xref: /linux/fs/udf/inode.c (revision b34bce45530ca897aea35915e0e42eb3c8047b52)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 #include <linux/crc-itu-t.h>
41 
42 #include "udf_i.h"
43 #include "udf_sb.h"
44 
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48 
49 #define EXTENT_MERGE_SIZE 5
50 
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 					sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 			      struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 			       struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 
70 
71 void udf_delete_inode(struct inode *inode)
72 {
73 	truncate_inode_pages(&inode->i_data, 0);
74 
75 	if (is_bad_inode(inode))
76 		goto no_delete;
77 
78 	inode->i_size = 0;
79 	udf_truncate(inode);
80 	lock_kernel();
81 
82 	udf_update_inode(inode, IS_SYNC(inode));
83 	udf_free_inode(inode);
84 
85 	unlock_kernel();
86 	return;
87 
88 no_delete:
89 	clear_inode(inode);
90 }
91 
92 /*
93  * If we are going to release inode from memory, we truncate last inode extent
94  * to proper length. We could use drop_inode() but it's called under inode_lock
95  * and thus we cannot mark inode dirty there.  We use clear_inode() but we have
96  * to make sure to write inode as it's not written automatically.
97  */
98 void udf_clear_inode(struct inode *inode)
99 {
100 	struct udf_inode_info *iinfo = UDF_I(inode);
101 
102 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
103 	    inode->i_size != iinfo->i_lenExtents) {
104 		printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
105 			"inode size %llu different from extent length %llu. "
106 			"Filesystem need not be standards compliant.\n",
107 			inode->i_sb->s_id, inode->i_ino, inode->i_mode,
108 			(unsigned long long)inode->i_size,
109 			(unsigned long long)iinfo->i_lenExtents);
110 	}
111 
112 	kfree(iinfo->i_ext.i_data);
113 	iinfo->i_ext.i_data = NULL;
114 }
115 
116 static int udf_writepage(struct page *page, struct writeback_control *wbc)
117 {
118 	return block_write_full_page(page, udf_get_block, wbc);
119 }
120 
121 static int udf_readpage(struct file *file, struct page *page)
122 {
123 	return block_read_full_page(page, udf_get_block);
124 }
125 
126 static int udf_write_begin(struct file *file, struct address_space *mapping,
127 			loff_t pos, unsigned len, unsigned flags,
128 			struct page **pagep, void **fsdata)
129 {
130 	*pagep = NULL;
131 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
132 				udf_get_block);
133 }
134 
135 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
136 {
137 	return generic_block_bmap(mapping, block, udf_get_block);
138 }
139 
140 const struct address_space_operations udf_aops = {
141 	.readpage	= udf_readpage,
142 	.writepage	= udf_writepage,
143 	.sync_page	= block_sync_page,
144 	.write_begin		= udf_write_begin,
145 	.write_end		= generic_write_end,
146 	.bmap		= udf_bmap,
147 };
148 
149 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
150 {
151 	struct page *page;
152 	char *kaddr;
153 	struct udf_inode_info *iinfo = UDF_I(inode);
154 	struct writeback_control udf_wbc = {
155 		.sync_mode = WB_SYNC_NONE,
156 		.nr_to_write = 1,
157 	};
158 
159 	/* from now on we have normal address_space methods */
160 	inode->i_data.a_ops = &udf_aops;
161 
162 	if (!iinfo->i_lenAlloc) {
163 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
164 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
165 		else
166 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
167 		mark_inode_dirty(inode);
168 		return;
169 	}
170 
171 	page = grab_cache_page(inode->i_mapping, 0);
172 	BUG_ON(!PageLocked(page));
173 
174 	if (!PageUptodate(page)) {
175 		kaddr = kmap(page);
176 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
177 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
178 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
179 			iinfo->i_lenAlloc);
180 		flush_dcache_page(page);
181 		SetPageUptodate(page);
182 		kunmap(page);
183 	}
184 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
185 	       iinfo->i_lenAlloc);
186 	iinfo->i_lenAlloc = 0;
187 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
188 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
189 	else
190 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
191 
192 	inode->i_data.a_ops->writepage(page, &udf_wbc);
193 	page_cache_release(page);
194 
195 	mark_inode_dirty(inode);
196 }
197 
198 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
199 					   int *err)
200 {
201 	int newblock;
202 	struct buffer_head *dbh = NULL;
203 	struct kernel_lb_addr eloc;
204 	uint8_t alloctype;
205 	struct extent_position epos;
206 
207 	struct udf_fileident_bh sfibh, dfibh;
208 	loff_t f_pos = udf_ext0_offset(inode);
209 	int size = udf_ext0_offset(inode) + inode->i_size;
210 	struct fileIdentDesc cfi, *sfi, *dfi;
211 	struct udf_inode_info *iinfo = UDF_I(inode);
212 
213 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
214 		alloctype = ICBTAG_FLAG_AD_SHORT;
215 	else
216 		alloctype = ICBTAG_FLAG_AD_LONG;
217 
218 	if (!inode->i_size) {
219 		iinfo->i_alloc_type = alloctype;
220 		mark_inode_dirty(inode);
221 		return NULL;
222 	}
223 
224 	/* alloc block, and copy data to it */
225 	*block = udf_new_block(inode->i_sb, inode,
226 			       iinfo->i_location.partitionReferenceNum,
227 			       iinfo->i_location.logicalBlockNum, err);
228 	if (!(*block))
229 		return NULL;
230 	newblock = udf_get_pblock(inode->i_sb, *block,
231 				  iinfo->i_location.partitionReferenceNum,
232 				0);
233 	if (!newblock)
234 		return NULL;
235 	dbh = udf_tgetblk(inode->i_sb, newblock);
236 	if (!dbh)
237 		return NULL;
238 	lock_buffer(dbh);
239 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
240 	set_buffer_uptodate(dbh);
241 	unlock_buffer(dbh);
242 	mark_buffer_dirty_inode(dbh, inode);
243 
244 	sfibh.soffset = sfibh.eoffset =
245 			f_pos & (inode->i_sb->s_blocksize - 1);
246 	sfibh.sbh = sfibh.ebh = NULL;
247 	dfibh.soffset = dfibh.eoffset = 0;
248 	dfibh.sbh = dfibh.ebh = dbh;
249 	while (f_pos < size) {
250 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
251 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
252 					 NULL, NULL, NULL);
253 		if (!sfi) {
254 			brelse(dbh);
255 			return NULL;
256 		}
257 		iinfo->i_alloc_type = alloctype;
258 		sfi->descTag.tagLocation = cpu_to_le32(*block);
259 		dfibh.soffset = dfibh.eoffset;
260 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
261 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
262 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
263 				 sfi->fileIdent +
264 					le16_to_cpu(sfi->lengthOfImpUse))) {
265 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
266 			brelse(dbh);
267 			return NULL;
268 		}
269 	}
270 	mark_buffer_dirty_inode(dbh, inode);
271 
272 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
273 		iinfo->i_lenAlloc);
274 	iinfo->i_lenAlloc = 0;
275 	eloc.logicalBlockNum = *block;
276 	eloc.partitionReferenceNum =
277 				iinfo->i_location.partitionReferenceNum;
278 	iinfo->i_lenExtents = inode->i_size;
279 	epos.bh = NULL;
280 	epos.block = iinfo->i_location;
281 	epos.offset = udf_file_entry_alloc_offset(inode);
282 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
283 	/* UniqueID stuff */
284 
285 	brelse(epos.bh);
286 	mark_inode_dirty(inode);
287 	return dbh;
288 }
289 
290 static int udf_get_block(struct inode *inode, sector_t block,
291 			 struct buffer_head *bh_result, int create)
292 {
293 	int err, new;
294 	struct buffer_head *bh;
295 	sector_t phys = 0;
296 	struct udf_inode_info *iinfo;
297 
298 	if (!create) {
299 		phys = udf_block_map(inode, block);
300 		if (phys)
301 			map_bh(bh_result, inode->i_sb, phys);
302 		return 0;
303 	}
304 
305 	err = -EIO;
306 	new = 0;
307 	bh = NULL;
308 
309 	lock_kernel();
310 
311 	iinfo = UDF_I(inode);
312 	if (block == iinfo->i_next_alloc_block + 1) {
313 		iinfo->i_next_alloc_block++;
314 		iinfo->i_next_alloc_goal++;
315 	}
316 
317 	err = 0;
318 
319 	bh = inode_getblk(inode, block, &err, &phys, &new);
320 	BUG_ON(bh);
321 	if (err)
322 		goto abort;
323 	BUG_ON(!phys);
324 
325 	if (new)
326 		set_buffer_new(bh_result);
327 	map_bh(bh_result, inode->i_sb, phys);
328 
329 abort:
330 	unlock_kernel();
331 	return err;
332 }
333 
334 static struct buffer_head *udf_getblk(struct inode *inode, long block,
335 				      int create, int *err)
336 {
337 	struct buffer_head *bh;
338 	struct buffer_head dummy;
339 
340 	dummy.b_state = 0;
341 	dummy.b_blocknr = -1000;
342 	*err = udf_get_block(inode, block, &dummy, create);
343 	if (!*err && buffer_mapped(&dummy)) {
344 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
345 		if (buffer_new(&dummy)) {
346 			lock_buffer(bh);
347 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
348 			set_buffer_uptodate(bh);
349 			unlock_buffer(bh);
350 			mark_buffer_dirty_inode(bh, inode);
351 		}
352 		return bh;
353 	}
354 
355 	return NULL;
356 }
357 
358 /* Extend the file by 'blocks' blocks, return the number of extents added */
359 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
360 		    struct kernel_long_ad *last_ext, sector_t blocks)
361 {
362 	sector_t add;
363 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
364 	struct super_block *sb = inode->i_sb;
365 	struct kernel_lb_addr prealloc_loc = {};
366 	int prealloc_len = 0;
367 	struct udf_inode_info *iinfo;
368 
369 	/* The previous extent is fake and we should not extend by anything
370 	 * - there's nothing to do... */
371 	if (!blocks && fake)
372 		return 0;
373 
374 	iinfo = UDF_I(inode);
375 	/* Round the last extent up to a multiple of block size */
376 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
377 		last_ext->extLength =
378 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
379 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
380 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
381 		iinfo->i_lenExtents =
382 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
383 			~(sb->s_blocksize - 1);
384 	}
385 
386 	/* Last extent are just preallocated blocks? */
387 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
388 						EXT_NOT_RECORDED_ALLOCATED) {
389 		/* Save the extent so that we can reattach it to the end */
390 		prealloc_loc = last_ext->extLocation;
391 		prealloc_len = last_ext->extLength;
392 		/* Mark the extent as a hole */
393 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
394 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
395 		last_ext->extLocation.logicalBlockNum = 0;
396 		last_ext->extLocation.partitionReferenceNum = 0;
397 	}
398 
399 	/* Can we merge with the previous extent? */
400 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
401 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
402 		add = ((1 << 30) - sb->s_blocksize -
403 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
404 			sb->s_blocksize_bits;
405 		if (add > blocks)
406 			add = blocks;
407 		blocks -= add;
408 		last_ext->extLength += add << sb->s_blocksize_bits;
409 	}
410 
411 	if (fake) {
412 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
413 			     last_ext->extLength, 1);
414 		count++;
415 	} else
416 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
417 				last_ext->extLength, 1);
418 
419 	/* Managed to do everything necessary? */
420 	if (!blocks)
421 		goto out;
422 
423 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
424 	last_ext->extLocation.logicalBlockNum = 0;
425 	last_ext->extLocation.partitionReferenceNum = 0;
426 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
427 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
428 				(add << sb->s_blocksize_bits);
429 
430 	/* Create enough extents to cover the whole hole */
431 	while (blocks > add) {
432 		blocks -= add;
433 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
434 				 last_ext->extLength, 1) == -1)
435 			return -1;
436 		count++;
437 	}
438 	if (blocks) {
439 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
440 			(blocks << sb->s_blocksize_bits);
441 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
442 				 last_ext->extLength, 1) == -1)
443 			return -1;
444 		count++;
445 	}
446 
447 out:
448 	/* Do we have some preallocated blocks saved? */
449 	if (prealloc_len) {
450 		if (udf_add_aext(inode, last_pos, &prealloc_loc,
451 				 prealloc_len, 1) == -1)
452 			return -1;
453 		last_ext->extLocation = prealloc_loc;
454 		last_ext->extLength = prealloc_len;
455 		count++;
456 	}
457 
458 	/* last_pos should point to the last written extent... */
459 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
460 		last_pos->offset -= sizeof(struct short_ad);
461 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
462 		last_pos->offset -= sizeof(struct long_ad);
463 	else
464 		return -1;
465 
466 	return count;
467 }
468 
469 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
470 					int *err, sector_t *phys, int *new)
471 {
472 	static sector_t last_block;
473 	struct buffer_head *result = NULL;
474 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
475 	struct extent_position prev_epos, cur_epos, next_epos;
476 	int count = 0, startnum = 0, endnum = 0;
477 	uint32_t elen = 0, tmpelen;
478 	struct kernel_lb_addr eloc, tmpeloc;
479 	int c = 1;
480 	loff_t lbcount = 0, b_off = 0;
481 	uint32_t newblocknum, newblock;
482 	sector_t offset = 0;
483 	int8_t etype;
484 	struct udf_inode_info *iinfo = UDF_I(inode);
485 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
486 	int lastblock = 0;
487 
488 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
489 	prev_epos.block = iinfo->i_location;
490 	prev_epos.bh = NULL;
491 	cur_epos = next_epos = prev_epos;
492 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
493 
494 	/* find the extent which contains the block we are looking for.
495 	   alternate between laarr[0] and laarr[1] for locations of the
496 	   current extent, and the previous extent */
497 	do {
498 		if (prev_epos.bh != cur_epos.bh) {
499 			brelse(prev_epos.bh);
500 			get_bh(cur_epos.bh);
501 			prev_epos.bh = cur_epos.bh;
502 		}
503 		if (cur_epos.bh != next_epos.bh) {
504 			brelse(cur_epos.bh);
505 			get_bh(next_epos.bh);
506 			cur_epos.bh = next_epos.bh;
507 		}
508 
509 		lbcount += elen;
510 
511 		prev_epos.block = cur_epos.block;
512 		cur_epos.block = next_epos.block;
513 
514 		prev_epos.offset = cur_epos.offset;
515 		cur_epos.offset = next_epos.offset;
516 
517 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
518 		if (etype == -1)
519 			break;
520 
521 		c = !c;
522 
523 		laarr[c].extLength = (etype << 30) | elen;
524 		laarr[c].extLocation = eloc;
525 
526 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
527 			pgoal = eloc.logicalBlockNum +
528 				((elen + inode->i_sb->s_blocksize - 1) >>
529 				 inode->i_sb->s_blocksize_bits);
530 
531 		count++;
532 	} while (lbcount + elen <= b_off);
533 
534 	b_off -= lbcount;
535 	offset = b_off >> inode->i_sb->s_blocksize_bits;
536 	/*
537 	 * Move prev_epos and cur_epos into indirect extent if we are at
538 	 * the pointer to it
539 	 */
540 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
541 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542 
543 	/* if the extent is allocated and recorded, return the block
544 	   if the extent is not a multiple of the blocksize, round up */
545 
546 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
547 		if (elen & (inode->i_sb->s_blocksize - 1)) {
548 			elen = EXT_RECORDED_ALLOCATED |
549 				((elen + inode->i_sb->s_blocksize - 1) &
550 				 ~(inode->i_sb->s_blocksize - 1));
551 			etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
552 		}
553 		brelse(prev_epos.bh);
554 		brelse(cur_epos.bh);
555 		brelse(next_epos.bh);
556 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
557 		*phys = newblock;
558 		return NULL;
559 	}
560 
561 	last_block = block;
562 	/* Are we beyond EOF? */
563 	if (etype == -1) {
564 		int ret;
565 
566 		if (count) {
567 			if (c)
568 				laarr[0] = laarr[1];
569 			startnum = 1;
570 		} else {
571 			/* Create a fake extent when there's not one */
572 			memset(&laarr[0].extLocation, 0x00,
573 				sizeof(struct kernel_lb_addr));
574 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
575 			/* Will udf_extend_file() create real extent from
576 			   a fake one? */
577 			startnum = (offset > 0);
578 		}
579 		/* Create extents for the hole between EOF and offset */
580 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
581 		if (ret == -1) {
582 			brelse(prev_epos.bh);
583 			brelse(cur_epos.bh);
584 			brelse(next_epos.bh);
585 			/* We don't really know the error here so we just make
586 			 * something up */
587 			*err = -ENOSPC;
588 			return NULL;
589 		}
590 		c = 0;
591 		offset = 0;
592 		count += ret;
593 		/* We are not covered by a preallocated extent? */
594 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
595 						EXT_NOT_RECORDED_ALLOCATED) {
596 			/* Is there any real extent? - otherwise we overwrite
597 			 * the fake one... */
598 			if (count)
599 				c = !c;
600 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
601 				inode->i_sb->s_blocksize;
602 			memset(&laarr[c].extLocation, 0x00,
603 				sizeof(struct kernel_lb_addr));
604 			count++;
605 			endnum++;
606 		}
607 		endnum = c + 1;
608 		lastblock = 1;
609 	} else {
610 		endnum = startnum = ((count > 2) ? 2 : count);
611 
612 		/* if the current extent is in position 0,
613 		   swap it with the previous */
614 		if (!c && count != 1) {
615 			laarr[2] = laarr[0];
616 			laarr[0] = laarr[1];
617 			laarr[1] = laarr[2];
618 			c = 1;
619 		}
620 
621 		/* if the current block is located in an extent,
622 		   read the next extent */
623 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
624 		if (etype != -1) {
625 			laarr[c + 1].extLength = (etype << 30) | elen;
626 			laarr[c + 1].extLocation = eloc;
627 			count++;
628 			startnum++;
629 			endnum++;
630 		} else
631 			lastblock = 1;
632 	}
633 
634 	/* if the current extent is not recorded but allocated, get the
635 	 * block in the extent corresponding to the requested block */
636 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
637 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
638 	else { /* otherwise, allocate a new block */
639 		if (iinfo->i_next_alloc_block == block)
640 			goal = iinfo->i_next_alloc_goal;
641 
642 		if (!goal) {
643 			if (!(goal = pgoal)) /* XXX: what was intended here? */
644 				goal = iinfo->i_location.logicalBlockNum + 1;
645 		}
646 
647 		newblocknum = udf_new_block(inode->i_sb, inode,
648 				iinfo->i_location.partitionReferenceNum,
649 				goal, err);
650 		if (!newblocknum) {
651 			brelse(prev_epos.bh);
652 			*err = -ENOSPC;
653 			return NULL;
654 		}
655 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
656 	}
657 
658 	/* if the extent the requsted block is located in contains multiple
659 	 * blocks, split the extent into at most three extents. blocks prior
660 	 * to requested block, requested block, and blocks after requested
661 	 * block */
662 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
663 
664 #ifdef UDF_PREALLOCATE
665 	/* We preallocate blocks only for regular files. It also makes sense
666 	 * for directories but there's a problem when to drop the
667 	 * preallocation. We might use some delayed work for that but I feel
668 	 * it's overengineering for a filesystem like UDF. */
669 	if (S_ISREG(inode->i_mode))
670 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
671 #endif
672 
673 	/* merge any continuous blocks in laarr */
674 	udf_merge_extents(inode, laarr, &endnum);
675 
676 	/* write back the new extents, inserting new extents if the new number
677 	 * of extents is greater than the old number, and deleting extents if
678 	 * the new number of extents is less than the old number */
679 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
680 
681 	brelse(prev_epos.bh);
682 
683 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
684 				iinfo->i_location.partitionReferenceNum, 0);
685 	if (!newblock)
686 		return NULL;
687 	*phys = newblock;
688 	*err = 0;
689 	*new = 1;
690 	iinfo->i_next_alloc_block = block;
691 	iinfo->i_next_alloc_goal = newblocknum;
692 	inode->i_ctime = current_fs_time(inode->i_sb);
693 
694 	if (IS_SYNC(inode))
695 		udf_sync_inode(inode);
696 	else
697 		mark_inode_dirty(inode);
698 
699 	return result;
700 }
701 
702 static void udf_split_extents(struct inode *inode, int *c, int offset,
703 			      int newblocknum,
704 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
705 			      int *endnum)
706 {
707 	unsigned long blocksize = inode->i_sb->s_blocksize;
708 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
709 
710 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
711 	    (laarr[*c].extLength >> 30) ==
712 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
713 		int curr = *c;
714 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
715 			    blocksize - 1) >> blocksize_bits;
716 		int8_t etype = (laarr[curr].extLength >> 30);
717 
718 		if (blen == 1)
719 			;
720 		else if (!offset || blen == offset + 1) {
721 			laarr[curr + 2] = laarr[curr + 1];
722 			laarr[curr + 1] = laarr[curr];
723 		} else {
724 			laarr[curr + 3] = laarr[curr + 1];
725 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
726 		}
727 
728 		if (offset) {
729 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
730 				udf_free_blocks(inode->i_sb, inode,
731 						&laarr[curr].extLocation,
732 						0, offset);
733 				laarr[curr].extLength =
734 					EXT_NOT_RECORDED_NOT_ALLOCATED |
735 					(offset << blocksize_bits);
736 				laarr[curr].extLocation.logicalBlockNum = 0;
737 				laarr[curr].extLocation.
738 						partitionReferenceNum = 0;
739 			} else
740 				laarr[curr].extLength = (etype << 30) |
741 					(offset << blocksize_bits);
742 			curr++;
743 			(*c)++;
744 			(*endnum)++;
745 		}
746 
747 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
748 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
749 			laarr[curr].extLocation.partitionReferenceNum =
750 				UDF_I(inode)->i_location.partitionReferenceNum;
751 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
752 			blocksize;
753 		curr++;
754 
755 		if (blen != offset + 1) {
756 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
757 				laarr[curr].extLocation.logicalBlockNum +=
758 								offset + 1;
759 			laarr[curr].extLength = (etype << 30) |
760 				((blen - (offset + 1)) << blocksize_bits);
761 			curr++;
762 			(*endnum)++;
763 		}
764 	}
765 }
766 
767 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
768 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
769 				 int *endnum)
770 {
771 	int start, length = 0, currlength = 0, i;
772 
773 	if (*endnum >= (c + 1)) {
774 		if (!lastblock)
775 			return;
776 		else
777 			start = c;
778 	} else {
779 		if ((laarr[c + 1].extLength >> 30) ==
780 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
781 			start = c + 1;
782 			length = currlength =
783 				(((laarr[c + 1].extLength &
784 					UDF_EXTENT_LENGTH_MASK) +
785 				inode->i_sb->s_blocksize - 1) >>
786 				inode->i_sb->s_blocksize_bits);
787 		} else
788 			start = c;
789 	}
790 
791 	for (i = start + 1; i <= *endnum; i++) {
792 		if (i == *endnum) {
793 			if (lastblock)
794 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
795 		} else if ((laarr[i].extLength >> 30) ==
796 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
797 			length += (((laarr[i].extLength &
798 						UDF_EXTENT_LENGTH_MASK) +
799 				    inode->i_sb->s_blocksize - 1) >>
800 				    inode->i_sb->s_blocksize_bits);
801 		} else
802 			break;
803 	}
804 
805 	if (length) {
806 		int next = laarr[start].extLocation.logicalBlockNum +
807 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
808 			  inode->i_sb->s_blocksize - 1) >>
809 			  inode->i_sb->s_blocksize_bits);
810 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
811 				laarr[start].extLocation.partitionReferenceNum,
812 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
813 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
814 				currlength);
815 		if (numalloc) 	{
816 			if (start == (c + 1))
817 				laarr[start].extLength +=
818 					(numalloc <<
819 					 inode->i_sb->s_blocksize_bits);
820 			else {
821 				memmove(&laarr[c + 2], &laarr[c + 1],
822 					sizeof(struct long_ad) * (*endnum - (c + 1)));
823 				(*endnum)++;
824 				laarr[c + 1].extLocation.logicalBlockNum = next;
825 				laarr[c + 1].extLocation.partitionReferenceNum =
826 					laarr[c].extLocation.
827 							partitionReferenceNum;
828 				laarr[c + 1].extLength =
829 					EXT_NOT_RECORDED_ALLOCATED |
830 					(numalloc <<
831 					 inode->i_sb->s_blocksize_bits);
832 				start = c + 1;
833 			}
834 
835 			for (i = start + 1; numalloc && i < *endnum; i++) {
836 				int elen = ((laarr[i].extLength &
837 						UDF_EXTENT_LENGTH_MASK) +
838 					    inode->i_sb->s_blocksize - 1) >>
839 					    inode->i_sb->s_blocksize_bits;
840 
841 				if (elen > numalloc) {
842 					laarr[i].extLength -=
843 						(numalloc <<
844 						 inode->i_sb->s_blocksize_bits);
845 					numalloc = 0;
846 				} else {
847 					numalloc -= elen;
848 					if (*endnum > (i + 1))
849 						memmove(&laarr[i],
850 							&laarr[i + 1],
851 							sizeof(struct long_ad) *
852 							(*endnum - (i + 1)));
853 					i--;
854 					(*endnum)--;
855 				}
856 			}
857 			UDF_I(inode)->i_lenExtents +=
858 				numalloc << inode->i_sb->s_blocksize_bits;
859 		}
860 	}
861 }
862 
863 static void udf_merge_extents(struct inode *inode,
864 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
865 			      int *endnum)
866 {
867 	int i;
868 	unsigned long blocksize = inode->i_sb->s_blocksize;
869 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
870 
871 	for (i = 0; i < (*endnum - 1); i++) {
872 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
873 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
874 
875 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
876 			(((li->extLength >> 30) ==
877 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
878 			((lip1->extLocation.logicalBlockNum -
879 			  li->extLocation.logicalBlockNum) ==
880 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
881 			blocksize - 1) >> blocksize_bits)))) {
882 
883 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
884 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
885 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
886 				lip1->extLength = (lip1->extLength -
887 						  (li->extLength &
888 						   UDF_EXTENT_LENGTH_MASK) +
889 						   UDF_EXTENT_LENGTH_MASK) &
890 							~(blocksize - 1);
891 				li->extLength = (li->extLength &
892 						 UDF_EXTENT_FLAG_MASK) +
893 						(UDF_EXTENT_LENGTH_MASK + 1) -
894 						blocksize;
895 				lip1->extLocation.logicalBlockNum =
896 					li->extLocation.logicalBlockNum +
897 					((li->extLength &
898 						UDF_EXTENT_LENGTH_MASK) >>
899 						blocksize_bits);
900 			} else {
901 				li->extLength = lip1->extLength +
902 					(((li->extLength &
903 						UDF_EXTENT_LENGTH_MASK) +
904 					 blocksize - 1) & ~(blocksize - 1));
905 				if (*endnum > (i + 2))
906 					memmove(&laarr[i + 1], &laarr[i + 2],
907 						sizeof(struct long_ad) *
908 						(*endnum - (i + 2)));
909 				i--;
910 				(*endnum)--;
911 			}
912 		} else if (((li->extLength >> 30) ==
913 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
914 			   ((lip1->extLength >> 30) ==
915 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
916 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
917 					((li->extLength &
918 					  UDF_EXTENT_LENGTH_MASK) +
919 					 blocksize - 1) >> blocksize_bits);
920 			li->extLocation.logicalBlockNum = 0;
921 			li->extLocation.partitionReferenceNum = 0;
922 
923 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
924 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
925 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
926 				lip1->extLength = (lip1->extLength -
927 						   (li->extLength &
928 						   UDF_EXTENT_LENGTH_MASK) +
929 						   UDF_EXTENT_LENGTH_MASK) &
930 						   ~(blocksize - 1);
931 				li->extLength = (li->extLength &
932 						 UDF_EXTENT_FLAG_MASK) +
933 						(UDF_EXTENT_LENGTH_MASK + 1) -
934 						blocksize;
935 			} else {
936 				li->extLength = lip1->extLength +
937 					(((li->extLength &
938 						UDF_EXTENT_LENGTH_MASK) +
939 					  blocksize - 1) & ~(blocksize - 1));
940 				if (*endnum > (i + 2))
941 					memmove(&laarr[i + 1], &laarr[i + 2],
942 						sizeof(struct long_ad) *
943 						(*endnum - (i + 2)));
944 				i--;
945 				(*endnum)--;
946 			}
947 		} else if ((li->extLength >> 30) ==
948 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
949 			udf_free_blocks(inode->i_sb, inode,
950 					&li->extLocation, 0,
951 					((li->extLength &
952 						UDF_EXTENT_LENGTH_MASK) +
953 					 blocksize - 1) >> blocksize_bits);
954 			li->extLocation.logicalBlockNum = 0;
955 			li->extLocation.partitionReferenceNum = 0;
956 			li->extLength = (li->extLength &
957 						UDF_EXTENT_LENGTH_MASK) |
958 						EXT_NOT_RECORDED_NOT_ALLOCATED;
959 		}
960 	}
961 }
962 
963 static void udf_update_extents(struct inode *inode,
964 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
965 			       int startnum, int endnum,
966 			       struct extent_position *epos)
967 {
968 	int start = 0, i;
969 	struct kernel_lb_addr tmploc;
970 	uint32_t tmplen;
971 
972 	if (startnum > endnum) {
973 		for (i = 0; i < (startnum - endnum); i++)
974 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
975 					laarr[i].extLength);
976 	} else if (startnum < endnum) {
977 		for (i = 0; i < (endnum - startnum); i++) {
978 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
979 					laarr[i].extLength);
980 			udf_next_aext(inode, epos, &laarr[i].extLocation,
981 				      &laarr[i].extLength, 1);
982 			start++;
983 		}
984 	}
985 
986 	for (i = start; i < endnum; i++) {
987 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
988 		udf_write_aext(inode, epos, &laarr[i].extLocation,
989 			       laarr[i].extLength, 1);
990 	}
991 }
992 
993 struct buffer_head *udf_bread(struct inode *inode, int block,
994 			      int create, int *err)
995 {
996 	struct buffer_head *bh = NULL;
997 
998 	bh = udf_getblk(inode, block, create, err);
999 	if (!bh)
1000 		return NULL;
1001 
1002 	if (buffer_uptodate(bh))
1003 		return bh;
1004 
1005 	ll_rw_block(READ, 1, &bh);
1006 
1007 	wait_on_buffer(bh);
1008 	if (buffer_uptodate(bh))
1009 		return bh;
1010 
1011 	brelse(bh);
1012 	*err = -EIO;
1013 	return NULL;
1014 }
1015 
1016 void udf_truncate(struct inode *inode)
1017 {
1018 	int offset;
1019 	int err;
1020 	struct udf_inode_info *iinfo;
1021 
1022 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1023 	      S_ISLNK(inode->i_mode)))
1024 		return;
1025 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1026 		return;
1027 
1028 	lock_kernel();
1029 	iinfo = UDF_I(inode);
1030 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1031 		if (inode->i_sb->s_blocksize <
1032 				(udf_file_entry_alloc_offset(inode) +
1033 				 inode->i_size)) {
1034 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1035 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1036 				inode->i_size = iinfo->i_lenAlloc;
1037 				unlock_kernel();
1038 				return;
1039 			} else
1040 				udf_truncate_extents(inode);
1041 		} else {
1042 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1043 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1044 				0x00, inode->i_sb->s_blocksize -
1045 				offset - udf_file_entry_alloc_offset(inode));
1046 			iinfo->i_lenAlloc = inode->i_size;
1047 		}
1048 	} else {
1049 		block_truncate_page(inode->i_mapping, inode->i_size,
1050 				    udf_get_block);
1051 		udf_truncate_extents(inode);
1052 	}
1053 
1054 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1055 	if (IS_SYNC(inode))
1056 		udf_sync_inode(inode);
1057 	else
1058 		mark_inode_dirty(inode);
1059 	unlock_kernel();
1060 }
1061 
1062 static void __udf_read_inode(struct inode *inode)
1063 {
1064 	struct buffer_head *bh = NULL;
1065 	struct fileEntry *fe;
1066 	uint16_t ident;
1067 	struct udf_inode_info *iinfo = UDF_I(inode);
1068 
1069 	/*
1070 	 * Set defaults, but the inode is still incomplete!
1071 	 * Note: get_new_inode() sets the following on a new inode:
1072 	 *      i_sb = sb
1073 	 *      i_no = ino
1074 	 *      i_flags = sb->s_flags
1075 	 *      i_state = 0
1076 	 * clean_inode(): zero fills and sets
1077 	 *      i_count = 1
1078 	 *      i_nlink = 1
1079 	 *      i_op = NULL;
1080 	 */
1081 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1082 	if (!bh) {
1083 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1084 		       inode->i_ino);
1085 		make_bad_inode(inode);
1086 		return;
1087 	}
1088 
1089 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1090 	    ident != TAG_IDENT_USE) {
1091 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1092 				"failed ident=%d\n", inode->i_ino, ident);
1093 		brelse(bh);
1094 		make_bad_inode(inode);
1095 		return;
1096 	}
1097 
1098 	fe = (struct fileEntry *)bh->b_data;
1099 
1100 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1101 		struct buffer_head *ibh;
1102 
1103 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1104 					&ident);
1105 		if (ident == TAG_IDENT_IE && ibh) {
1106 			struct buffer_head *nbh = NULL;
1107 			struct kernel_lb_addr loc;
1108 			struct indirectEntry *ie;
1109 
1110 			ie = (struct indirectEntry *)ibh->b_data;
1111 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1112 
1113 			if (ie->indirectICB.extLength &&
1114 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1115 							&ident))) {
1116 				if (ident == TAG_IDENT_FE ||
1117 					ident == TAG_IDENT_EFE) {
1118 					memcpy(&iinfo->i_location,
1119 						&loc,
1120 						sizeof(struct kernel_lb_addr));
1121 					brelse(bh);
1122 					brelse(ibh);
1123 					brelse(nbh);
1124 					__udf_read_inode(inode);
1125 					return;
1126 				}
1127 				brelse(nbh);
1128 			}
1129 		}
1130 		brelse(ibh);
1131 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1132 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1133 		       le16_to_cpu(fe->icbTag.strategyType));
1134 		brelse(bh);
1135 		make_bad_inode(inode);
1136 		return;
1137 	}
1138 	udf_fill_inode(inode, bh);
1139 
1140 	brelse(bh);
1141 }
1142 
1143 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1144 {
1145 	struct fileEntry *fe;
1146 	struct extendedFileEntry *efe;
1147 	int offset;
1148 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1149 	struct udf_inode_info *iinfo = UDF_I(inode);
1150 
1151 	fe = (struct fileEntry *)bh->b_data;
1152 	efe = (struct extendedFileEntry *)bh->b_data;
1153 
1154 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1155 		iinfo->i_strat4096 = 0;
1156 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1157 		iinfo->i_strat4096 = 1;
1158 
1159 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1160 							ICBTAG_FLAG_AD_MASK;
1161 	iinfo->i_unique = 0;
1162 	iinfo->i_lenEAttr = 0;
1163 	iinfo->i_lenExtents = 0;
1164 	iinfo->i_lenAlloc = 0;
1165 	iinfo->i_next_alloc_block = 0;
1166 	iinfo->i_next_alloc_goal = 0;
1167 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1168 		iinfo->i_efe = 1;
1169 		iinfo->i_use = 0;
1170 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1171 					sizeof(struct extendedFileEntry))) {
1172 			make_bad_inode(inode);
1173 			return;
1174 		}
1175 		memcpy(iinfo->i_ext.i_data,
1176 		       bh->b_data + sizeof(struct extendedFileEntry),
1177 		       inode->i_sb->s_blocksize -
1178 					sizeof(struct extendedFileEntry));
1179 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1180 		iinfo->i_efe = 0;
1181 		iinfo->i_use = 0;
1182 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1183 						sizeof(struct fileEntry))) {
1184 			make_bad_inode(inode);
1185 			return;
1186 		}
1187 		memcpy(iinfo->i_ext.i_data,
1188 		       bh->b_data + sizeof(struct fileEntry),
1189 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1190 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1191 		iinfo->i_efe = 0;
1192 		iinfo->i_use = 1;
1193 		iinfo->i_lenAlloc = le32_to_cpu(
1194 				((struct unallocSpaceEntry *)bh->b_data)->
1195 				 lengthAllocDescs);
1196 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1197 					sizeof(struct unallocSpaceEntry))) {
1198 			make_bad_inode(inode);
1199 			return;
1200 		}
1201 		memcpy(iinfo->i_ext.i_data,
1202 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1203 		       inode->i_sb->s_blocksize -
1204 					sizeof(struct unallocSpaceEntry));
1205 		return;
1206 	}
1207 
1208 	inode->i_uid = le32_to_cpu(fe->uid);
1209 	if (inode->i_uid == -1 ||
1210 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1211 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1212 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1213 
1214 	inode->i_gid = le32_to_cpu(fe->gid);
1215 	if (inode->i_gid == -1 ||
1216 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1217 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1218 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1219 
1220 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1221 	if (!inode->i_nlink)
1222 		inode->i_nlink = 1;
1223 
1224 	inode->i_size = le64_to_cpu(fe->informationLength);
1225 	iinfo->i_lenExtents = inode->i_size;
1226 
1227 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1228 			sbi->s_fmode != UDF_INVALID_MODE)
1229 		inode->i_mode = sbi->s_fmode;
1230 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1231 			sbi->s_dmode != UDF_INVALID_MODE)
1232 		inode->i_mode = sbi->s_dmode;
1233 	else
1234 		inode->i_mode = udf_convert_permissions(fe);
1235 	inode->i_mode &= ~sbi->s_umask;
1236 
1237 	if (iinfo->i_efe == 0) {
1238 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1239 			(inode->i_sb->s_blocksize_bits - 9);
1240 
1241 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1242 			inode->i_atime = sbi->s_record_time;
1243 
1244 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1245 					    fe->modificationTime))
1246 			inode->i_mtime = sbi->s_record_time;
1247 
1248 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1249 			inode->i_ctime = sbi->s_record_time;
1250 
1251 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1252 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1253 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1254 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1255 	} else {
1256 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1257 		    (inode->i_sb->s_blocksize_bits - 9);
1258 
1259 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1260 			inode->i_atime = sbi->s_record_time;
1261 
1262 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1263 					    efe->modificationTime))
1264 			inode->i_mtime = sbi->s_record_time;
1265 
1266 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1267 			iinfo->i_crtime = sbi->s_record_time;
1268 
1269 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1270 			inode->i_ctime = sbi->s_record_time;
1271 
1272 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1273 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1274 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1275 		offset = sizeof(struct extendedFileEntry) +
1276 							iinfo->i_lenEAttr;
1277 	}
1278 
1279 	switch (fe->icbTag.fileType) {
1280 	case ICBTAG_FILE_TYPE_DIRECTORY:
1281 		inode->i_op = &udf_dir_inode_operations;
1282 		inode->i_fop = &udf_dir_operations;
1283 		inode->i_mode |= S_IFDIR;
1284 		inc_nlink(inode);
1285 		break;
1286 	case ICBTAG_FILE_TYPE_REALTIME:
1287 	case ICBTAG_FILE_TYPE_REGULAR:
1288 	case ICBTAG_FILE_TYPE_UNDEF:
1289 	case ICBTAG_FILE_TYPE_VAT20:
1290 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1291 			inode->i_data.a_ops = &udf_adinicb_aops;
1292 		else
1293 			inode->i_data.a_ops = &udf_aops;
1294 		inode->i_op = &udf_file_inode_operations;
1295 		inode->i_fop = &udf_file_operations;
1296 		inode->i_mode |= S_IFREG;
1297 		break;
1298 	case ICBTAG_FILE_TYPE_BLOCK:
1299 		inode->i_mode |= S_IFBLK;
1300 		break;
1301 	case ICBTAG_FILE_TYPE_CHAR:
1302 		inode->i_mode |= S_IFCHR;
1303 		break;
1304 	case ICBTAG_FILE_TYPE_FIFO:
1305 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1306 		break;
1307 	case ICBTAG_FILE_TYPE_SOCKET:
1308 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1309 		break;
1310 	case ICBTAG_FILE_TYPE_SYMLINK:
1311 		inode->i_data.a_ops = &udf_symlink_aops;
1312 		inode->i_op = &udf_symlink_inode_operations;
1313 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1314 		break;
1315 	case ICBTAG_FILE_TYPE_MAIN:
1316 		udf_debug("METADATA FILE-----\n");
1317 		break;
1318 	case ICBTAG_FILE_TYPE_MIRROR:
1319 		udf_debug("METADATA MIRROR FILE-----\n");
1320 		break;
1321 	case ICBTAG_FILE_TYPE_BITMAP:
1322 		udf_debug("METADATA BITMAP FILE-----\n");
1323 		break;
1324 	default:
1325 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1326 				"file type=%d\n", inode->i_ino,
1327 				fe->icbTag.fileType);
1328 		make_bad_inode(inode);
1329 		return;
1330 	}
1331 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1332 		struct deviceSpec *dsea =
1333 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1334 		if (dsea) {
1335 			init_special_inode(inode, inode->i_mode,
1336 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1337 				      le32_to_cpu(dsea->minorDeviceIdent)));
1338 			/* Developer ID ??? */
1339 		} else
1340 			make_bad_inode(inode);
1341 	}
1342 }
1343 
1344 static int udf_alloc_i_data(struct inode *inode, size_t size)
1345 {
1346 	struct udf_inode_info *iinfo = UDF_I(inode);
1347 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1348 
1349 	if (!iinfo->i_ext.i_data) {
1350 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1351 				"no free memory\n", inode->i_ino);
1352 		return -ENOMEM;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 static mode_t udf_convert_permissions(struct fileEntry *fe)
1359 {
1360 	mode_t mode;
1361 	uint32_t permissions;
1362 	uint32_t flags;
1363 
1364 	permissions = le32_to_cpu(fe->permissions);
1365 	flags = le16_to_cpu(fe->icbTag.flags);
1366 
1367 	mode =	((permissions) & S_IRWXO) |
1368 		((permissions >> 2) & S_IRWXG) |
1369 		((permissions >> 4) & S_IRWXU) |
1370 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1371 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1372 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1373 
1374 	return mode;
1375 }
1376 
1377 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1378 {
1379 	int ret;
1380 
1381 	lock_kernel();
1382 	ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1383 	unlock_kernel();
1384 
1385 	return ret;
1386 }
1387 
1388 int udf_sync_inode(struct inode *inode)
1389 {
1390 	return udf_update_inode(inode, 1);
1391 }
1392 
1393 static int udf_update_inode(struct inode *inode, int do_sync)
1394 {
1395 	struct buffer_head *bh = NULL;
1396 	struct fileEntry *fe;
1397 	struct extendedFileEntry *efe;
1398 	uint32_t udfperms;
1399 	uint16_t icbflags;
1400 	uint16_t crclen;
1401 	int err = 0;
1402 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1403 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1404 	struct udf_inode_info *iinfo = UDF_I(inode);
1405 
1406 	bh = udf_tgetblk(inode->i_sb,
1407 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1408 	if (!bh) {
1409 		udf_debug("getblk failure\n");
1410 		return -ENOMEM;
1411 	}
1412 
1413 	lock_buffer(bh);
1414 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1415 	fe = (struct fileEntry *)bh->b_data;
1416 	efe = (struct extendedFileEntry *)bh->b_data;
1417 
1418 	if (iinfo->i_use) {
1419 		struct unallocSpaceEntry *use =
1420 			(struct unallocSpaceEntry *)bh->b_data;
1421 
1422 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1423 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1424 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1425 					sizeof(struct unallocSpaceEntry));
1426 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1427 		use->descTag.tagLocation =
1428 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1429 		crclen = sizeof(struct unallocSpaceEntry) +
1430 				iinfo->i_lenAlloc - sizeof(struct tag);
1431 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1432 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1433 							   sizeof(struct tag),
1434 							   crclen));
1435 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1436 
1437 		goto out;
1438 	}
1439 
1440 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1441 		fe->uid = cpu_to_le32(-1);
1442 	else
1443 		fe->uid = cpu_to_le32(inode->i_uid);
1444 
1445 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1446 		fe->gid = cpu_to_le32(-1);
1447 	else
1448 		fe->gid = cpu_to_le32(inode->i_gid);
1449 
1450 	udfperms = ((inode->i_mode & S_IRWXO)) |
1451 		   ((inode->i_mode & S_IRWXG) << 2) |
1452 		   ((inode->i_mode & S_IRWXU) << 4);
1453 
1454 	udfperms |= (le32_to_cpu(fe->permissions) &
1455 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1456 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1457 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1458 	fe->permissions = cpu_to_le32(udfperms);
1459 
1460 	if (S_ISDIR(inode->i_mode))
1461 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1462 	else
1463 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1464 
1465 	fe->informationLength = cpu_to_le64(inode->i_size);
1466 
1467 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1468 		struct regid *eid;
1469 		struct deviceSpec *dsea =
1470 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1471 		if (!dsea) {
1472 			dsea = (struct deviceSpec *)
1473 				udf_add_extendedattr(inode,
1474 						     sizeof(struct deviceSpec) +
1475 						     sizeof(struct regid), 12, 0x3);
1476 			dsea->attrType = cpu_to_le32(12);
1477 			dsea->attrSubtype = 1;
1478 			dsea->attrLength = cpu_to_le32(
1479 						sizeof(struct deviceSpec) +
1480 						sizeof(struct regid));
1481 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1482 		}
1483 		eid = (struct regid *)dsea->impUse;
1484 		memset(eid, 0, sizeof(struct regid));
1485 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1486 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1487 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1488 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1489 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1490 	}
1491 
1492 	if (iinfo->i_efe == 0) {
1493 		memcpy(bh->b_data + sizeof(struct fileEntry),
1494 		       iinfo->i_ext.i_data,
1495 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1496 		fe->logicalBlocksRecorded = cpu_to_le64(
1497 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1498 			(blocksize_bits - 9));
1499 
1500 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1501 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1502 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1503 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1504 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1505 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1506 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1507 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1508 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1509 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1510 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1511 		crclen = sizeof(struct fileEntry);
1512 	} else {
1513 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1514 		       iinfo->i_ext.i_data,
1515 		       inode->i_sb->s_blocksize -
1516 					sizeof(struct extendedFileEntry));
1517 		efe->objectSize = cpu_to_le64(inode->i_size);
1518 		efe->logicalBlocksRecorded = cpu_to_le64(
1519 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1520 			(blocksize_bits - 9));
1521 
1522 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1523 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1524 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1525 			iinfo->i_crtime = inode->i_atime;
1526 
1527 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1528 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1529 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1530 			iinfo->i_crtime = inode->i_mtime;
1531 
1532 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1533 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1534 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1535 			iinfo->i_crtime = inode->i_ctime;
1536 
1537 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1538 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1539 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1540 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1541 
1542 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1543 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1544 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1545 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1546 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1547 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1548 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1549 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1550 		crclen = sizeof(struct extendedFileEntry);
1551 	}
1552 	if (iinfo->i_strat4096) {
1553 		fe->icbTag.strategyType = cpu_to_le16(4096);
1554 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1555 		fe->icbTag.numEntries = cpu_to_le16(2);
1556 	} else {
1557 		fe->icbTag.strategyType = cpu_to_le16(4);
1558 		fe->icbTag.numEntries = cpu_to_le16(1);
1559 	}
1560 
1561 	if (S_ISDIR(inode->i_mode))
1562 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1563 	else if (S_ISREG(inode->i_mode))
1564 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1565 	else if (S_ISLNK(inode->i_mode))
1566 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1567 	else if (S_ISBLK(inode->i_mode))
1568 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1569 	else if (S_ISCHR(inode->i_mode))
1570 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1571 	else if (S_ISFIFO(inode->i_mode))
1572 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1573 	else if (S_ISSOCK(inode->i_mode))
1574 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1575 
1576 	icbflags =	iinfo->i_alloc_type |
1577 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1578 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1579 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1580 			(le16_to_cpu(fe->icbTag.flags) &
1581 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1582 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1583 
1584 	fe->icbTag.flags = cpu_to_le16(icbflags);
1585 	if (sbi->s_udfrev >= 0x0200)
1586 		fe->descTag.descVersion = cpu_to_le16(3);
1587 	else
1588 		fe->descTag.descVersion = cpu_to_le16(2);
1589 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1590 	fe->descTag.tagLocation = cpu_to_le32(
1591 					iinfo->i_location.logicalBlockNum);
1592 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1593 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1594 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1595 						  crclen));
1596 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1597 
1598 out:
1599 	set_buffer_uptodate(bh);
1600 	unlock_buffer(bh);
1601 
1602 	/* write the data blocks */
1603 	mark_buffer_dirty(bh);
1604 	if (do_sync) {
1605 		sync_dirty_buffer(bh);
1606 		if (buffer_write_io_error(bh)) {
1607 			printk(KERN_WARNING "IO error syncing udf inode "
1608 				"[%s:%08lx]\n", inode->i_sb->s_id,
1609 				inode->i_ino);
1610 			err = -EIO;
1611 		}
1612 	}
1613 	brelse(bh);
1614 
1615 	return err;
1616 }
1617 
1618 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1619 {
1620 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1621 	struct inode *inode = iget_locked(sb, block);
1622 
1623 	if (!inode)
1624 		return NULL;
1625 
1626 	if (inode->i_state & I_NEW) {
1627 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1628 		__udf_read_inode(inode);
1629 		unlock_new_inode(inode);
1630 	}
1631 
1632 	if (is_bad_inode(inode))
1633 		goto out_iput;
1634 
1635 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1636 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1637 		udf_debug("block=%d, partition=%d out of range\n",
1638 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1639 		make_bad_inode(inode);
1640 		goto out_iput;
1641 	}
1642 
1643 	return inode;
1644 
1645  out_iput:
1646 	iput(inode);
1647 	return NULL;
1648 }
1649 
1650 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1651 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1652 {
1653 	int adsize;
1654 	struct short_ad *sad = NULL;
1655 	struct long_ad *lad = NULL;
1656 	struct allocExtDesc *aed;
1657 	int8_t etype;
1658 	uint8_t *ptr;
1659 	struct udf_inode_info *iinfo = UDF_I(inode);
1660 
1661 	if (!epos->bh)
1662 		ptr = iinfo->i_ext.i_data + epos->offset -
1663 			udf_file_entry_alloc_offset(inode) +
1664 			iinfo->i_lenEAttr;
1665 	else
1666 		ptr = epos->bh->b_data + epos->offset;
1667 
1668 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1669 		adsize = sizeof(struct short_ad);
1670 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1671 		adsize = sizeof(struct long_ad);
1672 	else
1673 		return -1;
1674 
1675 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1676 		unsigned char *sptr, *dptr;
1677 		struct buffer_head *nbh;
1678 		int err, loffset;
1679 		struct kernel_lb_addr obloc = epos->block;
1680 
1681 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1682 						obloc.partitionReferenceNum,
1683 						obloc.logicalBlockNum, &err);
1684 		if (!epos->block.logicalBlockNum)
1685 			return -1;
1686 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1687 								 &epos->block,
1688 								 0));
1689 		if (!nbh)
1690 			return -1;
1691 		lock_buffer(nbh);
1692 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1693 		set_buffer_uptodate(nbh);
1694 		unlock_buffer(nbh);
1695 		mark_buffer_dirty_inode(nbh, inode);
1696 
1697 		aed = (struct allocExtDesc *)(nbh->b_data);
1698 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1699 			aed->previousAllocExtLocation =
1700 					cpu_to_le32(obloc.logicalBlockNum);
1701 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1702 			loffset = epos->offset;
1703 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1704 			sptr = ptr - adsize;
1705 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1706 			memcpy(dptr, sptr, adsize);
1707 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1708 		} else {
1709 			loffset = epos->offset + adsize;
1710 			aed->lengthAllocDescs = cpu_to_le32(0);
1711 			sptr = ptr;
1712 			epos->offset = sizeof(struct allocExtDesc);
1713 
1714 			if (epos->bh) {
1715 				aed = (struct allocExtDesc *)epos->bh->b_data;
1716 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1717 			} else {
1718 				iinfo->i_lenAlloc += adsize;
1719 				mark_inode_dirty(inode);
1720 			}
1721 		}
1722 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1723 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1724 				    epos->block.logicalBlockNum, sizeof(struct tag));
1725 		else
1726 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1727 				    epos->block.logicalBlockNum, sizeof(struct tag));
1728 		switch (iinfo->i_alloc_type) {
1729 		case ICBTAG_FLAG_AD_SHORT:
1730 			sad = (struct short_ad *)sptr;
1731 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1732 						     inode->i_sb->s_blocksize);
1733 			sad->extPosition =
1734 				cpu_to_le32(epos->block.logicalBlockNum);
1735 			break;
1736 		case ICBTAG_FLAG_AD_LONG:
1737 			lad = (struct long_ad *)sptr;
1738 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1739 						     inode->i_sb->s_blocksize);
1740 			lad->extLocation = cpu_to_lelb(epos->block);
1741 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1742 			break;
1743 		}
1744 		if (epos->bh) {
1745 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1746 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1747 				udf_update_tag(epos->bh->b_data, loffset);
1748 			else
1749 				udf_update_tag(epos->bh->b_data,
1750 						sizeof(struct allocExtDesc));
1751 			mark_buffer_dirty_inode(epos->bh, inode);
1752 			brelse(epos->bh);
1753 		} else {
1754 			mark_inode_dirty(inode);
1755 		}
1756 		epos->bh = nbh;
1757 	}
1758 
1759 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1760 
1761 	if (!epos->bh) {
1762 		iinfo->i_lenAlloc += adsize;
1763 		mark_inode_dirty(inode);
1764 	} else {
1765 		aed = (struct allocExtDesc *)epos->bh->b_data;
1766 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1767 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1768 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1769 			udf_update_tag(epos->bh->b_data,
1770 					epos->offset + (inc ? 0 : adsize));
1771 		else
1772 			udf_update_tag(epos->bh->b_data,
1773 					sizeof(struct allocExtDesc));
1774 		mark_buffer_dirty_inode(epos->bh, inode);
1775 	}
1776 
1777 	return etype;
1778 }
1779 
1780 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1781 		      struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1782 {
1783 	int adsize;
1784 	uint8_t *ptr;
1785 	struct short_ad *sad;
1786 	struct long_ad *lad;
1787 	struct udf_inode_info *iinfo = UDF_I(inode);
1788 
1789 	if (!epos->bh)
1790 		ptr = iinfo->i_ext.i_data + epos->offset -
1791 			udf_file_entry_alloc_offset(inode) +
1792 			iinfo->i_lenEAttr;
1793 	else
1794 		ptr = epos->bh->b_data + epos->offset;
1795 
1796 	switch (iinfo->i_alloc_type) {
1797 	case ICBTAG_FLAG_AD_SHORT:
1798 		sad = (struct short_ad *)ptr;
1799 		sad->extLength = cpu_to_le32(elen);
1800 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1801 		adsize = sizeof(struct short_ad);
1802 		break;
1803 	case ICBTAG_FLAG_AD_LONG:
1804 		lad = (struct long_ad *)ptr;
1805 		lad->extLength = cpu_to_le32(elen);
1806 		lad->extLocation = cpu_to_lelb(*eloc);
1807 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1808 		adsize = sizeof(struct long_ad);
1809 		break;
1810 	default:
1811 		return -1;
1812 	}
1813 
1814 	if (epos->bh) {
1815 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1816 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1817 			struct allocExtDesc *aed =
1818 				(struct allocExtDesc *)epos->bh->b_data;
1819 			udf_update_tag(epos->bh->b_data,
1820 				       le32_to_cpu(aed->lengthAllocDescs) +
1821 				       sizeof(struct allocExtDesc));
1822 		}
1823 		mark_buffer_dirty_inode(epos->bh, inode);
1824 	} else {
1825 		mark_inode_dirty(inode);
1826 	}
1827 
1828 	if (inc)
1829 		epos->offset += adsize;
1830 
1831 	return (elen >> 30);
1832 }
1833 
1834 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1835 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1836 {
1837 	int8_t etype;
1838 
1839 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1840 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1841 		int block;
1842 		epos->block = *eloc;
1843 		epos->offset = sizeof(struct allocExtDesc);
1844 		brelse(epos->bh);
1845 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1846 		epos->bh = udf_tread(inode->i_sb, block);
1847 		if (!epos->bh) {
1848 			udf_debug("reading block %d failed!\n", block);
1849 			return -1;
1850 		}
1851 	}
1852 
1853 	return etype;
1854 }
1855 
1856 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1857 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1858 {
1859 	int alen;
1860 	int8_t etype;
1861 	uint8_t *ptr;
1862 	struct short_ad *sad;
1863 	struct long_ad *lad;
1864 	struct udf_inode_info *iinfo = UDF_I(inode);
1865 
1866 	if (!epos->bh) {
1867 		if (!epos->offset)
1868 			epos->offset = udf_file_entry_alloc_offset(inode);
1869 		ptr = iinfo->i_ext.i_data + epos->offset -
1870 			udf_file_entry_alloc_offset(inode) +
1871 			iinfo->i_lenEAttr;
1872 		alen = udf_file_entry_alloc_offset(inode) +
1873 							iinfo->i_lenAlloc;
1874 	} else {
1875 		if (!epos->offset)
1876 			epos->offset = sizeof(struct allocExtDesc);
1877 		ptr = epos->bh->b_data + epos->offset;
1878 		alen = sizeof(struct allocExtDesc) +
1879 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1880 							lengthAllocDescs);
1881 	}
1882 
1883 	switch (iinfo->i_alloc_type) {
1884 	case ICBTAG_FLAG_AD_SHORT:
1885 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1886 		if (!sad)
1887 			return -1;
1888 		etype = le32_to_cpu(sad->extLength) >> 30;
1889 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1890 		eloc->partitionReferenceNum =
1891 				iinfo->i_location.partitionReferenceNum;
1892 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1893 		break;
1894 	case ICBTAG_FLAG_AD_LONG:
1895 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1896 		if (!lad)
1897 			return -1;
1898 		etype = le32_to_cpu(lad->extLength) >> 30;
1899 		*eloc = lelb_to_cpu(lad->extLocation);
1900 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1901 		break;
1902 	default:
1903 		udf_debug("alloc_type = %d unsupported\n",
1904 				iinfo->i_alloc_type);
1905 		return -1;
1906 	}
1907 
1908 	return etype;
1909 }
1910 
1911 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1912 			      struct kernel_lb_addr neloc, uint32_t nelen)
1913 {
1914 	struct kernel_lb_addr oeloc;
1915 	uint32_t oelen;
1916 	int8_t etype;
1917 
1918 	if (epos.bh)
1919 		get_bh(epos.bh);
1920 
1921 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1922 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
1923 		neloc = oeloc;
1924 		nelen = (etype << 30) | oelen;
1925 	}
1926 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
1927 	brelse(epos.bh);
1928 
1929 	return (nelen >> 30);
1930 }
1931 
1932 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1933 		       struct kernel_lb_addr eloc, uint32_t elen)
1934 {
1935 	struct extent_position oepos;
1936 	int adsize;
1937 	int8_t etype;
1938 	struct allocExtDesc *aed;
1939 	struct udf_inode_info *iinfo;
1940 
1941 	if (epos.bh) {
1942 		get_bh(epos.bh);
1943 		get_bh(epos.bh);
1944 	}
1945 
1946 	iinfo = UDF_I(inode);
1947 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1948 		adsize = sizeof(struct short_ad);
1949 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1950 		adsize = sizeof(struct long_ad);
1951 	else
1952 		adsize = 0;
1953 
1954 	oepos = epos;
1955 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1956 		return -1;
1957 
1958 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1959 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1960 		if (oepos.bh != epos.bh) {
1961 			oepos.block = epos.block;
1962 			brelse(oepos.bh);
1963 			get_bh(epos.bh);
1964 			oepos.bh = epos.bh;
1965 			oepos.offset = epos.offset - adsize;
1966 		}
1967 	}
1968 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1969 	elen = 0;
1970 
1971 	if (epos.bh != oepos.bh) {
1972 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1973 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1974 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1975 		if (!oepos.bh) {
1976 			iinfo->i_lenAlloc -= (adsize * 2);
1977 			mark_inode_dirty(inode);
1978 		} else {
1979 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1980 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1981 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1982 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1983 				udf_update_tag(oepos.bh->b_data,
1984 						oepos.offset - (2 * adsize));
1985 			else
1986 				udf_update_tag(oepos.bh->b_data,
1987 						sizeof(struct allocExtDesc));
1988 			mark_buffer_dirty_inode(oepos.bh, inode);
1989 		}
1990 	} else {
1991 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1992 		if (!oepos.bh) {
1993 			iinfo->i_lenAlloc -= adsize;
1994 			mark_inode_dirty(inode);
1995 		} else {
1996 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1997 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1998 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1999 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2000 				udf_update_tag(oepos.bh->b_data,
2001 						epos.offset - adsize);
2002 			else
2003 				udf_update_tag(oepos.bh->b_data,
2004 						sizeof(struct allocExtDesc));
2005 			mark_buffer_dirty_inode(oepos.bh, inode);
2006 		}
2007 	}
2008 
2009 	brelse(epos.bh);
2010 	brelse(oepos.bh);
2011 
2012 	return (elen >> 30);
2013 }
2014 
2015 int8_t inode_bmap(struct inode *inode, sector_t block,
2016 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2017 		  uint32_t *elen, sector_t *offset)
2018 {
2019 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2020 	loff_t lbcount = 0, bcount =
2021 	    (loff_t) block << blocksize_bits;
2022 	int8_t etype;
2023 	struct udf_inode_info *iinfo;
2024 
2025 	iinfo = UDF_I(inode);
2026 	pos->offset = 0;
2027 	pos->block = iinfo->i_location;
2028 	pos->bh = NULL;
2029 	*elen = 0;
2030 
2031 	do {
2032 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2033 		if (etype == -1) {
2034 			*offset = (bcount - lbcount) >> blocksize_bits;
2035 			iinfo->i_lenExtents = lbcount;
2036 			return -1;
2037 		}
2038 		lbcount += *elen;
2039 	} while (lbcount <= bcount);
2040 
2041 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2042 
2043 	return etype;
2044 }
2045 
2046 long udf_block_map(struct inode *inode, sector_t block)
2047 {
2048 	struct kernel_lb_addr eloc;
2049 	uint32_t elen;
2050 	sector_t offset;
2051 	struct extent_position epos = {};
2052 	int ret;
2053 
2054 	lock_kernel();
2055 
2056 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2057 						(EXT_RECORDED_ALLOCATED >> 30))
2058 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2059 	else
2060 		ret = 0;
2061 
2062 	unlock_kernel();
2063 	brelse(epos.bh);
2064 
2065 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2066 		return udf_fixed_to_variable(ret);
2067 	else
2068 		return ret;
2069 }
2070