); 977 udf_next_aext(inode, epos, &laarr[i].extLocation, 978 &laarr[i].extLength, 1); 979 start++; 980 } 981 } 982 983 for (i = start; i < endnum; i++) { 984 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 985 udf_write_aext(inode, epos, &laarr[i].extLocation, 986 laarr[i].extLength, 1); 987 } 988 } 989 990 struct buffer_head *udf_bread(struct inode *inode, int block, 991 int create, int *err) 992 { 993 struct buffer_head *bh = NULL; 994 995 bh = udf_getblk(inode, block, create, err); 996 if (!bh) 997 return NULL; 998 999 if (buffer_uptodate(bh)) 1000 return bh; 1001 1002 ll_rw_block(READ, 1, &bh); 1003 1004 wait_on_buffer(bh); 1005 if (buffer_uptodate(bh)) 1006 return bh; 1007 1008 brelse(bh); 1009 *err = -EIO; 1010 return NULL; 1011 } 1012 1013 void udf_truncate(struct inode *inode) 1014 { 1015 int offset; 1016 int err; 1017 struct udf_inode_info *iinfo; 1018 1019 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1020 S_ISLNK(inode->i_mode))) 1021 return; 1022 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1023 return; 1024 1025 lock_kernel(); 1026 iinfo = UDF_I(inode); 1027 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1028 if (inode->i_sb->s_blocksize < 1029 (udf_file_entry_alloc_offset(inode) + 1030 inode->i_size)) { 1031 udf_expand_file_adinicb(inode, inode->i_size, &err); 1032 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1033 inode->i_size = iinfo->i_lenAlloc; 1034 unlock_kernel(); 1035 return; 1036 } else 1037 udf_truncate_extents(inode); 1038 } else { 1039 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1040 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1041 0x00, inode->i_sb->s_blocksize - 1042 offset - udf_file_entry_alloc_offset(inode)); 1043 iinfo->i_lenAlloc = inode->i_size; 1044 } 1045 } else { 1046 block_truncate_page(inode->i_mapping, inode->i_size, 1047 udf_get_block); 1048 udf_truncate_extents(inode); 1049 } 1050 1051 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1052 if (IS_SYNC(inode)) 1053 udf_sync_inode(inode); 1054 else 1055 mark_inode_dirty(inode); 1056 unlock_kernel(); 1057 } 1058 1059 static void __udf_read_inode(struct inode *inode) 1060 { 1061 struct buffer_head *bh = NULL; 1062 struct fileEntry *fe; 1063 uint16_t ident; 1064 struct udf_inode_info *iinfo = UDF_I(inode); 1065 1066 /* 1067 * Set defaults, but the inode is still incomplete! 1068 * Note: get_new_inode() sets the following on a new inode: 1069 * i_sb = sb 1070 * i_no = ino 1071 * i_flags = sb->s_flags 1072 * i_state = 0 1073 * clean_inode(): zero fills and sets 1074 * i_count = 1 1075 * i_nlink = 1 1076 * i_op = NULL; 1077 */ 1078 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1079 if (!bh) { 1080 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1081 inode->i_ino); 1082 make_bad_inode(inode); 1083 return; 1084 } 1085 1086 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1087 ident != TAG_IDENT_USE) { 1088 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1089 "failed ident=%d\n", inode->i_ino, ident); 1090 brelse(bh); 1091 make_bad_inode(inode); 1092 return; 1093 } 1094 1095 fe = (struct fileEntry *)bh->b_data; 1096 1097 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1098 struct buffer_head *ibh; 1099 1100 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1101 &ident); 1102 if (ident == TAG_IDENT_IE && ibh) { 1103 struct buffer_head *nbh = NULL; 1104 struct kernel_lb_addr loc; 1105 struct indirectEntry *ie; 1106 1107 ie = (struct indirectEntry *)ibh->b_data; 1108 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1109 1110 if (ie->indirectICB.extLength && 1111 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1112 &ident))) { 1113 if (ident == TAG_IDENT_FE || 1114 ident == TAG_IDENT_EFE) { 1115 memcpy(&iinfo->i_location, 1116 &loc, 1117 sizeof(struct kernel_lb_addr)); 1118 brelse(bh); 1119 brelse(ibh); 1120 brelse(nbh); 1121 __udf_read_inode(inode); 1122 return; 1123 } 1124 brelse(nbh); 1125 } 1126 } 1127 brelse(ibh); 1128 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1129 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1130 le16_to_cpu(fe->icbTag.strategyType)); 1131 brelse(bh); 1132 make_bad_inode(inode); 1133 return; 1134 } 1135 udf_fill_inode(inode, bh); 1136 1137 brelse(bh); 1138 } 1139 1140 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1141 { 1142 struct fileEntry *fe; 1143 struct extendedFileEntry *efe; 1144 int offset; 1145 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1146 struct udf_inode_info *iinfo = UDF_I(inode); 1147 1148 fe = (struct fileEntry *)bh->b_data; 1149 efe = (struct extendedFileEntry *)bh->b_data; 1150 1151 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1152 iinfo->i_strat4096 = 0; 1153 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1154 iinfo->i_strat4096 = 1; 1155 1156 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1157 ICBTAG_FLAG_AD_MASK; 1158 iinfo->i_unique = 0; 1159 iinfo->i_lenEAttr = 0; 1160 iinfo->i_lenExtents = 0; 1161 iinfo->i_lenAlloc = 0; 1162 iinfo->i_next_alloc_block = 0; 1163 iinfo->i_next_alloc_goal = 0; 1164 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1165 iinfo->i_efe = 1; 1166 iinfo->i_use = 0; 1167 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1168 sizeof(struct extendedFileEntry))) { 1169 make_bad_inode(inode); 1170 return; 1171 } 1172 memcpy(iinfo->i_ext.i_data, 1173 bh->b_data + sizeof(struct extendedFileEntry), 1174 inode->i_sb->s_blocksize - 1175 sizeof(struct extendedFileEntry)); 1176 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1177 iinfo->i_efe = 0; 1178 iinfo->i_use = 0; 1179 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1180 sizeof(struct fileEntry))) { 1181 make_bad_inode(inode); 1182 return; 1183 } 1184 memcpy(iinfo->i_ext.i_data, 1185 bh->b_data + sizeof(struct fileEntry), 1186 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1187 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1188 iinfo->i_efe = 0; 1189 iinfo->i_use = 1; 1190 iinfo->i_lenAlloc = le32_to_cpu( 1191 ((struct unallocSpaceEntry *)bh->b_data)-> 1192 lengthAllocDescs); 1193 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1194 sizeof(struct unallocSpaceEntry))) { 1195 make_bad_inode(inode); 1196 return; 1197 } 1198 memcpy(iinfo->i_ext.i_data, 1199 bh->b_data + sizeof(struct unallocSpaceEntry), 1200 inode->i_sb->s_blocksize - 1201 sizeof(struct unallocSpaceEntry)); 1202 return; 1203 } 1204 1205 inode->i_uid = le32_to_cpu(fe->uid); 1206 if (inode->i_uid == -1 || 1207 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1208 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1209 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1210 1211 inode->i_gid = le32_to_cpu(fe->gid); 1212 if (inode->i_gid == -1 || 1213 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1214 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1215 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1216 1217 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1218 if (!inode->i_nlink) 1219 inode->i_nlink = 1; 1220 1221 inode->i_size = le64_to_cpu(fe->informationLength); 1222 iinfo->i_lenExtents = inode->i_size; 1223 1224 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1225 sbi->s_fmode != UDF_INVALID_MODE) 1226 inode->i_mode = sbi->s_fmode; 1227 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1228 sbi->s_dmode != UDF_INVALID_MODE) 1229 inode->i_mode = sbi->s_dmode; 1230 else 1231 inode->i_mode = udf_convert_permissions(fe); 1232 inode->i_mode &= ~sbi->s_umask; 1233 1234 if (iinfo->i_efe == 0) { 1235 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1236 (inode->i_sb->s_blocksize_bits - 9); 1237 1238 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1239 inode->i_atime = sbi->s_record_time; 1240 1241 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1242 fe->modificationTime)) 1243 inode->i_mtime = sbi->s_record_time; 1244 1245 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1246 inode->i_ctime = sbi->s_record_time; 1247 1248 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1249 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1250 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1251 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1252 } else { 1253 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1254 (inode->i_sb->s_blocksize_bits - 9); 1255 1256 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1257 inode->i_atime = sbi->s_record_time; 1258 1259 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1260 efe->modificationTime)) 1261 inode->i_mtime = sbi->s_record_time; 1262 1263 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1264 iinfo->i_crtime = sbi->s_record_time; 1265 1266 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1267 inode->i_ctime = sbi->s_record_time; 1268 1269 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1270 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1271 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1272 offset = sizeof(struct extendedFileEntry) + 1273 iinfo->i_lenEAttr; 1274 } 1275 1276 switch (fe->icbTag.fileType) { 1277 case ICBTAG_FILE_TYPE_DIRECTORY: 1278 inode->i_op = &udf_dir_inode_operations; 1279 inode->i_fop = &udf_dir_operations; 1280 inode->i_mode |= S_IFDIR; 1281 inc_nlink(inode); 1282 break; 1283 case ICBTAG_FILE_TYPE_REALTIME: 1284 case ICBTAG_FILE_TYPE_REGULAR: 1285 case ICBTAG_FILE_TYPE_UNDEF: 1286 case ICBTAG_FILE_TYPE_VAT20: 1287 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1288 inode->i_data.a_ops = &udf_adinicb_aops; 1289 else 1290 inode->i_data.a_ops = &udf_aops; 1291 inode->i_op = &udf_file_inode_operations; 1292 inode->i_fop = &udf_file_operations; 1293 inode->i_mode |= S_IFREG; 1294 break; 1295 case ICBTAG_FILE_TYPE_BLOCK: 1296 inode->i_mode |= S_IFBLK; 1297 break; 1298 case ICBTAG_FILE_TYPE_CHAR: 1299 inode->i_mode |= S_IFCHR; 1300 break; 1301 case ICBTAG_FILE_TYPE_FIFO: 1302 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1303 break; 1304 case ICBTAG_FILE_TYPE_SOCKET: 1305 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1306 break; 1307 case ICBTAG_FILE_TYPE_SYMLINK: 1308 inode->i_data.a_ops = &udf_symlink_aops; 1309 inode->i_op = &udf_symlink_inode_operations; 1310 inode->i_mode = S_IFLNK | S_IRWXUGO; 1311 break; 1312 case ICBTAG_FILE_TYPE_MAIN: 1313 udf_debug("METADATA FILE-----\n"); 1314 break; 1315 case ICBTAG_FILE_TYPE_MIRROR: 1316 udf_debug("METADATA MIRROR FILE-----\n"); 1317 break; 1318 case ICBTAG_FILE_TYPE_BITMAP: 1319 udf_debug("METADATA BITMAP FILE-----\n"); 1320 break; 1321 default: 1322 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1323 "file type=%d\n", inode->i_ino, 1324 fe->icbTag.fileType); 1325 make_bad_inode(inode); 1326 return; 1327 } 1328 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1329 struct deviceSpec *dsea = 1330 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1331 if (dsea) { 1332 init_special_inode(inode, inode->i_mode, 1333 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1334 le32_to_cpu(dsea->minorDeviceIdent))); 1335 /* Developer ID ??? */ 1336 } else 1337 make_bad_inode(inode); 1338 } 1339 } 1340 1341 static int udf_alloc_i_data(struct inode *inode, size_t size) 1342 { 1343 struct udf_inode_info *iinfo = UDF_I(inode); 1344 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1345 1346 if (!iinfo->i_ext.i_data) { 1347 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1348 "no free memory\n", inode->i_ino); 1349 return -ENOMEM; 1350 } 1351 1352 return 0; 1353 } 1354 1355 static mode_t udf_convert_permissions(struct fileEntry *fe) 1356 { 1357 mode_t mode; 1358 uint32_t permissions; 1359 uint32_t flags; 1360 1361 permissions = le32_to_cpu(fe->permissions); 1362 flags = le16_to_cpu(fe->icbTag.flags); 1363 1364 mode = ((permissions) & S_IRWXO) | 1365 ((permissions >> 2) & S_IRWXG) | 1366 ((permissions >> 4) & S_IRWXU) | 1367 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1368 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1369 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1370 1371 return mode; 1372 } 1373 1374 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1375 { 1376 int ret; 1377 1378 lock_kernel(); 1379 ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1380 unlock_kernel(); 1381 1382 return ret; 1383 } 1384 1385 int udf_sync_inode(struct inode *inode) 1386 { 1387 return udf_update_inode(inode, 1); 1388 } 1389 1390 static int udf_update_inode(struct inode *inode, int do_sync) 1391 { 1392 struct buffer_head *bh = NULL; 1393 struct fileEntry *fe; 1394 struct extendedFileEntry *efe; 1395 uint32_t udfperms; 1396 uint16_t icbflags; 1397 uint16_t crclen; 1398 int err = 0; 1399 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1400 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1401 struct udf_inode_info *iinfo = UDF_I(inode); 1402 1403 bh = udf_tgetblk(inode->i_sb, 1404 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1405 if (!bh) { 1406 udf_debug("getblk failure\n"); 1407 return -ENOMEM; 1408 } 1409 1410 lock_buffer(bh); 1411 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1412 fe = (struct fileEntry *)bh->b_data; 1413 efe = (struct extendedFileEntry *)bh->b_data; 1414 1415 if (iinfo->i_use) { 1416 struct unallocSpaceEntry *use = 1417 (struct unallocSpaceEntry *)bh->b_data; 1418 1419 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1420 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1421 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1422 sizeof(struct unallocSpaceEntry)); 1423 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1424 use->descTag.tagLocation = 1425 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1426 crclen = sizeof(struct unallocSpaceEntry) + 1427 iinfo->i_lenAlloc - sizeof(struct tag); 1428 use->descTag.descCRCLength = cpu_to_le16(crclen); 1429 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1430 sizeof(struct tag), 1431 crclen)); 1432 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1433 1434 goto out; 1435 } 1436 1437 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1438 fe->uid = cpu_to_le32(-1); 1439 else 1440 fe->uid = cpu_to_le32(inode->i_uid); 1441 1442 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1443 fe->gid = cpu_to_le32(-1); 1444 else 1445 fe->gid = cpu_to_le32(inode->i_gid); 1446 1447 udfperms = ((inode->i_mode & S_IRWXO)) | 1448 ((inode->i_mode & S_IRWXG) << 2) | 1449 ((inode->i_mode & S_IRWXU) << 4); 1450 1451 udfperms |= (le32_to_cpu(fe->permissions) & 1452 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1453 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1454 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1455 fe->permissions = cpu_to_le32(udfperms); 1456 1457 if (S_ISDIR(inode->i_mode)) 1458 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1459 else 1460 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1461 1462 fe->informationLength = cpu_to_le64(inode->i_size); 1463 1464 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1465 struct regid *eid; 1466 struct deviceSpec *dsea = 1467 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1468 if (!dsea) { 1469 dsea = (struct deviceSpec *) 1470 udf_add_extendedattr(inode, 1471 sizeof(struct deviceSpec) + 1472 sizeof(struct regid), 12, 0x3); 1473 dsea->attrType = cpu_to_le32(12); 1474 dsea->attrSubtype = 1; 1475 dsea->attrLength = cpu_to_le32( 1476 sizeof(struct deviceSpec) + 1477 sizeof(struct regid)); 1478 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1479 } 1480 eid = (struct regid *)dsea->impUse; 1481 memset(eid, 0, sizeof(struct regid)); 1482 strcpy(eid->ident, UDF_ID_DEVELOPER); 1483 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1484 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1485 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1486 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1487 } 1488 1489 if (iinfo->i_efe == 0) { 1490 memcpy(bh->b_data + sizeof(struct fileEntry), 1491 iinfo->i_ext.i_data, 1492 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1493 fe->logicalBlocksRecorded = cpu_to_le64( 1494 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1495 (blocksize_bits - 9)); 1496 1497 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1498 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1499 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1500 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1501 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1502 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1503 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1504 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1505 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1506 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1507 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1508 crclen = sizeof(struct fileEntry); 1509 } else { 1510 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1511 iinfo->i_ext.i_data, 1512 inode->i_sb->s_blocksize - 1513 sizeof(struct extendedFileEntry)); 1514 efe->objectSize = cpu_to_le64(inode->i_size); 1515 efe->logicalBlocksRecorded = cpu_to_le64( 1516 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1517 (blocksize_bits - 9)); 1518 1519 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1520 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1521 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1522 iinfo->i_crtime = inode->i_atime; 1523 1524 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1525 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1526 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1527 iinfo->i_crtime = inode->i_mtime; 1528 1529 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1530 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1531 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1532 iinfo->i_crtime = inode->i_ctime; 1533 1534 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1535 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1536 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1537 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1538 1539 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1540 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1541 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1542 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1543 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1544 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1545 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1546 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1547 crclen = sizeof(struct extendedFileEntry); 1548 } 1549 if (iinfo->i_strat4096) { 1550 fe->icbTag.strategyType = cpu_to_le16(4096); 1551 fe->icbTag.strategyParameter = cpu_to_le16(1); 1552 fe->icbTag.numEntries = cpu_to_le16(2); 1553 } else { 1554 fe->icbTag.strategyType = cpu_to_le16(4); 1555 fe->icbTag.numEntries = cpu_to_le16(1); 1556 } 1557 1558 if (S_ISDIR(inode->i_mode)) 1559 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1560 else if (S_ISREG(inode->i_mode)) 1561 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1562 else if (S_ISLNK(inode->i_mode)) 1563 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1564 else if (S_ISBLK(inode->i_mode)) 1565 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1566 else if (S_ISCHR(inode->i_mode)) 1567 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1568 else if (S_ISFIFO(inode->i_mode)) 1569 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1570 else if (S_ISSOCK(inode->i_mode)) 1571 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1572 1573 icbflags = iinfo->i_alloc_type | 1574 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1575 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1576 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1577 (le16_to_cpu(fe->icbTag.flags) & 1578 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1579 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1580 1581 fe->icbTag.flags = cpu_to_le16(icbflags); 1582 if (sbi->s_udfrev >= 0x0200) 1583 fe->descTag.descVersion = cpu_to_le16(3); 1584 else 1585 fe->descTag.descVersion = cpu_to_le16(2); 1586 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1587 fe->descTag.tagLocation = cpu_to_le32( 1588 iinfo->i_location.logicalBlockNum); 1589 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1590 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1591 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1592 crclen)); 1593 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1594 1595 out: 1596 set_buffer_uptodate(bh); 1597 unlock_buffer(bh); 1598 1599 /* write the data blocks */ 1600 mark_buffer_dirty(bh); 1601 if (do_sync) { 1602 sync_dirty_buffer(bh); 1603 if (buffer_write_io_error(bh)) { 1604 printk(KERN_WARNING "IO error syncing udf inode " 1605 "[%s:%08lx]\n", inode->i_sb->s_id, 1606 inode->i_ino); 1607 err = -EIO; 1608 } 1609 } 1610 brelse(bh); 1611 1612 return err; 1613 } 1614 1615 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1616 { 1617 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1618 struct inode *inode = iget_locked(sb, block); 1619 1620 if (!inode) 1621 return NULL; 1622 1623 if (inode->i_state & I_NEW) { 1624 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1625 __udf_read_inode(inode); 1626 unlock_new_inode(inode); 1627 } 1628 1629 if (is_bad_inode(inode)) 1630 goto out_iput; 1631 1632 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1633 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1634 udf_debug("block=%d, partition=%d out of range\n", 1635 ino->logicalBlockNum, ino->partitionReferenceNum); 1636 make_bad_inode(inode); 1637 goto out_iput; 1638 } 1639 1640 return inode; 1641 1642 out_iput: 1643 iput(inode); 1644 return NULL; 1645 } 1646 1647 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1648 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1649 { 1650 int adsize; 1651 struct short_ad *sad = NULL; 1652 struct long_ad *lad = NULL; 1653 struct allocExtDesc *aed; 1654 int8_t etype; 1655 uint8_t *ptr; 1656 struct udf_inode_info *iinfo = UDF_I(inode); 1657 1658 if (!epos->bh) 1659 ptr = iinfo->i_ext.i_data + epos->offset - 1660 udf_file_entry_alloc_offset(inode) + 1661 iinfo->i_lenEAttr; 1662 else 1663 ptr = epos->bh->b_data + epos->offset; 1664 1665 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1666 adsize = sizeof(struct short_ad); 1667 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1668 adsize = sizeof(struct long_ad); 1669 else 1670 return -1; 1671 1672 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1673 unsigned char *sptr, *dptr; 1674 struct buffer_head *nbh; 1675 int err, loffset; 1676 struct kernel_lb_addr obloc = epos->block; 1677 1678 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1679 obloc.partitionReferenceNum, 1680 obloc.logicalBlockNum, &err); 1681 if (!epos->block.logicalBlockNum) 1682 return -1; 1683 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1684 &epos->block, 1685 0)); 1686 if (!nbh) 1687 return -1; 1688 lock_buffer(nbh); 1689 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1690 set_buffer_uptodate(nbh); 1691 unlock_buffer(nbh); 1692 mark_buffer_dirty_inode(nbh, inode); 1693 1694 aed = (struct allocExtDesc *)(nbh->b_data); 1695 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1696 aed->previousAllocExtLocation = 1697 cpu_to_le32(obloc.logicalBlockNum); 1698 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1699 loffset = epos->offset; 1700 aed->lengthAllocDescs = cpu_to_le32(adsize); 1701 sptr = ptr - adsize; 1702 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1703 memcpy(dptr, sptr, adsize); 1704 epos->offset = sizeof(struct allocExtDesc) + adsize; 1705 } else { 1706 loffset = epos->offset + adsize; 1707 aed->lengthAllocDescs = cpu_to_le32(0); 1708 sptr = ptr; 1709 epos->offset = sizeof(struct allocExtDesc); 1710 1711 if (epos->bh) { 1712 aed = (struct allocExtDesc *)epos->bh->b_data; 1713 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1714 } else { 1715 iinfo->i_lenAlloc += adsize; 1716 mark_inode_dirty(inode); 1717 } 1718 } 1719 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1720 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1721 epos->block.logicalBlockNum, sizeof(struct tag)); 1722 else 1723 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1724 epos->block.logicalBlockNum, sizeof(struct tag)); 1725 switch (iinfo->i_alloc_type) { 1726 case ICBTAG_FLAG_AD_SHORT: 1727 sad = (struct short_ad *)sptr; 1728 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1729 inode->i_sb->s_blocksize); 1730 sad->extPosition = 1731 cpu_to_le32(epos->block.logicalBlockNum); 1732 break; 1733 case ICBTAG_FLAG_AD_LONG: 1734 lad = (struct long_ad *)sptr; 1735 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1736 inode->i_sb->s_blocksize); 1737 lad->extLocation = cpu_to_lelb(epos->block); 1738 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1739 break; 1740 } 1741 if (epos->bh) { 1742 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1743 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1744 udf_update_tag(epos->bh->b_data, loffset); 1745 else 1746 udf_update_tag(epos->bh->b_data, 1747 sizeof(struct allocExtDesc)); 1748 mark_buffer_dirty_inode(epos->bh, inode); 1749 brelse(epos->bh); 1750 } else { 1751 mark_inode_dirty(inode); 1752 } 1753 epos->bh = nbh; 1754 } 1755 1756 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1757 1758 if (!epos->bh) { 1759 iinfo->i_lenAlloc += adsize; 1760 mark_inode_dirty(inode); 1761 } else { 1762 aed = (struct allocExtDesc *)epos->bh->b_data; 1763 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1764 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1765 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1766 udf_update_tag(epos->bh->b_data, 1767 epos->offset + (inc ? 0 : adsize)); 1768 else 1769 udf_update_tag(epos->bh->b_data, 1770 sizeof(struct allocExtDesc)); 1771 mark_buffer_dirty_inode(epos->bh, inode); 1772 } 1773 1774 return etype; 1775 } 1776 1777 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1778 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1779 { 1780 int adsize; 1781 uint8_t *ptr; 1782 struct short_ad *sad; 1783 struct long_ad *lad; 1784 struct udf_inode_info *iinfo = UDF_I(inode); 1785 1786 if (!epos->bh) 1787 ptr = iinfo->i_ext.i_data + epos->offset - 1788 udf_file_entry_alloc_offset(inode) + 1789 iinfo->i_lenEAttr; 1790 else 1791 ptr = epos->bh->b_data + epos->offset; 1792 1793 switch (iinfo->i_alloc_type) { 1794 case ICBTAG_FLAG_AD_SHORT: 1795 sad = (struct short_ad *)ptr; 1796 sad->extLength = cpu_to_le32(elen); 1797 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1798 adsize = sizeof(struct short_ad); 1799 break; 1800 case ICBTAG_FLAG_AD_LONG: 1801 lad = (struct long_ad *)ptr; 1802 lad->extLength = cpu_to_le32(elen); 1803 lad->extLocation = cpu_to_lelb(*eloc); 1804 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1805 adsize = sizeof(struct long_ad); 1806 break; 1807 default: 1808 return -1; 1809 } 1810 1811 if (epos->bh) { 1812 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1813 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1814 struct allocExtDesc *aed = 1815 (struct allocExtDesc *)epos->bh->b_data; 1816 udf_update_tag(epos->bh->b_data, 1817 le32_to_cpu(aed->lengthAllocDescs) + 1818 sizeof(struct allocExtDesc)); 1819 } 1820 mark_buffer_dirty_inode(epos->bh, inode); 1821 } else { 1822 mark_inode_dirty(inode); 1823 } 1824 1825 if (inc) 1826 epos->offset += adsize; 1827 1828 return (elen >> 30); 1829 } 1830 1831 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1832 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1833 { 1834 int8_t etype; 1835 1836 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1837 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1838 int block; 1839 epos->block = *eloc; 1840 epos->offset = sizeof(struct allocExtDesc); 1841 brelse(epos->bh); 1842 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1843 epos->bh = udf_tread(inode->i_sb, block); 1844 if (!epos->bh) { 1845 udf_debug("reading block %d failed!\n", block); 1846 return -1; 1847 } 1848 } 1849 1850 return etype; 1851 } 1852 1853 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1854 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1855 { 1856 int alen; 1857 int8_t etype; 1858 uint8_t *ptr; 1859 struct short_ad *sad; 1860 struct long_ad *lad; 1861 struct udf_inode_info *iinfo = UDF_I(inode); 1862 1863 if (!epos->bh) { 1864 if (!epos->offset) 1865 epos->offset = udf_file_entry_alloc_offset(inode); 1866 ptr = iinfo->i_ext.i_data + epos->offset - 1867 udf_file_entry_alloc_offset(inode) + 1868 iinfo->i_lenEAttr; 1869 alen = udf_file_entry_alloc_offset(inode) + 1870 iinfo->i_lenAlloc; 1871 } else { 1872 if (!epos->offset) 1873 epos->offset = sizeof(struct allocExtDesc); 1874 ptr = epos->bh->b_data + epos->offset; 1875 alen = sizeof(struct allocExtDesc) + 1876 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1877 lengthAllocDescs); 1878 } 1879 1880 switch (iinfo->i_alloc_type) { 1881 case ICBTAG_FLAG_AD_SHORT: 1882 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1883 if (!sad) 1884 return -1; 1885 etype = le32_to_cpu(sad->extLength) >> 30; 1886 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1887 eloc->partitionReferenceNum = 1888 iinfo->i_location.partitionReferenceNum; 1889 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1890 break; 1891 case ICBTAG_FLAG_AD_LONG: 1892 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1893 if (!lad) 1894 return -1; 1895 etype = le32_to_cpu(lad->extLength) >> 30; 1896 *eloc = lelb_to_cpu(lad->extLocation); 1897 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1898 break; 1899 default: 1900 udf_debug("alloc_type = %d unsupported\n", 1901 iinfo->i_alloc_type); 1902 return -1; 1903 } 1904 1905 return etype; 1906 } 1907 1908 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1909 struct kernel_lb_addr neloc, uint32_t nelen) 1910 { 1911 struct kernel_lb_addr oeloc; 1912 uint32_t oelen; 1913 int8_t etype; 1914 1915 if (epos.bh) 1916 get_bh(epos.bh); 1917 1918 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1919 udf_write_aext(inode, &epos, &neloc, nelen, 1); 1920 neloc = oeloc; 1921 nelen = (etype << 30) | oelen; 1922 } 1923 udf_add_aext(inode, &epos, &neloc, nelen, 1); 1924 brelse(epos.bh); 1925 1926 return (nelen >> 30); 1927 } 1928 1929 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1930 struct kernel_lb_addr eloc, uint32_t elen) 1931 { 1932 struct extent_position oepos; 1933 int adsize; 1934 int8_t etype; 1935 struct allocExtDesc *aed; 1936 struct udf_inode_info *iinfo; 1937 1938 if (epos.bh) { 1939 get_bh(epos.bh); 1940 get_bh(epos.bh); 1941 } 1942 1943 iinfo = UDF_I(inode); 1944 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1945 adsize = sizeof(struct short_ad); 1946 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1947 adsize = sizeof(struct long_ad); 1948 else 1949 adsize = 0; 1950 1951 oepos = epos; 1952 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1953 return -1; 1954 1955 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1956 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 1957 if (oepos.bh != epos.bh) { 1958 oepos.block = epos.block; 1959 brelse(oepos.bh); 1960 get_bh(epos.bh); 1961 oepos.bh = epos.bh; 1962 oepos.offset = epos.offset - adsize; 1963 } 1964 } 1965 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 1966 elen = 0; 1967 1968 if (epos.bh != oepos.bh) { 1969 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 1970 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1971 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1972 if (!oepos.bh) { 1973 iinfo->i_lenAlloc -= (adsize * 2); 1974 mark_inode_dirty(inode); 1975 } else { 1976 aed = (struct allocExtDesc *)oepos.bh->b_data; 1977 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1978 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1979 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1980 udf_update_tag(oepos.bh->b_data, 1981 oepos.offset - (2 * adsize)); 1982 else 1983 udf_update_tag(oepos.bh->b_data, 1984 sizeof(struct allocExtDesc)); 1985 mark_buffer_dirty_inode(oepos.bh, inode); 1986 } 1987 } else { 1988 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1989 if (!oepos.bh) { 1990 iinfo->i_lenAlloc -= adsize; 1991 mark_inode_dirty(inode); 1992 } else { 1993 aed = (struct allocExtDesc *)oepos.bh->b_data; 1994 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 1995 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1996 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1997 udf_update_tag(oepos.bh->b_data, 1998 epos.offset - adsize); 1999 else 2000 udf_update_tag(oepos.bh->b_data, 2001 sizeof(struct allocExtDesc)); 2002 mark_buffer_dirty_inode(oepos.bh, inode); 2003 } 2004 } 2005 2006 brelse(epos.bh); 2007 brelse(oepos.bh); 2008 2009 return (elen >> 30); 2010 } 2011 2012 int8_t inode_bmap(struct inode *inode, sector_t block, 2013 struct extent_position *pos, struct kernel_lb_addr *eloc, 2014 uint32_t *elen, sector_t *offset) 2015 { 2016 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2017 loff_t lbcount = 0, bcount = 2018 (loff_t) block << blocksize_bits; 2019 int8_t etype; 2020 struct udf_inode_info *iinfo; 2021 2022 iinfo = UDF_I(inode); 2023 pos->offset = 0; 2024 pos->block = iinfo->i_location; 2025 pos->bh = NULL; 2026 *elen = 0; 2027 2028 do { 2029 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2030 if (etype == -1) { 2031 *offset = (bcount - lbcount) >> blocksize_bits; 2032 iinfo->i_lenExtents = lbcount; 2033 return -1; 2034 } 2035 lbcount += *elen; 2036 } while (lbcount <= bcount); 2037 2038 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2039 2040 return etype; 2041 } 2042 2043 long udf_block_map(struct inode *inode, sector_t block) 2044 { 2045 struct kernel_lb_addr eloc; 2046 uint32_t elen; 2047 sector_t offset; 2048 struct extent_position epos = {}; 2049 int ret; 2050 2051 lock_kernel(); 2052 2053 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2054 (EXT_RECORDED_ALLOCATED >> 30)) 2055 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2056 else 2057 ret = 0; 2058 2059 unlock_kernel(); 2060 brelse(epos.bh); 2061 2062 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2063 return udf_fixed_to_variable(ret); 2064 else 2065 return ret; 2066 } 2067