1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 #include <linux/crc-itu-t.h> 40 #include <linux/mpage.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static umode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_sync_inode(struct inode *inode); 55 static int udf_alloc_i_data(struct inode *inode, size_t size); 56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_evict_inode(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 int want_delete = 0; 75 76 if (!inode->i_nlink && !is_bad_inode(inode)) { 77 want_delete = 1; 78 udf_setsize(inode, 0); 79 udf_update_inode(inode, IS_SYNC(inode)); 80 } else 81 truncate_inode_pages(&inode->i_data, 0); 82 invalidate_inode_buffers(inode); 83 end_writeback(inode); 84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 85 inode->i_size != iinfo->i_lenExtents) { 86 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 87 inode->i_ino, inode->i_mode, 88 (unsigned long long)inode->i_size, 89 (unsigned long long)iinfo->i_lenExtents); 90 } 91 kfree(iinfo->i_ext.i_data); 92 iinfo->i_ext.i_data = NULL; 93 if (want_delete) { 94 udf_free_inode(inode); 95 } 96 } 97 98 static int udf_writepage(struct page *page, struct writeback_control *wbc) 99 { 100 return block_write_full_page(page, udf_get_block, wbc); 101 } 102 103 static int udf_readpage(struct file *file, struct page *page) 104 { 105 return mpage_readpage(page, udf_get_block); 106 } 107 108 static int udf_readpages(struct file *file, struct address_space *mapping, 109 struct list_head *pages, unsigned nr_pages) 110 { 111 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 112 } 113 114 static int udf_write_begin(struct file *file, struct address_space *mapping, 115 loff_t pos, unsigned len, unsigned flags, 116 struct page **pagep, void **fsdata) 117 { 118 int ret; 119 120 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 121 if (unlikely(ret)) { 122 struct inode *inode = mapping->host; 123 struct udf_inode_info *iinfo = UDF_I(inode); 124 loff_t isize = inode->i_size; 125 126 if (pos + len > isize) { 127 truncate_pagecache(inode, pos + len, isize); 128 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 129 down_write(&iinfo->i_data_sem); 130 udf_truncate_extents(inode); 131 up_write(&iinfo->i_data_sem); 132 } 133 } 134 } 135 136 return ret; 137 } 138 139 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 140 { 141 return generic_block_bmap(mapping, block, udf_get_block); 142 } 143 144 const struct address_space_operations udf_aops = { 145 .readpage = udf_readpage, 146 .readpages = udf_readpages, 147 .writepage = udf_writepage, 148 .write_begin = udf_write_begin, 149 .write_end = generic_write_end, 150 .bmap = udf_bmap, 151 }; 152 153 /* 154 * Expand file stored in ICB to a normal one-block-file 155 * 156 * This function requires i_data_sem for writing and releases it. 157 * This function requires i_mutex held 158 */ 159 int udf_expand_file_adinicb(struct inode *inode) 160 { 161 struct page *page; 162 char *kaddr; 163 struct udf_inode_info *iinfo = UDF_I(inode); 164 int err; 165 struct writeback_control udf_wbc = { 166 .sync_mode = WB_SYNC_NONE, 167 .nr_to_write = 1, 168 }; 169 170 if (!iinfo->i_lenAlloc) { 171 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 172 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 173 else 174 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 175 /* from now on we have normal address_space methods */ 176 inode->i_data.a_ops = &udf_aops; 177 up_write(&iinfo->i_data_sem); 178 mark_inode_dirty(inode); 179 return 0; 180 } 181 /* 182 * Release i_data_sem so that we can lock a page - page lock ranks 183 * above i_data_sem. i_mutex still protects us against file changes. 184 */ 185 up_write(&iinfo->i_data_sem); 186 187 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 188 if (!page) 189 return -ENOMEM; 190 191 if (!PageUptodate(page)) { 192 kaddr = kmap(page); 193 memset(kaddr + iinfo->i_lenAlloc, 0x00, 194 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 195 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 196 iinfo->i_lenAlloc); 197 flush_dcache_page(page); 198 SetPageUptodate(page); 199 kunmap(page); 200 } 201 down_write(&iinfo->i_data_sem); 202 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 203 iinfo->i_lenAlloc); 204 iinfo->i_lenAlloc = 0; 205 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 206 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 207 else 208 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 209 /* from now on we have normal address_space methods */ 210 inode->i_data.a_ops = &udf_aops; 211 up_write(&iinfo->i_data_sem); 212 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 213 if (err) { 214 /* Restore everything back so that we don't lose data... */ 215 lock_page(page); 216 kaddr = kmap(page); 217 down_write(&iinfo->i_data_sem); 218 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 219 inode->i_size); 220 kunmap(page); 221 unlock_page(page); 222 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 223 inode->i_data.a_ops = &udf_adinicb_aops; 224 up_write(&iinfo->i_data_sem); 225 } 226 page_cache_release(page); 227 mark_inode_dirty(inode); 228 229 return err; 230 } 231 232 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 233 int *err) 234 { 235 int newblock; 236 struct buffer_head *dbh = NULL; 237 struct kernel_lb_addr eloc; 238 uint8_t alloctype; 239 struct extent_position epos; 240 241 struct udf_fileident_bh sfibh, dfibh; 242 loff_t f_pos = udf_ext0_offset(inode); 243 int size = udf_ext0_offset(inode) + inode->i_size; 244 struct fileIdentDesc cfi, *sfi, *dfi; 245 struct udf_inode_info *iinfo = UDF_I(inode); 246 247 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 248 alloctype = ICBTAG_FLAG_AD_SHORT; 249 else 250 alloctype = ICBTAG_FLAG_AD_LONG; 251 252 if (!inode->i_size) { 253 iinfo->i_alloc_type = alloctype; 254 mark_inode_dirty(inode); 255 return NULL; 256 } 257 258 /* alloc block, and copy data to it */ 259 *block = udf_new_block(inode->i_sb, inode, 260 iinfo->i_location.partitionReferenceNum, 261 iinfo->i_location.logicalBlockNum, err); 262 if (!(*block)) 263 return NULL; 264 newblock = udf_get_pblock(inode->i_sb, *block, 265 iinfo->i_location.partitionReferenceNum, 266 0); 267 if (!newblock) 268 return NULL; 269 dbh = udf_tgetblk(inode->i_sb, newblock); 270 if (!dbh) 271 return NULL; 272 lock_buffer(dbh); 273 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 274 set_buffer_uptodate(dbh); 275 unlock_buffer(dbh); 276 mark_buffer_dirty_inode(dbh, inode); 277 278 sfibh.soffset = sfibh.eoffset = 279 f_pos & (inode->i_sb->s_blocksize - 1); 280 sfibh.sbh = sfibh.ebh = NULL; 281 dfibh.soffset = dfibh.eoffset = 0; 282 dfibh.sbh = dfibh.ebh = dbh; 283 while (f_pos < size) { 284 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 285 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 286 NULL, NULL, NULL); 287 if (!sfi) { 288 brelse(dbh); 289 return NULL; 290 } 291 iinfo->i_alloc_type = alloctype; 292 sfi->descTag.tagLocation = cpu_to_le32(*block); 293 dfibh.soffset = dfibh.eoffset; 294 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 295 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 296 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 297 sfi->fileIdent + 298 le16_to_cpu(sfi->lengthOfImpUse))) { 299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 300 brelse(dbh); 301 return NULL; 302 } 303 } 304 mark_buffer_dirty_inode(dbh, inode); 305 306 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 307 iinfo->i_lenAlloc); 308 iinfo->i_lenAlloc = 0; 309 eloc.logicalBlockNum = *block; 310 eloc.partitionReferenceNum = 311 iinfo->i_location.partitionReferenceNum; 312 iinfo->i_lenExtents = inode->i_size; 313 epos.bh = NULL; 314 epos.block = iinfo->i_location; 315 epos.offset = udf_file_entry_alloc_offset(inode); 316 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 317 /* UniqueID stuff */ 318 319 brelse(epos.bh); 320 mark_inode_dirty(inode); 321 return dbh; 322 } 323 324 static int udf_get_block(struct inode *inode, sector_t block, 325 struct buffer_head *bh_result, int create) 326 { 327 int err, new; 328 sector_t phys = 0; 329 struct udf_inode_info *iinfo; 330 331 if (!create) { 332 phys = udf_block_map(inode, block); 333 if (phys) 334 map_bh(bh_result, inode->i_sb, phys); 335 return 0; 336 } 337 338 err = -EIO; 339 new = 0; 340 iinfo = UDF_I(inode); 341 342 down_write(&iinfo->i_data_sem); 343 if (block == iinfo->i_next_alloc_block + 1) { 344 iinfo->i_next_alloc_block++; 345 iinfo->i_next_alloc_goal++; 346 } 347 348 349 phys = inode_getblk(inode, block, &err, &new); 350 if (!phys) 351 goto abort; 352 353 if (new) 354 set_buffer_new(bh_result); 355 map_bh(bh_result, inode->i_sb, phys); 356 357 abort: 358 up_write(&iinfo->i_data_sem); 359 return err; 360 } 361 362 static struct buffer_head *udf_getblk(struct inode *inode, long block, 363 int create, int *err) 364 { 365 struct buffer_head *bh; 366 struct buffer_head dummy; 367 368 dummy.b_state = 0; 369 dummy.b_blocknr = -1000; 370 *err = udf_get_block(inode, block, &dummy, create); 371 if (!*err && buffer_mapped(&dummy)) { 372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 373 if (buffer_new(&dummy)) { 374 lock_buffer(bh); 375 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 376 set_buffer_uptodate(bh); 377 unlock_buffer(bh); 378 mark_buffer_dirty_inode(bh, inode); 379 } 380 return bh; 381 } 382 383 return NULL; 384 } 385 386 /* Extend the file by 'blocks' blocks, return the number of extents added */ 387 static int udf_do_extend_file(struct inode *inode, 388 struct extent_position *last_pos, 389 struct kernel_long_ad *last_ext, 390 sector_t blocks) 391 { 392 sector_t add; 393 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 394 struct super_block *sb = inode->i_sb; 395 struct kernel_lb_addr prealloc_loc = {}; 396 int prealloc_len = 0; 397 struct udf_inode_info *iinfo; 398 int err; 399 400 /* The previous extent is fake and we should not extend by anything 401 * - there's nothing to do... */ 402 if (!blocks && fake) 403 return 0; 404 405 iinfo = UDF_I(inode); 406 /* Round the last extent up to a multiple of block size */ 407 if (last_ext->extLength & (sb->s_blocksize - 1)) { 408 last_ext->extLength = 409 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 410 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 411 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 412 iinfo->i_lenExtents = 413 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 414 ~(sb->s_blocksize - 1); 415 } 416 417 /* Last extent are just preallocated blocks? */ 418 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 419 EXT_NOT_RECORDED_ALLOCATED) { 420 /* Save the extent so that we can reattach it to the end */ 421 prealloc_loc = last_ext->extLocation; 422 prealloc_len = last_ext->extLength; 423 /* Mark the extent as a hole */ 424 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 425 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 426 last_ext->extLocation.logicalBlockNum = 0; 427 last_ext->extLocation.partitionReferenceNum = 0; 428 } 429 430 /* Can we merge with the previous extent? */ 431 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 432 EXT_NOT_RECORDED_NOT_ALLOCATED) { 433 add = ((1 << 30) - sb->s_blocksize - 434 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 435 sb->s_blocksize_bits; 436 if (add > blocks) 437 add = blocks; 438 blocks -= add; 439 last_ext->extLength += add << sb->s_blocksize_bits; 440 } 441 442 if (fake) { 443 udf_add_aext(inode, last_pos, &last_ext->extLocation, 444 last_ext->extLength, 1); 445 count++; 446 } else 447 udf_write_aext(inode, last_pos, &last_ext->extLocation, 448 last_ext->extLength, 1); 449 450 /* Managed to do everything necessary? */ 451 if (!blocks) 452 goto out; 453 454 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 455 last_ext->extLocation.logicalBlockNum = 0; 456 last_ext->extLocation.partitionReferenceNum = 0; 457 add = (1 << (30-sb->s_blocksize_bits)) - 1; 458 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 459 (add << sb->s_blocksize_bits); 460 461 /* Create enough extents to cover the whole hole */ 462 while (blocks > add) { 463 blocks -= add; 464 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 465 last_ext->extLength, 1); 466 if (err) 467 return err; 468 count++; 469 } 470 if (blocks) { 471 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 472 (blocks << sb->s_blocksize_bits); 473 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 474 last_ext->extLength, 1); 475 if (err) 476 return err; 477 count++; 478 } 479 480 out: 481 /* Do we have some preallocated blocks saved? */ 482 if (prealloc_len) { 483 err = udf_add_aext(inode, last_pos, &prealloc_loc, 484 prealloc_len, 1); 485 if (err) 486 return err; 487 last_ext->extLocation = prealloc_loc; 488 last_ext->extLength = prealloc_len; 489 count++; 490 } 491 492 /* last_pos should point to the last written extent... */ 493 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 494 last_pos->offset -= sizeof(struct short_ad); 495 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 496 last_pos->offset -= sizeof(struct long_ad); 497 else 498 return -EIO; 499 500 return count; 501 } 502 503 static int udf_extend_file(struct inode *inode, loff_t newsize) 504 { 505 506 struct extent_position epos; 507 struct kernel_lb_addr eloc; 508 uint32_t elen; 509 int8_t etype; 510 struct super_block *sb = inode->i_sb; 511 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 512 int adsize; 513 struct udf_inode_info *iinfo = UDF_I(inode); 514 struct kernel_long_ad extent; 515 int err; 516 517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 518 adsize = sizeof(struct short_ad); 519 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 520 adsize = sizeof(struct long_ad); 521 else 522 BUG(); 523 524 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 525 526 /* File has extent covering the new size (could happen when extending 527 * inside a block)? */ 528 if (etype != -1) 529 return 0; 530 if (newsize & (sb->s_blocksize - 1)) 531 offset++; 532 /* Extended file just to the boundary of the last file block? */ 533 if (offset == 0) 534 return 0; 535 536 /* Truncate is extending the file by 'offset' blocks */ 537 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 538 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 539 /* File has no extents at all or has empty last 540 * indirect extent! Create a fake extent... */ 541 extent.extLocation.logicalBlockNum = 0; 542 extent.extLocation.partitionReferenceNum = 0; 543 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 544 } else { 545 epos.offset -= adsize; 546 etype = udf_next_aext(inode, &epos, &extent.extLocation, 547 &extent.extLength, 0); 548 extent.extLength |= etype << 30; 549 } 550 err = udf_do_extend_file(inode, &epos, &extent, offset); 551 if (err < 0) 552 goto out; 553 err = 0; 554 iinfo->i_lenExtents = newsize; 555 out: 556 brelse(epos.bh); 557 return err; 558 } 559 560 static sector_t inode_getblk(struct inode *inode, sector_t block, 561 int *err, int *new) 562 { 563 static sector_t last_block; 564 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 565 struct extent_position prev_epos, cur_epos, next_epos; 566 int count = 0, startnum = 0, endnum = 0; 567 uint32_t elen = 0, tmpelen; 568 struct kernel_lb_addr eloc, tmpeloc; 569 int c = 1; 570 loff_t lbcount = 0, b_off = 0; 571 uint32_t newblocknum, newblock; 572 sector_t offset = 0; 573 int8_t etype; 574 struct udf_inode_info *iinfo = UDF_I(inode); 575 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 576 int lastblock = 0; 577 578 *err = 0; 579 *new = 0; 580 prev_epos.offset = udf_file_entry_alloc_offset(inode); 581 prev_epos.block = iinfo->i_location; 582 prev_epos.bh = NULL; 583 cur_epos = next_epos = prev_epos; 584 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 585 586 /* find the extent which contains the block we are looking for. 587 alternate between laarr[0] and laarr[1] for locations of the 588 current extent, and the previous extent */ 589 do { 590 if (prev_epos.bh != cur_epos.bh) { 591 brelse(prev_epos.bh); 592 get_bh(cur_epos.bh); 593 prev_epos.bh = cur_epos.bh; 594 } 595 if (cur_epos.bh != next_epos.bh) { 596 brelse(cur_epos.bh); 597 get_bh(next_epos.bh); 598 cur_epos.bh = next_epos.bh; 599 } 600 601 lbcount += elen; 602 603 prev_epos.block = cur_epos.block; 604 cur_epos.block = next_epos.block; 605 606 prev_epos.offset = cur_epos.offset; 607 cur_epos.offset = next_epos.offset; 608 609 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 610 if (etype == -1) 611 break; 612 613 c = !c; 614 615 laarr[c].extLength = (etype << 30) | elen; 616 laarr[c].extLocation = eloc; 617 618 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 619 pgoal = eloc.logicalBlockNum + 620 ((elen + inode->i_sb->s_blocksize - 1) >> 621 inode->i_sb->s_blocksize_bits); 622 623 count++; 624 } while (lbcount + elen <= b_off); 625 626 b_off -= lbcount; 627 offset = b_off >> inode->i_sb->s_blocksize_bits; 628 /* 629 * Move prev_epos and cur_epos into indirect extent if we are at 630 * the pointer to it 631 */ 632 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 633 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 634 635 /* if the extent is allocated and recorded, return the block 636 if the extent is not a multiple of the blocksize, round up */ 637 638 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 639 if (elen & (inode->i_sb->s_blocksize - 1)) { 640 elen = EXT_RECORDED_ALLOCATED | 641 ((elen + inode->i_sb->s_blocksize - 1) & 642 ~(inode->i_sb->s_blocksize - 1)); 643 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 644 } 645 brelse(prev_epos.bh); 646 brelse(cur_epos.bh); 647 brelse(next_epos.bh); 648 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 649 return newblock; 650 } 651 652 last_block = block; 653 /* Are we beyond EOF? */ 654 if (etype == -1) { 655 int ret; 656 657 if (count) { 658 if (c) 659 laarr[0] = laarr[1]; 660 startnum = 1; 661 } else { 662 /* Create a fake extent when there's not one */ 663 memset(&laarr[0].extLocation, 0x00, 664 sizeof(struct kernel_lb_addr)); 665 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 666 /* Will udf_do_extend_file() create real extent from 667 a fake one? */ 668 startnum = (offset > 0); 669 } 670 /* Create extents for the hole between EOF and offset */ 671 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 672 if (ret < 0) { 673 brelse(prev_epos.bh); 674 brelse(cur_epos.bh); 675 brelse(next_epos.bh); 676 *err = ret; 677 return 0; 678 } 679 c = 0; 680 offset = 0; 681 count += ret; 682 /* We are not covered by a preallocated extent? */ 683 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 684 EXT_NOT_RECORDED_ALLOCATED) { 685 /* Is there any real extent? - otherwise we overwrite 686 * the fake one... */ 687 if (count) 688 c = !c; 689 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 690 inode->i_sb->s_blocksize; 691 memset(&laarr[c].extLocation, 0x00, 692 sizeof(struct kernel_lb_addr)); 693 count++; 694 endnum++; 695 } 696 endnum = c + 1; 697 lastblock = 1; 698 } else { 699 endnum = startnum = ((count > 2) ? 2 : count); 700 701 /* if the current extent is in position 0, 702 swap it with the previous */ 703 if (!c && count != 1) { 704 laarr[2] = laarr[0]; 705 laarr[0] = laarr[1]; 706 laarr[1] = laarr[2]; 707 c = 1; 708 } 709 710 /* if the current block is located in an extent, 711 read the next extent */ 712 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 713 if (etype != -1) { 714 laarr[c + 1].extLength = (etype << 30) | elen; 715 laarr[c + 1].extLocation = eloc; 716 count++; 717 startnum++; 718 endnum++; 719 } else 720 lastblock = 1; 721 } 722 723 /* if the current extent is not recorded but allocated, get the 724 * block in the extent corresponding to the requested block */ 725 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 726 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 727 else { /* otherwise, allocate a new block */ 728 if (iinfo->i_next_alloc_block == block) 729 goal = iinfo->i_next_alloc_goal; 730 731 if (!goal) { 732 if (!(goal = pgoal)) /* XXX: what was intended here? */ 733 goal = iinfo->i_location.logicalBlockNum + 1; 734 } 735 736 newblocknum = udf_new_block(inode->i_sb, inode, 737 iinfo->i_location.partitionReferenceNum, 738 goal, err); 739 if (!newblocknum) { 740 brelse(prev_epos.bh); 741 *err = -ENOSPC; 742 return 0; 743 } 744 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 745 } 746 747 /* if the extent the requsted block is located in contains multiple 748 * blocks, split the extent into at most three extents. blocks prior 749 * to requested block, requested block, and blocks after requested 750 * block */ 751 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 752 753 #ifdef UDF_PREALLOCATE 754 /* We preallocate blocks only for regular files. It also makes sense 755 * for directories but there's a problem when to drop the 756 * preallocation. We might use some delayed work for that but I feel 757 * it's overengineering for a filesystem like UDF. */ 758 if (S_ISREG(inode->i_mode)) 759 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 760 #endif 761 762 /* merge any continuous blocks in laarr */ 763 udf_merge_extents(inode, laarr, &endnum); 764 765 /* write back the new extents, inserting new extents if the new number 766 * of extents is greater than the old number, and deleting extents if 767 * the new number of extents is less than the old number */ 768 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 769 770 brelse(prev_epos.bh); 771 772 newblock = udf_get_pblock(inode->i_sb, newblocknum, 773 iinfo->i_location.partitionReferenceNum, 0); 774 if (!newblock) { 775 *err = -EIO; 776 return 0; 777 } 778 *new = 1; 779 iinfo->i_next_alloc_block = block; 780 iinfo->i_next_alloc_goal = newblocknum; 781 inode->i_ctime = current_fs_time(inode->i_sb); 782 783 if (IS_SYNC(inode)) 784 udf_sync_inode(inode); 785 else 786 mark_inode_dirty(inode); 787 788 return newblock; 789 } 790 791 static void udf_split_extents(struct inode *inode, int *c, int offset, 792 int newblocknum, 793 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 794 int *endnum) 795 { 796 unsigned long blocksize = inode->i_sb->s_blocksize; 797 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 798 799 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 800 (laarr[*c].extLength >> 30) == 801 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 802 int curr = *c; 803 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 804 blocksize - 1) >> blocksize_bits; 805 int8_t etype = (laarr[curr].extLength >> 30); 806 807 if (blen == 1) 808 ; 809 else if (!offset || blen == offset + 1) { 810 laarr[curr + 2] = laarr[curr + 1]; 811 laarr[curr + 1] = laarr[curr]; 812 } else { 813 laarr[curr + 3] = laarr[curr + 1]; 814 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 815 } 816 817 if (offset) { 818 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 819 udf_free_blocks(inode->i_sb, inode, 820 &laarr[curr].extLocation, 821 0, offset); 822 laarr[curr].extLength = 823 EXT_NOT_RECORDED_NOT_ALLOCATED | 824 (offset << blocksize_bits); 825 laarr[curr].extLocation.logicalBlockNum = 0; 826 laarr[curr].extLocation. 827 partitionReferenceNum = 0; 828 } else 829 laarr[curr].extLength = (etype << 30) | 830 (offset << blocksize_bits); 831 curr++; 832 (*c)++; 833 (*endnum)++; 834 } 835 836 laarr[curr].extLocation.logicalBlockNum = newblocknum; 837 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 838 laarr[curr].extLocation.partitionReferenceNum = 839 UDF_I(inode)->i_location.partitionReferenceNum; 840 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 841 blocksize; 842 curr++; 843 844 if (blen != offset + 1) { 845 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 846 laarr[curr].extLocation.logicalBlockNum += 847 offset + 1; 848 laarr[curr].extLength = (etype << 30) | 849 ((blen - (offset + 1)) << blocksize_bits); 850 curr++; 851 (*endnum)++; 852 } 853 } 854 } 855 856 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 857 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 858 int *endnum) 859 { 860 int start, length = 0, currlength = 0, i; 861 862 if (*endnum >= (c + 1)) { 863 if (!lastblock) 864 return; 865 else 866 start = c; 867 } else { 868 if ((laarr[c + 1].extLength >> 30) == 869 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 870 start = c + 1; 871 length = currlength = 872 (((laarr[c + 1].extLength & 873 UDF_EXTENT_LENGTH_MASK) + 874 inode->i_sb->s_blocksize - 1) >> 875 inode->i_sb->s_blocksize_bits); 876 } else 877 start = c; 878 } 879 880 for (i = start + 1; i <= *endnum; i++) { 881 if (i == *endnum) { 882 if (lastblock) 883 length += UDF_DEFAULT_PREALLOC_BLOCKS; 884 } else if ((laarr[i].extLength >> 30) == 885 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 886 length += (((laarr[i].extLength & 887 UDF_EXTENT_LENGTH_MASK) + 888 inode->i_sb->s_blocksize - 1) >> 889 inode->i_sb->s_blocksize_bits); 890 } else 891 break; 892 } 893 894 if (length) { 895 int next = laarr[start].extLocation.logicalBlockNum + 896 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 897 inode->i_sb->s_blocksize - 1) >> 898 inode->i_sb->s_blocksize_bits); 899 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 900 laarr[start].extLocation.partitionReferenceNum, 901 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 902 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 903 currlength); 904 if (numalloc) { 905 if (start == (c + 1)) 906 laarr[start].extLength += 907 (numalloc << 908 inode->i_sb->s_blocksize_bits); 909 else { 910 memmove(&laarr[c + 2], &laarr[c + 1], 911 sizeof(struct long_ad) * (*endnum - (c + 1))); 912 (*endnum)++; 913 laarr[c + 1].extLocation.logicalBlockNum = next; 914 laarr[c + 1].extLocation.partitionReferenceNum = 915 laarr[c].extLocation. 916 partitionReferenceNum; 917 laarr[c + 1].extLength = 918 EXT_NOT_RECORDED_ALLOCATED | 919 (numalloc << 920 inode->i_sb->s_blocksize_bits); 921 start = c + 1; 922 } 923 924 for (i = start + 1; numalloc && i < *endnum; i++) { 925 int elen = ((laarr[i].extLength & 926 UDF_EXTENT_LENGTH_MASK) + 927 inode->i_sb->s_blocksize - 1) >> 928 inode->i_sb->s_blocksize_bits; 929 930 if (elen > numalloc) { 931 laarr[i].extLength -= 932 (numalloc << 933 inode->i_sb->s_blocksize_bits); 934 numalloc = 0; 935 } else { 936 numalloc -= elen; 937 if (*endnum > (i + 1)) 938 memmove(&laarr[i], 939 &laarr[i + 1], 940 sizeof(struct long_ad) * 941 (*endnum - (i + 1))); 942 i--; 943 (*endnum)--; 944 } 945 } 946 UDF_I(inode)->i_lenExtents += 947 numalloc << inode->i_sb->s_blocksize_bits; 948 } 949 } 950 } 951 952 static void udf_merge_extents(struct inode *inode, 953 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 954 int *endnum) 955 { 956 int i; 957 unsigned long blocksize = inode->i_sb->s_blocksize; 958 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 959 960 for (i = 0; i < (*endnum - 1); i++) { 961 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 962 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 963 964 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 965 (((li->extLength >> 30) == 966 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 967 ((lip1->extLocation.logicalBlockNum - 968 li->extLocation.logicalBlockNum) == 969 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 970 blocksize - 1) >> blocksize_bits)))) { 971 972 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 973 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 974 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 975 lip1->extLength = (lip1->extLength - 976 (li->extLength & 977 UDF_EXTENT_LENGTH_MASK) + 978 UDF_EXTENT_LENGTH_MASK) & 979 ~(blocksize - 1); 980 li->extLength = (li->extLength & 981 UDF_EXTENT_FLAG_MASK) + 982 (UDF_EXTENT_LENGTH_MASK + 1) - 983 blocksize; 984 lip1->extLocation.logicalBlockNum = 985 li->extLocation.logicalBlockNum + 986 ((li->extLength & 987 UDF_EXTENT_LENGTH_MASK) >> 988 blocksize_bits); 989 } else { 990 li->extLength = lip1->extLength + 991 (((li->extLength & 992 UDF_EXTENT_LENGTH_MASK) + 993 blocksize - 1) & ~(blocksize - 1)); 994 if (*endnum > (i + 2)) 995 memmove(&laarr[i + 1], &laarr[i + 2], 996 sizeof(struct long_ad) * 997 (*endnum - (i + 2))); 998 i--; 999 (*endnum)--; 1000 } 1001 } else if (((li->extLength >> 30) == 1002 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1003 ((lip1->extLength >> 30) == 1004 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1005 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1006 ((li->extLength & 1007 UDF_EXTENT_LENGTH_MASK) + 1008 blocksize - 1) >> blocksize_bits); 1009 li->extLocation.logicalBlockNum = 0; 1010 li->extLocation.partitionReferenceNum = 0; 1011 1012 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1013 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1014 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1015 lip1->extLength = (lip1->extLength - 1016 (li->extLength & 1017 UDF_EXTENT_LENGTH_MASK) + 1018 UDF_EXTENT_LENGTH_MASK) & 1019 ~(blocksize - 1); 1020 li->extLength = (li->extLength & 1021 UDF_EXTENT_FLAG_MASK) + 1022 (UDF_EXTENT_LENGTH_MASK + 1) - 1023 blocksize; 1024 } else { 1025 li->extLength = lip1->extLength + 1026 (((li->extLength & 1027 UDF_EXTENT_LENGTH_MASK) + 1028 blocksize - 1) & ~(blocksize - 1)); 1029 if (*endnum > (i + 2)) 1030 memmove(&laarr[i + 1], &laarr[i + 2], 1031 sizeof(struct long_ad) * 1032 (*endnum - (i + 2))); 1033 i--; 1034 (*endnum)--; 1035 } 1036 } else if ((li->extLength >> 30) == 1037 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1038 udf_free_blocks(inode->i_sb, inode, 1039 &li->extLocation, 0, 1040 ((li->extLength & 1041 UDF_EXTENT_LENGTH_MASK) + 1042 blocksize - 1) >> blocksize_bits); 1043 li->extLocation.logicalBlockNum = 0; 1044 li->extLocation.partitionReferenceNum = 0; 1045 li->extLength = (li->extLength & 1046 UDF_EXTENT_LENGTH_MASK) | 1047 EXT_NOT_RECORDED_NOT_ALLOCATED; 1048 } 1049 } 1050 } 1051 1052 static void udf_update_extents(struct inode *inode, 1053 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1054 int startnum, int endnum, 1055 struct extent_position *epos) 1056 { 1057 int start = 0, i; 1058 struct kernel_lb_addr tmploc; 1059 uint32_t tmplen; 1060 1061 if (startnum > endnum) { 1062 for (i = 0; i < (startnum - endnum); i++) 1063 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1064 laarr[i].extLength); 1065 } else if (startnum < endnum) { 1066 for (i = 0; i < (endnum - startnum); i++) { 1067 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1068 laarr[i].extLength); 1069 udf_next_aext(inode, epos, &laarr[i].extLocation, 1070 &laarr[i].extLength, 1); 1071 start++; 1072 } 1073 } 1074 1075 for (i = start; i < endnum; i++) { 1076 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1077 udf_write_aext(inode, epos, &laarr[i].extLocation, 1078 laarr[i].extLength, 1); 1079 } 1080 } 1081 1082 struct buffer_head *udf_bread(struct inode *inode, int block, 1083 int create, int *err) 1084 { 1085 struct buffer_head *bh = NULL; 1086 1087 bh = udf_getblk(inode, block, create, err); 1088 if (!bh) 1089 return NULL; 1090 1091 if (buffer_uptodate(bh)) 1092 return bh; 1093 1094 ll_rw_block(READ, 1, &bh); 1095 1096 wait_on_buffer(bh); 1097 if (buffer_uptodate(bh)) 1098 return bh; 1099 1100 brelse(bh); 1101 *err = -EIO; 1102 return NULL; 1103 } 1104 1105 int udf_setsize(struct inode *inode, loff_t newsize) 1106 { 1107 int err; 1108 struct udf_inode_info *iinfo; 1109 int bsize = 1 << inode->i_blkbits; 1110 1111 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1112 S_ISLNK(inode->i_mode))) 1113 return -EINVAL; 1114 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1115 return -EPERM; 1116 1117 iinfo = UDF_I(inode); 1118 if (newsize > inode->i_size) { 1119 down_write(&iinfo->i_data_sem); 1120 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1121 if (bsize < 1122 (udf_file_entry_alloc_offset(inode) + newsize)) { 1123 err = udf_expand_file_adinicb(inode); 1124 if (err) 1125 return err; 1126 down_write(&iinfo->i_data_sem); 1127 } else 1128 iinfo->i_lenAlloc = newsize; 1129 } 1130 err = udf_extend_file(inode, newsize); 1131 if (err) { 1132 up_write(&iinfo->i_data_sem); 1133 return err; 1134 } 1135 truncate_setsize(inode, newsize); 1136 up_write(&iinfo->i_data_sem); 1137 } else { 1138 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1139 down_write(&iinfo->i_data_sem); 1140 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1141 0x00, bsize - newsize - 1142 udf_file_entry_alloc_offset(inode)); 1143 iinfo->i_lenAlloc = newsize; 1144 truncate_setsize(inode, newsize); 1145 up_write(&iinfo->i_data_sem); 1146 goto update_time; 1147 } 1148 err = block_truncate_page(inode->i_mapping, newsize, 1149 udf_get_block); 1150 if (err) 1151 return err; 1152 down_write(&iinfo->i_data_sem); 1153 truncate_setsize(inode, newsize); 1154 udf_truncate_extents(inode); 1155 up_write(&iinfo->i_data_sem); 1156 } 1157 update_time: 1158 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1159 if (IS_SYNC(inode)) 1160 udf_sync_inode(inode); 1161 else 1162 mark_inode_dirty(inode); 1163 return 0; 1164 } 1165 1166 static void __udf_read_inode(struct inode *inode) 1167 { 1168 struct buffer_head *bh = NULL; 1169 struct fileEntry *fe; 1170 uint16_t ident; 1171 struct udf_inode_info *iinfo = UDF_I(inode); 1172 1173 /* 1174 * Set defaults, but the inode is still incomplete! 1175 * Note: get_new_inode() sets the following on a new inode: 1176 * i_sb = sb 1177 * i_no = ino 1178 * i_flags = sb->s_flags 1179 * i_state = 0 1180 * clean_inode(): zero fills and sets 1181 * i_count = 1 1182 * i_nlink = 1 1183 * i_op = NULL; 1184 */ 1185 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1186 if (!bh) { 1187 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1188 make_bad_inode(inode); 1189 return; 1190 } 1191 1192 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1193 ident != TAG_IDENT_USE) { 1194 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1195 inode->i_ino, ident); 1196 brelse(bh); 1197 make_bad_inode(inode); 1198 return; 1199 } 1200 1201 fe = (struct fileEntry *)bh->b_data; 1202 1203 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1204 struct buffer_head *ibh; 1205 1206 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1207 &ident); 1208 if (ident == TAG_IDENT_IE && ibh) { 1209 struct buffer_head *nbh = NULL; 1210 struct kernel_lb_addr loc; 1211 struct indirectEntry *ie; 1212 1213 ie = (struct indirectEntry *)ibh->b_data; 1214 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1215 1216 if (ie->indirectICB.extLength && 1217 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1218 &ident))) { 1219 if (ident == TAG_IDENT_FE || 1220 ident == TAG_IDENT_EFE) { 1221 memcpy(&iinfo->i_location, 1222 &loc, 1223 sizeof(struct kernel_lb_addr)); 1224 brelse(bh); 1225 brelse(ibh); 1226 brelse(nbh); 1227 __udf_read_inode(inode); 1228 return; 1229 } 1230 brelse(nbh); 1231 } 1232 } 1233 brelse(ibh); 1234 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1235 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1236 le16_to_cpu(fe->icbTag.strategyType)); 1237 brelse(bh); 1238 make_bad_inode(inode); 1239 return; 1240 } 1241 udf_fill_inode(inode, bh); 1242 1243 brelse(bh); 1244 } 1245 1246 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1247 { 1248 struct fileEntry *fe; 1249 struct extendedFileEntry *efe; 1250 int offset; 1251 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1252 struct udf_inode_info *iinfo = UDF_I(inode); 1253 unsigned int link_count; 1254 1255 fe = (struct fileEntry *)bh->b_data; 1256 efe = (struct extendedFileEntry *)bh->b_data; 1257 1258 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1259 iinfo->i_strat4096 = 0; 1260 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1261 iinfo->i_strat4096 = 1; 1262 1263 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1264 ICBTAG_FLAG_AD_MASK; 1265 iinfo->i_unique = 0; 1266 iinfo->i_lenEAttr = 0; 1267 iinfo->i_lenExtents = 0; 1268 iinfo->i_lenAlloc = 0; 1269 iinfo->i_next_alloc_block = 0; 1270 iinfo->i_next_alloc_goal = 0; 1271 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1272 iinfo->i_efe = 1; 1273 iinfo->i_use = 0; 1274 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1275 sizeof(struct extendedFileEntry))) { 1276 make_bad_inode(inode); 1277 return; 1278 } 1279 memcpy(iinfo->i_ext.i_data, 1280 bh->b_data + sizeof(struct extendedFileEntry), 1281 inode->i_sb->s_blocksize - 1282 sizeof(struct extendedFileEntry)); 1283 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1284 iinfo->i_efe = 0; 1285 iinfo->i_use = 0; 1286 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1287 sizeof(struct fileEntry))) { 1288 make_bad_inode(inode); 1289 return; 1290 } 1291 memcpy(iinfo->i_ext.i_data, 1292 bh->b_data + sizeof(struct fileEntry), 1293 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1294 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1295 iinfo->i_efe = 0; 1296 iinfo->i_use = 1; 1297 iinfo->i_lenAlloc = le32_to_cpu( 1298 ((struct unallocSpaceEntry *)bh->b_data)-> 1299 lengthAllocDescs); 1300 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1301 sizeof(struct unallocSpaceEntry))) { 1302 make_bad_inode(inode); 1303 return; 1304 } 1305 memcpy(iinfo->i_ext.i_data, 1306 bh->b_data + sizeof(struct unallocSpaceEntry), 1307 inode->i_sb->s_blocksize - 1308 sizeof(struct unallocSpaceEntry)); 1309 return; 1310 } 1311 1312 read_lock(&sbi->s_cred_lock); 1313 inode->i_uid = le32_to_cpu(fe->uid); 1314 if (inode->i_uid == -1 || 1315 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1316 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1317 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1318 1319 inode->i_gid = le32_to_cpu(fe->gid); 1320 if (inode->i_gid == -1 || 1321 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1322 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1323 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1324 1325 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1326 sbi->s_fmode != UDF_INVALID_MODE) 1327 inode->i_mode = sbi->s_fmode; 1328 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1329 sbi->s_dmode != UDF_INVALID_MODE) 1330 inode->i_mode = sbi->s_dmode; 1331 else 1332 inode->i_mode = udf_convert_permissions(fe); 1333 inode->i_mode &= ~sbi->s_umask; 1334 read_unlock(&sbi->s_cred_lock); 1335 1336 link_count = le16_to_cpu(fe->fileLinkCount); 1337 if (!link_count) 1338 link_count = 1; 1339 set_nlink(inode, link_count); 1340 1341 inode->i_size = le64_to_cpu(fe->informationLength); 1342 iinfo->i_lenExtents = inode->i_size; 1343 1344 if (iinfo->i_efe == 0) { 1345 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1346 (inode->i_sb->s_blocksize_bits - 9); 1347 1348 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1349 inode->i_atime = sbi->s_record_time; 1350 1351 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1352 fe->modificationTime)) 1353 inode->i_mtime = sbi->s_record_time; 1354 1355 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1356 inode->i_ctime = sbi->s_record_time; 1357 1358 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1359 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1360 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1361 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1362 } else { 1363 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1364 (inode->i_sb->s_blocksize_bits - 9); 1365 1366 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1367 inode->i_atime = sbi->s_record_time; 1368 1369 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1370 efe->modificationTime)) 1371 inode->i_mtime = sbi->s_record_time; 1372 1373 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1374 iinfo->i_crtime = sbi->s_record_time; 1375 1376 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1377 inode->i_ctime = sbi->s_record_time; 1378 1379 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1380 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1381 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1382 offset = sizeof(struct extendedFileEntry) + 1383 iinfo->i_lenEAttr; 1384 } 1385 1386 switch (fe->icbTag.fileType) { 1387 case ICBTAG_FILE_TYPE_DIRECTORY: 1388 inode->i_op = &udf_dir_inode_operations; 1389 inode->i_fop = &udf_dir_operations; 1390 inode->i_mode |= S_IFDIR; 1391 inc_nlink(inode); 1392 break; 1393 case ICBTAG_FILE_TYPE_REALTIME: 1394 case ICBTAG_FILE_TYPE_REGULAR: 1395 case ICBTAG_FILE_TYPE_UNDEF: 1396 case ICBTAG_FILE_TYPE_VAT20: 1397 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1398 inode->i_data.a_ops = &udf_adinicb_aops; 1399 else 1400 inode->i_data.a_ops = &udf_aops; 1401 inode->i_op = &udf_file_inode_operations; 1402 inode->i_fop = &udf_file_operations; 1403 inode->i_mode |= S_IFREG; 1404 break; 1405 case ICBTAG_FILE_TYPE_BLOCK: 1406 inode->i_mode |= S_IFBLK; 1407 break; 1408 case ICBTAG_FILE_TYPE_CHAR: 1409 inode->i_mode |= S_IFCHR; 1410 break; 1411 case ICBTAG_FILE_TYPE_FIFO: 1412 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1413 break; 1414 case ICBTAG_FILE_TYPE_SOCKET: 1415 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1416 break; 1417 case ICBTAG_FILE_TYPE_SYMLINK: 1418 inode->i_data.a_ops = &udf_symlink_aops; 1419 inode->i_op = &udf_symlink_inode_operations; 1420 inode->i_mode = S_IFLNK | S_IRWXUGO; 1421 break; 1422 case ICBTAG_FILE_TYPE_MAIN: 1423 udf_debug("METADATA FILE-----\n"); 1424 break; 1425 case ICBTAG_FILE_TYPE_MIRROR: 1426 udf_debug("METADATA MIRROR FILE-----\n"); 1427 break; 1428 case ICBTAG_FILE_TYPE_BITMAP: 1429 udf_debug("METADATA BITMAP FILE-----\n"); 1430 break; 1431 default: 1432 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1433 inode->i_ino, fe->icbTag.fileType); 1434 make_bad_inode(inode); 1435 return; 1436 } 1437 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1438 struct deviceSpec *dsea = 1439 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1440 if (dsea) { 1441 init_special_inode(inode, inode->i_mode, 1442 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1443 le32_to_cpu(dsea->minorDeviceIdent))); 1444 /* Developer ID ??? */ 1445 } else 1446 make_bad_inode(inode); 1447 } 1448 } 1449 1450 static int udf_alloc_i_data(struct inode *inode, size_t size) 1451 { 1452 struct udf_inode_info *iinfo = UDF_I(inode); 1453 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1454 1455 if (!iinfo->i_ext.i_data) { 1456 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1457 inode->i_ino); 1458 return -ENOMEM; 1459 } 1460 1461 return 0; 1462 } 1463 1464 static umode_t udf_convert_permissions(struct fileEntry *fe) 1465 { 1466 umode_t mode; 1467 uint32_t permissions; 1468 uint32_t flags; 1469 1470 permissions = le32_to_cpu(fe->permissions); 1471 flags = le16_to_cpu(fe->icbTag.flags); 1472 1473 mode = ((permissions) & S_IRWXO) | 1474 ((permissions >> 2) & S_IRWXG) | 1475 ((permissions >> 4) & S_IRWXU) | 1476 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1477 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1478 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1479 1480 return mode; 1481 } 1482 1483 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1484 { 1485 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1486 } 1487 1488 static int udf_sync_inode(struct inode *inode) 1489 { 1490 return udf_update_inode(inode, 1); 1491 } 1492 1493 static int udf_update_inode(struct inode *inode, int do_sync) 1494 { 1495 struct buffer_head *bh = NULL; 1496 struct fileEntry *fe; 1497 struct extendedFileEntry *efe; 1498 uint32_t udfperms; 1499 uint16_t icbflags; 1500 uint16_t crclen; 1501 int err = 0; 1502 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1503 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1504 struct udf_inode_info *iinfo = UDF_I(inode); 1505 1506 bh = udf_tgetblk(inode->i_sb, 1507 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1508 if (!bh) { 1509 udf_debug("getblk failure\n"); 1510 return -ENOMEM; 1511 } 1512 1513 lock_buffer(bh); 1514 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1515 fe = (struct fileEntry *)bh->b_data; 1516 efe = (struct extendedFileEntry *)bh->b_data; 1517 1518 if (iinfo->i_use) { 1519 struct unallocSpaceEntry *use = 1520 (struct unallocSpaceEntry *)bh->b_data; 1521 1522 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1523 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1524 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1525 sizeof(struct unallocSpaceEntry)); 1526 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1527 use->descTag.tagLocation = 1528 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1529 crclen = sizeof(struct unallocSpaceEntry) + 1530 iinfo->i_lenAlloc - sizeof(struct tag); 1531 use->descTag.descCRCLength = cpu_to_le16(crclen); 1532 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1533 sizeof(struct tag), 1534 crclen)); 1535 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1536 1537 goto out; 1538 } 1539 1540 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1541 fe->uid = cpu_to_le32(-1); 1542 else 1543 fe->uid = cpu_to_le32(inode->i_uid); 1544 1545 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1546 fe->gid = cpu_to_le32(-1); 1547 else 1548 fe->gid = cpu_to_le32(inode->i_gid); 1549 1550 udfperms = ((inode->i_mode & S_IRWXO)) | 1551 ((inode->i_mode & S_IRWXG) << 2) | 1552 ((inode->i_mode & S_IRWXU) << 4); 1553 1554 udfperms |= (le32_to_cpu(fe->permissions) & 1555 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1556 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1557 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1558 fe->permissions = cpu_to_le32(udfperms); 1559 1560 if (S_ISDIR(inode->i_mode)) 1561 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1562 else 1563 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1564 1565 fe->informationLength = cpu_to_le64(inode->i_size); 1566 1567 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1568 struct regid *eid; 1569 struct deviceSpec *dsea = 1570 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1571 if (!dsea) { 1572 dsea = (struct deviceSpec *) 1573 udf_add_extendedattr(inode, 1574 sizeof(struct deviceSpec) + 1575 sizeof(struct regid), 12, 0x3); 1576 dsea->attrType = cpu_to_le32(12); 1577 dsea->attrSubtype = 1; 1578 dsea->attrLength = cpu_to_le32( 1579 sizeof(struct deviceSpec) + 1580 sizeof(struct regid)); 1581 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1582 } 1583 eid = (struct regid *)dsea->impUse; 1584 memset(eid, 0, sizeof(struct regid)); 1585 strcpy(eid->ident, UDF_ID_DEVELOPER); 1586 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1587 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1588 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1589 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1590 } 1591 1592 if (iinfo->i_efe == 0) { 1593 memcpy(bh->b_data + sizeof(struct fileEntry), 1594 iinfo->i_ext.i_data, 1595 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1596 fe->logicalBlocksRecorded = cpu_to_le64( 1597 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1598 (blocksize_bits - 9)); 1599 1600 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1601 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1602 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1603 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1604 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1605 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1606 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1607 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1608 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1609 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1610 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1611 crclen = sizeof(struct fileEntry); 1612 } else { 1613 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1614 iinfo->i_ext.i_data, 1615 inode->i_sb->s_blocksize - 1616 sizeof(struct extendedFileEntry)); 1617 efe->objectSize = cpu_to_le64(inode->i_size); 1618 efe->logicalBlocksRecorded = cpu_to_le64( 1619 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1620 (blocksize_bits - 9)); 1621 1622 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1623 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1624 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1625 iinfo->i_crtime = inode->i_atime; 1626 1627 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1628 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1629 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1630 iinfo->i_crtime = inode->i_mtime; 1631 1632 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1633 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1634 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1635 iinfo->i_crtime = inode->i_ctime; 1636 1637 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1638 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1639 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1640 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1641 1642 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1643 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1644 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1645 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1646 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1647 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1648 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1649 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1650 crclen = sizeof(struct extendedFileEntry); 1651 } 1652 if (iinfo->i_strat4096) { 1653 fe->icbTag.strategyType = cpu_to_le16(4096); 1654 fe->icbTag.strategyParameter = cpu_to_le16(1); 1655 fe->icbTag.numEntries = cpu_to_le16(2); 1656 } else { 1657 fe->icbTag.strategyType = cpu_to_le16(4); 1658 fe->icbTag.numEntries = cpu_to_le16(1); 1659 } 1660 1661 if (S_ISDIR(inode->i_mode)) 1662 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1663 else if (S_ISREG(inode->i_mode)) 1664 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1665 else if (S_ISLNK(inode->i_mode)) 1666 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1667 else if (S_ISBLK(inode->i_mode)) 1668 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1669 else if (S_ISCHR(inode->i_mode)) 1670 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1671 else if (S_ISFIFO(inode->i_mode)) 1672 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1673 else if (S_ISSOCK(inode->i_mode)) 1674 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1675 1676 icbflags = iinfo->i_alloc_type | 1677 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1678 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1679 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1680 (le16_to_cpu(fe->icbTag.flags) & 1681 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1682 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1683 1684 fe->icbTag.flags = cpu_to_le16(icbflags); 1685 if (sbi->s_udfrev >= 0x0200) 1686 fe->descTag.descVersion = cpu_to_le16(3); 1687 else 1688 fe->descTag.descVersion = cpu_to_le16(2); 1689 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1690 fe->descTag.tagLocation = cpu_to_le32( 1691 iinfo->i_location.logicalBlockNum); 1692 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1693 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1694 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1695 crclen)); 1696 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1697 1698 out: 1699 set_buffer_uptodate(bh); 1700 unlock_buffer(bh); 1701 1702 /* write the data blocks */ 1703 mark_buffer_dirty(bh); 1704 if (do_sync) { 1705 sync_dirty_buffer(bh); 1706 if (buffer_write_io_error(bh)) { 1707 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1708 inode->i_ino); 1709 err = -EIO; 1710 } 1711 } 1712 brelse(bh); 1713 1714 return err; 1715 } 1716 1717 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1718 { 1719 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1720 struct inode *inode = iget_locked(sb, block); 1721 1722 if (!inode) 1723 return NULL; 1724 1725 if (inode->i_state & I_NEW) { 1726 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1727 __udf_read_inode(inode); 1728 unlock_new_inode(inode); 1729 } 1730 1731 if (is_bad_inode(inode)) 1732 goto out_iput; 1733 1734 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1735 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1736 udf_debug("block=%d, partition=%d out of range\n", 1737 ino->logicalBlockNum, ino->partitionReferenceNum); 1738 make_bad_inode(inode); 1739 goto out_iput; 1740 } 1741 1742 return inode; 1743 1744 out_iput: 1745 iput(inode); 1746 return NULL; 1747 } 1748 1749 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1750 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1751 { 1752 int adsize; 1753 struct short_ad *sad = NULL; 1754 struct long_ad *lad = NULL; 1755 struct allocExtDesc *aed; 1756 uint8_t *ptr; 1757 struct udf_inode_info *iinfo = UDF_I(inode); 1758 1759 if (!epos->bh) 1760 ptr = iinfo->i_ext.i_data + epos->offset - 1761 udf_file_entry_alloc_offset(inode) + 1762 iinfo->i_lenEAttr; 1763 else 1764 ptr = epos->bh->b_data + epos->offset; 1765 1766 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1767 adsize = sizeof(struct short_ad); 1768 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1769 adsize = sizeof(struct long_ad); 1770 else 1771 return -EIO; 1772 1773 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1774 unsigned char *sptr, *dptr; 1775 struct buffer_head *nbh; 1776 int err, loffset; 1777 struct kernel_lb_addr obloc = epos->block; 1778 1779 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1780 obloc.partitionReferenceNum, 1781 obloc.logicalBlockNum, &err); 1782 if (!epos->block.logicalBlockNum) 1783 return -ENOSPC; 1784 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1785 &epos->block, 1786 0)); 1787 if (!nbh) 1788 return -EIO; 1789 lock_buffer(nbh); 1790 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1791 set_buffer_uptodate(nbh); 1792 unlock_buffer(nbh); 1793 mark_buffer_dirty_inode(nbh, inode); 1794 1795 aed = (struct allocExtDesc *)(nbh->b_data); 1796 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1797 aed->previousAllocExtLocation = 1798 cpu_to_le32(obloc.logicalBlockNum); 1799 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1800 loffset = epos->offset; 1801 aed->lengthAllocDescs = cpu_to_le32(adsize); 1802 sptr = ptr - adsize; 1803 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1804 memcpy(dptr, sptr, adsize); 1805 epos->offset = sizeof(struct allocExtDesc) + adsize; 1806 } else { 1807 loffset = epos->offset + adsize; 1808 aed->lengthAllocDescs = cpu_to_le32(0); 1809 sptr = ptr; 1810 epos->offset = sizeof(struct allocExtDesc); 1811 1812 if (epos->bh) { 1813 aed = (struct allocExtDesc *)epos->bh->b_data; 1814 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1815 } else { 1816 iinfo->i_lenAlloc += adsize; 1817 mark_inode_dirty(inode); 1818 } 1819 } 1820 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1821 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1822 epos->block.logicalBlockNum, sizeof(struct tag)); 1823 else 1824 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1825 epos->block.logicalBlockNum, sizeof(struct tag)); 1826 switch (iinfo->i_alloc_type) { 1827 case ICBTAG_FLAG_AD_SHORT: 1828 sad = (struct short_ad *)sptr; 1829 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1830 inode->i_sb->s_blocksize); 1831 sad->extPosition = 1832 cpu_to_le32(epos->block.logicalBlockNum); 1833 break; 1834 case ICBTAG_FLAG_AD_LONG: 1835 lad = (struct long_ad *)sptr; 1836 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1837 inode->i_sb->s_blocksize); 1838 lad->extLocation = cpu_to_lelb(epos->block); 1839 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1840 break; 1841 } 1842 if (epos->bh) { 1843 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1844 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1845 udf_update_tag(epos->bh->b_data, loffset); 1846 else 1847 udf_update_tag(epos->bh->b_data, 1848 sizeof(struct allocExtDesc)); 1849 mark_buffer_dirty_inode(epos->bh, inode); 1850 brelse(epos->bh); 1851 } else { 1852 mark_inode_dirty(inode); 1853 } 1854 epos->bh = nbh; 1855 } 1856 1857 udf_write_aext(inode, epos, eloc, elen, inc); 1858 1859 if (!epos->bh) { 1860 iinfo->i_lenAlloc += adsize; 1861 mark_inode_dirty(inode); 1862 } else { 1863 aed = (struct allocExtDesc *)epos->bh->b_data; 1864 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1865 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1866 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1867 udf_update_tag(epos->bh->b_data, 1868 epos->offset + (inc ? 0 : adsize)); 1869 else 1870 udf_update_tag(epos->bh->b_data, 1871 sizeof(struct allocExtDesc)); 1872 mark_buffer_dirty_inode(epos->bh, inode); 1873 } 1874 1875 return 0; 1876 } 1877 1878 void udf_write_aext(struct inode *inode, struct extent_position *epos, 1879 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1880 { 1881 int adsize; 1882 uint8_t *ptr; 1883 struct short_ad *sad; 1884 struct long_ad *lad; 1885 struct udf_inode_info *iinfo = UDF_I(inode); 1886 1887 if (!epos->bh) 1888 ptr = iinfo->i_ext.i_data + epos->offset - 1889 udf_file_entry_alloc_offset(inode) + 1890 iinfo->i_lenEAttr; 1891 else 1892 ptr = epos->bh->b_data + epos->offset; 1893 1894 switch (iinfo->i_alloc_type) { 1895 case ICBTAG_FLAG_AD_SHORT: 1896 sad = (struct short_ad *)ptr; 1897 sad->extLength = cpu_to_le32(elen); 1898 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1899 adsize = sizeof(struct short_ad); 1900 break; 1901 case ICBTAG_FLAG_AD_LONG: 1902 lad = (struct long_ad *)ptr; 1903 lad->extLength = cpu_to_le32(elen); 1904 lad->extLocation = cpu_to_lelb(*eloc); 1905 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1906 adsize = sizeof(struct long_ad); 1907 break; 1908 default: 1909 return; 1910 } 1911 1912 if (epos->bh) { 1913 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1914 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1915 struct allocExtDesc *aed = 1916 (struct allocExtDesc *)epos->bh->b_data; 1917 udf_update_tag(epos->bh->b_data, 1918 le32_to_cpu(aed->lengthAllocDescs) + 1919 sizeof(struct allocExtDesc)); 1920 } 1921 mark_buffer_dirty_inode(epos->bh, inode); 1922 } else { 1923 mark_inode_dirty(inode); 1924 } 1925 1926 if (inc) 1927 epos->offset += adsize; 1928 } 1929 1930 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1931 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1932 { 1933 int8_t etype; 1934 1935 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1936 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1937 int block; 1938 epos->block = *eloc; 1939 epos->offset = sizeof(struct allocExtDesc); 1940 brelse(epos->bh); 1941 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1942 epos->bh = udf_tread(inode->i_sb, block); 1943 if (!epos->bh) { 1944 udf_debug("reading block %d failed!\n", block); 1945 return -1; 1946 } 1947 } 1948 1949 return etype; 1950 } 1951 1952 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1953 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1954 { 1955 int alen; 1956 int8_t etype; 1957 uint8_t *ptr; 1958 struct short_ad *sad; 1959 struct long_ad *lad; 1960 struct udf_inode_info *iinfo = UDF_I(inode); 1961 1962 if (!epos->bh) { 1963 if (!epos->offset) 1964 epos->offset = udf_file_entry_alloc_offset(inode); 1965 ptr = iinfo->i_ext.i_data + epos->offset - 1966 udf_file_entry_alloc_offset(inode) + 1967 iinfo->i_lenEAttr; 1968 alen = udf_file_entry_alloc_offset(inode) + 1969 iinfo->i_lenAlloc; 1970 } else { 1971 if (!epos->offset) 1972 epos->offset = sizeof(struct allocExtDesc); 1973 ptr = epos->bh->b_data + epos->offset; 1974 alen = sizeof(struct allocExtDesc) + 1975 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1976 lengthAllocDescs); 1977 } 1978 1979 switch (iinfo->i_alloc_type) { 1980 case ICBTAG_FLAG_AD_SHORT: 1981 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1982 if (!sad) 1983 return -1; 1984 etype = le32_to_cpu(sad->extLength) >> 30; 1985 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1986 eloc->partitionReferenceNum = 1987 iinfo->i_location.partitionReferenceNum; 1988 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1989 break; 1990 case ICBTAG_FLAG_AD_LONG: 1991 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1992 if (!lad) 1993 return -1; 1994 etype = le32_to_cpu(lad->extLength) >> 30; 1995 *eloc = lelb_to_cpu(lad->extLocation); 1996 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1997 break; 1998 default: 1999 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2000 return -1; 2001 } 2002 2003 return etype; 2004 } 2005 2006 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2007 struct kernel_lb_addr neloc, uint32_t nelen) 2008 { 2009 struct kernel_lb_addr oeloc; 2010 uint32_t oelen; 2011 int8_t etype; 2012 2013 if (epos.bh) 2014 get_bh(epos.bh); 2015 2016 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2017 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2018 neloc = oeloc; 2019 nelen = (etype << 30) | oelen; 2020 } 2021 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2022 brelse(epos.bh); 2023 2024 return (nelen >> 30); 2025 } 2026 2027 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2028 struct kernel_lb_addr eloc, uint32_t elen) 2029 { 2030 struct extent_position oepos; 2031 int adsize; 2032 int8_t etype; 2033 struct allocExtDesc *aed; 2034 struct udf_inode_info *iinfo; 2035 2036 if (epos.bh) { 2037 get_bh(epos.bh); 2038 get_bh(epos.bh); 2039 } 2040 2041 iinfo = UDF_I(inode); 2042 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2043 adsize = sizeof(struct short_ad); 2044 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2045 adsize = sizeof(struct long_ad); 2046 else 2047 adsize = 0; 2048 2049 oepos = epos; 2050 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2051 return -1; 2052 2053 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2054 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2055 if (oepos.bh != epos.bh) { 2056 oepos.block = epos.block; 2057 brelse(oepos.bh); 2058 get_bh(epos.bh); 2059 oepos.bh = epos.bh; 2060 oepos.offset = epos.offset - adsize; 2061 } 2062 } 2063 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2064 elen = 0; 2065 2066 if (epos.bh != oepos.bh) { 2067 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2068 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2069 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2070 if (!oepos.bh) { 2071 iinfo->i_lenAlloc -= (adsize * 2); 2072 mark_inode_dirty(inode); 2073 } else { 2074 aed = (struct allocExtDesc *)oepos.bh->b_data; 2075 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2076 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2077 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2078 udf_update_tag(oepos.bh->b_data, 2079 oepos.offset - (2 * adsize)); 2080 else 2081 udf_update_tag(oepos.bh->b_data, 2082 sizeof(struct allocExtDesc)); 2083 mark_buffer_dirty_inode(oepos.bh, inode); 2084 } 2085 } else { 2086 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2087 if (!oepos.bh) { 2088 iinfo->i_lenAlloc -= adsize; 2089 mark_inode_dirty(inode); 2090 } else { 2091 aed = (struct allocExtDesc *)oepos.bh->b_data; 2092 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2093 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2094 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2095 udf_update_tag(oepos.bh->b_data, 2096 epos.offset - adsize); 2097 else 2098 udf_update_tag(oepos.bh->b_data, 2099 sizeof(struct allocExtDesc)); 2100 mark_buffer_dirty_inode(oepos.bh, inode); 2101 } 2102 } 2103 2104 brelse(epos.bh); 2105 brelse(oepos.bh); 2106 2107 return (elen >> 30); 2108 } 2109 2110 int8_t inode_bmap(struct inode *inode, sector_t block, 2111 struct extent_position *pos, struct kernel_lb_addr *eloc, 2112 uint32_t *elen, sector_t *offset) 2113 { 2114 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2115 loff_t lbcount = 0, bcount = 2116 (loff_t) block << blocksize_bits; 2117 int8_t etype; 2118 struct udf_inode_info *iinfo; 2119 2120 iinfo = UDF_I(inode); 2121 pos->offset = 0; 2122 pos->block = iinfo->i_location; 2123 pos->bh = NULL; 2124 *elen = 0; 2125 2126 do { 2127 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2128 if (etype == -1) { 2129 *offset = (bcount - lbcount) >> blocksize_bits; 2130 iinfo->i_lenExtents = lbcount; 2131 return -1; 2132 } 2133 lbcount += *elen; 2134 } while (lbcount <= bcount); 2135 2136 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2137 2138 return etype; 2139 } 2140 2141 long udf_block_map(struct inode *inode, sector_t block) 2142 { 2143 struct kernel_lb_addr eloc; 2144 uint32_t elen; 2145 sector_t offset; 2146 struct extent_position epos = {}; 2147 int ret; 2148 2149 down_read(&UDF_I(inode)->i_data_sem); 2150 2151 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2152 (EXT_RECORDED_ALLOCATED >> 30)) 2153 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2154 else 2155 ret = 0; 2156 2157 up_read(&UDF_I(inode)->i_data_sem); 2158 brelse(epos.bh); 2159 2160 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2161 return udf_fixed_to_variable(ret); 2162 else 2163 return ret; 2164 } 2165