1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_read_folio(struct folio *folio) 212 { 213 struct inode *inode = folio->mapping->host; 214 struct udf_inode_info *iinfo = UDF_I(inode); 215 loff_t isize = i_size_read(inode); 216 217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize); 218 folio_mark_uptodate(folio); 219 } 220 221 static int udf_read_folio(struct file *file, struct folio *folio) 222 { 223 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 224 225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 226 udf_adinicb_read_folio(folio); 227 folio_unlock(folio); 228 return 0; 229 } 230 return mpage_read_folio(folio, udf_get_block); 231 } 232 233 static void udf_readahead(struct readahead_control *rac) 234 { 235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 236 237 /* 238 * No readahead needed for in-ICB files and udf_get_block() would get 239 * confused for such file anyway. 240 */ 241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 242 return; 243 244 mpage_readahead(rac, udf_get_block); 245 } 246 247 static int udf_write_begin(struct file *file, struct address_space *mapping, 248 loff_t pos, unsigned len, 249 struct folio **foliop, void **fsdata) 250 { 251 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 252 struct folio *folio; 253 int ret; 254 255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 256 ret = block_write_begin(mapping, pos, len, foliop, 257 udf_get_block); 258 if (unlikely(ret)) 259 udf_write_failed(mapping, pos + len); 260 return ret; 261 } 262 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 263 return -EIO; 264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN, 265 mapping_gfp_mask(mapping)); 266 if (IS_ERR(folio)) 267 return PTR_ERR(folio); 268 *foliop = folio; 269 if (!folio_test_uptodate(folio)) 270 udf_adinicb_read_folio(folio); 271 return 0; 272 } 273 274 static int udf_write_end(struct file *file, struct address_space *mapping, 275 loff_t pos, unsigned len, unsigned copied, 276 struct folio *folio, void *fsdata) 277 { 278 struct inode *inode = file_inode(file); 279 loff_t last_pos; 280 281 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 282 return generic_write_end(file, mapping, pos, len, copied, folio, 283 fsdata); 284 last_pos = pos + copied; 285 if (last_pos > inode->i_size) 286 i_size_write(inode, last_pos); 287 folio_mark_dirty(folio); 288 folio_unlock(folio); 289 folio_put(folio); 290 291 return copied; 292 } 293 294 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 295 { 296 struct file *file = iocb->ki_filp; 297 struct address_space *mapping = file->f_mapping; 298 struct inode *inode = mapping->host; 299 size_t count = iov_iter_count(iter); 300 ssize_t ret; 301 302 /* Fallback to buffered IO for in-ICB files */ 303 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 304 return 0; 305 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 306 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 307 udf_write_failed(mapping, iocb->ki_pos + count); 308 return ret; 309 } 310 311 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 312 { 313 struct udf_inode_info *iinfo = UDF_I(mapping->host); 314 315 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 316 return -EINVAL; 317 return generic_block_bmap(mapping, block, udf_get_block); 318 } 319 320 const struct address_space_operations udf_aops = { 321 .dirty_folio = block_dirty_folio, 322 .invalidate_folio = block_invalidate_folio, 323 .read_folio = udf_read_folio, 324 .readahead = udf_readahead, 325 .writepages = udf_writepages, 326 .write_begin = udf_write_begin, 327 .write_end = udf_write_end, 328 .direct_IO = udf_direct_IO, 329 .bmap = udf_bmap, 330 .migrate_folio = buffer_migrate_folio, 331 }; 332 333 /* 334 * Expand file stored in ICB to a normal one-block-file 335 * 336 * This function requires i_mutex held 337 */ 338 int udf_expand_file_adinicb(struct inode *inode) 339 { 340 struct folio *folio; 341 struct udf_inode_info *iinfo = UDF_I(inode); 342 int err; 343 344 WARN_ON_ONCE(!inode_is_locked(inode)); 345 if (!iinfo->i_lenAlloc) { 346 down_write(&iinfo->i_data_sem); 347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 349 else 350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 351 up_write(&iinfo->i_data_sem); 352 mark_inode_dirty(inode); 353 return 0; 354 } 355 356 folio = __filemap_get_folio(inode->i_mapping, 0, 357 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 358 if (IS_ERR(folio)) 359 return PTR_ERR(folio); 360 361 if (!folio_test_uptodate(folio)) 362 udf_adinicb_read_folio(folio); 363 down_write(&iinfo->i_data_sem); 364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 365 iinfo->i_lenAlloc); 366 iinfo->i_lenAlloc = 0; 367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 369 else 370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 371 folio_mark_dirty(folio); 372 folio_unlock(folio); 373 up_write(&iinfo->i_data_sem); 374 err = filemap_fdatawrite(inode->i_mapping); 375 if (err) { 376 /* Restore everything back so that we don't lose data... */ 377 folio_lock(folio); 378 down_write(&iinfo->i_data_sem); 379 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 380 folio, 0, inode->i_size); 381 folio_unlock(folio); 382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 383 iinfo->i_lenAlloc = inode->i_size; 384 up_write(&iinfo->i_data_sem); 385 } 386 folio_put(folio); 387 mark_inode_dirty(inode); 388 389 return err; 390 } 391 392 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 393 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 394 395 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 396 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 397 398 struct udf_map_rq { 399 sector_t lblk; 400 udf_pblk_t pblk; 401 int iflags; /* UDF_MAP_ flags determining behavior */ 402 int oflags; /* UDF_BLK_ flags reporting results */ 403 }; 404 405 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 406 { 407 int ret; 408 struct udf_inode_info *iinfo = UDF_I(inode); 409 410 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 411 return -EFSCORRUPTED; 412 413 map->oflags = 0; 414 if (!(map->iflags & UDF_MAP_CREATE)) { 415 struct kernel_lb_addr eloc; 416 uint32_t elen; 417 sector_t offset; 418 struct extent_position epos = {}; 419 int8_t etype; 420 421 down_read(&iinfo->i_data_sem); 422 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset, 423 &etype); 424 if (ret < 0) 425 goto out_read; 426 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) { 427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 428 offset); 429 map->oflags |= UDF_BLK_MAPPED; 430 ret = 0; 431 } 432 out_read: 433 up_read(&iinfo->i_data_sem); 434 brelse(epos.bh); 435 436 return ret; 437 } 438 439 down_write(&iinfo->i_data_sem); 440 /* 441 * Block beyond EOF and prealloc extents? Just discard preallocation 442 * as it is not useful and complicates things. 443 */ 444 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 445 udf_discard_prealloc(inode); 446 udf_clear_extent_cache(inode); 447 ret = inode_getblk(inode, map); 448 up_write(&iinfo->i_data_sem); 449 return ret; 450 } 451 452 static int __udf_get_block(struct inode *inode, sector_t block, 453 struct buffer_head *bh_result, int flags) 454 { 455 int err; 456 struct udf_map_rq map = { 457 .lblk = block, 458 .iflags = flags, 459 }; 460 461 err = udf_map_block(inode, &map); 462 if (err < 0) 463 return err; 464 if (map.oflags & UDF_BLK_MAPPED) { 465 map_bh(bh_result, inode->i_sb, map.pblk); 466 if (map.oflags & UDF_BLK_NEW) 467 set_buffer_new(bh_result); 468 } 469 return 0; 470 } 471 472 int udf_get_block(struct inode *inode, sector_t block, 473 struct buffer_head *bh_result, int create) 474 { 475 int flags = create ? UDF_MAP_CREATE : 0; 476 477 /* 478 * We preallocate blocks only for regular files. It also makes sense 479 * for directories but there's a problem when to drop the 480 * preallocation. We might use some delayed work for that but I feel 481 * it's overengineering for a filesystem like UDF. 482 */ 483 if (!S_ISREG(inode->i_mode)) 484 flags |= UDF_MAP_NOPREALLOC; 485 return __udf_get_block(inode, block, bh_result, flags); 486 } 487 488 /* 489 * We shouldn't be allocating blocks on page writeback since we allocate them 490 * on page fault. We can spot dirty buffers without allocated blocks though 491 * when truncate expands file. These however don't have valid data so we can 492 * safely ignore them. So never allocate blocks from page writeback. 493 */ 494 static int udf_get_block_wb(struct inode *inode, sector_t block, 495 struct buffer_head *bh_result, int create) 496 { 497 return __udf_get_block(inode, block, bh_result, 0); 498 } 499 500 /* Extend the file with new blocks totaling 'new_block_bytes', 501 * return the number of extents added 502 */ 503 static int udf_do_extend_file(struct inode *inode, 504 struct extent_position *last_pos, 505 struct kernel_long_ad *last_ext, 506 loff_t new_block_bytes) 507 { 508 uint32_t add; 509 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 510 struct super_block *sb = inode->i_sb; 511 struct udf_inode_info *iinfo; 512 int err; 513 514 /* The previous extent is fake and we should not extend by anything 515 * - there's nothing to do... */ 516 if (!new_block_bytes && fake) 517 return 0; 518 519 iinfo = UDF_I(inode); 520 /* Round the last extent up to a multiple of block size */ 521 if (last_ext->extLength & (sb->s_blocksize - 1)) { 522 last_ext->extLength = 523 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 524 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 525 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 526 iinfo->i_lenExtents = 527 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 528 ~(sb->s_blocksize - 1); 529 } 530 531 add = 0; 532 /* Can we merge with the previous extent? */ 533 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 534 EXT_NOT_RECORDED_NOT_ALLOCATED) { 535 add = (1 << 30) - sb->s_blocksize - 536 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 537 if (add > new_block_bytes) 538 add = new_block_bytes; 539 new_block_bytes -= add; 540 last_ext->extLength += add; 541 } 542 543 if (fake) { 544 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 545 last_ext->extLength, 1); 546 if (err < 0) 547 goto out_err; 548 count++; 549 } else { 550 struct kernel_lb_addr tmploc; 551 uint32_t tmplen; 552 int8_t tmptype; 553 554 udf_write_aext(inode, last_pos, &last_ext->extLocation, 555 last_ext->extLength, 1); 556 557 /* 558 * We've rewritten the last extent. If we are going to add 559 * more extents, we may need to enter possible following 560 * empty indirect extent. 561 */ 562 if (new_block_bytes) { 563 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen, 564 &tmptype, 0); 565 if (err < 0) 566 goto out_err; 567 } 568 } 569 iinfo->i_lenExtents += add; 570 571 /* Managed to do everything necessary? */ 572 if (!new_block_bytes) 573 goto out; 574 575 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 576 last_ext->extLocation.logicalBlockNum = 0; 577 last_ext->extLocation.partitionReferenceNum = 0; 578 add = (1 << 30) - sb->s_blocksize; 579 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 580 581 /* Create enough extents to cover the whole hole */ 582 while (new_block_bytes > add) { 583 new_block_bytes -= add; 584 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 585 last_ext->extLength, 1); 586 if (err) 587 goto out_err; 588 iinfo->i_lenExtents += add; 589 count++; 590 } 591 if (new_block_bytes) { 592 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 593 new_block_bytes; 594 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 595 last_ext->extLength, 1); 596 if (err) 597 goto out_err; 598 iinfo->i_lenExtents += new_block_bytes; 599 count++; 600 } 601 602 out: 603 /* last_pos should point to the last written extent... */ 604 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 605 last_pos->offset -= sizeof(struct short_ad); 606 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 607 last_pos->offset -= sizeof(struct long_ad); 608 else 609 return -EIO; 610 611 return count; 612 out_err: 613 /* Remove extents we've created so far */ 614 udf_clear_extent_cache(inode); 615 udf_truncate_extents(inode); 616 return err; 617 } 618 619 /* Extend the final block of the file to final_block_len bytes */ 620 static void udf_do_extend_final_block(struct inode *inode, 621 struct extent_position *last_pos, 622 struct kernel_long_ad *last_ext, 623 uint32_t new_elen) 624 { 625 uint32_t added_bytes; 626 627 /* 628 * Extent already large enough? It may be already rounded up to block 629 * size... 630 */ 631 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 632 return; 633 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 634 last_ext->extLength += added_bytes; 635 UDF_I(inode)->i_lenExtents += added_bytes; 636 637 udf_write_aext(inode, last_pos, &last_ext->extLocation, 638 last_ext->extLength, 1); 639 } 640 641 static int udf_extend_file(struct inode *inode, loff_t newsize) 642 { 643 644 struct extent_position epos; 645 struct kernel_lb_addr eloc; 646 uint32_t elen; 647 int8_t etype; 648 struct super_block *sb = inode->i_sb; 649 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 650 loff_t new_elen; 651 int adsize; 652 struct udf_inode_info *iinfo = UDF_I(inode); 653 struct kernel_long_ad extent; 654 int err = 0; 655 bool within_last_ext; 656 657 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 658 adsize = sizeof(struct short_ad); 659 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 660 adsize = sizeof(struct long_ad); 661 else 662 BUG(); 663 664 down_write(&iinfo->i_data_sem); 665 /* 666 * When creating hole in file, just don't bother with preserving 667 * preallocation. It likely won't be very useful anyway. 668 */ 669 udf_discard_prealloc(inode); 670 671 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype); 672 if (err < 0) 673 goto out; 674 within_last_ext = (err == 1); 675 /* We don't expect extents past EOF... */ 676 WARN_ON_ONCE(within_last_ext && 677 elen > ((loff_t)offset + 1) << inode->i_blkbits); 678 679 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 680 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 681 /* File has no extents at all or has empty last 682 * indirect extent! Create a fake extent... */ 683 extent.extLocation.logicalBlockNum = 0; 684 extent.extLocation.partitionReferenceNum = 0; 685 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 686 } else { 687 epos.offset -= adsize; 688 err = udf_next_aext(inode, &epos, &extent.extLocation, 689 &extent.extLength, &etype, 0); 690 if (err <= 0) 691 goto out; 692 extent.extLength |= etype << 30; 693 } 694 695 new_elen = ((loff_t)offset << inode->i_blkbits) | 696 (newsize & (sb->s_blocksize - 1)); 697 698 /* File has extent covering the new size (could happen when extending 699 * inside a block)? 700 */ 701 if (within_last_ext) { 702 /* Extending file within the last file block */ 703 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 704 } else { 705 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 706 } 707 708 if (err < 0) 709 goto out; 710 err = 0; 711 out: 712 brelse(epos.bh); 713 up_write(&iinfo->i_data_sem); 714 return err; 715 } 716 717 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 718 { 719 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 720 struct extent_position prev_epos, cur_epos, next_epos; 721 int count = 0, startnum = 0, endnum = 0; 722 uint32_t elen = 0, tmpelen; 723 struct kernel_lb_addr eloc, tmpeloc; 724 int c = 1; 725 loff_t lbcount = 0, b_off = 0; 726 udf_pblk_t newblocknum; 727 sector_t offset = 0; 728 int8_t etype, tmpetype; 729 struct udf_inode_info *iinfo = UDF_I(inode); 730 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 731 int lastblock = 0; 732 bool isBeyondEOF = false; 733 int ret = 0; 734 735 prev_epos.offset = udf_file_entry_alloc_offset(inode); 736 prev_epos.block = iinfo->i_location; 737 prev_epos.bh = NULL; 738 cur_epos = next_epos = prev_epos; 739 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 740 741 /* find the extent which contains the block we are looking for. 742 alternate between laarr[0] and laarr[1] for locations of the 743 current extent, and the previous extent */ 744 do { 745 if (prev_epos.bh != cur_epos.bh) { 746 brelse(prev_epos.bh); 747 get_bh(cur_epos.bh); 748 prev_epos.bh = cur_epos.bh; 749 } 750 if (cur_epos.bh != next_epos.bh) { 751 brelse(cur_epos.bh); 752 get_bh(next_epos.bh); 753 cur_epos.bh = next_epos.bh; 754 } 755 756 lbcount += elen; 757 758 prev_epos.block = cur_epos.block; 759 cur_epos.block = next_epos.block; 760 761 prev_epos.offset = cur_epos.offset; 762 cur_epos.offset = next_epos.offset; 763 764 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1); 765 if (ret < 0) { 766 goto out_free; 767 } else if (ret == 0) { 768 isBeyondEOF = true; 769 break; 770 } 771 772 c = !c; 773 774 laarr[c].extLength = (etype << 30) | elen; 775 laarr[c].extLocation = eloc; 776 777 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 778 pgoal = eloc.logicalBlockNum + 779 ((elen + inode->i_sb->s_blocksize - 1) >> 780 inode->i_sb->s_blocksize_bits); 781 782 count++; 783 } while (lbcount + elen <= b_off); 784 785 b_off -= lbcount; 786 offset = b_off >> inode->i_sb->s_blocksize_bits; 787 /* 788 * Move prev_epos and cur_epos into indirect extent if we are at 789 * the pointer to it 790 */ 791 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0); 792 if (ret < 0) 793 goto out_free; 794 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0); 795 if (ret < 0) 796 goto out_free; 797 798 /* if the extent is allocated and recorded, return the block 799 if the extent is not a multiple of the blocksize, round up */ 800 801 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) { 802 if (elen & (inode->i_sb->s_blocksize - 1)) { 803 elen = EXT_RECORDED_ALLOCATED | 804 ((elen + inode->i_sb->s_blocksize - 1) & 805 ~(inode->i_sb->s_blocksize - 1)); 806 iinfo->i_lenExtents = 807 ALIGN(iinfo->i_lenExtents, 808 inode->i_sb->s_blocksize); 809 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 810 } 811 map->oflags = UDF_BLK_MAPPED; 812 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 813 goto out_free; 814 } 815 816 /* Are we beyond EOF and preallocated extent? */ 817 if (isBeyondEOF) { 818 loff_t hole_len; 819 820 if (count) { 821 if (c) 822 laarr[0] = laarr[1]; 823 startnum = 1; 824 } else { 825 /* Create a fake extent when there's not one */ 826 memset(&laarr[0].extLocation, 0x00, 827 sizeof(struct kernel_lb_addr)); 828 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 829 /* Will udf_do_extend_file() create real extent from 830 a fake one? */ 831 startnum = (offset > 0); 832 } 833 /* Create extents for the hole between EOF and offset */ 834 hole_len = (loff_t)offset << inode->i_blkbits; 835 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 836 if (ret < 0) 837 goto out_free; 838 c = 0; 839 offset = 0; 840 count += ret; 841 /* 842 * Is there any real extent? - otherwise we overwrite the fake 843 * one... 844 */ 845 if (count) 846 c = !c; 847 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 848 inode->i_sb->s_blocksize; 849 memset(&laarr[c].extLocation, 0x00, 850 sizeof(struct kernel_lb_addr)); 851 count++; 852 endnum = c + 1; 853 lastblock = 1; 854 } else { 855 endnum = startnum = ((count > 2) ? 2 : count); 856 857 /* if the current extent is in position 0, 858 swap it with the previous */ 859 if (!c && count != 1) { 860 laarr[2] = laarr[0]; 861 laarr[0] = laarr[1]; 862 laarr[1] = laarr[2]; 863 c = 1; 864 } 865 866 /* if the current block is located in an extent, 867 read the next extent */ 868 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0); 869 if (ret > 0) { 870 laarr[c + 1].extLength = (etype << 30) | elen; 871 laarr[c + 1].extLocation = eloc; 872 count++; 873 startnum++; 874 endnum++; 875 } else if (ret == 0) 876 lastblock = 1; 877 else 878 goto out_free; 879 } 880 881 /* if the current extent is not recorded but allocated, get the 882 * block in the extent corresponding to the requested block */ 883 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 884 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 885 else { /* otherwise, allocate a new block */ 886 if (iinfo->i_next_alloc_block == map->lblk) 887 goal = iinfo->i_next_alloc_goal; 888 889 if (!goal) { 890 if (!(goal = pgoal)) /* XXX: what was intended here? */ 891 goal = iinfo->i_location.logicalBlockNum + 1; 892 } 893 894 newblocknum = udf_new_block(inode->i_sb, inode, 895 iinfo->i_location.partitionReferenceNum, 896 goal, &ret); 897 if (!newblocknum) 898 goto out_free; 899 if (isBeyondEOF) 900 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 901 } 902 903 /* if the extent the requsted block is located in contains multiple 904 * blocks, split the extent into at most three extents. blocks prior 905 * to requested block, requested block, and blocks after requested 906 * block */ 907 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 908 909 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 910 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 911 912 /* merge any continuous blocks in laarr */ 913 udf_merge_extents(inode, laarr, &endnum); 914 915 /* write back the new extents, inserting new extents if the new number 916 * of extents is greater than the old number, and deleting extents if 917 * the new number of extents is less than the old number */ 918 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 919 if (ret < 0) 920 goto out_free; 921 922 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 923 iinfo->i_location.partitionReferenceNum, 0); 924 if (!map->pblk) { 925 ret = -EFSCORRUPTED; 926 goto out_free; 927 } 928 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 929 iinfo->i_next_alloc_block = map->lblk + 1; 930 iinfo->i_next_alloc_goal = newblocknum + 1; 931 inode_set_ctime_current(inode); 932 933 if (IS_SYNC(inode)) 934 udf_sync_inode(inode); 935 else 936 mark_inode_dirty(inode); 937 ret = 0; 938 out_free: 939 brelse(prev_epos.bh); 940 brelse(cur_epos.bh); 941 brelse(next_epos.bh); 942 return ret; 943 } 944 945 static void udf_split_extents(struct inode *inode, int *c, int offset, 946 udf_pblk_t newblocknum, 947 struct kernel_long_ad *laarr, int *endnum) 948 { 949 unsigned long blocksize = inode->i_sb->s_blocksize; 950 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 951 952 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 953 (laarr[*c].extLength >> 30) == 954 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 955 int curr = *c; 956 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 957 blocksize - 1) >> blocksize_bits; 958 int8_t etype = (laarr[curr].extLength >> 30); 959 960 if (blen == 1) 961 ; 962 else if (!offset || blen == offset + 1) { 963 laarr[curr + 2] = laarr[curr + 1]; 964 laarr[curr + 1] = laarr[curr]; 965 } else { 966 laarr[curr + 3] = laarr[curr + 1]; 967 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 968 } 969 970 if (offset) { 971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 972 udf_free_blocks(inode->i_sb, inode, 973 &laarr[curr].extLocation, 974 0, offset); 975 laarr[curr].extLength = 976 EXT_NOT_RECORDED_NOT_ALLOCATED | 977 (offset << blocksize_bits); 978 laarr[curr].extLocation.logicalBlockNum = 0; 979 laarr[curr].extLocation. 980 partitionReferenceNum = 0; 981 } else 982 laarr[curr].extLength = (etype << 30) | 983 (offset << blocksize_bits); 984 curr++; 985 (*c)++; 986 (*endnum)++; 987 } 988 989 laarr[curr].extLocation.logicalBlockNum = newblocknum; 990 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 991 laarr[curr].extLocation.partitionReferenceNum = 992 UDF_I(inode)->i_location.partitionReferenceNum; 993 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 994 blocksize; 995 curr++; 996 997 if (blen != offset + 1) { 998 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 999 laarr[curr].extLocation.logicalBlockNum += 1000 offset + 1; 1001 laarr[curr].extLength = (etype << 30) | 1002 ((blen - (offset + 1)) << blocksize_bits); 1003 curr++; 1004 (*endnum)++; 1005 } 1006 } 1007 } 1008 1009 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 1010 struct kernel_long_ad *laarr, 1011 int *endnum) 1012 { 1013 int start, length = 0, currlength = 0, i; 1014 1015 if (*endnum >= (c + 1)) { 1016 if (!lastblock) 1017 return; 1018 else 1019 start = c; 1020 } else { 1021 if ((laarr[c + 1].extLength >> 30) == 1022 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1023 start = c + 1; 1024 length = currlength = 1025 (((laarr[c + 1].extLength & 1026 UDF_EXTENT_LENGTH_MASK) + 1027 inode->i_sb->s_blocksize - 1) >> 1028 inode->i_sb->s_blocksize_bits); 1029 } else 1030 start = c; 1031 } 1032 1033 for (i = start + 1; i <= *endnum; i++) { 1034 if (i == *endnum) { 1035 if (lastblock) 1036 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1037 } else if ((laarr[i].extLength >> 30) == 1038 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1039 length += (((laarr[i].extLength & 1040 UDF_EXTENT_LENGTH_MASK) + 1041 inode->i_sb->s_blocksize - 1) >> 1042 inode->i_sb->s_blocksize_bits); 1043 } else 1044 break; 1045 } 1046 1047 if (length) { 1048 int next = laarr[start].extLocation.logicalBlockNum + 1049 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1050 inode->i_sb->s_blocksize - 1) >> 1051 inode->i_sb->s_blocksize_bits); 1052 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1053 laarr[start].extLocation.partitionReferenceNum, 1054 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1055 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1056 currlength); 1057 if (numalloc) { 1058 if (start == (c + 1)) 1059 laarr[start].extLength += 1060 (numalloc << 1061 inode->i_sb->s_blocksize_bits); 1062 else { 1063 memmove(&laarr[c + 2], &laarr[c + 1], 1064 sizeof(struct long_ad) * (*endnum - (c + 1))); 1065 (*endnum)++; 1066 laarr[c + 1].extLocation.logicalBlockNum = next; 1067 laarr[c + 1].extLocation.partitionReferenceNum = 1068 laarr[c].extLocation. 1069 partitionReferenceNum; 1070 laarr[c + 1].extLength = 1071 EXT_NOT_RECORDED_ALLOCATED | 1072 (numalloc << 1073 inode->i_sb->s_blocksize_bits); 1074 start = c + 1; 1075 } 1076 1077 for (i = start + 1; numalloc && i < *endnum; i++) { 1078 int elen = ((laarr[i].extLength & 1079 UDF_EXTENT_LENGTH_MASK) + 1080 inode->i_sb->s_blocksize - 1) >> 1081 inode->i_sb->s_blocksize_bits; 1082 1083 if (elen > numalloc) { 1084 laarr[i].extLength -= 1085 (numalloc << 1086 inode->i_sb->s_blocksize_bits); 1087 numalloc = 0; 1088 } else { 1089 numalloc -= elen; 1090 if (*endnum > (i + 1)) 1091 memmove(&laarr[i], 1092 &laarr[i + 1], 1093 sizeof(struct long_ad) * 1094 (*endnum - (i + 1))); 1095 i--; 1096 (*endnum)--; 1097 } 1098 } 1099 UDF_I(inode)->i_lenExtents += 1100 numalloc << inode->i_sb->s_blocksize_bits; 1101 } 1102 } 1103 } 1104 1105 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1106 int *endnum) 1107 { 1108 int i; 1109 unsigned long blocksize = inode->i_sb->s_blocksize; 1110 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1111 1112 for (i = 0; i < (*endnum - 1); i++) { 1113 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1114 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1115 1116 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1117 (((li->extLength >> 30) == 1118 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1119 ((lip1->extLocation.logicalBlockNum - 1120 li->extLocation.logicalBlockNum) == 1121 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1122 blocksize - 1) >> blocksize_bits)))) { 1123 1124 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1125 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1126 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1127 li->extLength = lip1->extLength + 1128 (((li->extLength & 1129 UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) & ~(blocksize - 1)); 1131 if (*endnum > (i + 2)) 1132 memmove(&laarr[i + 1], &laarr[i + 2], 1133 sizeof(struct long_ad) * 1134 (*endnum - (i + 2))); 1135 i--; 1136 (*endnum)--; 1137 } 1138 } else if (((li->extLength >> 30) == 1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1140 ((lip1->extLength >> 30) == 1141 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1142 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1143 ((li->extLength & 1144 UDF_EXTENT_LENGTH_MASK) + 1145 blocksize - 1) >> blocksize_bits); 1146 li->extLocation.logicalBlockNum = 0; 1147 li->extLocation.partitionReferenceNum = 0; 1148 1149 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1150 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1151 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1152 lip1->extLength = (lip1->extLength - 1153 (li->extLength & 1154 UDF_EXTENT_LENGTH_MASK) + 1155 UDF_EXTENT_LENGTH_MASK) & 1156 ~(blocksize - 1); 1157 li->extLength = (li->extLength & 1158 UDF_EXTENT_FLAG_MASK) + 1159 (UDF_EXTENT_LENGTH_MASK + 1) - 1160 blocksize; 1161 } else { 1162 li->extLength = lip1->extLength + 1163 (((li->extLength & 1164 UDF_EXTENT_LENGTH_MASK) + 1165 blocksize - 1) & ~(blocksize - 1)); 1166 if (*endnum > (i + 2)) 1167 memmove(&laarr[i + 1], &laarr[i + 2], 1168 sizeof(struct long_ad) * 1169 (*endnum - (i + 2))); 1170 i--; 1171 (*endnum)--; 1172 } 1173 } else if ((li->extLength >> 30) == 1174 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1175 udf_free_blocks(inode->i_sb, inode, 1176 &li->extLocation, 0, 1177 ((li->extLength & 1178 UDF_EXTENT_LENGTH_MASK) + 1179 blocksize - 1) >> blocksize_bits); 1180 li->extLocation.logicalBlockNum = 0; 1181 li->extLocation.partitionReferenceNum = 0; 1182 li->extLength = (li->extLength & 1183 UDF_EXTENT_LENGTH_MASK) | 1184 EXT_NOT_RECORDED_NOT_ALLOCATED; 1185 } 1186 } 1187 } 1188 1189 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1190 int startnum, int endnum, 1191 struct extent_position *epos) 1192 { 1193 int start = 0, i; 1194 struct kernel_lb_addr tmploc; 1195 uint32_t tmplen; 1196 int8_t tmpetype; 1197 int err; 1198 1199 if (startnum > endnum) { 1200 for (i = 0; i < (startnum - endnum); i++) 1201 udf_delete_aext(inode, *epos); 1202 } else if (startnum < endnum) { 1203 for (i = 0; i < (endnum - startnum); i++) { 1204 err = udf_insert_aext(inode, *epos, 1205 laarr[i].extLocation, 1206 laarr[i].extLength); 1207 /* 1208 * If we fail here, we are likely corrupting the extent 1209 * list and leaking blocks. At least stop early to 1210 * limit the damage. 1211 */ 1212 if (err < 0) 1213 return err; 1214 err = udf_next_aext(inode, epos, &laarr[i].extLocation, 1215 &laarr[i].extLength, &tmpetype, 1); 1216 if (err < 0) 1217 return err; 1218 start++; 1219 } 1220 } 1221 1222 for (i = start; i < endnum; i++) { 1223 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0); 1224 if (err < 0) 1225 return err; 1226 1227 udf_write_aext(inode, epos, &laarr[i].extLocation, 1228 laarr[i].extLength, 1); 1229 } 1230 return 0; 1231 } 1232 1233 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1234 int create, int *err) 1235 { 1236 struct buffer_head *bh = NULL; 1237 struct udf_map_rq map = { 1238 .lblk = block, 1239 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1240 }; 1241 1242 *err = udf_map_block(inode, &map); 1243 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1244 return NULL; 1245 1246 bh = sb_getblk(inode->i_sb, map.pblk); 1247 if (!bh) { 1248 *err = -ENOMEM; 1249 return NULL; 1250 } 1251 if (map.oflags & UDF_BLK_NEW) { 1252 lock_buffer(bh); 1253 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1254 set_buffer_uptodate(bh); 1255 unlock_buffer(bh); 1256 mark_buffer_dirty_inode(bh, inode); 1257 return bh; 1258 } 1259 1260 if (bh_read(bh, 0) >= 0) 1261 return bh; 1262 1263 brelse(bh); 1264 *err = -EIO; 1265 return NULL; 1266 } 1267 1268 int udf_setsize(struct inode *inode, loff_t newsize) 1269 { 1270 int err = 0; 1271 struct udf_inode_info *iinfo; 1272 unsigned int bsize = i_blocksize(inode); 1273 1274 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1275 S_ISLNK(inode->i_mode))) 1276 return -EINVAL; 1277 1278 iinfo = UDF_I(inode); 1279 if (newsize > inode->i_size) { 1280 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1281 if (bsize >= 1282 (udf_file_entry_alloc_offset(inode) + newsize)) { 1283 down_write(&iinfo->i_data_sem); 1284 iinfo->i_lenAlloc = newsize; 1285 up_write(&iinfo->i_data_sem); 1286 goto set_size; 1287 } 1288 err = udf_expand_file_adinicb(inode); 1289 if (err) 1290 return err; 1291 } 1292 err = udf_extend_file(inode, newsize); 1293 if (err) 1294 return err; 1295 set_size: 1296 truncate_setsize(inode, newsize); 1297 } else { 1298 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1299 down_write(&iinfo->i_data_sem); 1300 udf_clear_extent_cache(inode); 1301 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1302 0x00, bsize - newsize - 1303 udf_file_entry_alloc_offset(inode)); 1304 iinfo->i_lenAlloc = newsize; 1305 truncate_setsize(inode, newsize); 1306 up_write(&iinfo->i_data_sem); 1307 goto update_time; 1308 } 1309 err = block_truncate_page(inode->i_mapping, newsize, 1310 udf_get_block); 1311 if (err) 1312 return err; 1313 truncate_setsize(inode, newsize); 1314 down_write(&iinfo->i_data_sem); 1315 udf_clear_extent_cache(inode); 1316 err = udf_truncate_extents(inode); 1317 up_write(&iinfo->i_data_sem); 1318 if (err) 1319 return err; 1320 } 1321 update_time: 1322 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1323 if (IS_SYNC(inode)) 1324 udf_sync_inode(inode); 1325 else 1326 mark_inode_dirty(inode); 1327 return err; 1328 } 1329 1330 /* 1331 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1332 * arbitrary - just that we hopefully don't limit any real use of rewritten 1333 * inode on write-once media but avoid looping for too long on corrupted media. 1334 */ 1335 #define UDF_MAX_ICB_NESTING 1024 1336 1337 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1338 { 1339 struct buffer_head *bh = NULL; 1340 struct fileEntry *fe; 1341 struct extendedFileEntry *efe; 1342 uint16_t ident; 1343 struct udf_inode_info *iinfo = UDF_I(inode); 1344 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1345 struct kernel_lb_addr *iloc = &iinfo->i_location; 1346 unsigned int link_count; 1347 unsigned int indirections = 0; 1348 int bs = inode->i_sb->s_blocksize; 1349 int ret = -EIO; 1350 uint32_t uid, gid; 1351 struct timespec64 ts; 1352 1353 reread: 1354 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1355 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1356 iloc->partitionReferenceNum, sbi->s_partitions); 1357 return -EIO; 1358 } 1359 1360 if (iloc->logicalBlockNum >= 1361 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1362 udf_debug("block=%u, partition=%u out of range\n", 1363 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1364 return -EIO; 1365 } 1366 1367 /* 1368 * Set defaults, but the inode is still incomplete! 1369 * Note: get_new_inode() sets the following on a new inode: 1370 * i_sb = sb 1371 * i_no = ino 1372 * i_flags = sb->s_flags 1373 * i_state = 0 1374 * clean_inode(): zero fills and sets 1375 * i_count = 1 1376 * i_nlink = 1 1377 * i_op = NULL; 1378 */ 1379 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1380 if (!bh) { 1381 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1382 return -EIO; 1383 } 1384 1385 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1386 ident != TAG_IDENT_USE) { 1387 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1388 inode->i_ino, ident); 1389 goto out; 1390 } 1391 1392 fe = (struct fileEntry *)bh->b_data; 1393 efe = (struct extendedFileEntry *)bh->b_data; 1394 1395 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1396 struct buffer_head *ibh; 1397 1398 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1399 if (ident == TAG_IDENT_IE && ibh) { 1400 struct kernel_lb_addr loc; 1401 struct indirectEntry *ie; 1402 1403 ie = (struct indirectEntry *)ibh->b_data; 1404 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1405 1406 if (ie->indirectICB.extLength) { 1407 brelse(ibh); 1408 memcpy(&iinfo->i_location, &loc, 1409 sizeof(struct kernel_lb_addr)); 1410 if (++indirections > UDF_MAX_ICB_NESTING) { 1411 udf_err(inode->i_sb, 1412 "too many ICBs in ICB hierarchy" 1413 " (max %d supported)\n", 1414 UDF_MAX_ICB_NESTING); 1415 goto out; 1416 } 1417 brelse(bh); 1418 goto reread; 1419 } 1420 } 1421 brelse(ibh); 1422 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1423 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1424 le16_to_cpu(fe->icbTag.strategyType)); 1425 goto out; 1426 } 1427 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1428 iinfo->i_strat4096 = 0; 1429 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1430 iinfo->i_strat4096 = 1; 1431 1432 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1433 ICBTAG_FLAG_AD_MASK; 1434 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1435 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1436 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1437 ret = -EIO; 1438 goto out; 1439 } 1440 iinfo->i_hidden = hidden_inode; 1441 iinfo->i_unique = 0; 1442 iinfo->i_lenEAttr = 0; 1443 iinfo->i_lenExtents = 0; 1444 iinfo->i_lenAlloc = 0; 1445 iinfo->i_next_alloc_block = 0; 1446 iinfo->i_next_alloc_goal = 0; 1447 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1448 iinfo->i_efe = 1; 1449 iinfo->i_use = 0; 1450 ret = udf_alloc_i_data(inode, bs - 1451 sizeof(struct extendedFileEntry)); 1452 if (ret) 1453 goto out; 1454 memcpy(iinfo->i_data, 1455 bh->b_data + sizeof(struct extendedFileEntry), 1456 bs - sizeof(struct extendedFileEntry)); 1457 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1458 iinfo->i_efe = 0; 1459 iinfo->i_use = 0; 1460 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1461 if (ret) 1462 goto out; 1463 memcpy(iinfo->i_data, 1464 bh->b_data + sizeof(struct fileEntry), 1465 bs - sizeof(struct fileEntry)); 1466 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1467 iinfo->i_efe = 0; 1468 iinfo->i_use = 1; 1469 iinfo->i_lenAlloc = le32_to_cpu( 1470 ((struct unallocSpaceEntry *)bh->b_data)-> 1471 lengthAllocDescs); 1472 ret = udf_alloc_i_data(inode, bs - 1473 sizeof(struct unallocSpaceEntry)); 1474 if (ret) 1475 goto out; 1476 memcpy(iinfo->i_data, 1477 bh->b_data + sizeof(struct unallocSpaceEntry), 1478 bs - sizeof(struct unallocSpaceEntry)); 1479 return 0; 1480 } 1481 1482 ret = -EIO; 1483 read_lock(&sbi->s_cred_lock); 1484 uid = le32_to_cpu(fe->uid); 1485 if (uid == UDF_INVALID_ID || 1486 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1487 inode->i_uid = sbi->s_uid; 1488 else 1489 i_uid_write(inode, uid); 1490 1491 gid = le32_to_cpu(fe->gid); 1492 if (gid == UDF_INVALID_ID || 1493 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1494 inode->i_gid = sbi->s_gid; 1495 else 1496 i_gid_write(inode, gid); 1497 1498 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1499 sbi->s_fmode != UDF_INVALID_MODE) 1500 inode->i_mode = sbi->s_fmode; 1501 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1502 sbi->s_dmode != UDF_INVALID_MODE) 1503 inode->i_mode = sbi->s_dmode; 1504 else 1505 inode->i_mode = udf_convert_permissions(fe); 1506 inode->i_mode &= ~sbi->s_umask; 1507 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1508 1509 read_unlock(&sbi->s_cred_lock); 1510 1511 link_count = le16_to_cpu(fe->fileLinkCount); 1512 if (!link_count) { 1513 if (!hidden_inode) { 1514 ret = -ESTALE; 1515 goto out; 1516 } 1517 link_count = 1; 1518 } 1519 set_nlink(inode, link_count); 1520 1521 inode->i_size = le64_to_cpu(fe->informationLength); 1522 iinfo->i_lenExtents = inode->i_size; 1523 1524 if (iinfo->i_efe == 0) { 1525 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1526 (inode->i_sb->s_blocksize_bits - 9); 1527 1528 udf_disk_stamp_to_time(&ts, fe->accessTime); 1529 inode_set_atime_to_ts(inode, ts); 1530 udf_disk_stamp_to_time(&ts, fe->modificationTime); 1531 inode_set_mtime_to_ts(inode, ts); 1532 udf_disk_stamp_to_time(&ts, fe->attrTime); 1533 inode_set_ctime_to_ts(inode, ts); 1534 1535 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1536 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1537 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1538 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1539 iinfo->i_streamdir = 0; 1540 iinfo->i_lenStreams = 0; 1541 } else { 1542 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1543 (inode->i_sb->s_blocksize_bits - 9); 1544 1545 udf_disk_stamp_to_time(&ts, efe->accessTime); 1546 inode_set_atime_to_ts(inode, ts); 1547 udf_disk_stamp_to_time(&ts, efe->modificationTime); 1548 inode_set_mtime_to_ts(inode, ts); 1549 udf_disk_stamp_to_time(&ts, efe->attrTime); 1550 inode_set_ctime_to_ts(inode, ts); 1551 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1552 1553 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1554 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1555 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1556 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1557 1558 /* Named streams */ 1559 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1560 iinfo->i_locStreamdir = 1561 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1562 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1563 if (iinfo->i_lenStreams >= inode->i_size) 1564 iinfo->i_lenStreams -= inode->i_size; 1565 else 1566 iinfo->i_lenStreams = 0; 1567 } 1568 inode->i_generation = iinfo->i_unique; 1569 1570 /* 1571 * Sanity check length of allocation descriptors and extended attrs to 1572 * avoid integer overflows 1573 */ 1574 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1575 goto out; 1576 /* Now do exact checks */ 1577 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1578 goto out; 1579 /* Sanity checks for files in ICB so that we don't get confused later */ 1580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1581 /* 1582 * For file in ICB data is stored in allocation descriptor 1583 * so sizes should match 1584 */ 1585 if (iinfo->i_lenAlloc != inode->i_size) 1586 goto out; 1587 /* File in ICB has to fit in there... */ 1588 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1589 goto out; 1590 } 1591 1592 switch (fe->icbTag.fileType) { 1593 case ICBTAG_FILE_TYPE_DIRECTORY: 1594 inode->i_op = &udf_dir_inode_operations; 1595 inode->i_fop = &udf_dir_operations; 1596 inode->i_mode |= S_IFDIR; 1597 inc_nlink(inode); 1598 break; 1599 case ICBTAG_FILE_TYPE_REALTIME: 1600 case ICBTAG_FILE_TYPE_REGULAR: 1601 case ICBTAG_FILE_TYPE_UNDEF: 1602 case ICBTAG_FILE_TYPE_VAT20: 1603 inode->i_data.a_ops = &udf_aops; 1604 inode->i_op = &udf_file_inode_operations; 1605 inode->i_fop = &udf_file_operations; 1606 inode->i_mode |= S_IFREG; 1607 break; 1608 case ICBTAG_FILE_TYPE_BLOCK: 1609 inode->i_mode |= S_IFBLK; 1610 break; 1611 case ICBTAG_FILE_TYPE_CHAR: 1612 inode->i_mode |= S_IFCHR; 1613 break; 1614 case ICBTAG_FILE_TYPE_FIFO: 1615 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1616 break; 1617 case ICBTAG_FILE_TYPE_SOCKET: 1618 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1619 break; 1620 case ICBTAG_FILE_TYPE_SYMLINK: 1621 inode->i_data.a_ops = &udf_symlink_aops; 1622 inode->i_op = &udf_symlink_inode_operations; 1623 inode_nohighmem(inode); 1624 inode->i_mode = S_IFLNK | 0777; 1625 break; 1626 case ICBTAG_FILE_TYPE_MAIN: 1627 udf_debug("METADATA FILE-----\n"); 1628 break; 1629 case ICBTAG_FILE_TYPE_MIRROR: 1630 udf_debug("METADATA MIRROR FILE-----\n"); 1631 break; 1632 case ICBTAG_FILE_TYPE_BITMAP: 1633 udf_debug("METADATA BITMAP FILE-----\n"); 1634 break; 1635 default: 1636 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1637 inode->i_ino, fe->icbTag.fileType); 1638 goto out; 1639 } 1640 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1641 struct deviceSpec *dsea = 1642 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1643 if (dsea) { 1644 init_special_inode(inode, inode->i_mode, 1645 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1646 le32_to_cpu(dsea->minorDeviceIdent))); 1647 /* Developer ID ??? */ 1648 } else 1649 goto out; 1650 } 1651 ret = 0; 1652 out: 1653 brelse(bh); 1654 return ret; 1655 } 1656 1657 static int udf_alloc_i_data(struct inode *inode, size_t size) 1658 { 1659 struct udf_inode_info *iinfo = UDF_I(inode); 1660 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1661 if (!iinfo->i_data) 1662 return -ENOMEM; 1663 return 0; 1664 } 1665 1666 static umode_t udf_convert_permissions(struct fileEntry *fe) 1667 { 1668 umode_t mode; 1669 uint32_t permissions; 1670 uint32_t flags; 1671 1672 permissions = le32_to_cpu(fe->permissions); 1673 flags = le16_to_cpu(fe->icbTag.flags); 1674 1675 mode = ((permissions) & 0007) | 1676 ((permissions >> 2) & 0070) | 1677 ((permissions >> 4) & 0700) | 1678 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1679 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1680 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1681 1682 return mode; 1683 } 1684 1685 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1686 { 1687 struct udf_inode_info *iinfo = UDF_I(inode); 1688 1689 /* 1690 * UDF 2.01 sec. 3.3.3.3 Note 2: 1691 * In Unix, delete permission tracks write 1692 */ 1693 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1694 if (mode & 0200) 1695 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1696 if (mode & 0020) 1697 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1698 if (mode & 0002) 1699 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1700 } 1701 1702 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1703 { 1704 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1705 } 1706 1707 static int udf_sync_inode(struct inode *inode) 1708 { 1709 return udf_update_inode(inode, 1); 1710 } 1711 1712 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1713 { 1714 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1715 (iinfo->i_crtime.tv_sec == time.tv_sec && 1716 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1717 iinfo->i_crtime = time; 1718 } 1719 1720 static int udf_update_inode(struct inode *inode, int do_sync) 1721 { 1722 struct buffer_head *bh = NULL; 1723 struct fileEntry *fe; 1724 struct extendedFileEntry *efe; 1725 uint64_t lb_recorded; 1726 uint32_t udfperms; 1727 uint16_t icbflags; 1728 uint16_t crclen; 1729 int err = 0; 1730 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1731 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1732 struct udf_inode_info *iinfo = UDF_I(inode); 1733 1734 bh = sb_getblk(inode->i_sb, 1735 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1736 if (!bh) { 1737 udf_debug("getblk failure\n"); 1738 return -EIO; 1739 } 1740 1741 lock_buffer(bh); 1742 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1743 fe = (struct fileEntry *)bh->b_data; 1744 efe = (struct extendedFileEntry *)bh->b_data; 1745 1746 if (iinfo->i_use) { 1747 struct unallocSpaceEntry *use = 1748 (struct unallocSpaceEntry *)bh->b_data; 1749 1750 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1751 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1752 iinfo->i_data, inode->i_sb->s_blocksize - 1753 sizeof(struct unallocSpaceEntry)); 1754 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1755 crclen = sizeof(struct unallocSpaceEntry); 1756 1757 goto finish; 1758 } 1759 1760 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1761 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1762 else 1763 fe->uid = cpu_to_le32(i_uid_read(inode)); 1764 1765 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1766 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1767 else 1768 fe->gid = cpu_to_le32(i_gid_read(inode)); 1769 1770 udfperms = ((inode->i_mode & 0007)) | 1771 ((inode->i_mode & 0070) << 2) | 1772 ((inode->i_mode & 0700) << 4); 1773 1774 udfperms |= iinfo->i_extraPerms; 1775 fe->permissions = cpu_to_le32(udfperms); 1776 1777 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1778 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1779 else { 1780 if (iinfo->i_hidden) 1781 fe->fileLinkCount = cpu_to_le16(0); 1782 else 1783 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1784 } 1785 1786 fe->informationLength = cpu_to_le64(inode->i_size); 1787 1788 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1789 struct regid *eid; 1790 struct deviceSpec *dsea = 1791 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1792 if (!dsea) { 1793 dsea = (struct deviceSpec *) 1794 udf_add_extendedattr(inode, 1795 sizeof(struct deviceSpec) + 1796 sizeof(struct regid), 12, 0x3); 1797 dsea->attrType = cpu_to_le32(12); 1798 dsea->attrSubtype = 1; 1799 dsea->attrLength = cpu_to_le32( 1800 sizeof(struct deviceSpec) + 1801 sizeof(struct regid)); 1802 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1803 } 1804 eid = (struct regid *)dsea->impUse; 1805 memset(eid, 0, sizeof(*eid)); 1806 strcpy(eid->ident, UDF_ID_DEVELOPER); 1807 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1808 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1809 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1810 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1811 } 1812 1813 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1814 lb_recorded = 0; /* No extents => no blocks! */ 1815 else 1816 lb_recorded = 1817 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1818 (blocksize_bits - 9); 1819 1820 if (iinfo->i_efe == 0) { 1821 memcpy(bh->b_data + sizeof(struct fileEntry), 1822 iinfo->i_data, 1823 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1824 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1825 1826 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode)); 1827 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode)); 1828 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1829 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1830 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1831 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1832 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1833 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1834 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1835 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1836 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1837 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1838 crclen = sizeof(struct fileEntry); 1839 } else { 1840 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1841 iinfo->i_data, 1842 inode->i_sb->s_blocksize - 1843 sizeof(struct extendedFileEntry)); 1844 efe->objectSize = 1845 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1846 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1847 1848 if (iinfo->i_streamdir) { 1849 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1850 1851 icb_lad->extLocation = 1852 cpu_to_lelb(iinfo->i_locStreamdir); 1853 icb_lad->extLength = 1854 cpu_to_le32(inode->i_sb->s_blocksize); 1855 } 1856 1857 udf_adjust_time(iinfo, inode_get_atime(inode)); 1858 udf_adjust_time(iinfo, inode_get_mtime(inode)); 1859 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1860 1861 udf_time_to_disk_stamp(&efe->accessTime, 1862 inode_get_atime(inode)); 1863 udf_time_to_disk_stamp(&efe->modificationTime, 1864 inode_get_mtime(inode)); 1865 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1866 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1867 1868 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1869 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1870 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1871 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1872 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1873 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1874 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1875 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1876 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1877 crclen = sizeof(struct extendedFileEntry); 1878 } 1879 1880 finish: 1881 if (iinfo->i_strat4096) { 1882 fe->icbTag.strategyType = cpu_to_le16(4096); 1883 fe->icbTag.strategyParameter = cpu_to_le16(1); 1884 fe->icbTag.numEntries = cpu_to_le16(2); 1885 } else { 1886 fe->icbTag.strategyType = cpu_to_le16(4); 1887 fe->icbTag.numEntries = cpu_to_le16(1); 1888 } 1889 1890 if (iinfo->i_use) 1891 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1892 else if (S_ISDIR(inode->i_mode)) 1893 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1894 else if (S_ISREG(inode->i_mode)) 1895 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1896 else if (S_ISLNK(inode->i_mode)) 1897 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1898 else if (S_ISBLK(inode->i_mode)) 1899 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1900 else if (S_ISCHR(inode->i_mode)) 1901 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1902 else if (S_ISFIFO(inode->i_mode)) 1903 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1904 else if (S_ISSOCK(inode->i_mode)) 1905 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1906 1907 icbflags = iinfo->i_alloc_type | 1908 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1909 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1910 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1911 (le16_to_cpu(fe->icbTag.flags) & 1912 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1913 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1914 1915 fe->icbTag.flags = cpu_to_le16(icbflags); 1916 if (sbi->s_udfrev >= 0x0200) 1917 fe->descTag.descVersion = cpu_to_le16(3); 1918 else 1919 fe->descTag.descVersion = cpu_to_le16(2); 1920 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1921 fe->descTag.tagLocation = cpu_to_le32( 1922 iinfo->i_location.logicalBlockNum); 1923 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1924 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1925 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1926 crclen)); 1927 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1928 1929 set_buffer_uptodate(bh); 1930 unlock_buffer(bh); 1931 1932 /* write the data blocks */ 1933 mark_buffer_dirty(bh); 1934 if (do_sync) { 1935 sync_dirty_buffer(bh); 1936 if (buffer_write_io_error(bh)) { 1937 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1938 inode->i_ino); 1939 err = -EIO; 1940 } 1941 } 1942 brelse(bh); 1943 1944 return err; 1945 } 1946 1947 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1948 bool hidden_inode) 1949 { 1950 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1951 struct inode *inode = iget_locked(sb, block); 1952 int err; 1953 1954 if (!inode) 1955 return ERR_PTR(-ENOMEM); 1956 1957 if (!(inode->i_state & I_NEW)) { 1958 if (UDF_I(inode)->i_hidden != hidden_inode) { 1959 iput(inode); 1960 return ERR_PTR(-EFSCORRUPTED); 1961 } 1962 return inode; 1963 } 1964 1965 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1966 err = udf_read_inode(inode, hidden_inode); 1967 if (err < 0) { 1968 iget_failed(inode); 1969 return ERR_PTR(err); 1970 } 1971 unlock_new_inode(inode); 1972 1973 return inode; 1974 } 1975 1976 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1977 struct extent_position *epos) 1978 { 1979 struct super_block *sb = inode->i_sb; 1980 struct buffer_head *bh; 1981 struct allocExtDesc *aed; 1982 struct extent_position nepos; 1983 struct kernel_lb_addr neloc; 1984 int ver, adsize; 1985 int err = 0; 1986 1987 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1988 adsize = sizeof(struct short_ad); 1989 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1990 adsize = sizeof(struct long_ad); 1991 else 1992 return -EIO; 1993 1994 neloc.logicalBlockNum = block; 1995 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1996 1997 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1998 if (!bh) 1999 return -EIO; 2000 lock_buffer(bh); 2001 memset(bh->b_data, 0x00, sb->s_blocksize); 2002 set_buffer_uptodate(bh); 2003 unlock_buffer(bh); 2004 mark_buffer_dirty_inode(bh, inode); 2005 2006 aed = (struct allocExtDesc *)(bh->b_data); 2007 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 2008 aed->previousAllocExtLocation = 2009 cpu_to_le32(epos->block.logicalBlockNum); 2010 } 2011 aed->lengthAllocDescs = cpu_to_le32(0); 2012 if (UDF_SB(sb)->s_udfrev >= 0x0200) 2013 ver = 3; 2014 else 2015 ver = 2; 2016 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 2017 sizeof(struct tag)); 2018 2019 nepos.block = neloc; 2020 nepos.offset = sizeof(struct allocExtDesc); 2021 nepos.bh = bh; 2022 2023 /* 2024 * Do we have to copy current last extent to make space for indirect 2025 * one? 2026 */ 2027 if (epos->offset + adsize > sb->s_blocksize) { 2028 struct kernel_lb_addr cp_loc; 2029 uint32_t cp_len; 2030 int8_t cp_type; 2031 2032 epos->offset -= adsize; 2033 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0); 2034 if (err <= 0) 2035 goto err_out; 2036 cp_len |= ((uint32_t)cp_type) << 30; 2037 2038 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2039 udf_write_aext(inode, epos, &nepos.block, 2040 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2041 } else { 2042 __udf_add_aext(inode, epos, &nepos.block, 2043 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2044 } 2045 2046 brelse(epos->bh); 2047 *epos = nepos; 2048 2049 return 0; 2050 err_out: 2051 brelse(bh); 2052 return err; 2053 } 2054 2055 /* 2056 * Append extent at the given position - should be the first free one in inode 2057 * / indirect extent. This function assumes there is enough space in the inode 2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2059 */ 2060 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2061 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2062 { 2063 struct udf_inode_info *iinfo = UDF_I(inode); 2064 struct allocExtDesc *aed; 2065 int adsize; 2066 2067 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2068 adsize = sizeof(struct short_ad); 2069 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2070 adsize = sizeof(struct long_ad); 2071 else 2072 return -EIO; 2073 2074 if (!epos->bh) { 2075 WARN_ON(iinfo->i_lenAlloc != 2076 epos->offset - udf_file_entry_alloc_offset(inode)); 2077 } else { 2078 aed = (struct allocExtDesc *)epos->bh->b_data; 2079 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2080 epos->offset - sizeof(struct allocExtDesc)); 2081 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2082 } 2083 2084 udf_write_aext(inode, epos, eloc, elen, inc); 2085 2086 if (!epos->bh) { 2087 iinfo->i_lenAlloc += adsize; 2088 mark_inode_dirty(inode); 2089 } else { 2090 aed = (struct allocExtDesc *)epos->bh->b_data; 2091 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2092 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2093 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2094 udf_update_tag(epos->bh->b_data, 2095 epos->offset + (inc ? 0 : adsize)); 2096 else 2097 udf_update_tag(epos->bh->b_data, 2098 sizeof(struct allocExtDesc)); 2099 mark_buffer_dirty_inode(epos->bh, inode); 2100 } 2101 2102 return 0; 2103 } 2104 2105 /* 2106 * Append extent at given position - should be the first free one in inode 2107 * / indirect extent. Takes care of allocating and linking indirect blocks. 2108 */ 2109 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2110 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2111 { 2112 int adsize; 2113 struct super_block *sb = inode->i_sb; 2114 2115 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2116 adsize = sizeof(struct short_ad); 2117 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2118 adsize = sizeof(struct long_ad); 2119 else 2120 return -EIO; 2121 2122 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2123 int err; 2124 udf_pblk_t new_block; 2125 2126 new_block = udf_new_block(sb, NULL, 2127 epos->block.partitionReferenceNum, 2128 epos->block.logicalBlockNum, &err); 2129 if (!new_block) 2130 return -ENOSPC; 2131 2132 err = udf_setup_indirect_aext(inode, new_block, epos); 2133 if (err) 2134 return err; 2135 } 2136 2137 return __udf_add_aext(inode, epos, eloc, elen, inc); 2138 } 2139 2140 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2141 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2142 { 2143 int adsize; 2144 uint8_t *ptr; 2145 struct short_ad *sad; 2146 struct long_ad *lad; 2147 struct udf_inode_info *iinfo = UDF_I(inode); 2148 2149 if (!epos->bh) 2150 ptr = iinfo->i_data + epos->offset - 2151 udf_file_entry_alloc_offset(inode) + 2152 iinfo->i_lenEAttr; 2153 else 2154 ptr = epos->bh->b_data + epos->offset; 2155 2156 switch (iinfo->i_alloc_type) { 2157 case ICBTAG_FLAG_AD_SHORT: 2158 sad = (struct short_ad *)ptr; 2159 sad->extLength = cpu_to_le32(elen); 2160 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2161 adsize = sizeof(struct short_ad); 2162 break; 2163 case ICBTAG_FLAG_AD_LONG: 2164 lad = (struct long_ad *)ptr; 2165 lad->extLength = cpu_to_le32(elen); 2166 lad->extLocation = cpu_to_lelb(*eloc); 2167 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2168 adsize = sizeof(struct long_ad); 2169 break; 2170 default: 2171 return; 2172 } 2173 2174 if (epos->bh) { 2175 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2176 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2177 struct allocExtDesc *aed = 2178 (struct allocExtDesc *)epos->bh->b_data; 2179 udf_update_tag(epos->bh->b_data, 2180 le32_to_cpu(aed->lengthAllocDescs) + 2181 sizeof(struct allocExtDesc)); 2182 } 2183 mark_buffer_dirty_inode(epos->bh, inode); 2184 } else { 2185 mark_inode_dirty(inode); 2186 } 2187 2188 if (inc) 2189 epos->offset += adsize; 2190 } 2191 2192 /* 2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2194 * someone does some weird stuff. 2195 */ 2196 #define UDF_MAX_INDIR_EXTS 16 2197 2198 /* 2199 * Returns 1 on success, -errno on error, 0 on hit EOF. 2200 */ 2201 int udf_next_aext(struct inode *inode, struct extent_position *epos, 2202 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype, 2203 int inc) 2204 { 2205 unsigned int indirections = 0; 2206 int ret = 0; 2207 udf_pblk_t block; 2208 2209 while (1) { 2210 ret = udf_current_aext(inode, epos, eloc, elen, 2211 etype, inc); 2212 if (ret <= 0) 2213 return ret; 2214 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) 2215 return ret; 2216 2217 if (++indirections > UDF_MAX_INDIR_EXTS) { 2218 udf_err(inode->i_sb, 2219 "too many indirect extents in inode %lu\n", 2220 inode->i_ino); 2221 return -EFSCORRUPTED; 2222 } 2223 2224 epos->block = *eloc; 2225 epos->offset = sizeof(struct allocExtDesc); 2226 brelse(epos->bh); 2227 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2228 epos->bh = sb_bread(inode->i_sb, block); 2229 if (!epos->bh) { 2230 udf_debug("reading block %u failed!\n", block); 2231 return -EIO; 2232 } 2233 } 2234 } 2235 2236 /* 2237 * Returns 1 on success, -errno on error, 0 on hit EOF. 2238 */ 2239 int udf_current_aext(struct inode *inode, struct extent_position *epos, 2240 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype, 2241 int inc) 2242 { 2243 int alen; 2244 uint8_t *ptr; 2245 struct short_ad *sad; 2246 struct long_ad *lad; 2247 struct udf_inode_info *iinfo = UDF_I(inode); 2248 2249 if (!epos->bh) { 2250 if (!epos->offset) 2251 epos->offset = udf_file_entry_alloc_offset(inode); 2252 ptr = iinfo->i_data + epos->offset - 2253 udf_file_entry_alloc_offset(inode) + 2254 iinfo->i_lenEAttr; 2255 alen = udf_file_entry_alloc_offset(inode) + 2256 iinfo->i_lenAlloc; 2257 } else { 2258 struct allocExtDesc *header = 2259 (struct allocExtDesc *)epos->bh->b_data; 2260 2261 if (!epos->offset) 2262 epos->offset = sizeof(struct allocExtDesc); 2263 ptr = epos->bh->b_data + epos->offset; 2264 if (check_add_overflow(sizeof(struct allocExtDesc), 2265 le32_to_cpu(header->lengthAllocDescs), &alen)) 2266 return -1; 2267 } 2268 2269 switch (iinfo->i_alloc_type) { 2270 case ICBTAG_FLAG_AD_SHORT: 2271 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2272 if (!sad) 2273 return 0; 2274 *etype = le32_to_cpu(sad->extLength) >> 30; 2275 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2276 eloc->partitionReferenceNum = 2277 iinfo->i_location.partitionReferenceNum; 2278 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2279 break; 2280 case ICBTAG_FLAG_AD_LONG: 2281 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2282 if (!lad) 2283 return 0; 2284 *etype = le32_to_cpu(lad->extLength) >> 30; 2285 *eloc = lelb_to_cpu(lad->extLocation); 2286 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2287 break; 2288 default: 2289 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2290 return -EINVAL; 2291 } 2292 2293 return 1; 2294 } 2295 2296 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2297 struct kernel_lb_addr neloc, uint32_t nelen) 2298 { 2299 struct kernel_lb_addr oeloc; 2300 uint32_t oelen; 2301 int8_t etype; 2302 int ret; 2303 2304 if (epos.bh) 2305 get_bh(epos.bh); 2306 2307 while (1) { 2308 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0); 2309 if (ret <= 0) 2310 break; 2311 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2312 neloc = oeloc; 2313 nelen = (etype << 30) | oelen; 2314 } 2315 if (ret == 0) 2316 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2317 brelse(epos.bh); 2318 2319 return ret; 2320 } 2321 2322 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2323 { 2324 struct extent_position oepos; 2325 int adsize; 2326 int8_t etype; 2327 struct allocExtDesc *aed; 2328 struct udf_inode_info *iinfo; 2329 struct kernel_lb_addr eloc; 2330 uint32_t elen; 2331 int ret; 2332 2333 if (epos.bh) { 2334 get_bh(epos.bh); 2335 get_bh(epos.bh); 2336 } 2337 2338 iinfo = UDF_I(inode); 2339 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2340 adsize = sizeof(struct short_ad); 2341 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2342 adsize = sizeof(struct long_ad); 2343 else 2344 adsize = 0; 2345 2346 oepos = epos; 2347 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0) 2348 return -1; 2349 2350 while (1) { 2351 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1); 2352 if (ret < 0) { 2353 brelse(epos.bh); 2354 brelse(oepos.bh); 2355 return -1; 2356 } 2357 if (ret == 0) 2358 break; 2359 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2360 if (oepos.bh != epos.bh) { 2361 oepos.block = epos.block; 2362 brelse(oepos.bh); 2363 get_bh(epos.bh); 2364 oepos.bh = epos.bh; 2365 oepos.offset = epos.offset - adsize; 2366 } 2367 } 2368 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2369 elen = 0; 2370 2371 if (epos.bh != oepos.bh) { 2372 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2373 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2374 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2375 if (!oepos.bh) { 2376 iinfo->i_lenAlloc -= (adsize * 2); 2377 mark_inode_dirty(inode); 2378 } else { 2379 aed = (struct allocExtDesc *)oepos.bh->b_data; 2380 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2381 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2382 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2383 udf_update_tag(oepos.bh->b_data, 2384 oepos.offset - (2 * adsize)); 2385 else 2386 udf_update_tag(oepos.bh->b_data, 2387 sizeof(struct allocExtDesc)); 2388 mark_buffer_dirty_inode(oepos.bh, inode); 2389 } 2390 } else { 2391 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2392 if (!oepos.bh) { 2393 iinfo->i_lenAlloc -= adsize; 2394 mark_inode_dirty(inode); 2395 } else { 2396 aed = (struct allocExtDesc *)oepos.bh->b_data; 2397 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2398 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2399 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2400 udf_update_tag(oepos.bh->b_data, 2401 epos.offset - adsize); 2402 else 2403 udf_update_tag(oepos.bh->b_data, 2404 sizeof(struct allocExtDesc)); 2405 mark_buffer_dirty_inode(oepos.bh, inode); 2406 } 2407 } 2408 2409 brelse(epos.bh); 2410 brelse(oepos.bh); 2411 2412 return (elen >> 30); 2413 } 2414 2415 /* 2416 * Returns 1 on success, -errno on error, 0 on hit EOF. 2417 */ 2418 int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos, 2419 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset, 2420 int8_t *etype) 2421 { 2422 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2423 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2424 struct udf_inode_info *iinfo; 2425 int err = 0; 2426 2427 iinfo = UDF_I(inode); 2428 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2429 pos->offset = 0; 2430 pos->block = iinfo->i_location; 2431 pos->bh = NULL; 2432 } 2433 *elen = 0; 2434 do { 2435 err = udf_next_aext(inode, pos, eloc, elen, etype, 1); 2436 if (err <= 0) { 2437 if (err == 0) { 2438 *offset = (bcount - lbcount) >> blocksize_bits; 2439 iinfo->i_lenExtents = lbcount; 2440 } 2441 return err; 2442 } 2443 lbcount += *elen; 2444 } while (lbcount <= bcount); 2445 /* update extent cache */ 2446 udf_update_extent_cache(inode, lbcount - *elen, pos); 2447 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2448 2449 return 1; 2450 } 2451