1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 #include <linux/crc-itu-t.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static mode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 56 sector_t *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_delete_inode(struct inode *inode) 72 { 73 truncate_inode_pages(&inode->i_data, 0); 74 75 if (is_bad_inode(inode)) 76 goto no_delete; 77 78 inode->i_size = 0; 79 udf_truncate(inode); 80 lock_kernel(); 81 82 udf_update_inode(inode, IS_SYNC(inode)); 83 udf_free_inode(inode); 84 85 unlock_kernel(); 86 return; 87 88 no_delete: 89 clear_inode(inode); 90 } 91 92 /* 93 * If we are going to release inode from memory, we discard preallocation and 94 * truncate last inode extent to proper length. We could use drop_inode() but 95 * it's called under inode_lock and thus we cannot mark inode dirty there. We 96 * use clear_inode() but we have to make sure to write inode as it's not written 97 * automatically. 98 */ 99 void udf_clear_inode(struct inode *inode) 100 { 101 struct udf_inode_info *iinfo; 102 if (!(inode->i_sb->s_flags & MS_RDONLY)) { 103 lock_kernel(); 104 /* Discard preallocation for directories, symlinks, etc. */ 105 udf_discard_prealloc(inode); 106 udf_truncate_tail_extent(inode); 107 unlock_kernel(); 108 write_inode_now(inode, 0); 109 invalidate_inode_buffers(inode); 110 } 111 iinfo = UDF_I(inode); 112 kfree(iinfo->i_ext.i_data); 113 iinfo->i_ext.i_data = NULL; 114 } 115 116 static int udf_writepage(struct page *page, struct writeback_control *wbc) 117 { 118 return block_write_full_page(page, udf_get_block, wbc); 119 } 120 121 static int udf_readpage(struct file *file, struct page *page) 122 { 123 return block_read_full_page(page, udf_get_block); 124 } 125 126 static int udf_write_begin(struct file *file, struct address_space *mapping, 127 loff_t pos, unsigned len, unsigned flags, 128 struct page **pagep, void **fsdata) 129 { 130 *pagep = NULL; 131 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 132 udf_get_block); 133 } 134 135 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 136 { 137 return generic_block_bmap(mapping, block, udf_get_block); 138 } 139 140 const struct address_space_operations udf_aops = { 141 .readpage = udf_readpage, 142 .writepage = udf_writepage, 143 .sync_page = block_sync_page, 144 .write_begin = udf_write_begin, 145 .write_end = generic_write_end, 146 .bmap = udf_bmap, 147 }; 148 149 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 150 { 151 struct page *page; 152 char *kaddr; 153 struct udf_inode_info *iinfo = UDF_I(inode); 154 struct writeback_control udf_wbc = { 155 .sync_mode = WB_SYNC_NONE, 156 .nr_to_write = 1, 157 }; 158 159 /* from now on we have normal address_space methods */ 160 inode->i_data.a_ops = &udf_aops; 161 162 if (!iinfo->i_lenAlloc) { 163 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 164 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 165 else 166 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 167 mark_inode_dirty(inode); 168 return; 169 } 170 171 page = grab_cache_page(inode->i_mapping, 0); 172 BUG_ON(!PageLocked(page)); 173 174 if (!PageUptodate(page)) { 175 kaddr = kmap(page); 176 memset(kaddr + iinfo->i_lenAlloc, 0x00, 177 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 178 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 179 iinfo->i_lenAlloc); 180 flush_dcache_page(page); 181 SetPageUptodate(page); 182 kunmap(page); 183 } 184 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 185 iinfo->i_lenAlloc); 186 iinfo->i_lenAlloc = 0; 187 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 189 else 190 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 191 192 inode->i_data.a_ops->writepage(page, &udf_wbc); 193 page_cache_release(page); 194 195 mark_inode_dirty(inode); 196 } 197 198 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 199 int *err) 200 { 201 int newblock; 202 struct buffer_head *dbh = NULL; 203 kernel_lb_addr eloc; 204 uint32_t elen; 205 uint8_t alloctype; 206 struct extent_position epos; 207 208 struct udf_fileident_bh sfibh, dfibh; 209 loff_t f_pos = udf_ext0_offset(inode); 210 int size = udf_ext0_offset(inode) + inode->i_size; 211 struct fileIdentDesc cfi, *sfi, *dfi; 212 struct udf_inode_info *iinfo = UDF_I(inode); 213 214 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 215 alloctype = ICBTAG_FLAG_AD_SHORT; 216 else 217 alloctype = ICBTAG_FLAG_AD_LONG; 218 219 if (!inode->i_size) { 220 iinfo->i_alloc_type = alloctype; 221 mark_inode_dirty(inode); 222 return NULL; 223 } 224 225 /* alloc block, and copy data to it */ 226 *block = udf_new_block(inode->i_sb, inode, 227 iinfo->i_location.partitionReferenceNum, 228 iinfo->i_location.logicalBlockNum, err); 229 if (!(*block)) 230 return NULL; 231 newblock = udf_get_pblock(inode->i_sb, *block, 232 iinfo->i_location.partitionReferenceNum, 233 0); 234 if (!newblock) 235 return NULL; 236 dbh = udf_tgetblk(inode->i_sb, newblock); 237 if (!dbh) 238 return NULL; 239 lock_buffer(dbh); 240 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 241 set_buffer_uptodate(dbh); 242 unlock_buffer(dbh); 243 mark_buffer_dirty_inode(dbh, inode); 244 245 sfibh.soffset = sfibh.eoffset = 246 f_pos & (inode->i_sb->s_blocksize - 1); 247 sfibh.sbh = sfibh.ebh = NULL; 248 dfibh.soffset = dfibh.eoffset = 0; 249 dfibh.sbh = dfibh.ebh = dbh; 250 while (f_pos < size) { 251 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 252 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 253 NULL, NULL, NULL); 254 if (!sfi) { 255 brelse(dbh); 256 return NULL; 257 } 258 iinfo->i_alloc_type = alloctype; 259 sfi->descTag.tagLocation = cpu_to_le32(*block); 260 dfibh.soffset = dfibh.eoffset; 261 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 262 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 263 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 264 sfi->fileIdent + 265 le16_to_cpu(sfi->lengthOfImpUse))) { 266 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 267 brelse(dbh); 268 return NULL; 269 } 270 } 271 mark_buffer_dirty_inode(dbh, inode); 272 273 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 274 iinfo->i_lenAlloc); 275 iinfo->i_lenAlloc = 0; 276 eloc.logicalBlockNum = *block; 277 eloc.partitionReferenceNum = 278 iinfo->i_location.partitionReferenceNum; 279 elen = inode->i_sb->s_blocksize; 280 iinfo->i_lenExtents = elen; 281 epos.bh = NULL; 282 epos.block = iinfo->i_location; 283 epos.offset = udf_file_entry_alloc_offset(inode); 284 udf_add_aext(inode, &epos, eloc, elen, 0); 285 /* UniqueID stuff */ 286 287 brelse(epos.bh); 288 mark_inode_dirty(inode); 289 return dbh; 290 } 291 292 static int udf_get_block(struct inode *inode, sector_t block, 293 struct buffer_head *bh_result, int create) 294 { 295 int err, new; 296 struct buffer_head *bh; 297 sector_t phys = 0; 298 struct udf_inode_info *iinfo; 299 300 if (!create) { 301 phys = udf_block_map(inode, block); 302 if (phys) 303 map_bh(bh_result, inode->i_sb, phys); 304 return 0; 305 } 306 307 err = -EIO; 308 new = 0; 309 bh = NULL; 310 311 lock_kernel(); 312 313 iinfo = UDF_I(inode); 314 if (block == iinfo->i_next_alloc_block + 1) { 315 iinfo->i_next_alloc_block++; 316 iinfo->i_next_alloc_goal++; 317 } 318 319 err = 0; 320 321 bh = inode_getblk(inode, block, &err, &phys, &new); 322 BUG_ON(bh); 323 if (err) 324 goto abort; 325 BUG_ON(!phys); 326 327 if (new) 328 set_buffer_new(bh_result); 329 map_bh(bh_result, inode->i_sb, phys); 330 331 abort: 332 unlock_kernel(); 333 return err; 334 } 335 336 static struct buffer_head *udf_getblk(struct inode *inode, long block, 337 int create, int *err) 338 { 339 struct buffer_head *bh; 340 struct buffer_head dummy; 341 342 dummy.b_state = 0; 343 dummy.b_blocknr = -1000; 344 *err = udf_get_block(inode, block, &dummy, create); 345 if (!*err && buffer_mapped(&dummy)) { 346 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 347 if (buffer_new(&dummy)) { 348 lock_buffer(bh); 349 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 350 set_buffer_uptodate(bh); 351 unlock_buffer(bh); 352 mark_buffer_dirty_inode(bh, inode); 353 } 354 return bh; 355 } 356 357 return NULL; 358 } 359 360 /* Extend the file by 'blocks' blocks, return the number of extents added */ 361 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 362 kernel_long_ad *last_ext, sector_t blocks) 363 { 364 sector_t add; 365 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 366 struct super_block *sb = inode->i_sb; 367 kernel_lb_addr prealloc_loc = {}; 368 int prealloc_len = 0; 369 struct udf_inode_info *iinfo; 370 371 /* The previous extent is fake and we should not extend by anything 372 * - there's nothing to do... */ 373 if (!blocks && fake) 374 return 0; 375 376 iinfo = UDF_I(inode); 377 /* Round the last extent up to a multiple of block size */ 378 if (last_ext->extLength & (sb->s_blocksize - 1)) { 379 last_ext->extLength = 380 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 381 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 382 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 383 iinfo->i_lenExtents = 384 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 385 ~(sb->s_blocksize - 1); 386 } 387 388 /* Last extent are just preallocated blocks? */ 389 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 390 EXT_NOT_RECORDED_ALLOCATED) { 391 /* Save the extent so that we can reattach it to the end */ 392 prealloc_loc = last_ext->extLocation; 393 prealloc_len = last_ext->extLength; 394 /* Mark the extent as a hole */ 395 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 396 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 397 last_ext->extLocation.logicalBlockNum = 0; 398 last_ext->extLocation.partitionReferenceNum = 0; 399 } 400 401 /* Can we merge with the previous extent? */ 402 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 403 EXT_NOT_RECORDED_NOT_ALLOCATED) { 404 add = ((1 << 30) - sb->s_blocksize - 405 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 406 sb->s_blocksize_bits; 407 if (add > blocks) 408 add = blocks; 409 blocks -= add; 410 last_ext->extLength += add << sb->s_blocksize_bits; 411 } 412 413 if (fake) { 414 udf_add_aext(inode, last_pos, last_ext->extLocation, 415 last_ext->extLength, 1); 416 count++; 417 } else 418 udf_write_aext(inode, last_pos, last_ext->extLocation, 419 last_ext->extLength, 1); 420 421 /* Managed to do everything necessary? */ 422 if (!blocks) 423 goto out; 424 425 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 426 last_ext->extLocation.logicalBlockNum = 0; 427 last_ext->extLocation.partitionReferenceNum = 0; 428 add = (1 << (30-sb->s_blocksize_bits)) - 1; 429 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 430 (add << sb->s_blocksize_bits); 431 432 /* Create enough extents to cover the whole hole */ 433 while (blocks > add) { 434 blocks -= add; 435 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 436 last_ext->extLength, 1) == -1) 437 return -1; 438 count++; 439 } 440 if (blocks) { 441 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 442 (blocks << sb->s_blocksize_bits); 443 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 444 last_ext->extLength, 1) == -1) 445 return -1; 446 count++; 447 } 448 449 out: 450 /* Do we have some preallocated blocks saved? */ 451 if (prealloc_len) { 452 if (udf_add_aext(inode, last_pos, prealloc_loc, 453 prealloc_len, 1) == -1) 454 return -1; 455 last_ext->extLocation = prealloc_loc; 456 last_ext->extLength = prealloc_len; 457 count++; 458 } 459 460 /* last_pos should point to the last written extent... */ 461 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 462 last_pos->offset -= sizeof(short_ad); 463 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 464 last_pos->offset -= sizeof(long_ad); 465 else 466 return -1; 467 468 return count; 469 } 470 471 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 472 int *err, sector_t *phys, int *new) 473 { 474 static sector_t last_block; 475 struct buffer_head *result = NULL; 476 kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 477 struct extent_position prev_epos, cur_epos, next_epos; 478 int count = 0, startnum = 0, endnum = 0; 479 uint32_t elen = 0, tmpelen; 480 kernel_lb_addr eloc, tmpeloc; 481 int c = 1; 482 loff_t lbcount = 0, b_off = 0; 483 uint32_t newblocknum, newblock; 484 sector_t offset = 0; 485 int8_t etype; 486 struct udf_inode_info *iinfo = UDF_I(inode); 487 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 488 int lastblock = 0; 489 490 prev_epos.offset = udf_file_entry_alloc_offset(inode); 491 prev_epos.block = iinfo->i_location; 492 prev_epos.bh = NULL; 493 cur_epos = next_epos = prev_epos; 494 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 495 496 /* find the extent which contains the block we are looking for. 497 alternate between laarr[0] and laarr[1] for locations of the 498 current extent, and the previous extent */ 499 do { 500 if (prev_epos.bh != cur_epos.bh) { 501 brelse(prev_epos.bh); 502 get_bh(cur_epos.bh); 503 prev_epos.bh = cur_epos.bh; 504 } 505 if (cur_epos.bh != next_epos.bh) { 506 brelse(cur_epos.bh); 507 get_bh(next_epos.bh); 508 cur_epos.bh = next_epos.bh; 509 } 510 511 lbcount += elen; 512 513 prev_epos.block = cur_epos.block; 514 cur_epos.block = next_epos.block; 515 516 prev_epos.offset = cur_epos.offset; 517 cur_epos.offset = next_epos.offset; 518 519 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 520 if (etype == -1) 521 break; 522 523 c = !c; 524 525 laarr[c].extLength = (etype << 30) | elen; 526 laarr[c].extLocation = eloc; 527 528 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 529 pgoal = eloc.logicalBlockNum + 530 ((elen + inode->i_sb->s_blocksize - 1) >> 531 inode->i_sb->s_blocksize_bits); 532 533 count++; 534 } while (lbcount + elen <= b_off); 535 536 b_off -= lbcount; 537 offset = b_off >> inode->i_sb->s_blocksize_bits; 538 /* 539 * Move prev_epos and cur_epos into indirect extent if we are at 540 * the pointer to it 541 */ 542 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 543 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 544 545 /* if the extent is allocated and recorded, return the block 546 if the extent is not a multiple of the blocksize, round up */ 547 548 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 549 if (elen & (inode->i_sb->s_blocksize - 1)) { 550 elen = EXT_RECORDED_ALLOCATED | 551 ((elen + inode->i_sb->s_blocksize - 1) & 552 ~(inode->i_sb->s_blocksize - 1)); 553 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1); 554 } 555 brelse(prev_epos.bh); 556 brelse(cur_epos.bh); 557 brelse(next_epos.bh); 558 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset); 559 *phys = newblock; 560 return NULL; 561 } 562 563 last_block = block; 564 /* Are we beyond EOF? */ 565 if (etype == -1) { 566 int ret; 567 568 if (count) { 569 if (c) 570 laarr[0] = laarr[1]; 571 startnum = 1; 572 } else { 573 /* Create a fake extent when there's not one */ 574 memset(&laarr[0].extLocation, 0x00, 575 sizeof(kernel_lb_addr)); 576 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 577 /* Will udf_extend_file() create real extent from 578 a fake one? */ 579 startnum = (offset > 0); 580 } 581 /* Create extents for the hole between EOF and offset */ 582 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 583 if (ret == -1) { 584 brelse(prev_epos.bh); 585 brelse(cur_epos.bh); 586 brelse(next_epos.bh); 587 /* We don't really know the error here so we just make 588 * something up */ 589 *err = -ENOSPC; 590 return NULL; 591 } 592 c = 0; 593 offset = 0; 594 count += ret; 595 /* We are not covered by a preallocated extent? */ 596 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 597 EXT_NOT_RECORDED_ALLOCATED) { 598 /* Is there any real extent? - otherwise we overwrite 599 * the fake one... */ 600 if (count) 601 c = !c; 602 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 603 inode->i_sb->s_blocksize; 604 memset(&laarr[c].extLocation, 0x00, 605 sizeof(kernel_lb_addr)); 606 count++; 607 endnum++; 608 } 609 endnum = c + 1; 610 lastblock = 1; 611 } else { 612 endnum = startnum = ((count > 2) ? 2 : count); 613 614 /* if the current extent is in position 0, 615 swap it with the previous */ 616 if (!c && count != 1) { 617 laarr[2] = laarr[0]; 618 laarr[0] = laarr[1]; 619 laarr[1] = laarr[2]; 620 c = 1; 621 } 622 623 /* if the current block is located in an extent, 624 read the next extent */ 625 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 626 if (etype != -1) { 627 laarr[c + 1].extLength = (etype << 30) | elen; 628 laarr[c + 1].extLocation = eloc; 629 count++; 630 startnum++; 631 endnum++; 632 } else 633 lastblock = 1; 634 } 635 636 /* if the current extent is not recorded but allocated, get the 637 * block in the extent corresponding to the requested block */ 638 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 639 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 640 else { /* otherwise, allocate a new block */ 641 if (iinfo->i_next_alloc_block == block) 642 goal = iinfo->i_next_alloc_goal; 643 644 if (!goal) { 645 if (!(goal = pgoal)) /* XXX: what was intended here? */ 646 goal = iinfo->i_location.logicalBlockNum + 1; 647 } 648 649 newblocknum = udf_new_block(inode->i_sb, inode, 650 iinfo->i_location.partitionReferenceNum, 651 goal, err); 652 if (!newblocknum) { 653 brelse(prev_epos.bh); 654 *err = -ENOSPC; 655 return NULL; 656 } 657 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 658 } 659 660 /* if the extent the requsted block is located in contains multiple 661 * blocks, split the extent into at most three extents. blocks prior 662 * to requested block, requested block, and blocks after requested 663 * block */ 664 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 665 666 #ifdef UDF_PREALLOCATE 667 /* preallocate blocks */ 668 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 669 #endif 670 671 /* merge any continuous blocks in laarr */ 672 udf_merge_extents(inode, laarr, &endnum); 673 674 /* write back the new extents, inserting new extents if the new number 675 * of extents is greater than the old number, and deleting extents if 676 * the new number of extents is less than the old number */ 677 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 678 679 brelse(prev_epos.bh); 680 681 newblock = udf_get_pblock(inode->i_sb, newblocknum, 682 iinfo->i_location.partitionReferenceNum, 0); 683 if (!newblock) 684 return NULL; 685 *phys = newblock; 686 *err = 0; 687 *new = 1; 688 iinfo->i_next_alloc_block = block; 689 iinfo->i_next_alloc_goal = newblocknum; 690 inode->i_ctime = current_fs_time(inode->i_sb); 691 692 if (IS_SYNC(inode)) 693 udf_sync_inode(inode); 694 else 695 mark_inode_dirty(inode); 696 697 return result; 698 } 699 700 static void udf_split_extents(struct inode *inode, int *c, int offset, 701 int newblocknum, 702 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 703 int *endnum) 704 { 705 unsigned long blocksize = inode->i_sb->s_blocksize; 706 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 707 708 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 709 (laarr[*c].extLength >> 30) == 710 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 711 int curr = *c; 712 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 713 blocksize - 1) >> blocksize_bits; 714 int8_t etype = (laarr[curr].extLength >> 30); 715 716 if (blen == 1) 717 ; 718 else if (!offset || blen == offset + 1) { 719 laarr[curr + 2] = laarr[curr + 1]; 720 laarr[curr + 1] = laarr[curr]; 721 } else { 722 laarr[curr + 3] = laarr[curr + 1]; 723 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 724 } 725 726 if (offset) { 727 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 728 udf_free_blocks(inode->i_sb, inode, 729 laarr[curr].extLocation, 730 0, offset); 731 laarr[curr].extLength = 732 EXT_NOT_RECORDED_NOT_ALLOCATED | 733 (offset << blocksize_bits); 734 laarr[curr].extLocation.logicalBlockNum = 0; 735 laarr[curr].extLocation. 736 partitionReferenceNum = 0; 737 } else 738 laarr[curr].extLength = (etype << 30) | 739 (offset << blocksize_bits); 740 curr++; 741 (*c)++; 742 (*endnum)++; 743 } 744 745 laarr[curr].extLocation.logicalBlockNum = newblocknum; 746 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 747 laarr[curr].extLocation.partitionReferenceNum = 748 UDF_I(inode)->i_location.partitionReferenceNum; 749 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 750 blocksize; 751 curr++; 752 753 if (blen != offset + 1) { 754 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 755 laarr[curr].extLocation.logicalBlockNum += 756 offset + 1; 757 laarr[curr].extLength = (etype << 30) | 758 ((blen - (offset + 1)) << blocksize_bits); 759 curr++; 760 (*endnum)++; 761 } 762 } 763 } 764 765 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 766 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 767 int *endnum) 768 { 769 int start, length = 0, currlength = 0, i; 770 771 if (*endnum >= (c + 1)) { 772 if (!lastblock) 773 return; 774 else 775 start = c; 776 } else { 777 if ((laarr[c + 1].extLength >> 30) == 778 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 779 start = c + 1; 780 length = currlength = 781 (((laarr[c + 1].extLength & 782 UDF_EXTENT_LENGTH_MASK) + 783 inode->i_sb->s_blocksize - 1) >> 784 inode->i_sb->s_blocksize_bits); 785 } else 786 start = c; 787 } 788 789 for (i = start + 1; i <= *endnum; i++) { 790 if (i == *endnum) { 791 if (lastblock) 792 length += UDF_DEFAULT_PREALLOC_BLOCKS; 793 } else if ((laarr[i].extLength >> 30) == 794 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 795 length += (((laarr[i].extLength & 796 UDF_EXTENT_LENGTH_MASK) + 797 inode->i_sb->s_blocksize - 1) >> 798 inode->i_sb->s_blocksize_bits); 799 } else 800 break; 801 } 802 803 if (length) { 804 int next = laarr[start].extLocation.logicalBlockNum + 805 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 806 inode->i_sb->s_blocksize - 1) >> 807 inode->i_sb->s_blocksize_bits); 808 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 809 laarr[start].extLocation.partitionReferenceNum, 810 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 811 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 812 currlength); 813 if (numalloc) { 814 if (start == (c + 1)) 815 laarr[start].extLength += 816 (numalloc << 817 inode->i_sb->s_blocksize_bits); 818 else { 819 memmove(&laarr[c + 2], &laarr[c + 1], 820 sizeof(long_ad) * (*endnum - (c + 1))); 821 (*endnum)++; 822 laarr[c + 1].extLocation.logicalBlockNum = next; 823 laarr[c + 1].extLocation.partitionReferenceNum = 824 laarr[c].extLocation. 825 partitionReferenceNum; 826 laarr[c + 1].extLength = 827 EXT_NOT_RECORDED_ALLOCATED | 828 (numalloc << 829 inode->i_sb->s_blocksize_bits); 830 start = c + 1; 831 } 832 833 for (i = start + 1; numalloc && i < *endnum; i++) { 834 int elen = ((laarr[i].extLength & 835 UDF_EXTENT_LENGTH_MASK) + 836 inode->i_sb->s_blocksize - 1) >> 837 inode->i_sb->s_blocksize_bits; 838 839 if (elen > numalloc) { 840 laarr[i].extLength -= 841 (numalloc << 842 inode->i_sb->s_blocksize_bits); 843 numalloc = 0; 844 } else { 845 numalloc -= elen; 846 if (*endnum > (i + 1)) 847 memmove(&laarr[i], 848 &laarr[i + 1], 849 sizeof(long_ad) * 850 (*endnum - (i + 1))); 851 i--; 852 (*endnum)--; 853 } 854 } 855 UDF_I(inode)->i_lenExtents += 856 numalloc << inode->i_sb->s_blocksize_bits; 857 } 858 } 859 } 860 861 static void udf_merge_extents(struct inode *inode, 862 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 863 int *endnum) 864 { 865 int i; 866 unsigned long blocksize = inode->i_sb->s_blocksize; 867 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 868 869 for (i = 0; i < (*endnum - 1); i++) { 870 kernel_long_ad *li /*l[i]*/ = &laarr[i]; 871 kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 872 873 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 874 (((li->extLength >> 30) == 875 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 876 ((lip1->extLocation.logicalBlockNum - 877 li->extLocation.logicalBlockNum) == 878 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 879 blocksize - 1) >> blocksize_bits)))) { 880 881 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 882 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 883 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 884 lip1->extLength = (lip1->extLength - 885 (li->extLength & 886 UDF_EXTENT_LENGTH_MASK) + 887 UDF_EXTENT_LENGTH_MASK) & 888 ~(blocksize - 1); 889 li->extLength = (li->extLength & 890 UDF_EXTENT_FLAG_MASK) + 891 (UDF_EXTENT_LENGTH_MASK + 1) - 892 blocksize; 893 lip1->extLocation.logicalBlockNum = 894 li->extLocation.logicalBlockNum + 895 ((li->extLength & 896 UDF_EXTENT_LENGTH_MASK) >> 897 blocksize_bits); 898 } else { 899 li->extLength = lip1->extLength + 900 (((li->extLength & 901 UDF_EXTENT_LENGTH_MASK) + 902 blocksize - 1) & ~(blocksize - 1)); 903 if (*endnum > (i + 2)) 904 memmove(&laarr[i + 1], &laarr[i + 2], 905 sizeof(long_ad) * 906 (*endnum - (i + 2))); 907 i--; 908 (*endnum)--; 909 } 910 } else if (((li->extLength >> 30) == 911 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 912 ((lip1->extLength >> 30) == 913 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 914 udf_free_blocks(inode->i_sb, inode, li->extLocation, 0, 915 ((li->extLength & 916 UDF_EXTENT_LENGTH_MASK) + 917 blocksize - 1) >> blocksize_bits); 918 li->extLocation.logicalBlockNum = 0; 919 li->extLocation.partitionReferenceNum = 0; 920 921 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 922 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 923 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 924 lip1->extLength = (lip1->extLength - 925 (li->extLength & 926 UDF_EXTENT_LENGTH_MASK) + 927 UDF_EXTENT_LENGTH_MASK) & 928 ~(blocksize - 1); 929 li->extLength = (li->extLength & 930 UDF_EXTENT_FLAG_MASK) + 931 (UDF_EXTENT_LENGTH_MASK + 1) - 932 blocksize; 933 } else { 934 li->extLength = lip1->extLength + 935 (((li->extLength & 936 UDF_EXTENT_LENGTH_MASK) + 937 blocksize - 1) & ~(blocksize - 1)); 938 if (*endnum > (i + 2)) 939 memmove(&laarr[i + 1], &laarr[i + 2], 940 sizeof(long_ad) * 941 (*endnum - (i + 2))); 942 i--; 943 (*endnum)--; 944 } 945 } else if ((li->extLength >> 30) == 946 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 947 udf_free_blocks(inode->i_sb, inode, 948 li->extLocation, 0, 949 ((li->extLength & 950 UDF_EXTENT_LENGTH_MASK) + 951 blocksize - 1) >> blocksize_bits); 952 li->extLocation.logicalBlockNum = 0; 953 li->extLocation.partitionReferenceNum = 0; 954 li->extLength = (li->extLength & 955 UDF_EXTENT_LENGTH_MASK) | 956 EXT_NOT_RECORDED_NOT_ALLOCATED; 957 } 958 } 959 } 960 961 static void udf_update_extents(struct inode *inode, 962 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 963 int startnum, int endnum, 964 struct extent_position *epos) 965 { 966 int start = 0, i; 967 kernel_lb_addr tmploc; 968 uint32_t tmplen; 969 970 if (startnum > endnum) { 971 for (i = 0; i < (startnum - endnum); i++) 972 udf_delete_aext(inode, *epos, laarr[i].extLocation, 973 laarr[i].extLength); 974 } else if (startnum < endnum) { 975 for (i = 0; i < (endnum - startnum); i++) { 976 udf_insert_aext(inode, *epos, laarr[i].extLocation, 977 laarr[i].extLength); 978 udf_next_aext(inode, epos, &laarr[i].extLocation, 979 &laarr[i].extLength, 1); 980 start++; 981 } 982 } 983 984 for (i = start; i < endnum; i++) { 985 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 986 udf_write_aext(inode, epos, laarr[i].extLocation, 987 laarr[i].extLength, 1); 988 } 989 } 990 991 struct buffer_head *udf_bread(struct inode *inode, int block, 992 int create, int *err) 993 { 994 struct buffer_head *bh = NULL; 995 996 bh = udf_getblk(inode, block, create, err); 997 if (!bh) 998 return NULL; 999 1000 if (buffer_uptodate(bh)) 1001 return bh; 1002 1003 ll_rw_block(READ, 1, &bh); 1004 1005 wait_on_buffer(bh); 1006 if (buffer_uptodate(bh)) 1007 return bh; 1008 1009 brelse(bh); 1010 *err = -EIO; 1011 return NULL; 1012 } 1013 1014 void udf_truncate(struct inode *inode) 1015 { 1016 int offset; 1017 int err; 1018 struct udf_inode_info *iinfo; 1019 1020 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1021 S_ISLNK(inode->i_mode))) 1022 return; 1023 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1024 return; 1025 1026 lock_kernel(); 1027 iinfo = UDF_I(inode); 1028 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1029 if (inode->i_sb->s_blocksize < 1030 (udf_file_entry_alloc_offset(inode) + 1031 inode->i_size)) { 1032 udf_expand_file_adinicb(inode, inode->i_size, &err); 1033 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1034 inode->i_size = iinfo->i_lenAlloc; 1035 unlock_kernel(); 1036 return; 1037 } else 1038 udf_truncate_extents(inode); 1039 } else { 1040 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1041 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1042 0x00, inode->i_sb->s_blocksize - 1043 offset - udf_file_entry_alloc_offset(inode)); 1044 iinfo->i_lenAlloc = inode->i_size; 1045 } 1046 } else { 1047 block_truncate_page(inode->i_mapping, inode->i_size, 1048 udf_get_block); 1049 udf_truncate_extents(inode); 1050 } 1051 1052 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1053 if (IS_SYNC(inode)) 1054 udf_sync_inode(inode); 1055 else 1056 mark_inode_dirty(inode); 1057 unlock_kernel(); 1058 } 1059 1060 static void __udf_read_inode(struct inode *inode) 1061 { 1062 struct buffer_head *bh = NULL; 1063 struct fileEntry *fe; 1064 uint16_t ident; 1065 struct udf_inode_info *iinfo = UDF_I(inode); 1066 1067 /* 1068 * Set defaults, but the inode is still incomplete! 1069 * Note: get_new_inode() sets the following on a new inode: 1070 * i_sb = sb 1071 * i_no = ino 1072 * i_flags = sb->s_flags 1073 * i_state = 0 1074 * clean_inode(): zero fills and sets 1075 * i_count = 1 1076 * i_nlink = 1 1077 * i_op = NULL; 1078 */ 1079 bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident); 1080 if (!bh) { 1081 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1082 inode->i_ino); 1083 make_bad_inode(inode); 1084 return; 1085 } 1086 1087 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1088 ident != TAG_IDENT_USE) { 1089 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1090 "failed ident=%d\n", inode->i_ino, ident); 1091 brelse(bh); 1092 make_bad_inode(inode); 1093 return; 1094 } 1095 1096 fe = (struct fileEntry *)bh->b_data; 1097 1098 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1099 struct buffer_head *ibh; 1100 1101 ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1, 1102 &ident); 1103 if (ident == TAG_IDENT_IE && ibh) { 1104 struct buffer_head *nbh = NULL; 1105 kernel_lb_addr loc; 1106 struct indirectEntry *ie; 1107 1108 ie = (struct indirectEntry *)ibh->b_data; 1109 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1110 1111 if (ie->indirectICB.extLength && 1112 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, 1113 &ident))) { 1114 if (ident == TAG_IDENT_FE || 1115 ident == TAG_IDENT_EFE) { 1116 memcpy(&iinfo->i_location, 1117 &loc, 1118 sizeof(kernel_lb_addr)); 1119 brelse(bh); 1120 brelse(ibh); 1121 brelse(nbh); 1122 __udf_read_inode(inode); 1123 return; 1124 } 1125 brelse(nbh); 1126 } 1127 } 1128 brelse(ibh); 1129 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1130 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1131 le16_to_cpu(fe->icbTag.strategyType)); 1132 brelse(bh); 1133 make_bad_inode(inode); 1134 return; 1135 } 1136 udf_fill_inode(inode, bh); 1137 1138 brelse(bh); 1139 } 1140 1141 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1142 { 1143 struct fileEntry *fe; 1144 struct extendedFileEntry *efe; 1145 int offset; 1146 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1147 struct udf_inode_info *iinfo = UDF_I(inode); 1148 1149 fe = (struct fileEntry *)bh->b_data; 1150 efe = (struct extendedFileEntry *)bh->b_data; 1151 1152 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1153 iinfo->i_strat4096 = 0; 1154 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1155 iinfo->i_strat4096 = 1; 1156 1157 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1158 ICBTAG_FLAG_AD_MASK; 1159 iinfo->i_unique = 0; 1160 iinfo->i_lenEAttr = 0; 1161 iinfo->i_lenExtents = 0; 1162 iinfo->i_lenAlloc = 0; 1163 iinfo->i_next_alloc_block = 0; 1164 iinfo->i_next_alloc_goal = 0; 1165 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1166 iinfo->i_efe = 1; 1167 iinfo->i_use = 0; 1168 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1169 sizeof(struct extendedFileEntry))) { 1170 make_bad_inode(inode); 1171 return; 1172 } 1173 memcpy(iinfo->i_ext.i_data, 1174 bh->b_data + sizeof(struct extendedFileEntry), 1175 inode->i_sb->s_blocksize - 1176 sizeof(struct extendedFileEntry)); 1177 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1178 iinfo->i_efe = 0; 1179 iinfo->i_use = 0; 1180 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1181 sizeof(struct fileEntry))) { 1182 make_bad_inode(inode); 1183 return; 1184 } 1185 memcpy(iinfo->i_ext.i_data, 1186 bh->b_data + sizeof(struct fileEntry), 1187 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1188 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1189 iinfo->i_efe = 0; 1190 iinfo->i_use = 1; 1191 iinfo->i_lenAlloc = le32_to_cpu( 1192 ((struct unallocSpaceEntry *)bh->b_data)-> 1193 lengthAllocDescs); 1194 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1195 sizeof(struct unallocSpaceEntry))) { 1196 make_bad_inode(inode); 1197 return; 1198 } 1199 memcpy(iinfo->i_ext.i_data, 1200 bh->b_data + sizeof(struct unallocSpaceEntry), 1201 inode->i_sb->s_blocksize - 1202 sizeof(struct unallocSpaceEntry)); 1203 return; 1204 } 1205 1206 inode->i_uid = le32_to_cpu(fe->uid); 1207 if (inode->i_uid == -1 || 1208 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1209 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1210 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1211 1212 inode->i_gid = le32_to_cpu(fe->gid); 1213 if (inode->i_gid == -1 || 1214 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1215 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1216 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1217 1218 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1219 if (!inode->i_nlink) 1220 inode->i_nlink = 1; 1221 1222 inode->i_size = le64_to_cpu(fe->informationLength); 1223 iinfo->i_lenExtents = inode->i_size; 1224 1225 inode->i_mode = udf_convert_permissions(fe); 1226 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; 1227 1228 if (iinfo->i_efe == 0) { 1229 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1230 (inode->i_sb->s_blocksize_bits - 9); 1231 1232 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1233 inode->i_atime = sbi->s_record_time; 1234 1235 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1236 fe->modificationTime)) 1237 inode->i_mtime = sbi->s_record_time; 1238 1239 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1240 inode->i_ctime = sbi->s_record_time; 1241 1242 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1243 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1244 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1245 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1246 } else { 1247 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1248 (inode->i_sb->s_blocksize_bits - 9); 1249 1250 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1251 inode->i_atime = sbi->s_record_time; 1252 1253 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1254 efe->modificationTime)) 1255 inode->i_mtime = sbi->s_record_time; 1256 1257 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1258 iinfo->i_crtime = sbi->s_record_time; 1259 1260 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1261 inode->i_ctime = sbi->s_record_time; 1262 1263 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1264 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1265 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1266 offset = sizeof(struct extendedFileEntry) + 1267 iinfo->i_lenEAttr; 1268 } 1269 1270 switch (fe->icbTag.fileType) { 1271 case ICBTAG_FILE_TYPE_DIRECTORY: 1272 inode->i_op = &udf_dir_inode_operations; 1273 inode->i_fop = &udf_dir_operations; 1274 inode->i_mode |= S_IFDIR; 1275 inc_nlink(inode); 1276 break; 1277 case ICBTAG_FILE_TYPE_REALTIME: 1278 case ICBTAG_FILE_TYPE_REGULAR: 1279 case ICBTAG_FILE_TYPE_UNDEF: 1280 case ICBTAG_FILE_TYPE_VAT20: 1281 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1282 inode->i_data.a_ops = &udf_adinicb_aops; 1283 else 1284 inode->i_data.a_ops = &udf_aops; 1285 inode->i_op = &udf_file_inode_operations; 1286 inode->i_fop = &udf_file_operations; 1287 inode->i_mode |= S_IFREG; 1288 break; 1289 case ICBTAG_FILE_TYPE_BLOCK: 1290 inode->i_mode |= S_IFBLK; 1291 break; 1292 case ICBTAG_FILE_TYPE_CHAR: 1293 inode->i_mode |= S_IFCHR; 1294 break; 1295 case ICBTAG_FILE_TYPE_FIFO: 1296 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1297 break; 1298 case ICBTAG_FILE_TYPE_SOCKET: 1299 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1300 break; 1301 case ICBTAG_FILE_TYPE_SYMLINK: 1302 inode->i_data.a_ops = &udf_symlink_aops; 1303 inode->i_op = &page_symlink_inode_operations; 1304 inode->i_mode = S_IFLNK | S_IRWXUGO; 1305 break; 1306 case ICBTAG_FILE_TYPE_MAIN: 1307 udf_debug("METADATA FILE-----\n"); 1308 break; 1309 case ICBTAG_FILE_TYPE_MIRROR: 1310 udf_debug("METADATA MIRROR FILE-----\n"); 1311 break; 1312 case ICBTAG_FILE_TYPE_BITMAP: 1313 udf_debug("METADATA BITMAP FILE-----\n"); 1314 break; 1315 default: 1316 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1317 "file type=%d\n", inode->i_ino, 1318 fe->icbTag.fileType); 1319 make_bad_inode(inode); 1320 return; 1321 } 1322 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1323 struct deviceSpec *dsea = 1324 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1325 if (dsea) { 1326 init_special_inode(inode, inode->i_mode, 1327 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1328 le32_to_cpu(dsea->minorDeviceIdent))); 1329 /* Developer ID ??? */ 1330 } else 1331 make_bad_inode(inode); 1332 } 1333 } 1334 1335 static int udf_alloc_i_data(struct inode *inode, size_t size) 1336 { 1337 struct udf_inode_info *iinfo = UDF_I(inode); 1338 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1339 1340 if (!iinfo->i_ext.i_data) { 1341 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1342 "no free memory\n", inode->i_ino); 1343 return -ENOMEM; 1344 } 1345 1346 return 0; 1347 } 1348 1349 static mode_t udf_convert_permissions(struct fileEntry *fe) 1350 { 1351 mode_t mode; 1352 uint32_t permissions; 1353 uint32_t flags; 1354 1355 permissions = le32_to_cpu(fe->permissions); 1356 flags = le16_to_cpu(fe->icbTag.flags); 1357 1358 mode = ((permissions) & S_IRWXO) | 1359 ((permissions >> 2) & S_IRWXG) | 1360 ((permissions >> 4) & S_IRWXU) | 1361 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1362 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1363 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1364 1365 return mode; 1366 } 1367 1368 int udf_write_inode(struct inode *inode, int sync) 1369 { 1370 int ret; 1371 1372 lock_kernel(); 1373 ret = udf_update_inode(inode, sync); 1374 unlock_kernel(); 1375 1376 return ret; 1377 } 1378 1379 int udf_sync_inode(struct inode *inode) 1380 { 1381 return udf_update_inode(inode, 1); 1382 } 1383 1384 static int udf_update_inode(struct inode *inode, int do_sync) 1385 { 1386 struct buffer_head *bh = NULL; 1387 struct fileEntry *fe; 1388 struct extendedFileEntry *efe; 1389 uint32_t udfperms; 1390 uint16_t icbflags; 1391 uint16_t crclen; 1392 int err = 0; 1393 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1394 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1395 struct udf_inode_info *iinfo = UDF_I(inode); 1396 1397 bh = udf_tread(inode->i_sb, 1398 udf_get_lb_pblock(inode->i_sb, 1399 iinfo->i_location, 0)); 1400 if (!bh) { 1401 udf_debug("bread failure\n"); 1402 return -EIO; 1403 } 1404 1405 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1406 1407 fe = (struct fileEntry *)bh->b_data; 1408 efe = (struct extendedFileEntry *)bh->b_data; 1409 1410 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1411 struct unallocSpaceEntry *use = 1412 (struct unallocSpaceEntry *)bh->b_data; 1413 1414 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1415 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1416 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1417 sizeof(struct unallocSpaceEntry)); 1418 crclen = sizeof(struct unallocSpaceEntry) + 1419 iinfo->i_lenAlloc - sizeof(tag); 1420 use->descTag.tagLocation = cpu_to_le32( 1421 iinfo->i_location. 1422 logicalBlockNum); 1423 use->descTag.descCRCLength = cpu_to_le16(crclen); 1424 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1425 sizeof(tag), 1426 crclen)); 1427 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1428 1429 mark_buffer_dirty(bh); 1430 brelse(bh); 1431 return err; 1432 } 1433 1434 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1435 fe->uid = cpu_to_le32(-1); 1436 else 1437 fe->uid = cpu_to_le32(inode->i_uid); 1438 1439 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1440 fe->gid = cpu_to_le32(-1); 1441 else 1442 fe->gid = cpu_to_le32(inode->i_gid); 1443 1444 udfperms = ((inode->i_mode & S_IRWXO)) | 1445 ((inode->i_mode & S_IRWXG) << 2) | 1446 ((inode->i_mode & S_IRWXU) << 4); 1447 1448 udfperms |= (le32_to_cpu(fe->permissions) & 1449 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1450 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1451 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1452 fe->permissions = cpu_to_le32(udfperms); 1453 1454 if (S_ISDIR(inode->i_mode)) 1455 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1456 else 1457 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1458 1459 fe->informationLength = cpu_to_le64(inode->i_size); 1460 1461 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1462 regid *eid; 1463 struct deviceSpec *dsea = 1464 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1465 if (!dsea) { 1466 dsea = (struct deviceSpec *) 1467 udf_add_extendedattr(inode, 1468 sizeof(struct deviceSpec) + 1469 sizeof(regid), 12, 0x3); 1470 dsea->attrType = cpu_to_le32(12); 1471 dsea->attrSubtype = 1; 1472 dsea->attrLength = cpu_to_le32( 1473 sizeof(struct deviceSpec) + 1474 sizeof(regid)); 1475 dsea->impUseLength = cpu_to_le32(sizeof(regid)); 1476 } 1477 eid = (regid *)dsea->impUse; 1478 memset(eid, 0, sizeof(regid)); 1479 strcpy(eid->ident, UDF_ID_DEVELOPER); 1480 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1481 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1482 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1483 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1484 } 1485 1486 if (iinfo->i_efe == 0) { 1487 memcpy(bh->b_data + sizeof(struct fileEntry), 1488 iinfo->i_ext.i_data, 1489 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1490 fe->logicalBlocksRecorded = cpu_to_le64( 1491 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1492 (blocksize_bits - 9)); 1493 1494 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1495 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1496 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1497 memset(&(fe->impIdent), 0, sizeof(regid)); 1498 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1499 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1500 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1501 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1502 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1503 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1504 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1505 crclen = sizeof(struct fileEntry); 1506 } else { 1507 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1508 iinfo->i_ext.i_data, 1509 inode->i_sb->s_blocksize - 1510 sizeof(struct extendedFileEntry)); 1511 efe->objectSize = cpu_to_le64(inode->i_size); 1512 efe->logicalBlocksRecorded = cpu_to_le64( 1513 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1514 (blocksize_bits - 9)); 1515 1516 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1517 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1518 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1519 iinfo->i_crtime = inode->i_atime; 1520 1521 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1522 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1523 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1524 iinfo->i_crtime = inode->i_mtime; 1525 1526 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1527 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1528 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1529 iinfo->i_crtime = inode->i_ctime; 1530 1531 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1532 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1533 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1534 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1535 1536 memset(&(efe->impIdent), 0, sizeof(regid)); 1537 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1538 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1539 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1540 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1541 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1542 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1543 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1544 crclen = sizeof(struct extendedFileEntry); 1545 } 1546 if (iinfo->i_strat4096) { 1547 fe->icbTag.strategyType = cpu_to_le16(4096); 1548 fe->icbTag.strategyParameter = cpu_to_le16(1); 1549 fe->icbTag.numEntries = cpu_to_le16(2); 1550 } else { 1551 fe->icbTag.strategyType = cpu_to_le16(4); 1552 fe->icbTag.numEntries = cpu_to_le16(1); 1553 } 1554 1555 if (S_ISDIR(inode->i_mode)) 1556 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1557 else if (S_ISREG(inode->i_mode)) 1558 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1559 else if (S_ISLNK(inode->i_mode)) 1560 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1561 else if (S_ISBLK(inode->i_mode)) 1562 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1563 else if (S_ISCHR(inode->i_mode)) 1564 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1565 else if (S_ISFIFO(inode->i_mode)) 1566 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1567 else if (S_ISSOCK(inode->i_mode)) 1568 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1569 1570 icbflags = iinfo->i_alloc_type | 1571 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1572 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1573 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1574 (le16_to_cpu(fe->icbTag.flags) & 1575 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1576 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1577 1578 fe->icbTag.flags = cpu_to_le16(icbflags); 1579 if (sbi->s_udfrev >= 0x0200) 1580 fe->descTag.descVersion = cpu_to_le16(3); 1581 else 1582 fe->descTag.descVersion = cpu_to_le16(2); 1583 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1584 fe->descTag.tagLocation = cpu_to_le32( 1585 iinfo->i_location.logicalBlockNum); 1586 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - 1587 sizeof(tag); 1588 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1589 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(tag), 1590 crclen)); 1591 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1592 1593 /* write the data blocks */ 1594 mark_buffer_dirty(bh); 1595 if (do_sync) { 1596 sync_dirty_buffer(bh); 1597 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1598 printk(KERN_WARNING "IO error syncing udf inode " 1599 "[%s:%08lx]\n", inode->i_sb->s_id, 1600 inode->i_ino); 1601 err = -EIO; 1602 } 1603 } 1604 brelse(bh); 1605 1606 return err; 1607 } 1608 1609 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino) 1610 { 1611 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1612 struct inode *inode = iget_locked(sb, block); 1613 1614 if (!inode) 1615 return NULL; 1616 1617 if (inode->i_state & I_NEW) { 1618 memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr)); 1619 __udf_read_inode(inode); 1620 unlock_new_inode(inode); 1621 } 1622 1623 if (is_bad_inode(inode)) 1624 goto out_iput; 1625 1626 if (ino.logicalBlockNum >= UDF_SB(sb)-> 1627 s_partmaps[ino.partitionReferenceNum].s_partition_len) { 1628 udf_debug("block=%d, partition=%d out of range\n", 1629 ino.logicalBlockNum, ino.partitionReferenceNum); 1630 make_bad_inode(inode); 1631 goto out_iput; 1632 } 1633 1634 return inode; 1635 1636 out_iput: 1637 iput(inode); 1638 return NULL; 1639 } 1640 1641 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1642 kernel_lb_addr eloc, uint32_t elen, int inc) 1643 { 1644 int adsize; 1645 short_ad *sad = NULL; 1646 long_ad *lad = NULL; 1647 struct allocExtDesc *aed; 1648 int8_t etype; 1649 uint8_t *ptr; 1650 struct udf_inode_info *iinfo = UDF_I(inode); 1651 1652 if (!epos->bh) 1653 ptr = iinfo->i_ext.i_data + epos->offset - 1654 udf_file_entry_alloc_offset(inode) + 1655 iinfo->i_lenEAttr; 1656 else 1657 ptr = epos->bh->b_data + epos->offset; 1658 1659 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1660 adsize = sizeof(short_ad); 1661 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1662 adsize = sizeof(long_ad); 1663 else 1664 return -1; 1665 1666 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1667 char *sptr, *dptr; 1668 struct buffer_head *nbh; 1669 int err, loffset; 1670 kernel_lb_addr obloc = epos->block; 1671 1672 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1673 obloc.partitionReferenceNum, 1674 obloc.logicalBlockNum, &err); 1675 if (!epos->block.logicalBlockNum) 1676 return -1; 1677 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1678 epos->block, 1679 0)); 1680 if (!nbh) 1681 return -1; 1682 lock_buffer(nbh); 1683 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1684 set_buffer_uptodate(nbh); 1685 unlock_buffer(nbh); 1686 mark_buffer_dirty_inode(nbh, inode); 1687 1688 aed = (struct allocExtDesc *)(nbh->b_data); 1689 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1690 aed->previousAllocExtLocation = 1691 cpu_to_le32(obloc.logicalBlockNum); 1692 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1693 loffset = epos->offset; 1694 aed->lengthAllocDescs = cpu_to_le32(adsize); 1695 sptr = ptr - adsize; 1696 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1697 memcpy(dptr, sptr, adsize); 1698 epos->offset = sizeof(struct allocExtDesc) + adsize; 1699 } else { 1700 loffset = epos->offset + adsize; 1701 aed->lengthAllocDescs = cpu_to_le32(0); 1702 sptr = ptr; 1703 epos->offset = sizeof(struct allocExtDesc); 1704 1705 if (epos->bh) { 1706 aed = (struct allocExtDesc *)epos->bh->b_data; 1707 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1708 } else { 1709 iinfo->i_lenAlloc += adsize; 1710 mark_inode_dirty(inode); 1711 } 1712 } 1713 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1714 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1715 epos->block.logicalBlockNum, sizeof(tag)); 1716 else 1717 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1718 epos->block.logicalBlockNum, sizeof(tag)); 1719 switch (iinfo->i_alloc_type) { 1720 case ICBTAG_FLAG_AD_SHORT: 1721 sad = (short_ad *)sptr; 1722 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1723 inode->i_sb->s_blocksize); 1724 sad->extPosition = 1725 cpu_to_le32(epos->block.logicalBlockNum); 1726 break; 1727 case ICBTAG_FLAG_AD_LONG: 1728 lad = (long_ad *)sptr; 1729 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1730 inode->i_sb->s_blocksize); 1731 lad->extLocation = cpu_to_lelb(epos->block); 1732 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1733 break; 1734 } 1735 if (epos->bh) { 1736 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1737 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1738 udf_update_tag(epos->bh->b_data, loffset); 1739 else 1740 udf_update_tag(epos->bh->b_data, 1741 sizeof(struct allocExtDesc)); 1742 mark_buffer_dirty_inode(epos->bh, inode); 1743 brelse(epos->bh); 1744 } else { 1745 mark_inode_dirty(inode); 1746 } 1747 epos->bh = nbh; 1748 } 1749 1750 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1751 1752 if (!epos->bh) { 1753 iinfo->i_lenAlloc += adsize; 1754 mark_inode_dirty(inode); 1755 } else { 1756 aed = (struct allocExtDesc *)epos->bh->b_data; 1757 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1758 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1759 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1760 udf_update_tag(epos->bh->b_data, 1761 epos->offset + (inc ? 0 : adsize)); 1762 else 1763 udf_update_tag(epos->bh->b_data, 1764 sizeof(struct allocExtDesc)); 1765 mark_buffer_dirty_inode(epos->bh, inode); 1766 } 1767 1768 return etype; 1769 } 1770 1771 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1772 kernel_lb_addr eloc, uint32_t elen, int inc) 1773 { 1774 int adsize; 1775 uint8_t *ptr; 1776 short_ad *sad; 1777 long_ad *lad; 1778 struct udf_inode_info *iinfo = UDF_I(inode); 1779 1780 if (!epos->bh) 1781 ptr = iinfo->i_ext.i_data + epos->offset - 1782 udf_file_entry_alloc_offset(inode) + 1783 iinfo->i_lenEAttr; 1784 else 1785 ptr = epos->bh->b_data + epos->offset; 1786 1787 switch (iinfo->i_alloc_type) { 1788 case ICBTAG_FLAG_AD_SHORT: 1789 sad = (short_ad *)ptr; 1790 sad->extLength = cpu_to_le32(elen); 1791 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum); 1792 adsize = sizeof(short_ad); 1793 break; 1794 case ICBTAG_FLAG_AD_LONG: 1795 lad = (long_ad *)ptr; 1796 lad->extLength = cpu_to_le32(elen); 1797 lad->extLocation = cpu_to_lelb(eloc); 1798 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1799 adsize = sizeof(long_ad); 1800 break; 1801 default: 1802 return -1; 1803 } 1804 1805 if (epos->bh) { 1806 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1807 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1808 struct allocExtDesc *aed = 1809 (struct allocExtDesc *)epos->bh->b_data; 1810 udf_update_tag(epos->bh->b_data, 1811 le32_to_cpu(aed->lengthAllocDescs) + 1812 sizeof(struct allocExtDesc)); 1813 } 1814 mark_buffer_dirty_inode(epos->bh, inode); 1815 } else { 1816 mark_inode_dirty(inode); 1817 } 1818 1819 if (inc) 1820 epos->offset += adsize; 1821 1822 return (elen >> 30); 1823 } 1824 1825 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1826 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1827 { 1828 int8_t etype; 1829 1830 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1831 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1832 int block; 1833 epos->block = *eloc; 1834 epos->offset = sizeof(struct allocExtDesc); 1835 brelse(epos->bh); 1836 block = udf_get_lb_pblock(inode->i_sb, epos->block, 0); 1837 epos->bh = udf_tread(inode->i_sb, block); 1838 if (!epos->bh) { 1839 udf_debug("reading block %d failed!\n", block); 1840 return -1; 1841 } 1842 } 1843 1844 return etype; 1845 } 1846 1847 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1848 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1849 { 1850 int alen; 1851 int8_t etype; 1852 uint8_t *ptr; 1853 short_ad *sad; 1854 long_ad *lad; 1855 struct udf_inode_info *iinfo = UDF_I(inode); 1856 1857 if (!epos->bh) { 1858 if (!epos->offset) 1859 epos->offset = udf_file_entry_alloc_offset(inode); 1860 ptr = iinfo->i_ext.i_data + epos->offset - 1861 udf_file_entry_alloc_offset(inode) + 1862 iinfo->i_lenEAttr; 1863 alen = udf_file_entry_alloc_offset(inode) + 1864 iinfo->i_lenAlloc; 1865 } else { 1866 if (!epos->offset) 1867 epos->offset = sizeof(struct allocExtDesc); 1868 ptr = epos->bh->b_data + epos->offset; 1869 alen = sizeof(struct allocExtDesc) + 1870 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1871 lengthAllocDescs); 1872 } 1873 1874 switch (iinfo->i_alloc_type) { 1875 case ICBTAG_FLAG_AD_SHORT: 1876 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1877 if (!sad) 1878 return -1; 1879 etype = le32_to_cpu(sad->extLength) >> 30; 1880 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1881 eloc->partitionReferenceNum = 1882 iinfo->i_location.partitionReferenceNum; 1883 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1884 break; 1885 case ICBTAG_FLAG_AD_LONG: 1886 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1887 if (!lad) 1888 return -1; 1889 etype = le32_to_cpu(lad->extLength) >> 30; 1890 *eloc = lelb_to_cpu(lad->extLocation); 1891 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1892 break; 1893 default: 1894 udf_debug("alloc_type = %d unsupported\n", 1895 iinfo->i_alloc_type); 1896 return -1; 1897 } 1898 1899 return etype; 1900 } 1901 1902 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1903 kernel_lb_addr neloc, uint32_t nelen) 1904 { 1905 kernel_lb_addr oeloc; 1906 uint32_t oelen; 1907 int8_t etype; 1908 1909 if (epos.bh) 1910 get_bh(epos.bh); 1911 1912 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1913 udf_write_aext(inode, &epos, neloc, nelen, 1); 1914 neloc = oeloc; 1915 nelen = (etype << 30) | oelen; 1916 } 1917 udf_add_aext(inode, &epos, neloc, nelen, 1); 1918 brelse(epos.bh); 1919 1920 return (nelen >> 30); 1921 } 1922 1923 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1924 kernel_lb_addr eloc, uint32_t elen) 1925 { 1926 struct extent_position oepos; 1927 int adsize; 1928 int8_t etype; 1929 struct allocExtDesc *aed; 1930 struct udf_inode_info *iinfo; 1931 1932 if (epos.bh) { 1933 get_bh(epos.bh); 1934 get_bh(epos.bh); 1935 } 1936 1937 iinfo = UDF_I(inode); 1938 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1939 adsize = sizeof(short_ad); 1940 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1941 adsize = sizeof(long_ad); 1942 else 1943 adsize = 0; 1944 1945 oepos = epos; 1946 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1947 return -1; 1948 1949 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1950 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1); 1951 if (oepos.bh != epos.bh) { 1952 oepos.block = epos.block; 1953 brelse(oepos.bh); 1954 get_bh(epos.bh); 1955 oepos.bh = epos.bh; 1956 oepos.offset = epos.offset - adsize; 1957 } 1958 } 1959 memset(&eloc, 0x00, sizeof(kernel_lb_addr)); 1960 elen = 0; 1961 1962 if (epos.bh != oepos.bh) { 1963 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1); 1964 udf_write_aext(inode, &oepos, eloc, elen, 1); 1965 udf_write_aext(inode, &oepos, eloc, elen, 1); 1966 if (!oepos.bh) { 1967 iinfo->i_lenAlloc -= (adsize * 2); 1968 mark_inode_dirty(inode); 1969 } else { 1970 aed = (struct allocExtDesc *)oepos.bh->b_data; 1971 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1972 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1973 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1974 udf_update_tag(oepos.bh->b_data, 1975 oepos.offset - (2 * adsize)); 1976 else 1977 udf_update_tag(oepos.bh->b_data, 1978 sizeof(struct allocExtDesc)); 1979 mark_buffer_dirty_inode(oepos.bh, inode); 1980 } 1981 } else { 1982 udf_write_aext(inode, &oepos, eloc, elen, 1); 1983 if (!oepos.bh) { 1984 iinfo->i_lenAlloc -= adsize; 1985 mark_inode_dirty(inode); 1986 } else { 1987 aed = (struct allocExtDesc *)oepos.bh->b_data; 1988 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 1989 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1990 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1991 udf_update_tag(oepos.bh->b_data, 1992 epos.offset - adsize); 1993 else 1994 udf_update_tag(oepos.bh->b_data, 1995 sizeof(struct allocExtDesc)); 1996 mark_buffer_dirty_inode(oepos.bh, inode); 1997 } 1998 } 1999 2000 brelse(epos.bh); 2001 brelse(oepos.bh); 2002 2003 return (elen >> 30); 2004 } 2005 2006 int8_t inode_bmap(struct inode *inode, sector_t block, 2007 struct extent_position *pos, kernel_lb_addr *eloc, 2008 uint32_t *elen, sector_t *offset) 2009 { 2010 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2011 loff_t lbcount = 0, bcount = 2012 (loff_t) block << blocksize_bits; 2013 int8_t etype; 2014 struct udf_inode_info *iinfo; 2015 2016 iinfo = UDF_I(inode); 2017 pos->offset = 0; 2018 pos->block = iinfo->i_location; 2019 pos->bh = NULL; 2020 *elen = 0; 2021 2022 do { 2023 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2024 if (etype == -1) { 2025 *offset = (bcount - lbcount) >> blocksize_bits; 2026 iinfo->i_lenExtents = lbcount; 2027 return -1; 2028 } 2029 lbcount += *elen; 2030 } while (lbcount <= bcount); 2031 2032 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2033 2034 return etype; 2035 } 2036 2037 long udf_block_map(struct inode *inode, sector_t block) 2038 { 2039 kernel_lb_addr eloc; 2040 uint32_t elen; 2041 sector_t offset; 2042 struct extent_position epos = {}; 2043 int ret; 2044 2045 lock_kernel(); 2046 2047 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2048 (EXT_RECORDED_ALLOCATED >> 30)) 2049 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset); 2050 else 2051 ret = 0; 2052 2053 unlock_kernel(); 2054 brelse(epos.bh); 2055 2056 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2057 return udf_fixed_to_variable(ret); 2058 else 2059 return ret; 2060 } 2061