1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 #include <linux/crc-itu-t.h> 40 #include <linux/mpage.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static umode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_sync_inode(struct inode *inode); 55 static int udf_alloc_i_data(struct inode *inode, size_t size); 56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_evict_inode(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 int want_delete = 0; 75 76 if (!inode->i_nlink && !is_bad_inode(inode)) { 77 want_delete = 1; 78 udf_setsize(inode, 0); 79 udf_update_inode(inode, IS_SYNC(inode)); 80 } else 81 truncate_inode_pages(&inode->i_data, 0); 82 invalidate_inode_buffers(inode); 83 clear_inode(inode); 84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 85 inode->i_size != iinfo->i_lenExtents) { 86 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 87 inode->i_ino, inode->i_mode, 88 (unsigned long long)inode->i_size, 89 (unsigned long long)iinfo->i_lenExtents); 90 } 91 kfree(iinfo->i_ext.i_data); 92 iinfo->i_ext.i_data = NULL; 93 if (want_delete) { 94 udf_free_inode(inode); 95 } 96 } 97 98 static void udf_write_failed(struct address_space *mapping, loff_t to) 99 { 100 struct inode *inode = mapping->host; 101 struct udf_inode_info *iinfo = UDF_I(inode); 102 loff_t isize = inode->i_size; 103 104 if (to > isize) { 105 truncate_pagecache(inode, to, isize); 106 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 107 down_write(&iinfo->i_data_sem); 108 udf_truncate_extents(inode); 109 up_write(&iinfo->i_data_sem); 110 } 111 } 112 } 113 114 static int udf_writepage(struct page *page, struct writeback_control *wbc) 115 { 116 return block_write_full_page(page, udf_get_block, wbc); 117 } 118 119 static int udf_writepages(struct address_space *mapping, 120 struct writeback_control *wbc) 121 { 122 return mpage_writepages(mapping, wbc, udf_get_block); 123 } 124 125 static int udf_readpage(struct file *file, struct page *page) 126 { 127 return mpage_readpage(page, udf_get_block); 128 } 129 130 static int udf_readpages(struct file *file, struct address_space *mapping, 131 struct list_head *pages, unsigned nr_pages) 132 { 133 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 134 } 135 136 static int udf_write_begin(struct file *file, struct address_space *mapping, 137 loff_t pos, unsigned len, unsigned flags, 138 struct page **pagep, void **fsdata) 139 { 140 int ret; 141 142 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 143 if (unlikely(ret)) 144 udf_write_failed(mapping, pos + len); 145 return ret; 146 } 147 148 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb, 149 const struct iovec *iov, 150 loff_t offset, unsigned long nr_segs) 151 { 152 struct file *file = iocb->ki_filp; 153 struct address_space *mapping = file->f_mapping; 154 struct inode *inode = mapping->host; 155 ssize_t ret; 156 157 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 158 udf_get_block); 159 if (unlikely(ret < 0 && (rw & WRITE))) 160 udf_write_failed(mapping, offset + iov_length(iov, nr_segs)); 161 return ret; 162 } 163 164 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 165 { 166 return generic_block_bmap(mapping, block, udf_get_block); 167 } 168 169 const struct address_space_operations udf_aops = { 170 .readpage = udf_readpage, 171 .readpages = udf_readpages, 172 .writepage = udf_writepage, 173 .writepages = udf_writepages, 174 .write_begin = udf_write_begin, 175 .write_end = generic_write_end, 176 .direct_IO = udf_direct_IO, 177 .bmap = udf_bmap, 178 }; 179 180 /* 181 * Expand file stored in ICB to a normal one-block-file 182 * 183 * This function requires i_data_sem for writing and releases it. 184 * This function requires i_mutex held 185 */ 186 int udf_expand_file_adinicb(struct inode *inode) 187 { 188 struct page *page; 189 char *kaddr; 190 struct udf_inode_info *iinfo = UDF_I(inode); 191 int err; 192 struct writeback_control udf_wbc = { 193 .sync_mode = WB_SYNC_NONE, 194 .nr_to_write = 1, 195 }; 196 197 if (!iinfo->i_lenAlloc) { 198 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 199 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 200 else 201 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 202 /* from now on we have normal address_space methods */ 203 inode->i_data.a_ops = &udf_aops; 204 up_write(&iinfo->i_data_sem); 205 mark_inode_dirty(inode); 206 return 0; 207 } 208 /* 209 * Release i_data_sem so that we can lock a page - page lock ranks 210 * above i_data_sem. i_mutex still protects us against file changes. 211 */ 212 up_write(&iinfo->i_data_sem); 213 214 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 215 if (!page) 216 return -ENOMEM; 217 218 if (!PageUptodate(page)) { 219 kaddr = kmap(page); 220 memset(kaddr + iinfo->i_lenAlloc, 0x00, 221 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 222 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 223 iinfo->i_lenAlloc); 224 flush_dcache_page(page); 225 SetPageUptodate(page); 226 kunmap(page); 227 } 228 down_write(&iinfo->i_data_sem); 229 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 230 iinfo->i_lenAlloc); 231 iinfo->i_lenAlloc = 0; 232 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 233 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 234 else 235 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 236 /* from now on we have normal address_space methods */ 237 inode->i_data.a_ops = &udf_aops; 238 up_write(&iinfo->i_data_sem); 239 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 240 if (err) { 241 /* Restore everything back so that we don't lose data... */ 242 lock_page(page); 243 kaddr = kmap(page); 244 down_write(&iinfo->i_data_sem); 245 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 246 inode->i_size); 247 kunmap(page); 248 unlock_page(page); 249 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 250 inode->i_data.a_ops = &udf_adinicb_aops; 251 up_write(&iinfo->i_data_sem); 252 } 253 page_cache_release(page); 254 mark_inode_dirty(inode); 255 256 return err; 257 } 258 259 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 260 int *err) 261 { 262 int newblock; 263 struct buffer_head *dbh = NULL; 264 struct kernel_lb_addr eloc; 265 uint8_t alloctype; 266 struct extent_position epos; 267 268 struct udf_fileident_bh sfibh, dfibh; 269 loff_t f_pos = udf_ext0_offset(inode); 270 int size = udf_ext0_offset(inode) + inode->i_size; 271 struct fileIdentDesc cfi, *sfi, *dfi; 272 struct udf_inode_info *iinfo = UDF_I(inode); 273 274 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 275 alloctype = ICBTAG_FLAG_AD_SHORT; 276 else 277 alloctype = ICBTAG_FLAG_AD_LONG; 278 279 if (!inode->i_size) { 280 iinfo->i_alloc_type = alloctype; 281 mark_inode_dirty(inode); 282 return NULL; 283 } 284 285 /* alloc block, and copy data to it */ 286 *block = udf_new_block(inode->i_sb, inode, 287 iinfo->i_location.partitionReferenceNum, 288 iinfo->i_location.logicalBlockNum, err); 289 if (!(*block)) 290 return NULL; 291 newblock = udf_get_pblock(inode->i_sb, *block, 292 iinfo->i_location.partitionReferenceNum, 293 0); 294 if (!newblock) 295 return NULL; 296 dbh = udf_tgetblk(inode->i_sb, newblock); 297 if (!dbh) 298 return NULL; 299 lock_buffer(dbh); 300 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 301 set_buffer_uptodate(dbh); 302 unlock_buffer(dbh); 303 mark_buffer_dirty_inode(dbh, inode); 304 305 sfibh.soffset = sfibh.eoffset = 306 f_pos & (inode->i_sb->s_blocksize - 1); 307 sfibh.sbh = sfibh.ebh = NULL; 308 dfibh.soffset = dfibh.eoffset = 0; 309 dfibh.sbh = dfibh.ebh = dbh; 310 while (f_pos < size) { 311 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 312 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 313 NULL, NULL, NULL); 314 if (!sfi) { 315 brelse(dbh); 316 return NULL; 317 } 318 iinfo->i_alloc_type = alloctype; 319 sfi->descTag.tagLocation = cpu_to_le32(*block); 320 dfibh.soffset = dfibh.eoffset; 321 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 322 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 323 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 324 sfi->fileIdent + 325 le16_to_cpu(sfi->lengthOfImpUse))) { 326 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 327 brelse(dbh); 328 return NULL; 329 } 330 } 331 mark_buffer_dirty_inode(dbh, inode); 332 333 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 334 iinfo->i_lenAlloc); 335 iinfo->i_lenAlloc = 0; 336 eloc.logicalBlockNum = *block; 337 eloc.partitionReferenceNum = 338 iinfo->i_location.partitionReferenceNum; 339 iinfo->i_lenExtents = inode->i_size; 340 epos.bh = NULL; 341 epos.block = iinfo->i_location; 342 epos.offset = udf_file_entry_alloc_offset(inode); 343 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 344 /* UniqueID stuff */ 345 346 brelse(epos.bh); 347 mark_inode_dirty(inode); 348 return dbh; 349 } 350 351 static int udf_get_block(struct inode *inode, sector_t block, 352 struct buffer_head *bh_result, int create) 353 { 354 int err, new; 355 sector_t phys = 0; 356 struct udf_inode_info *iinfo; 357 358 if (!create) { 359 phys = udf_block_map(inode, block); 360 if (phys) 361 map_bh(bh_result, inode->i_sb, phys); 362 return 0; 363 } 364 365 err = -EIO; 366 new = 0; 367 iinfo = UDF_I(inode); 368 369 down_write(&iinfo->i_data_sem); 370 if (block == iinfo->i_next_alloc_block + 1) { 371 iinfo->i_next_alloc_block++; 372 iinfo->i_next_alloc_goal++; 373 } 374 375 376 phys = inode_getblk(inode, block, &err, &new); 377 if (!phys) 378 goto abort; 379 380 if (new) 381 set_buffer_new(bh_result); 382 map_bh(bh_result, inode->i_sb, phys); 383 384 abort: 385 up_write(&iinfo->i_data_sem); 386 return err; 387 } 388 389 static struct buffer_head *udf_getblk(struct inode *inode, long block, 390 int create, int *err) 391 { 392 struct buffer_head *bh; 393 struct buffer_head dummy; 394 395 dummy.b_state = 0; 396 dummy.b_blocknr = -1000; 397 *err = udf_get_block(inode, block, &dummy, create); 398 if (!*err && buffer_mapped(&dummy)) { 399 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 400 if (buffer_new(&dummy)) { 401 lock_buffer(bh); 402 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 403 set_buffer_uptodate(bh); 404 unlock_buffer(bh); 405 mark_buffer_dirty_inode(bh, inode); 406 } 407 return bh; 408 } 409 410 return NULL; 411 } 412 413 /* Extend the file by 'blocks' blocks, return the number of extents added */ 414 static int udf_do_extend_file(struct inode *inode, 415 struct extent_position *last_pos, 416 struct kernel_long_ad *last_ext, 417 sector_t blocks) 418 { 419 sector_t add; 420 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 421 struct super_block *sb = inode->i_sb; 422 struct kernel_lb_addr prealloc_loc = {}; 423 int prealloc_len = 0; 424 struct udf_inode_info *iinfo; 425 int err; 426 427 /* The previous extent is fake and we should not extend by anything 428 * - there's nothing to do... */ 429 if (!blocks && fake) 430 return 0; 431 432 iinfo = UDF_I(inode); 433 /* Round the last extent up to a multiple of block size */ 434 if (last_ext->extLength & (sb->s_blocksize - 1)) { 435 last_ext->extLength = 436 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 437 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 438 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 439 iinfo->i_lenExtents = 440 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 441 ~(sb->s_blocksize - 1); 442 } 443 444 /* Last extent are just preallocated blocks? */ 445 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 446 EXT_NOT_RECORDED_ALLOCATED) { 447 /* Save the extent so that we can reattach it to the end */ 448 prealloc_loc = last_ext->extLocation; 449 prealloc_len = last_ext->extLength; 450 /* Mark the extent as a hole */ 451 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 452 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 453 last_ext->extLocation.logicalBlockNum = 0; 454 last_ext->extLocation.partitionReferenceNum = 0; 455 } 456 457 /* Can we merge with the previous extent? */ 458 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 459 EXT_NOT_RECORDED_NOT_ALLOCATED) { 460 add = ((1 << 30) - sb->s_blocksize - 461 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 462 sb->s_blocksize_bits; 463 if (add > blocks) 464 add = blocks; 465 blocks -= add; 466 last_ext->extLength += add << sb->s_blocksize_bits; 467 } 468 469 if (fake) { 470 udf_add_aext(inode, last_pos, &last_ext->extLocation, 471 last_ext->extLength, 1); 472 count++; 473 } else 474 udf_write_aext(inode, last_pos, &last_ext->extLocation, 475 last_ext->extLength, 1); 476 477 /* Managed to do everything necessary? */ 478 if (!blocks) 479 goto out; 480 481 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 482 last_ext->extLocation.logicalBlockNum = 0; 483 last_ext->extLocation.partitionReferenceNum = 0; 484 add = (1 << (30-sb->s_blocksize_bits)) - 1; 485 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 486 (add << sb->s_blocksize_bits); 487 488 /* Create enough extents to cover the whole hole */ 489 while (blocks > add) { 490 blocks -= add; 491 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 492 last_ext->extLength, 1); 493 if (err) 494 return err; 495 count++; 496 } 497 if (blocks) { 498 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 499 (blocks << sb->s_blocksize_bits); 500 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 501 last_ext->extLength, 1); 502 if (err) 503 return err; 504 count++; 505 } 506 507 out: 508 /* Do we have some preallocated blocks saved? */ 509 if (prealloc_len) { 510 err = udf_add_aext(inode, last_pos, &prealloc_loc, 511 prealloc_len, 1); 512 if (err) 513 return err; 514 last_ext->extLocation = prealloc_loc; 515 last_ext->extLength = prealloc_len; 516 count++; 517 } 518 519 /* last_pos should point to the last written extent... */ 520 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 521 last_pos->offset -= sizeof(struct short_ad); 522 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 523 last_pos->offset -= sizeof(struct long_ad); 524 else 525 return -EIO; 526 527 return count; 528 } 529 530 static int udf_extend_file(struct inode *inode, loff_t newsize) 531 { 532 533 struct extent_position epos; 534 struct kernel_lb_addr eloc; 535 uint32_t elen; 536 int8_t etype; 537 struct super_block *sb = inode->i_sb; 538 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 539 int adsize; 540 struct udf_inode_info *iinfo = UDF_I(inode); 541 struct kernel_long_ad extent; 542 int err; 543 544 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 545 adsize = sizeof(struct short_ad); 546 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 547 adsize = sizeof(struct long_ad); 548 else 549 BUG(); 550 551 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 552 553 /* File has extent covering the new size (could happen when extending 554 * inside a block)? */ 555 if (etype != -1) 556 return 0; 557 if (newsize & (sb->s_blocksize - 1)) 558 offset++; 559 /* Extended file just to the boundary of the last file block? */ 560 if (offset == 0) 561 return 0; 562 563 /* Truncate is extending the file by 'offset' blocks */ 564 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 565 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 566 /* File has no extents at all or has empty last 567 * indirect extent! Create a fake extent... */ 568 extent.extLocation.logicalBlockNum = 0; 569 extent.extLocation.partitionReferenceNum = 0; 570 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 571 } else { 572 epos.offset -= adsize; 573 etype = udf_next_aext(inode, &epos, &extent.extLocation, 574 &extent.extLength, 0); 575 extent.extLength |= etype << 30; 576 } 577 err = udf_do_extend_file(inode, &epos, &extent, offset); 578 if (err < 0) 579 goto out; 580 err = 0; 581 iinfo->i_lenExtents = newsize; 582 out: 583 brelse(epos.bh); 584 return err; 585 } 586 587 static sector_t inode_getblk(struct inode *inode, sector_t block, 588 int *err, int *new) 589 { 590 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 591 struct extent_position prev_epos, cur_epos, next_epos; 592 int count = 0, startnum = 0, endnum = 0; 593 uint32_t elen = 0, tmpelen; 594 struct kernel_lb_addr eloc, tmpeloc; 595 int c = 1; 596 loff_t lbcount = 0, b_off = 0; 597 uint32_t newblocknum, newblock; 598 sector_t offset = 0; 599 int8_t etype; 600 struct udf_inode_info *iinfo = UDF_I(inode); 601 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 602 int lastblock = 0; 603 bool isBeyondEOF; 604 605 *err = 0; 606 *new = 0; 607 prev_epos.offset = udf_file_entry_alloc_offset(inode); 608 prev_epos.block = iinfo->i_location; 609 prev_epos.bh = NULL; 610 cur_epos = next_epos = prev_epos; 611 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 612 613 /* find the extent which contains the block we are looking for. 614 alternate between laarr[0] and laarr[1] for locations of the 615 current extent, and the previous extent */ 616 do { 617 if (prev_epos.bh != cur_epos.bh) { 618 brelse(prev_epos.bh); 619 get_bh(cur_epos.bh); 620 prev_epos.bh = cur_epos.bh; 621 } 622 if (cur_epos.bh != next_epos.bh) { 623 brelse(cur_epos.bh); 624 get_bh(next_epos.bh); 625 cur_epos.bh = next_epos.bh; 626 } 627 628 lbcount += elen; 629 630 prev_epos.block = cur_epos.block; 631 cur_epos.block = next_epos.block; 632 633 prev_epos.offset = cur_epos.offset; 634 cur_epos.offset = next_epos.offset; 635 636 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 637 if (etype == -1) 638 break; 639 640 c = !c; 641 642 laarr[c].extLength = (etype << 30) | elen; 643 laarr[c].extLocation = eloc; 644 645 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 646 pgoal = eloc.logicalBlockNum + 647 ((elen + inode->i_sb->s_blocksize - 1) >> 648 inode->i_sb->s_blocksize_bits); 649 650 count++; 651 } while (lbcount + elen <= b_off); 652 653 b_off -= lbcount; 654 offset = b_off >> inode->i_sb->s_blocksize_bits; 655 /* 656 * Move prev_epos and cur_epos into indirect extent if we are at 657 * the pointer to it 658 */ 659 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 660 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 661 662 /* if the extent is allocated and recorded, return the block 663 if the extent is not a multiple of the blocksize, round up */ 664 665 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 666 if (elen & (inode->i_sb->s_blocksize - 1)) { 667 elen = EXT_RECORDED_ALLOCATED | 668 ((elen + inode->i_sb->s_blocksize - 1) & 669 ~(inode->i_sb->s_blocksize - 1)); 670 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 671 } 672 brelse(prev_epos.bh); 673 brelse(cur_epos.bh); 674 brelse(next_epos.bh); 675 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 676 return newblock; 677 } 678 679 /* Are we beyond EOF? */ 680 if (etype == -1) { 681 int ret; 682 isBeyondEOF = 1; 683 if (count) { 684 if (c) 685 laarr[0] = laarr[1]; 686 startnum = 1; 687 } else { 688 /* Create a fake extent when there's not one */ 689 memset(&laarr[0].extLocation, 0x00, 690 sizeof(struct kernel_lb_addr)); 691 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 692 /* Will udf_do_extend_file() create real extent from 693 a fake one? */ 694 startnum = (offset > 0); 695 } 696 /* Create extents for the hole between EOF and offset */ 697 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 698 if (ret < 0) { 699 brelse(prev_epos.bh); 700 brelse(cur_epos.bh); 701 brelse(next_epos.bh); 702 *err = ret; 703 return 0; 704 } 705 c = 0; 706 offset = 0; 707 count += ret; 708 /* We are not covered by a preallocated extent? */ 709 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 710 EXT_NOT_RECORDED_ALLOCATED) { 711 /* Is there any real extent? - otherwise we overwrite 712 * the fake one... */ 713 if (count) 714 c = !c; 715 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 716 inode->i_sb->s_blocksize; 717 memset(&laarr[c].extLocation, 0x00, 718 sizeof(struct kernel_lb_addr)); 719 count++; 720 } 721 endnum = c + 1; 722 lastblock = 1; 723 } else { 724 isBeyondEOF = 0; 725 endnum = startnum = ((count > 2) ? 2 : count); 726 727 /* if the current extent is in position 0, 728 swap it with the previous */ 729 if (!c && count != 1) { 730 laarr[2] = laarr[0]; 731 laarr[0] = laarr[1]; 732 laarr[1] = laarr[2]; 733 c = 1; 734 } 735 736 /* if the current block is located in an extent, 737 read the next extent */ 738 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 739 if (etype != -1) { 740 laarr[c + 1].extLength = (etype << 30) | elen; 741 laarr[c + 1].extLocation = eloc; 742 count++; 743 startnum++; 744 endnum++; 745 } else 746 lastblock = 1; 747 } 748 749 /* if the current extent is not recorded but allocated, get the 750 * block in the extent corresponding to the requested block */ 751 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 752 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 753 else { /* otherwise, allocate a new block */ 754 if (iinfo->i_next_alloc_block == block) 755 goal = iinfo->i_next_alloc_goal; 756 757 if (!goal) { 758 if (!(goal = pgoal)) /* XXX: what was intended here? */ 759 goal = iinfo->i_location.logicalBlockNum + 1; 760 } 761 762 newblocknum = udf_new_block(inode->i_sb, inode, 763 iinfo->i_location.partitionReferenceNum, 764 goal, err); 765 if (!newblocknum) { 766 brelse(prev_epos.bh); 767 brelse(cur_epos.bh); 768 brelse(next_epos.bh); 769 *err = -ENOSPC; 770 return 0; 771 } 772 if (isBeyondEOF) 773 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 774 } 775 776 /* if the extent the requsted block is located in contains multiple 777 * blocks, split the extent into at most three extents. blocks prior 778 * to requested block, requested block, and blocks after requested 779 * block */ 780 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 781 782 #ifdef UDF_PREALLOCATE 783 /* We preallocate blocks only for regular files. It also makes sense 784 * for directories but there's a problem when to drop the 785 * preallocation. We might use some delayed work for that but I feel 786 * it's overengineering for a filesystem like UDF. */ 787 if (S_ISREG(inode->i_mode)) 788 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 789 #endif 790 791 /* merge any continuous blocks in laarr */ 792 udf_merge_extents(inode, laarr, &endnum); 793 794 /* write back the new extents, inserting new extents if the new number 795 * of extents is greater than the old number, and deleting extents if 796 * the new number of extents is less than the old number */ 797 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 798 799 brelse(prev_epos.bh); 800 brelse(cur_epos.bh); 801 brelse(next_epos.bh); 802 803 newblock = udf_get_pblock(inode->i_sb, newblocknum, 804 iinfo->i_location.partitionReferenceNum, 0); 805 if (!newblock) { 806 *err = -EIO; 807 return 0; 808 } 809 *new = 1; 810 iinfo->i_next_alloc_block = block; 811 iinfo->i_next_alloc_goal = newblocknum; 812 inode->i_ctime = current_fs_time(inode->i_sb); 813 814 if (IS_SYNC(inode)) 815 udf_sync_inode(inode); 816 else 817 mark_inode_dirty(inode); 818 819 return newblock; 820 } 821 822 static void udf_split_extents(struct inode *inode, int *c, int offset, 823 int newblocknum, 824 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 825 int *endnum) 826 { 827 unsigned long blocksize = inode->i_sb->s_blocksize; 828 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 829 830 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 831 (laarr[*c].extLength >> 30) == 832 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 833 int curr = *c; 834 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 835 blocksize - 1) >> blocksize_bits; 836 int8_t etype = (laarr[curr].extLength >> 30); 837 838 if (blen == 1) 839 ; 840 else if (!offset || blen == offset + 1) { 841 laarr[curr + 2] = laarr[curr + 1]; 842 laarr[curr + 1] = laarr[curr]; 843 } else { 844 laarr[curr + 3] = laarr[curr + 1]; 845 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 846 } 847 848 if (offset) { 849 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 850 udf_free_blocks(inode->i_sb, inode, 851 &laarr[curr].extLocation, 852 0, offset); 853 laarr[curr].extLength = 854 EXT_NOT_RECORDED_NOT_ALLOCATED | 855 (offset << blocksize_bits); 856 laarr[curr].extLocation.logicalBlockNum = 0; 857 laarr[curr].extLocation. 858 partitionReferenceNum = 0; 859 } else 860 laarr[curr].extLength = (etype << 30) | 861 (offset << blocksize_bits); 862 curr++; 863 (*c)++; 864 (*endnum)++; 865 } 866 867 laarr[curr].extLocation.logicalBlockNum = newblocknum; 868 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 869 laarr[curr].extLocation.partitionReferenceNum = 870 UDF_I(inode)->i_location.partitionReferenceNum; 871 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 872 blocksize; 873 curr++; 874 875 if (blen != offset + 1) { 876 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 877 laarr[curr].extLocation.logicalBlockNum += 878 offset + 1; 879 laarr[curr].extLength = (etype << 30) | 880 ((blen - (offset + 1)) << blocksize_bits); 881 curr++; 882 (*endnum)++; 883 } 884 } 885 } 886 887 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 888 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 889 int *endnum) 890 { 891 int start, length = 0, currlength = 0, i; 892 893 if (*endnum >= (c + 1)) { 894 if (!lastblock) 895 return; 896 else 897 start = c; 898 } else { 899 if ((laarr[c + 1].extLength >> 30) == 900 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 901 start = c + 1; 902 length = currlength = 903 (((laarr[c + 1].extLength & 904 UDF_EXTENT_LENGTH_MASK) + 905 inode->i_sb->s_blocksize - 1) >> 906 inode->i_sb->s_blocksize_bits); 907 } else 908 start = c; 909 } 910 911 for (i = start + 1; i <= *endnum; i++) { 912 if (i == *endnum) { 913 if (lastblock) 914 length += UDF_DEFAULT_PREALLOC_BLOCKS; 915 } else if ((laarr[i].extLength >> 30) == 916 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 917 length += (((laarr[i].extLength & 918 UDF_EXTENT_LENGTH_MASK) + 919 inode->i_sb->s_blocksize - 1) >> 920 inode->i_sb->s_blocksize_bits); 921 } else 922 break; 923 } 924 925 if (length) { 926 int next = laarr[start].extLocation.logicalBlockNum + 927 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 928 inode->i_sb->s_blocksize - 1) >> 929 inode->i_sb->s_blocksize_bits); 930 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 931 laarr[start].extLocation.partitionReferenceNum, 932 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 933 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 934 currlength); 935 if (numalloc) { 936 if (start == (c + 1)) 937 laarr[start].extLength += 938 (numalloc << 939 inode->i_sb->s_blocksize_bits); 940 else { 941 memmove(&laarr[c + 2], &laarr[c + 1], 942 sizeof(struct long_ad) * (*endnum - (c + 1))); 943 (*endnum)++; 944 laarr[c + 1].extLocation.logicalBlockNum = next; 945 laarr[c + 1].extLocation.partitionReferenceNum = 946 laarr[c].extLocation. 947 partitionReferenceNum; 948 laarr[c + 1].extLength = 949 EXT_NOT_RECORDED_ALLOCATED | 950 (numalloc << 951 inode->i_sb->s_blocksize_bits); 952 start = c + 1; 953 } 954 955 for (i = start + 1; numalloc && i < *endnum; i++) { 956 int elen = ((laarr[i].extLength & 957 UDF_EXTENT_LENGTH_MASK) + 958 inode->i_sb->s_blocksize - 1) >> 959 inode->i_sb->s_blocksize_bits; 960 961 if (elen > numalloc) { 962 laarr[i].extLength -= 963 (numalloc << 964 inode->i_sb->s_blocksize_bits); 965 numalloc = 0; 966 } else { 967 numalloc -= elen; 968 if (*endnum > (i + 1)) 969 memmove(&laarr[i], 970 &laarr[i + 1], 971 sizeof(struct long_ad) * 972 (*endnum - (i + 1))); 973 i--; 974 (*endnum)--; 975 } 976 } 977 UDF_I(inode)->i_lenExtents += 978 numalloc << inode->i_sb->s_blocksize_bits; 979 } 980 } 981 } 982 983 static void udf_merge_extents(struct inode *inode, 984 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 985 int *endnum) 986 { 987 int i; 988 unsigned long blocksize = inode->i_sb->s_blocksize; 989 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 990 991 for (i = 0; i < (*endnum - 1); i++) { 992 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 993 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 994 995 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 996 (((li->extLength >> 30) == 997 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 998 ((lip1->extLocation.logicalBlockNum - 999 li->extLocation.logicalBlockNum) == 1000 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1001 blocksize - 1) >> blocksize_bits)))) { 1002 1003 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1004 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1005 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1006 lip1->extLength = (lip1->extLength - 1007 (li->extLength & 1008 UDF_EXTENT_LENGTH_MASK) + 1009 UDF_EXTENT_LENGTH_MASK) & 1010 ~(blocksize - 1); 1011 li->extLength = (li->extLength & 1012 UDF_EXTENT_FLAG_MASK) + 1013 (UDF_EXTENT_LENGTH_MASK + 1) - 1014 blocksize; 1015 lip1->extLocation.logicalBlockNum = 1016 li->extLocation.logicalBlockNum + 1017 ((li->extLength & 1018 UDF_EXTENT_LENGTH_MASK) >> 1019 blocksize_bits); 1020 } else { 1021 li->extLength = lip1->extLength + 1022 (((li->extLength & 1023 UDF_EXTENT_LENGTH_MASK) + 1024 blocksize - 1) & ~(blocksize - 1)); 1025 if (*endnum > (i + 2)) 1026 memmove(&laarr[i + 1], &laarr[i + 2], 1027 sizeof(struct long_ad) * 1028 (*endnum - (i + 2))); 1029 i--; 1030 (*endnum)--; 1031 } 1032 } else if (((li->extLength >> 30) == 1033 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1034 ((lip1->extLength >> 30) == 1035 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1036 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1037 ((li->extLength & 1038 UDF_EXTENT_LENGTH_MASK) + 1039 blocksize - 1) >> blocksize_bits); 1040 li->extLocation.logicalBlockNum = 0; 1041 li->extLocation.partitionReferenceNum = 0; 1042 1043 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1044 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1045 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1046 lip1->extLength = (lip1->extLength - 1047 (li->extLength & 1048 UDF_EXTENT_LENGTH_MASK) + 1049 UDF_EXTENT_LENGTH_MASK) & 1050 ~(blocksize - 1); 1051 li->extLength = (li->extLength & 1052 UDF_EXTENT_FLAG_MASK) + 1053 (UDF_EXTENT_LENGTH_MASK + 1) - 1054 blocksize; 1055 } else { 1056 li->extLength = lip1->extLength + 1057 (((li->extLength & 1058 UDF_EXTENT_LENGTH_MASK) + 1059 blocksize - 1) & ~(blocksize - 1)); 1060 if (*endnum > (i + 2)) 1061 memmove(&laarr[i + 1], &laarr[i + 2], 1062 sizeof(struct long_ad) * 1063 (*endnum - (i + 2))); 1064 i--; 1065 (*endnum)--; 1066 } 1067 } else if ((li->extLength >> 30) == 1068 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1069 udf_free_blocks(inode->i_sb, inode, 1070 &li->extLocation, 0, 1071 ((li->extLength & 1072 UDF_EXTENT_LENGTH_MASK) + 1073 blocksize - 1) >> blocksize_bits); 1074 li->extLocation.logicalBlockNum = 0; 1075 li->extLocation.partitionReferenceNum = 0; 1076 li->extLength = (li->extLength & 1077 UDF_EXTENT_LENGTH_MASK) | 1078 EXT_NOT_RECORDED_NOT_ALLOCATED; 1079 } 1080 } 1081 } 1082 1083 static void udf_update_extents(struct inode *inode, 1084 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1085 int startnum, int endnum, 1086 struct extent_position *epos) 1087 { 1088 int start = 0, i; 1089 struct kernel_lb_addr tmploc; 1090 uint32_t tmplen; 1091 1092 if (startnum > endnum) { 1093 for (i = 0; i < (startnum - endnum); i++) 1094 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1095 laarr[i].extLength); 1096 } else if (startnum < endnum) { 1097 for (i = 0; i < (endnum - startnum); i++) { 1098 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1099 laarr[i].extLength); 1100 udf_next_aext(inode, epos, &laarr[i].extLocation, 1101 &laarr[i].extLength, 1); 1102 start++; 1103 } 1104 } 1105 1106 for (i = start; i < endnum; i++) { 1107 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1108 udf_write_aext(inode, epos, &laarr[i].extLocation, 1109 laarr[i].extLength, 1); 1110 } 1111 } 1112 1113 struct buffer_head *udf_bread(struct inode *inode, int block, 1114 int create, int *err) 1115 { 1116 struct buffer_head *bh = NULL; 1117 1118 bh = udf_getblk(inode, block, create, err); 1119 if (!bh) 1120 return NULL; 1121 1122 if (buffer_uptodate(bh)) 1123 return bh; 1124 1125 ll_rw_block(READ, 1, &bh); 1126 1127 wait_on_buffer(bh); 1128 if (buffer_uptodate(bh)) 1129 return bh; 1130 1131 brelse(bh); 1132 *err = -EIO; 1133 return NULL; 1134 } 1135 1136 int udf_setsize(struct inode *inode, loff_t newsize) 1137 { 1138 int err; 1139 struct udf_inode_info *iinfo; 1140 int bsize = 1 << inode->i_blkbits; 1141 1142 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1143 S_ISLNK(inode->i_mode))) 1144 return -EINVAL; 1145 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1146 return -EPERM; 1147 1148 iinfo = UDF_I(inode); 1149 if (newsize > inode->i_size) { 1150 down_write(&iinfo->i_data_sem); 1151 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1152 if (bsize < 1153 (udf_file_entry_alloc_offset(inode) + newsize)) { 1154 err = udf_expand_file_adinicb(inode); 1155 if (err) 1156 return err; 1157 down_write(&iinfo->i_data_sem); 1158 } else { 1159 iinfo->i_lenAlloc = newsize; 1160 goto set_size; 1161 } 1162 } 1163 err = udf_extend_file(inode, newsize); 1164 if (err) { 1165 up_write(&iinfo->i_data_sem); 1166 return err; 1167 } 1168 set_size: 1169 truncate_setsize(inode, newsize); 1170 up_write(&iinfo->i_data_sem); 1171 } else { 1172 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1173 down_write(&iinfo->i_data_sem); 1174 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1175 0x00, bsize - newsize - 1176 udf_file_entry_alloc_offset(inode)); 1177 iinfo->i_lenAlloc = newsize; 1178 truncate_setsize(inode, newsize); 1179 up_write(&iinfo->i_data_sem); 1180 goto update_time; 1181 } 1182 err = block_truncate_page(inode->i_mapping, newsize, 1183 udf_get_block); 1184 if (err) 1185 return err; 1186 down_write(&iinfo->i_data_sem); 1187 truncate_setsize(inode, newsize); 1188 udf_truncate_extents(inode); 1189 up_write(&iinfo->i_data_sem); 1190 } 1191 update_time: 1192 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1193 if (IS_SYNC(inode)) 1194 udf_sync_inode(inode); 1195 else 1196 mark_inode_dirty(inode); 1197 return 0; 1198 } 1199 1200 static void __udf_read_inode(struct inode *inode) 1201 { 1202 struct buffer_head *bh = NULL; 1203 struct fileEntry *fe; 1204 uint16_t ident; 1205 struct udf_inode_info *iinfo = UDF_I(inode); 1206 1207 /* 1208 * Set defaults, but the inode is still incomplete! 1209 * Note: get_new_inode() sets the following on a new inode: 1210 * i_sb = sb 1211 * i_no = ino 1212 * i_flags = sb->s_flags 1213 * i_state = 0 1214 * clean_inode(): zero fills and sets 1215 * i_count = 1 1216 * i_nlink = 1 1217 * i_op = NULL; 1218 */ 1219 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1220 if (!bh) { 1221 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1222 make_bad_inode(inode); 1223 return; 1224 } 1225 1226 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1227 ident != TAG_IDENT_USE) { 1228 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1229 inode->i_ino, ident); 1230 brelse(bh); 1231 make_bad_inode(inode); 1232 return; 1233 } 1234 1235 fe = (struct fileEntry *)bh->b_data; 1236 1237 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1238 struct buffer_head *ibh; 1239 1240 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1241 &ident); 1242 if (ident == TAG_IDENT_IE && ibh) { 1243 struct buffer_head *nbh = NULL; 1244 struct kernel_lb_addr loc; 1245 struct indirectEntry *ie; 1246 1247 ie = (struct indirectEntry *)ibh->b_data; 1248 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1249 1250 if (ie->indirectICB.extLength && 1251 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1252 &ident))) { 1253 if (ident == TAG_IDENT_FE || 1254 ident == TAG_IDENT_EFE) { 1255 memcpy(&iinfo->i_location, 1256 &loc, 1257 sizeof(struct kernel_lb_addr)); 1258 brelse(bh); 1259 brelse(ibh); 1260 brelse(nbh); 1261 __udf_read_inode(inode); 1262 return; 1263 } 1264 brelse(nbh); 1265 } 1266 } 1267 brelse(ibh); 1268 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1269 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1270 le16_to_cpu(fe->icbTag.strategyType)); 1271 brelse(bh); 1272 make_bad_inode(inode); 1273 return; 1274 } 1275 udf_fill_inode(inode, bh); 1276 1277 brelse(bh); 1278 } 1279 1280 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1281 { 1282 struct fileEntry *fe; 1283 struct extendedFileEntry *efe; 1284 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1285 struct udf_inode_info *iinfo = UDF_I(inode); 1286 unsigned int link_count; 1287 1288 fe = (struct fileEntry *)bh->b_data; 1289 efe = (struct extendedFileEntry *)bh->b_data; 1290 1291 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1292 iinfo->i_strat4096 = 0; 1293 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1294 iinfo->i_strat4096 = 1; 1295 1296 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1297 ICBTAG_FLAG_AD_MASK; 1298 iinfo->i_unique = 0; 1299 iinfo->i_lenEAttr = 0; 1300 iinfo->i_lenExtents = 0; 1301 iinfo->i_lenAlloc = 0; 1302 iinfo->i_next_alloc_block = 0; 1303 iinfo->i_next_alloc_goal = 0; 1304 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1305 iinfo->i_efe = 1; 1306 iinfo->i_use = 0; 1307 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1308 sizeof(struct extendedFileEntry))) { 1309 make_bad_inode(inode); 1310 return; 1311 } 1312 memcpy(iinfo->i_ext.i_data, 1313 bh->b_data + sizeof(struct extendedFileEntry), 1314 inode->i_sb->s_blocksize - 1315 sizeof(struct extendedFileEntry)); 1316 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1317 iinfo->i_efe = 0; 1318 iinfo->i_use = 0; 1319 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1320 sizeof(struct fileEntry))) { 1321 make_bad_inode(inode); 1322 return; 1323 } 1324 memcpy(iinfo->i_ext.i_data, 1325 bh->b_data + sizeof(struct fileEntry), 1326 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1327 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1328 iinfo->i_efe = 0; 1329 iinfo->i_use = 1; 1330 iinfo->i_lenAlloc = le32_to_cpu( 1331 ((struct unallocSpaceEntry *)bh->b_data)-> 1332 lengthAllocDescs); 1333 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1334 sizeof(struct unallocSpaceEntry))) { 1335 make_bad_inode(inode); 1336 return; 1337 } 1338 memcpy(iinfo->i_ext.i_data, 1339 bh->b_data + sizeof(struct unallocSpaceEntry), 1340 inode->i_sb->s_blocksize - 1341 sizeof(struct unallocSpaceEntry)); 1342 return; 1343 } 1344 1345 read_lock(&sbi->s_cred_lock); 1346 i_uid_write(inode, le32_to_cpu(fe->uid)); 1347 if (!uid_valid(inode->i_uid) || 1348 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1349 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1350 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1351 1352 i_gid_write(inode, le32_to_cpu(fe->gid)); 1353 if (!gid_valid(inode->i_gid) || 1354 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1355 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1356 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1357 1358 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1359 sbi->s_fmode != UDF_INVALID_MODE) 1360 inode->i_mode = sbi->s_fmode; 1361 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1362 sbi->s_dmode != UDF_INVALID_MODE) 1363 inode->i_mode = sbi->s_dmode; 1364 else 1365 inode->i_mode = udf_convert_permissions(fe); 1366 inode->i_mode &= ~sbi->s_umask; 1367 read_unlock(&sbi->s_cred_lock); 1368 1369 link_count = le16_to_cpu(fe->fileLinkCount); 1370 if (!link_count) 1371 link_count = 1; 1372 set_nlink(inode, link_count); 1373 1374 inode->i_size = le64_to_cpu(fe->informationLength); 1375 iinfo->i_lenExtents = inode->i_size; 1376 1377 if (iinfo->i_efe == 0) { 1378 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1379 (inode->i_sb->s_blocksize_bits - 9); 1380 1381 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1382 inode->i_atime = sbi->s_record_time; 1383 1384 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1385 fe->modificationTime)) 1386 inode->i_mtime = sbi->s_record_time; 1387 1388 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1389 inode->i_ctime = sbi->s_record_time; 1390 1391 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1392 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1393 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1394 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1395 } else { 1396 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1397 (inode->i_sb->s_blocksize_bits - 9); 1398 1399 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1400 inode->i_atime = sbi->s_record_time; 1401 1402 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1403 efe->modificationTime)) 1404 inode->i_mtime = sbi->s_record_time; 1405 1406 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1407 iinfo->i_crtime = sbi->s_record_time; 1408 1409 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1410 inode->i_ctime = sbi->s_record_time; 1411 1412 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1413 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1414 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1415 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1416 } 1417 1418 switch (fe->icbTag.fileType) { 1419 case ICBTAG_FILE_TYPE_DIRECTORY: 1420 inode->i_op = &udf_dir_inode_operations; 1421 inode->i_fop = &udf_dir_operations; 1422 inode->i_mode |= S_IFDIR; 1423 inc_nlink(inode); 1424 break; 1425 case ICBTAG_FILE_TYPE_REALTIME: 1426 case ICBTAG_FILE_TYPE_REGULAR: 1427 case ICBTAG_FILE_TYPE_UNDEF: 1428 case ICBTAG_FILE_TYPE_VAT20: 1429 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1430 inode->i_data.a_ops = &udf_adinicb_aops; 1431 else 1432 inode->i_data.a_ops = &udf_aops; 1433 inode->i_op = &udf_file_inode_operations; 1434 inode->i_fop = &udf_file_operations; 1435 inode->i_mode |= S_IFREG; 1436 break; 1437 case ICBTAG_FILE_TYPE_BLOCK: 1438 inode->i_mode |= S_IFBLK; 1439 break; 1440 case ICBTAG_FILE_TYPE_CHAR: 1441 inode->i_mode |= S_IFCHR; 1442 break; 1443 case ICBTAG_FILE_TYPE_FIFO: 1444 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1445 break; 1446 case ICBTAG_FILE_TYPE_SOCKET: 1447 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1448 break; 1449 case ICBTAG_FILE_TYPE_SYMLINK: 1450 inode->i_data.a_ops = &udf_symlink_aops; 1451 inode->i_op = &udf_symlink_inode_operations; 1452 inode->i_mode = S_IFLNK | S_IRWXUGO; 1453 break; 1454 case ICBTAG_FILE_TYPE_MAIN: 1455 udf_debug("METADATA FILE-----\n"); 1456 break; 1457 case ICBTAG_FILE_TYPE_MIRROR: 1458 udf_debug("METADATA MIRROR FILE-----\n"); 1459 break; 1460 case ICBTAG_FILE_TYPE_BITMAP: 1461 udf_debug("METADATA BITMAP FILE-----\n"); 1462 break; 1463 default: 1464 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1465 inode->i_ino, fe->icbTag.fileType); 1466 make_bad_inode(inode); 1467 return; 1468 } 1469 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1470 struct deviceSpec *dsea = 1471 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1472 if (dsea) { 1473 init_special_inode(inode, inode->i_mode, 1474 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1475 le32_to_cpu(dsea->minorDeviceIdent))); 1476 /* Developer ID ??? */ 1477 } else 1478 make_bad_inode(inode); 1479 } 1480 } 1481 1482 static int udf_alloc_i_data(struct inode *inode, size_t size) 1483 { 1484 struct udf_inode_info *iinfo = UDF_I(inode); 1485 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1486 1487 if (!iinfo->i_ext.i_data) { 1488 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1489 inode->i_ino); 1490 return -ENOMEM; 1491 } 1492 1493 return 0; 1494 } 1495 1496 static umode_t udf_convert_permissions(struct fileEntry *fe) 1497 { 1498 umode_t mode; 1499 uint32_t permissions; 1500 uint32_t flags; 1501 1502 permissions = le32_to_cpu(fe->permissions); 1503 flags = le16_to_cpu(fe->icbTag.flags); 1504 1505 mode = ((permissions) & S_IRWXO) | 1506 ((permissions >> 2) & S_IRWXG) | 1507 ((permissions >> 4) & S_IRWXU) | 1508 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1509 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1510 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1511 1512 return mode; 1513 } 1514 1515 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1516 { 1517 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1518 } 1519 1520 static int udf_sync_inode(struct inode *inode) 1521 { 1522 return udf_update_inode(inode, 1); 1523 } 1524 1525 static int udf_update_inode(struct inode *inode, int do_sync) 1526 { 1527 struct buffer_head *bh = NULL; 1528 struct fileEntry *fe; 1529 struct extendedFileEntry *efe; 1530 uint64_t lb_recorded; 1531 uint32_t udfperms; 1532 uint16_t icbflags; 1533 uint16_t crclen; 1534 int err = 0; 1535 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1536 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1537 struct udf_inode_info *iinfo = UDF_I(inode); 1538 1539 bh = udf_tgetblk(inode->i_sb, 1540 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1541 if (!bh) { 1542 udf_debug("getblk failure\n"); 1543 return -ENOMEM; 1544 } 1545 1546 lock_buffer(bh); 1547 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1548 fe = (struct fileEntry *)bh->b_data; 1549 efe = (struct extendedFileEntry *)bh->b_data; 1550 1551 if (iinfo->i_use) { 1552 struct unallocSpaceEntry *use = 1553 (struct unallocSpaceEntry *)bh->b_data; 1554 1555 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1556 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1557 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1558 sizeof(struct unallocSpaceEntry)); 1559 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1560 use->descTag.tagLocation = 1561 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1562 crclen = sizeof(struct unallocSpaceEntry) + 1563 iinfo->i_lenAlloc - sizeof(struct tag); 1564 use->descTag.descCRCLength = cpu_to_le16(crclen); 1565 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1566 sizeof(struct tag), 1567 crclen)); 1568 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1569 1570 goto out; 1571 } 1572 1573 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1574 fe->uid = cpu_to_le32(-1); 1575 else 1576 fe->uid = cpu_to_le32(i_uid_read(inode)); 1577 1578 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1579 fe->gid = cpu_to_le32(-1); 1580 else 1581 fe->gid = cpu_to_le32(i_gid_read(inode)); 1582 1583 udfperms = ((inode->i_mode & S_IRWXO)) | 1584 ((inode->i_mode & S_IRWXG) << 2) | 1585 ((inode->i_mode & S_IRWXU) << 4); 1586 1587 udfperms |= (le32_to_cpu(fe->permissions) & 1588 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1589 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1590 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1591 fe->permissions = cpu_to_le32(udfperms); 1592 1593 if (S_ISDIR(inode->i_mode)) 1594 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1595 else 1596 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1597 1598 fe->informationLength = cpu_to_le64(inode->i_size); 1599 1600 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1601 struct regid *eid; 1602 struct deviceSpec *dsea = 1603 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1604 if (!dsea) { 1605 dsea = (struct deviceSpec *) 1606 udf_add_extendedattr(inode, 1607 sizeof(struct deviceSpec) + 1608 sizeof(struct regid), 12, 0x3); 1609 dsea->attrType = cpu_to_le32(12); 1610 dsea->attrSubtype = 1; 1611 dsea->attrLength = cpu_to_le32( 1612 sizeof(struct deviceSpec) + 1613 sizeof(struct regid)); 1614 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1615 } 1616 eid = (struct regid *)dsea->impUse; 1617 memset(eid, 0, sizeof(struct regid)); 1618 strcpy(eid->ident, UDF_ID_DEVELOPER); 1619 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1620 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1621 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1622 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1623 } 1624 1625 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1626 lb_recorded = 0; /* No extents => no blocks! */ 1627 else 1628 lb_recorded = 1629 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1630 (blocksize_bits - 9); 1631 1632 if (iinfo->i_efe == 0) { 1633 memcpy(bh->b_data + sizeof(struct fileEntry), 1634 iinfo->i_ext.i_data, 1635 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1636 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1637 1638 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1639 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1640 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1641 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1642 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1643 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1644 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1645 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1646 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1647 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1648 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1649 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1650 crclen = sizeof(struct fileEntry); 1651 } else { 1652 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1653 iinfo->i_ext.i_data, 1654 inode->i_sb->s_blocksize - 1655 sizeof(struct extendedFileEntry)); 1656 efe->objectSize = cpu_to_le64(inode->i_size); 1657 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1658 1659 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1660 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1661 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1662 iinfo->i_crtime = inode->i_atime; 1663 1664 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1665 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1666 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1667 iinfo->i_crtime = inode->i_mtime; 1668 1669 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1670 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1671 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1672 iinfo->i_crtime = inode->i_ctime; 1673 1674 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1675 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1676 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1677 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1678 1679 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1680 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1681 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1682 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1683 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1684 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1685 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1686 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1687 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1688 crclen = sizeof(struct extendedFileEntry); 1689 } 1690 if (iinfo->i_strat4096) { 1691 fe->icbTag.strategyType = cpu_to_le16(4096); 1692 fe->icbTag.strategyParameter = cpu_to_le16(1); 1693 fe->icbTag.numEntries = cpu_to_le16(2); 1694 } else { 1695 fe->icbTag.strategyType = cpu_to_le16(4); 1696 fe->icbTag.numEntries = cpu_to_le16(1); 1697 } 1698 1699 if (S_ISDIR(inode->i_mode)) 1700 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1701 else if (S_ISREG(inode->i_mode)) 1702 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1703 else if (S_ISLNK(inode->i_mode)) 1704 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1705 else if (S_ISBLK(inode->i_mode)) 1706 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1707 else if (S_ISCHR(inode->i_mode)) 1708 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1709 else if (S_ISFIFO(inode->i_mode)) 1710 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1711 else if (S_ISSOCK(inode->i_mode)) 1712 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1713 1714 icbflags = iinfo->i_alloc_type | 1715 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1716 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1717 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1718 (le16_to_cpu(fe->icbTag.flags) & 1719 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1720 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1721 1722 fe->icbTag.flags = cpu_to_le16(icbflags); 1723 if (sbi->s_udfrev >= 0x0200) 1724 fe->descTag.descVersion = cpu_to_le16(3); 1725 else 1726 fe->descTag.descVersion = cpu_to_le16(2); 1727 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1728 fe->descTag.tagLocation = cpu_to_le32( 1729 iinfo->i_location.logicalBlockNum); 1730 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1731 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1732 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1733 crclen)); 1734 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1735 1736 out: 1737 set_buffer_uptodate(bh); 1738 unlock_buffer(bh); 1739 1740 /* write the data blocks */ 1741 mark_buffer_dirty(bh); 1742 if (do_sync) { 1743 sync_dirty_buffer(bh); 1744 if (buffer_write_io_error(bh)) { 1745 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1746 inode->i_ino); 1747 err = -EIO; 1748 } 1749 } 1750 brelse(bh); 1751 1752 return err; 1753 } 1754 1755 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1756 { 1757 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1758 struct inode *inode = iget_locked(sb, block); 1759 1760 if (!inode) 1761 return NULL; 1762 1763 if (inode->i_state & I_NEW) { 1764 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1765 __udf_read_inode(inode); 1766 unlock_new_inode(inode); 1767 } 1768 1769 if (is_bad_inode(inode)) 1770 goto out_iput; 1771 1772 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1773 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1774 udf_debug("block=%d, partition=%d out of range\n", 1775 ino->logicalBlockNum, ino->partitionReferenceNum); 1776 make_bad_inode(inode); 1777 goto out_iput; 1778 } 1779 1780 return inode; 1781 1782 out_iput: 1783 iput(inode); 1784 return NULL; 1785 } 1786 1787 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1788 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1789 { 1790 int adsize; 1791 struct short_ad *sad = NULL; 1792 struct long_ad *lad = NULL; 1793 struct allocExtDesc *aed; 1794 uint8_t *ptr; 1795 struct udf_inode_info *iinfo = UDF_I(inode); 1796 1797 if (!epos->bh) 1798 ptr = iinfo->i_ext.i_data + epos->offset - 1799 udf_file_entry_alloc_offset(inode) + 1800 iinfo->i_lenEAttr; 1801 else 1802 ptr = epos->bh->b_data + epos->offset; 1803 1804 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1805 adsize = sizeof(struct short_ad); 1806 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1807 adsize = sizeof(struct long_ad); 1808 else 1809 return -EIO; 1810 1811 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1812 unsigned char *sptr, *dptr; 1813 struct buffer_head *nbh; 1814 int err, loffset; 1815 struct kernel_lb_addr obloc = epos->block; 1816 1817 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1818 obloc.partitionReferenceNum, 1819 obloc.logicalBlockNum, &err); 1820 if (!epos->block.logicalBlockNum) 1821 return -ENOSPC; 1822 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1823 &epos->block, 1824 0)); 1825 if (!nbh) 1826 return -EIO; 1827 lock_buffer(nbh); 1828 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1829 set_buffer_uptodate(nbh); 1830 unlock_buffer(nbh); 1831 mark_buffer_dirty_inode(nbh, inode); 1832 1833 aed = (struct allocExtDesc *)(nbh->b_data); 1834 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1835 aed->previousAllocExtLocation = 1836 cpu_to_le32(obloc.logicalBlockNum); 1837 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1838 loffset = epos->offset; 1839 aed->lengthAllocDescs = cpu_to_le32(adsize); 1840 sptr = ptr - adsize; 1841 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1842 memcpy(dptr, sptr, adsize); 1843 epos->offset = sizeof(struct allocExtDesc) + adsize; 1844 } else { 1845 loffset = epos->offset + adsize; 1846 aed->lengthAllocDescs = cpu_to_le32(0); 1847 sptr = ptr; 1848 epos->offset = sizeof(struct allocExtDesc); 1849 1850 if (epos->bh) { 1851 aed = (struct allocExtDesc *)epos->bh->b_data; 1852 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1853 } else { 1854 iinfo->i_lenAlloc += adsize; 1855 mark_inode_dirty(inode); 1856 } 1857 } 1858 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1859 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1860 epos->block.logicalBlockNum, sizeof(struct tag)); 1861 else 1862 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1863 epos->block.logicalBlockNum, sizeof(struct tag)); 1864 switch (iinfo->i_alloc_type) { 1865 case ICBTAG_FLAG_AD_SHORT: 1866 sad = (struct short_ad *)sptr; 1867 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1868 inode->i_sb->s_blocksize); 1869 sad->extPosition = 1870 cpu_to_le32(epos->block.logicalBlockNum); 1871 break; 1872 case ICBTAG_FLAG_AD_LONG: 1873 lad = (struct long_ad *)sptr; 1874 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1875 inode->i_sb->s_blocksize); 1876 lad->extLocation = cpu_to_lelb(epos->block); 1877 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1878 break; 1879 } 1880 if (epos->bh) { 1881 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1882 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1883 udf_update_tag(epos->bh->b_data, loffset); 1884 else 1885 udf_update_tag(epos->bh->b_data, 1886 sizeof(struct allocExtDesc)); 1887 mark_buffer_dirty_inode(epos->bh, inode); 1888 brelse(epos->bh); 1889 } else { 1890 mark_inode_dirty(inode); 1891 } 1892 epos->bh = nbh; 1893 } 1894 1895 udf_write_aext(inode, epos, eloc, elen, inc); 1896 1897 if (!epos->bh) { 1898 iinfo->i_lenAlloc += adsize; 1899 mark_inode_dirty(inode); 1900 } else { 1901 aed = (struct allocExtDesc *)epos->bh->b_data; 1902 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1903 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1904 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1905 udf_update_tag(epos->bh->b_data, 1906 epos->offset + (inc ? 0 : adsize)); 1907 else 1908 udf_update_tag(epos->bh->b_data, 1909 sizeof(struct allocExtDesc)); 1910 mark_buffer_dirty_inode(epos->bh, inode); 1911 } 1912 1913 return 0; 1914 } 1915 1916 void udf_write_aext(struct inode *inode, struct extent_position *epos, 1917 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1918 { 1919 int adsize; 1920 uint8_t *ptr; 1921 struct short_ad *sad; 1922 struct long_ad *lad; 1923 struct udf_inode_info *iinfo = UDF_I(inode); 1924 1925 if (!epos->bh) 1926 ptr = iinfo->i_ext.i_data + epos->offset - 1927 udf_file_entry_alloc_offset(inode) + 1928 iinfo->i_lenEAttr; 1929 else 1930 ptr = epos->bh->b_data + epos->offset; 1931 1932 switch (iinfo->i_alloc_type) { 1933 case ICBTAG_FLAG_AD_SHORT: 1934 sad = (struct short_ad *)ptr; 1935 sad->extLength = cpu_to_le32(elen); 1936 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1937 adsize = sizeof(struct short_ad); 1938 break; 1939 case ICBTAG_FLAG_AD_LONG: 1940 lad = (struct long_ad *)ptr; 1941 lad->extLength = cpu_to_le32(elen); 1942 lad->extLocation = cpu_to_lelb(*eloc); 1943 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1944 adsize = sizeof(struct long_ad); 1945 break; 1946 default: 1947 return; 1948 } 1949 1950 if (epos->bh) { 1951 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1952 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1953 struct allocExtDesc *aed = 1954 (struct allocExtDesc *)epos->bh->b_data; 1955 udf_update_tag(epos->bh->b_data, 1956 le32_to_cpu(aed->lengthAllocDescs) + 1957 sizeof(struct allocExtDesc)); 1958 } 1959 mark_buffer_dirty_inode(epos->bh, inode); 1960 } else { 1961 mark_inode_dirty(inode); 1962 } 1963 1964 if (inc) 1965 epos->offset += adsize; 1966 } 1967 1968 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1969 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1970 { 1971 int8_t etype; 1972 1973 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1974 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1975 int block; 1976 epos->block = *eloc; 1977 epos->offset = sizeof(struct allocExtDesc); 1978 brelse(epos->bh); 1979 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1980 epos->bh = udf_tread(inode->i_sb, block); 1981 if (!epos->bh) { 1982 udf_debug("reading block %d failed!\n", block); 1983 return -1; 1984 } 1985 } 1986 1987 return etype; 1988 } 1989 1990 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1991 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1992 { 1993 int alen; 1994 int8_t etype; 1995 uint8_t *ptr; 1996 struct short_ad *sad; 1997 struct long_ad *lad; 1998 struct udf_inode_info *iinfo = UDF_I(inode); 1999 2000 if (!epos->bh) { 2001 if (!epos->offset) 2002 epos->offset = udf_file_entry_alloc_offset(inode); 2003 ptr = iinfo->i_ext.i_data + epos->offset - 2004 udf_file_entry_alloc_offset(inode) + 2005 iinfo->i_lenEAttr; 2006 alen = udf_file_entry_alloc_offset(inode) + 2007 iinfo->i_lenAlloc; 2008 } else { 2009 if (!epos->offset) 2010 epos->offset = sizeof(struct allocExtDesc); 2011 ptr = epos->bh->b_data + epos->offset; 2012 alen = sizeof(struct allocExtDesc) + 2013 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2014 lengthAllocDescs); 2015 } 2016 2017 switch (iinfo->i_alloc_type) { 2018 case ICBTAG_FLAG_AD_SHORT: 2019 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2020 if (!sad) 2021 return -1; 2022 etype = le32_to_cpu(sad->extLength) >> 30; 2023 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2024 eloc->partitionReferenceNum = 2025 iinfo->i_location.partitionReferenceNum; 2026 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2027 break; 2028 case ICBTAG_FLAG_AD_LONG: 2029 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2030 if (!lad) 2031 return -1; 2032 etype = le32_to_cpu(lad->extLength) >> 30; 2033 *eloc = lelb_to_cpu(lad->extLocation); 2034 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2035 break; 2036 default: 2037 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2038 return -1; 2039 } 2040 2041 return etype; 2042 } 2043 2044 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2045 struct kernel_lb_addr neloc, uint32_t nelen) 2046 { 2047 struct kernel_lb_addr oeloc; 2048 uint32_t oelen; 2049 int8_t etype; 2050 2051 if (epos.bh) 2052 get_bh(epos.bh); 2053 2054 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2055 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2056 neloc = oeloc; 2057 nelen = (etype << 30) | oelen; 2058 } 2059 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2060 brelse(epos.bh); 2061 2062 return (nelen >> 30); 2063 } 2064 2065 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2066 struct kernel_lb_addr eloc, uint32_t elen) 2067 { 2068 struct extent_position oepos; 2069 int adsize; 2070 int8_t etype; 2071 struct allocExtDesc *aed; 2072 struct udf_inode_info *iinfo; 2073 2074 if (epos.bh) { 2075 get_bh(epos.bh); 2076 get_bh(epos.bh); 2077 } 2078 2079 iinfo = UDF_I(inode); 2080 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2081 adsize = sizeof(struct short_ad); 2082 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2083 adsize = sizeof(struct long_ad); 2084 else 2085 adsize = 0; 2086 2087 oepos = epos; 2088 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2089 return -1; 2090 2091 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2092 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2093 if (oepos.bh != epos.bh) { 2094 oepos.block = epos.block; 2095 brelse(oepos.bh); 2096 get_bh(epos.bh); 2097 oepos.bh = epos.bh; 2098 oepos.offset = epos.offset - adsize; 2099 } 2100 } 2101 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2102 elen = 0; 2103 2104 if (epos.bh != oepos.bh) { 2105 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2106 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2107 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2108 if (!oepos.bh) { 2109 iinfo->i_lenAlloc -= (adsize * 2); 2110 mark_inode_dirty(inode); 2111 } else { 2112 aed = (struct allocExtDesc *)oepos.bh->b_data; 2113 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2114 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2115 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2116 udf_update_tag(oepos.bh->b_data, 2117 oepos.offset - (2 * adsize)); 2118 else 2119 udf_update_tag(oepos.bh->b_data, 2120 sizeof(struct allocExtDesc)); 2121 mark_buffer_dirty_inode(oepos.bh, inode); 2122 } 2123 } else { 2124 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2125 if (!oepos.bh) { 2126 iinfo->i_lenAlloc -= adsize; 2127 mark_inode_dirty(inode); 2128 } else { 2129 aed = (struct allocExtDesc *)oepos.bh->b_data; 2130 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2131 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2132 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2133 udf_update_tag(oepos.bh->b_data, 2134 epos.offset - adsize); 2135 else 2136 udf_update_tag(oepos.bh->b_data, 2137 sizeof(struct allocExtDesc)); 2138 mark_buffer_dirty_inode(oepos.bh, inode); 2139 } 2140 } 2141 2142 brelse(epos.bh); 2143 brelse(oepos.bh); 2144 2145 return (elen >> 30); 2146 } 2147 2148 int8_t inode_bmap(struct inode *inode, sector_t block, 2149 struct extent_position *pos, struct kernel_lb_addr *eloc, 2150 uint32_t *elen, sector_t *offset) 2151 { 2152 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2153 loff_t lbcount = 0, bcount = 2154 (loff_t) block << blocksize_bits; 2155 int8_t etype; 2156 struct udf_inode_info *iinfo; 2157 2158 iinfo = UDF_I(inode); 2159 pos->offset = 0; 2160 pos->block = iinfo->i_location; 2161 pos->bh = NULL; 2162 *elen = 0; 2163 2164 do { 2165 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2166 if (etype == -1) { 2167 *offset = (bcount - lbcount) >> blocksize_bits; 2168 iinfo->i_lenExtents = lbcount; 2169 return -1; 2170 } 2171 lbcount += *elen; 2172 } while (lbcount <= bcount); 2173 2174 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2175 2176 return etype; 2177 } 2178 2179 long udf_block_map(struct inode *inode, sector_t block) 2180 { 2181 struct kernel_lb_addr eloc; 2182 uint32_t elen; 2183 sector_t offset; 2184 struct extent_position epos = {}; 2185 int ret; 2186 2187 down_read(&UDF_I(inode)->i_data_sem); 2188 2189 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2190 (EXT_RECORDED_ALLOCATED >> 30)) 2191 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2192 else 2193 ret = 0; 2194 2195 up_read(&UDF_I(inode)->i_data_sem); 2196 brelse(epos.bh); 2197 2198 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2199 return udf_fixed_to_variable(ret); 2200 else 2201 return ret; 2202 } 2203