1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 #include <linux/crc-itu-t.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static mode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 56 sector_t *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_delete_inode(struct inode *inode) 72 { 73 truncate_inode_pages(&inode->i_data, 0); 74 75 if (is_bad_inode(inode)) 76 goto no_delete; 77 78 inode->i_size = 0; 79 udf_truncate(inode); 80 lock_kernel(); 81 82 udf_update_inode(inode, IS_SYNC(inode)); 83 udf_free_inode(inode); 84 85 unlock_kernel(); 86 return; 87 88 no_delete: 89 clear_inode(inode); 90 } 91 92 /* 93 * If we are going to release inode from memory, we truncate last inode extent 94 * to proper length. We could use drop_inode() but it's called under inode_lock 95 * and thus we cannot mark inode dirty there. We use clear_inode() but we have 96 * to make sure to write inode as it's not written automatically. 97 */ 98 void udf_clear_inode(struct inode *inode) 99 { 100 struct udf_inode_info *iinfo = UDF_I(inode); 101 102 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 103 inode->i_size != iinfo->i_lenExtents) { 104 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has " 105 "inode size %llu different from extent length %llu. " 106 "Filesystem need not be standards compliant.\n", 107 inode->i_sb->s_id, inode->i_ino, inode->i_mode, 108 (unsigned long long)inode->i_size, 109 (unsigned long long)iinfo->i_lenExtents); 110 } 111 112 kfree(iinfo->i_ext.i_data); 113 iinfo->i_ext.i_data = NULL; 114 } 115 116 static int udf_writepage(struct page *page, struct writeback_control *wbc) 117 { 118 return block_write_full_page(page, udf_get_block, wbc); 119 } 120 121 static int udf_readpage(struct file *file, struct page *page) 122 { 123 return block_read_full_page(page, udf_get_block); 124 } 125 126 static int udf_write_begin(struct file *file, struct address_space *mapping, 127 loff_t pos, unsigned len, unsigned flags, 128 struct page **pagep, void **fsdata) 129 { 130 *pagep = NULL; 131 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 132 udf_get_block); 133 } 134 135 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 136 { 137 return generic_block_bmap(mapping, block, udf_get_block); 138 } 139 140 const struct address_space_operations udf_aops = { 141 .readpage = udf_readpage, 142 .writepage = udf_writepage, 143 .sync_page = block_sync_page, 144 .write_begin = udf_write_begin, 145 .write_end = generic_write_end, 146 .bmap = udf_bmap, 147 }; 148 149 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 150 { 151 struct page *page; 152 char *kaddr; 153 struct udf_inode_info *iinfo = UDF_I(inode); 154 struct writeback_control udf_wbc = { 155 .sync_mode = WB_SYNC_NONE, 156 .nr_to_write = 1, 157 }; 158 159 /* from now on we have normal address_space methods */ 160 inode->i_data.a_ops = &udf_aops; 161 162 if (!iinfo->i_lenAlloc) { 163 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 164 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 165 else 166 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 167 mark_inode_dirty(inode); 168 return; 169 } 170 171 page = grab_cache_page(inode->i_mapping, 0); 172 BUG_ON(!PageLocked(page)); 173 174 if (!PageUptodate(page)) { 175 kaddr = kmap(page); 176 memset(kaddr + iinfo->i_lenAlloc, 0x00, 177 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 178 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 179 iinfo->i_lenAlloc); 180 flush_dcache_page(page); 181 SetPageUptodate(page); 182 kunmap(page); 183 } 184 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 185 iinfo->i_lenAlloc); 186 iinfo->i_lenAlloc = 0; 187 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 189 else 190 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 191 192 inode->i_data.a_ops->writepage(page, &udf_wbc); 193 page_cache_release(page); 194 195 mark_inode_dirty(inode); 196 } 197 198 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 199 int *err) 200 { 201 int newblock; 202 struct buffer_head *dbh = NULL; 203 struct kernel_lb_addr eloc; 204 uint8_t alloctype; 205 struct extent_position epos; 206 207 struct udf_fileident_bh sfibh, dfibh; 208 loff_t f_pos = udf_ext0_offset(inode); 209 int size = udf_ext0_offset(inode) + inode->i_size; 210 struct fileIdentDesc cfi, *sfi, *dfi; 211 struct udf_inode_info *iinfo = UDF_I(inode); 212 213 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 214 alloctype = ICBTAG_FLAG_AD_SHORT; 215 else 216 alloctype = ICBTAG_FLAG_AD_LONG; 217 218 if (!inode->i_size) { 219 iinfo->i_alloc_type = alloctype; 220 mark_inode_dirty(inode); 221 return NULL; 222 } 223 224 /* alloc block, and copy data to it */ 225 *block = udf_new_block(inode->i_sb, inode, 226 iinfo->i_location.partitionReferenceNum, 227 iinfo->i_location.logicalBlockNum, err); 228 if (!(*block)) 229 return NULL; 230 newblock = udf_get_pblock(inode->i_sb, *block, 231 iinfo->i_location.partitionReferenceNum, 232 0); 233 if (!newblock) 234 return NULL; 235 dbh = udf_tgetblk(inode->i_sb, newblock); 236 if (!dbh) 237 return NULL; 238 lock_buffer(dbh); 239 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 240 set_buffer_uptodate(dbh); 241 unlock_buffer(dbh); 242 mark_buffer_dirty_inode(dbh, inode); 243 244 sfibh.soffset = sfibh.eoffset = 245 f_pos & (inode->i_sb->s_blocksize - 1); 246 sfibh.sbh = sfibh.ebh = NULL; 247 dfibh.soffset = dfibh.eoffset = 0; 248 dfibh.sbh = dfibh.ebh = dbh; 249 while (f_pos < size) { 250 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 251 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 252 NULL, NULL, NULL); 253 if (!sfi) { 254 brelse(dbh); 255 return NULL; 256 } 257 iinfo->i_alloc_type = alloctype; 258 sfi->descTag.tagLocation = cpu_to_le32(*block); 259 dfibh.soffset = dfibh.eoffset; 260 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 261 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 262 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 263 sfi->fileIdent + 264 le16_to_cpu(sfi->lengthOfImpUse))) { 265 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 266 brelse(dbh); 267 return NULL; 268 } 269 } 270 mark_buffer_dirty_inode(dbh, inode); 271 272 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 273 iinfo->i_lenAlloc); 274 iinfo->i_lenAlloc = 0; 275 eloc.logicalBlockNum = *block; 276 eloc.partitionReferenceNum = 277 iinfo->i_location.partitionReferenceNum; 278 iinfo->i_lenExtents = inode->i_size; 279 epos.bh = NULL; 280 epos.block = iinfo->i_location; 281 epos.offset = udf_file_entry_alloc_offset(inode); 282 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 283 /* UniqueID stuff */ 284 285 brelse(epos.bh); 286 mark_inode_dirty(inode); 287 return dbh; 288 } 289 290 static int udf_get_block(struct inode *inode, sector_t block, 291 struct buffer_head *bh_result, int create) 292 { 293 int err, new; 294 struct buffer_head *bh; 295 sector_t phys = 0; 296 struct udf_inode_info *iinfo; 297 298 if (!create) { 299 phys = udf_block_map(inode, block); 300 if (phys) 301 map_bh(bh_result, inode->i_sb, phys); 302 return 0; 303 } 304 305 err = -EIO; 306 new = 0; 307 bh = NULL; 308 309 lock_kernel(); 310 311 iinfo = UDF_I(inode); 312 if (block == iinfo->i_next_alloc_block + 1) { 313 iinfo->i_next_alloc_block++; 314 iinfo->i_next_alloc_goal++; 315 } 316 317 err = 0; 318 319 bh = inode_getblk(inode, block, &err, &phys, &new); 320 BUG_ON(bh); 321 if (err) 322 goto abort; 323 BUG_ON(!phys); 324 325 if (new) 326 set_buffer_new(bh_result); 327 map_bh(bh_result, inode->i_sb, phys); 328 329 abort: 330 unlock_kernel(); 331 return err; 332 } 333 334 static struct buffer_head *udf_getblk(struct inode *inode, long block, 335 int create, int *err) 336 { 337 struct buffer_head *bh; 338 struct buffer_head dummy; 339 340 dummy.b_state = 0; 341 dummy.b_blocknr = -1000; 342 *err = udf_get_block(inode, block, &dummy, create); 343 if (!*err && buffer_mapped(&dummy)) { 344 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 345 if (buffer_new(&dummy)) { 346 lock_buffer(bh); 347 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 348 set_buffer_uptodate(bh); 349 unlock_buffer(bh); 350 mark_buffer_dirty_inode(bh, inode); 351 } 352 return bh; 353 } 354 355 return NULL; 356 } 357 358 /* Extend the file by 'blocks' blocks, return the number of extents added */ 359 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 360 struct kernel_long_ad *last_ext, sector_t blocks) 361 { 362 sector_t add; 363 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 364 struct super_block *sb = inode->i_sb; 365 struct kernel_lb_addr prealloc_loc = {}; 366 int prealloc_len = 0; 367 struct udf_inode_info *iinfo; 368 369 /* The previous extent is fake and we should not extend by anything 370 * - there's nothing to do... */ 371 if (!blocks && fake) 372 return 0; 373 374 iinfo = UDF_I(inode); 375 /* Round the last extent up to a multiple of block size */ 376 if (last_ext->extLength & (sb->s_blocksize - 1)) { 377 last_ext->extLength = 378 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 379 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 380 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 381 iinfo->i_lenExtents = 382 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 383 ~(sb->s_blocksize - 1); 384 } 385 386 /* Last extent are just preallocated blocks? */ 387 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 388 EXT_NOT_RECORDED_ALLOCATED) { 389 /* Save the extent so that we can reattach it to the end */ 390 prealloc_loc = last_ext->extLocation; 391 prealloc_len = last_ext->extLength; 392 /* Mark the extent as a hole */ 393 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 394 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 395 last_ext->extLocation.logicalBlockNum = 0; 396 last_ext->extLocation.partitionReferenceNum = 0; 397 } 398 399 /* Can we merge with the previous extent? */ 400 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 401 EXT_NOT_RECORDED_NOT_ALLOCATED) { 402 add = ((1 << 30) - sb->s_blocksize - 403 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 404 sb->s_blocksize_bits; 405 if (add > blocks) 406 add = blocks; 407 blocks -= add; 408 last_ext->extLength += add << sb->s_blocksize_bits; 409 } 410 411 if (fake) { 412 udf_add_aext(inode, last_pos, &last_ext->extLocation, 413 last_ext->extLength, 1); 414 count++; 415 } else 416 udf_write_aext(inode, last_pos, &last_ext->extLocation, 417 last_ext->extLength, 1); 418 419 /* Managed to do everything necessary? */ 420 if (!blocks) 421 goto out; 422 423 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 424 last_ext->extLocation.logicalBlockNum = 0; 425 last_ext->extLocation.partitionReferenceNum = 0; 426 add = (1 << (30-sb->s_blocksize_bits)) - 1; 427 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 428 (add << sb->s_blocksize_bits); 429 430 /* Create enough extents to cover the whole hole */ 431 while (blocks > add) { 432 blocks -= add; 433 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 434 last_ext->extLength, 1) == -1) 435 return -1; 436 count++; 437 } 438 if (blocks) { 439 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 440 (blocks << sb->s_blocksize_bits); 441 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 442 last_ext->extLength, 1) == -1) 443 return -1; 444 count++; 445 } 446 447 out: 448 /* Do we have some preallocated blocks saved? */ 449 if (prealloc_len) { 450 if (udf_add_aext(inode, last_pos, &prealloc_loc, 451 prealloc_len, 1) == -1) 452 return -1; 453 last_ext->extLocation = prealloc_loc; 454 last_ext->extLength = prealloc_len; 455 count++; 456 } 457 458 /* last_pos should point to the last written extent... */ 459 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 460 last_pos->offset -= sizeof(struct short_ad); 461 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 462 last_pos->offset -= sizeof(struct long_ad); 463 else 464 return -1; 465 466 return count; 467 } 468 469 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 470 int *err, sector_t *phys, int *new) 471 { 472 static sector_t last_block; 473 struct buffer_head *result = NULL; 474 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 475 struct extent_position prev_epos, cur_epos, next_epos; 476 int count = 0, startnum = 0, endnum = 0; 477 uint32_t elen = 0, tmpelen; 478 struct kernel_lb_addr eloc, tmpeloc; 479 int c = 1; 480 loff_t lbcount = 0, b_off = 0; 481 uint32_t newblocknum, newblock; 482 sector_t offset = 0; 483 int8_t etype; 484 struct udf_inode_info *iinfo = UDF_I(inode); 485 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 486 int lastblock = 0; 487 488 prev_epos.offset = udf_file_entry_alloc_offset(inode); 489 prev_epos.block = iinfo->i_location; 490 prev_epos.bh = NULL; 491 cur_epos = next_epos = prev_epos; 492 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 493 494 /* find the extent which contains the block we are looking for. 495 alternate between laarr[0] and laarr[1] for locations of the 496 current extent, and the previous extent */ 497 do { 498 if (prev_epos.bh != cur_epos.bh) { 499 brelse(prev_epos.bh); 500 get_bh(cur_epos.bh); 501 prev_epos.bh = cur_epos.bh; 502 } 503 if (cur_epos.bh != next_epos.bh) { 504 brelse(cur_epos.bh); 505 get_bh(next_epos.bh); 506 cur_epos.bh = next_epos.bh; 507 } 508 509 lbcount += elen; 510 511 prev_epos.block = cur_epos.block; 512 cur_epos.block = next_epos.block; 513 514 prev_epos.offset = cur_epos.offset; 515 cur_epos.offset = next_epos.offset; 516 517 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 518 if (etype == -1) 519 break; 520 521 c = !c; 522 523 laarr[c].extLength = (etype << 30) | elen; 524 laarr[c].extLocation = eloc; 525 526 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 527 pgoal = eloc.logicalBlockNum + 528 ((elen + inode->i_sb->s_blocksize - 1) >> 529 inode->i_sb->s_blocksize_bits); 530 531 count++; 532 } while (lbcount + elen <= b_off); 533 534 b_off -= lbcount; 535 offset = b_off >> inode->i_sb->s_blocksize_bits; 536 /* 537 * Move prev_epos and cur_epos into indirect extent if we are at 538 * the pointer to it 539 */ 540 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 541 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 542 543 /* if the extent is allocated and recorded, return the block 544 if the extent is not a multiple of the blocksize, round up */ 545 546 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 547 if (elen & (inode->i_sb->s_blocksize - 1)) { 548 elen = EXT_RECORDED_ALLOCATED | 549 ((elen + inode->i_sb->s_blocksize - 1) & 550 ~(inode->i_sb->s_blocksize - 1)); 551 etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 552 } 553 brelse(prev_epos.bh); 554 brelse(cur_epos.bh); 555 brelse(next_epos.bh); 556 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 557 *phys = newblock; 558 return NULL; 559 } 560 561 last_block = block; 562 /* Are we beyond EOF? */ 563 if (etype == -1) { 564 int ret; 565 566 if (count) { 567 if (c) 568 laarr[0] = laarr[1]; 569 startnum = 1; 570 } else { 571 /* Create a fake extent when there's not one */ 572 memset(&laarr[0].extLocation, 0x00, 573 sizeof(struct kernel_lb_addr)); 574 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 575 /* Will udf_extend_file() create real extent from 576 a fake one? */ 577 startnum = (offset > 0); 578 } 579 /* Create extents for the hole between EOF and offset */ 580 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 581 if (ret == -1) { 582 brelse(prev_epos.bh); 583 brelse(cur_epos.bh); 584 brelse(next_epos.bh); 585 /* We don't really know the error here so we just make 586 * something up */ 587 *err = -ENOSPC; 588 return NULL; 589 } 590 c = 0; 591 offset = 0; 592 count += ret; 593 /* We are not covered by a preallocated extent? */ 594 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 595 EXT_NOT_RECORDED_ALLOCATED) { 596 /* Is there any real extent? - otherwise we overwrite 597 * the fake one... */ 598 if (count) 599 c = !c; 600 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 601 inode->i_sb->s_blocksize; 602 memset(&laarr[c].extLocation, 0x00, 603 sizeof(struct kernel_lb_addr)); 604 count++; 605 endnum++; 606 } 607 endnum = c + 1; 608 lastblock = 1; 609 } else { 610 endnum = startnum = ((count > 2) ? 2 : count); 611 612 /* if the current extent is in position 0, 613 swap it with the previous */ 614 if (!c && count != 1) { 615 laarr[2] = laarr[0]; 616 laarr[0] = laarr[1]; 617 laarr[1] = laarr[2]; 618 c = 1; 619 } 620 621 /* if the current block is located in an extent, 622 read the next extent */ 623 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 624 if (etype != -1) { 625 laarr[c + 1].extLength = (etype << 30) | elen; 626 laarr[c + 1].extLocation = eloc; 627 count++; 628 startnum++; 629 endnum++; 630 } else 631 lastblock = 1; 632 } 633 634 /* if the current extent is not recorded but allocated, get the 635 * block in the extent corresponding to the requested block */ 636 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 637 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 638 else { /* otherwise, allocate a new block */ 639 if (iinfo->i_next_alloc_block == block) 640 goal = iinfo->i_next_alloc_goal; 641 642 if (!goal) { 643 if (!(goal = pgoal)) /* XXX: what was intended here? */ 644 goal = iinfo->i_location.logicalBlockNum + 1; 645 } 646 647 newblocknum = udf_new_block(inode->i_sb, inode, 648 iinfo->i_location.partitionReferenceNum, 649 goal, err); 650 if (!newblocknum) { 651 brelse(prev_epos.bh); 652 *err = -ENOSPC; 653 return NULL; 654 } 655 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 656 } 657 658 /* if the extent the requsted block is located in contains multiple 659 * blocks, split the extent into at most three extents. blocks prior 660 * to requested block, requested block, and blocks after requested 661 * block */ 662 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 663 664 #ifdef UDF_PREALLOCATE 665 /* We preallocate blocks only for regular files. It also makes sense 666 * for directories but there's a problem when to drop the 667 * preallocation. We might use some delayed work for that but I feel 668 * it's overengineering for a filesystem like UDF. */ 669 if (S_ISREG(inode->i_mode)) 670 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 671 #endif 672 673 /* merge any continuous blocks in laarr */ 674 udf_merge_extents(inode, laarr, &endnum); 675 676 /* write back the new extents, inserting new extents if the new number 677 * of extents is greater than the old number, and deleting extents if 678 * the new number of extents is less than the old number */ 679 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 680 681 brelse(prev_epos.bh); 682 683 newblock = udf_get_pblock(inode->i_sb, newblocknum, 684 iinfo->i_location.partitionReferenceNum, 0); 685 if (!newblock) 686 return NULL; 687 *phys = newblock; 688 *err = 0; 689 *new = 1; 690 iinfo->i_next_alloc_block = block; 691 iinfo->i_next_alloc_goal = newblocknum; 692 inode->i_ctime = current_fs_time(inode->i_sb); 693 694 if (IS_SYNC(inode)) 695 udf_sync_inode(inode); 696 else 697 mark_inode_dirty(inode); 698 699 return result; 700 } 701 702 static void udf_split_extents(struct inode *inode, int *c, int offset, 703 int newblocknum, 704 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 705 int *endnum) 706 { 707 unsigned long blocksize = inode->i_sb->s_blocksize; 708 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 709 710 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 711 (laarr[*c].extLength >> 30) == 712 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 713 int curr = *c; 714 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 715 blocksize - 1) >> blocksize_bits; 716 int8_t etype = (laarr[curr].extLength >> 30); 717 718 if (blen == 1) 719 ; 720 else if (!offset || blen == offset + 1) { 721 laarr[curr + 2] = laarr[curr + 1]; 722 laarr[curr + 1] = laarr[curr]; 723 } else { 724 laarr[curr + 3] = laarr[curr + 1]; 725 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 726 } 727 728 if (offset) { 729 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 730 udf_free_blocks(inode->i_sb, inode, 731 &laarr[curr].extLocation, 732 0, offset); 733 laarr[curr].extLength = 734 EXT_NOT_RECORDED_NOT_ALLOCATED | 735 (offset << blocksize_bits); 736 laarr[curr].extLocation.logicalBlockNum = 0; 737 laarr[curr].extLocation. 738 partitionReferenceNum = 0; 739 } else 740 laarr[curr].extLength = (etype << 30) | 741 (offset << blocksize_bits); 742 curr++; 743 (*c)++; 744 (*endnum)++; 745 } 746 747 laarr[curr].extLocation.logicalBlockNum = newblocknum; 748 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 749 laarr[curr].extLocation.partitionReferenceNum = 750 UDF_I(inode)->i_location.partitionReferenceNum; 751 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 752 blocksize; 753 curr++; 754 755 if (blen != offset + 1) { 756 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 757 laarr[curr].extLocation.logicalBlockNum += 758 offset + 1; 759 laarr[curr].extLength = (etype << 30) | 760 ((blen - (offset + 1)) << blocksize_bits); 761 curr++; 762 (*endnum)++; 763 } 764 } 765 } 766 767 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 768 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 769 int *endnum) 770 { 771 int start, length = 0, currlength = 0, i; 772 773 if (*endnum >= (c + 1)) { 774 if (!lastblock) 775 return; 776 else 777 start = c; 778 } else { 779 if ((laarr[c + 1].extLength >> 30) == 780 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 781 start = c + 1; 782 length = currlength = 783 (((laarr[c + 1].extLength & 784 UDF_EXTENT_LENGTH_MASK) + 785 inode->i_sb->s_blocksize - 1) >> 786 inode->i_sb->s_blocksize_bits); 787 } else 788 start = c; 789 } 790 791 for (i = start + 1; i <= *endnum; i++) { 792 if (i == *endnum) { 793 if (lastblock) 794 length += UDF_DEFAULT_PREALLOC_BLOCKS; 795 } else if ((laarr[i].extLength >> 30) == 796 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 797 length += (((laarr[i].extLength & 798 UDF_EXTENT_LENGTH_MASK) + 799 inode->i_sb->s_blocksize - 1) >> 800 inode->i_sb->s_blocksize_bits); 801 } else 802 break; 803 } 804 805 if (length) { 806 int next = laarr[start].extLocation.logicalBlockNum + 807 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 808 inode->i_sb->s_blocksize - 1) >> 809 inode->i_sb->s_blocksize_bits); 810 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 811 laarr[start].extLocation.partitionReferenceNum, 812 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 813 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 814 currlength); 815 if (numalloc) { 816 if (start == (c + 1)) 817 laarr[start].extLength += 818 (numalloc << 819 inode->i_sb->s_blocksize_bits); 820 else { 821 memmove(&laarr[c + 2], &laarr[c + 1], 822 sizeof(struct long_ad) * (*endnum - (c + 1))); 823 (*endnum)++; 824 laarr[c + 1].extLocation.logicalBlockNum = next; 825 laarr[c + 1].extLocation.partitionReferenceNum = 826 laarr[c].extLocation. 827 partitionReferenceNum; 828 laarr[c + 1].extLength = 829 EXT_NOT_RECORDED_ALLOCATED | 830 (numalloc << 831 inode->i_sb->s_blocksize_bits); 832 start = c + 1; 833 } 834 835 for (i = start + 1; numalloc && i < *endnum; i++) { 836 int elen = ((laarr[i].extLength & 837 UDF_EXTENT_LENGTH_MASK) + 838 inode->i_sb->s_blocksize - 1) >> 839 inode->i_sb->s_blocksize_bits; 840 841 if (elen > numalloc) { 842 laarr[i].extLength -= 843 (numalloc << 844 inode->i_sb->s_blocksize_bits); 845 numalloc = 0; 846 } else { 847 numalloc -= elen; 848 if (*endnum > (i + 1)) 849 memmove(&laarr[i], 850 &laarr[i + 1], 851 sizeof(struct long_ad) * 852 (*endnum - (i + 1))); 853 i--; 854 (*endnum)--; 855 } 856 } 857 UDF_I(inode)->i_lenExtents += 858 numalloc << inode->i_sb->s_blocksize_bits; 859 } 860 } 861 } 862 863 static void udf_merge_extents(struct inode *inode, 864 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 865 int *endnum) 866 { 867 int i; 868 unsigned long blocksize = inode->i_sb->s_blocksize; 869 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 870 871 for (i = 0; i < (*endnum - 1); i++) { 872 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 873 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 874 875 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 876 (((li->extLength >> 30) == 877 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 878 ((lip1->extLocation.logicalBlockNum - 879 li->extLocation.logicalBlockNum) == 880 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 881 blocksize - 1) >> blocksize_bits)))) { 882 883 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 884 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 885 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 886 lip1->extLength = (lip1->extLength - 887 (li->extLength & 888 UDF_EXTENT_LENGTH_MASK) + 889 UDF_EXTENT_LENGTH_MASK) & 890 ~(blocksize - 1); 891 li->extLength = (li->extLength & 892 UDF_EXTENT_FLAG_MASK) + 893 (UDF_EXTENT_LENGTH_MASK + 1) - 894 blocksize; 895 lip1->extLocation.logicalBlockNum = 896 li->extLocation.logicalBlockNum + 897 ((li->extLength & 898 UDF_EXTENT_LENGTH_MASK) >> 899 blocksize_bits); 900 } else { 901 li->extLength = lip1->extLength + 902 (((li->extLength & 903 UDF_EXTENT_LENGTH_MASK) + 904 blocksize - 1) & ~(blocksize - 1)); 905 if (*endnum > (i + 2)) 906 memmove(&laarr[i + 1], &laarr[i + 2], 907 sizeof(struct long_ad) * 908 (*endnum - (i + 2))); 909 i--; 910 (*endnum)--; 911 } 912 } else if (((li->extLength >> 30) == 913 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 914 ((lip1->extLength >> 30) == 915 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 916 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 917 ((li->extLength & 918 UDF_EXTENT_LENGTH_MASK) + 919 blocksize - 1) >> blocksize_bits); 920 li->extLocation.logicalBlockNum = 0; 921 li->extLocation.partitionReferenceNum = 0; 922 923 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 924 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 925 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 926 lip1->extLength = (lip1->extLength - 927 (li->extLength & 928 UDF_EXTENT_LENGTH_MASK) + 929 UDF_EXTENT_LENGTH_MASK) & 930 ~(blocksize - 1); 931 li->extLength = (li->extLength & 932 UDF_EXTENT_FLAG_MASK) + 933 (UDF_EXTENT_LENGTH_MASK + 1) - 934 blocksize; 935 } else { 936 li->extLength = lip1->extLength + 937 (((li->extLength & 938 UDF_EXTENT_LENGTH_MASK) + 939 blocksize - 1) & ~(blocksize - 1)); 940 if (*endnum > (i + 2)) 941 memmove(&laarr[i + 1], &laarr[i + 2], 942 sizeof(struct long_ad) * 943 (*endnum - (i + 2))); 944 i--; 945 (*endnum)--; 946 } 947 } else if ((li->extLength >> 30) == 948 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 949 udf_free_blocks(inode->i_sb, inode, 950 &li->extLocation, 0, 951 ((li->extLength & 952 UDF_EXTENT_LENGTH_MASK) + 953 blocksize - 1) >> blocksize_bits); 954 li->extLocation.logicalBlockNum = 0; 955 li->extLocation.partitionReferenceNum = 0; 956 li->extLength = (li->extLength & 957 UDF_EXTENT_LENGTH_MASK) | 958 EXT_NOT_RECORDED_NOT_ALLOCATED; 959 } 960 } 961 } 962 963 static void udf_update_extents(struct inode *inode, 964 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 965 int startnum, int endnum, 966 struct extent_position *epos) 967 { 968 int start = 0, i; 969 struct kernel_lb_addr tmploc; 970 uint32_t tmplen; 971 972 if (startnum > endnum) { 973 for (i = 0; i < (startnum - endnum); i++) 974 udf_delete_aext(inode, *epos, laarr[i].extLocation, 975 laarr[i].extLength); 976 } else if (startnum < endnum) { 977 for (i = 0; i < (endnum - startnum); i++) { 978 udf_insert_aext(inode, *epos, laarr[i].extLocation, 979 laarr[i].extLength); 980 udf_next_aext(inode, epos, &laarr[i].extLocation, 981 &laarr[i].extLength, 1); 982 start++; 983 } 984 } 985 986 for (i = start; i < endnum; i++) { 987 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 988 udf_write_aext(inode, epos, &laarr[i].extLocation, 989 laarr[i].extLength, 1); 990 } 991 } 992 993 struct buffer_head *udf_bread(struct inode *inode, int block, 994 int create, int *err) 995 { 996 struct buffer_head *bh = NULL; 997 998 bh = udf_getblk(inode, block, create, err); 999 if (!bh) 1000 return NULL; 1001 1002 if (buffer_uptodate(bh)) 1003 return bh; 1004 1005 ll_rw_block(READ, 1, &bh); 1006 1007 wait_on_buffer(bh); 1008 if (buffer_uptodate(bh)) 1009 return bh; 1010 1011 brelse(bh); 1012 *err = -EIO; 1013 return NULL; 1014 } 1015 1016 void udf_truncate(struct inode *inode) 1017 { 1018 int offset; 1019 int err; 1020 struct udf_inode_info *iinfo; 1021 1022 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1023 S_ISLNK(inode->i_mode))) 1024 return; 1025 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1026 return; 1027 1028 lock_kernel(); 1029 iinfo = UDF_I(inode); 1030 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1031 if (inode->i_sb->s_blocksize < 1032 (udf_file_entry_alloc_offset(inode) + 1033 inode->i_size)) { 1034 udf_expand_file_adinicb(inode, inode->i_size, &err); 1035 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1036 inode->i_size = iinfo->i_lenAlloc; 1037 unlock_kernel(); 1038 return; 1039 } else 1040 udf_truncate_extents(inode); 1041 } else { 1042 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1043 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1044 0x00, inode->i_sb->s_blocksize - 1045 offset - udf_file_entry_alloc_offset(inode)); 1046 iinfo->i_lenAlloc = inode->i_size; 1047 } 1048 } else { 1049 block_truncate_page(inode->i_mapping, inode->i_size, 1050 udf_get_block); 1051 udf_truncate_extents(inode); 1052 } 1053 1054 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1055 if (IS_SYNC(inode)) 1056 udf_sync_inode(inode); 1057 else 1058 mark_inode_dirty(inode); 1059 unlock_kernel(); 1060 } 1061 1062 static void __udf_read_inode(struct inode *inode) 1063 { 1064 struct buffer_head *bh = NULL; 1065 struct fileEntry *fe; 1066 uint16_t ident; 1067 struct udf_inode_info *iinfo = UDF_I(inode); 1068 1069 /* 1070 * Set defaults, but the inode is still incomplete! 1071 * Note: get_new_inode() sets the following on a new inode: 1072 * i_sb = sb 1073 * i_no = ino 1074 * i_flags = sb->s_flags 1075 * i_state = 0 1076 * clean_inode(): zero fills and sets 1077 * i_count = 1 1078 * i_nlink = 1 1079 * i_op = NULL; 1080 */ 1081 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1082 if (!bh) { 1083 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1084 inode->i_ino); 1085 make_bad_inode(inode); 1086 return; 1087 } 1088 1089 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1090 ident != TAG_IDENT_USE) { 1091 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1092 "failed ident=%d\n", inode->i_ino, ident); 1093 brelse(bh); 1094 make_bad_inode(inode); 1095 return; 1096 } 1097 1098 fe = (struct fileEntry *)bh->b_data; 1099 1100 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1101 struct buffer_head *ibh; 1102 1103 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1104 &ident); 1105 if (ident == TAG_IDENT_IE && ibh) { 1106 struct buffer_head *nbh = NULL; 1107 struct kernel_lb_addr loc; 1108 struct indirectEntry *ie; 1109 1110 ie = (struct indirectEntry *)ibh->b_data; 1111 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1112 1113 if (ie->indirectICB.extLength && 1114 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1115 &ident))) { 1116 if (ident == TAG_IDENT_FE || 1117 ident == TAG_IDENT_EFE) { 1118 memcpy(&iinfo->i_location, 1119 &loc, 1120 sizeof(struct kernel_lb_addr)); 1121 brelse(bh); 1122 brelse(ibh); 1123 brelse(nbh); 1124 __udf_read_inode(inode); 1125 return; 1126 } 1127 brelse(nbh); 1128 } 1129 } 1130 brelse(ibh); 1131 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1132 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1133 le16_to_cpu(fe->icbTag.strategyType)); 1134 brelse(bh); 1135 make_bad_inode(inode); 1136 return; 1137 } 1138 udf_fill_inode(inode, bh); 1139 1140 brelse(bh); 1141 } 1142 1143 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1144 { 1145 struct fileEntry *fe; 1146 struct extendedFileEntry *efe; 1147 int offset; 1148 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1149 struct udf_inode_info *iinfo = UDF_I(inode); 1150 1151 fe = (struct fileEntry *)bh->b_data; 1152 efe = (struct extendedFileEntry *)bh->b_data; 1153 1154 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1155 iinfo->i_strat4096 = 0; 1156 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1157 iinfo->i_strat4096 = 1; 1158 1159 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1160 ICBTAG_FLAG_AD_MASK; 1161 iinfo->i_unique = 0; 1162 iinfo->i_lenEAttr = 0; 1163 iinfo->i_lenExtents = 0; 1164 iinfo->i_lenAlloc = 0; 1165 iinfo->i_next_alloc_block = 0; 1166 iinfo->i_next_alloc_goal = 0; 1167 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1168 iinfo->i_efe = 1; 1169 iinfo->i_use = 0; 1170 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1171 sizeof(struct extendedFileEntry))) { 1172 make_bad_inode(inode); 1173 return; 1174 } 1175 memcpy(iinfo->i_ext.i_data, 1176 bh->b_data + sizeof(struct extendedFileEntry), 1177 inode->i_sb->s_blocksize - 1178 sizeof(struct extendedFileEntry)); 1179 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1180 iinfo->i_efe = 0; 1181 iinfo->i_use = 0; 1182 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1183 sizeof(struct fileEntry))) { 1184 make_bad_inode(inode); 1185 return; 1186 } 1187 memcpy(iinfo->i_ext.i_data, 1188 bh->b_data + sizeof(struct fileEntry), 1189 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1190 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1191 iinfo->i_efe = 0; 1192 iinfo->i_use = 1; 1193 iinfo->i_lenAlloc = le32_to_cpu( 1194 ((struct unallocSpaceEntry *)bh->b_data)-> 1195 lengthAllocDescs); 1196 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1197 sizeof(struct unallocSpaceEntry))) { 1198 make_bad_inode(inode); 1199 return; 1200 } 1201 memcpy(iinfo->i_ext.i_data, 1202 bh->b_data + sizeof(struct unallocSpaceEntry), 1203 inode->i_sb->s_blocksize - 1204 sizeof(struct unallocSpaceEntry)); 1205 return; 1206 } 1207 1208 inode->i_uid = le32_to_cpu(fe->uid); 1209 if (inode->i_uid == -1 || 1210 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1211 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1212 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1213 1214 inode->i_gid = le32_to_cpu(fe->gid); 1215 if (inode->i_gid == -1 || 1216 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1217 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1218 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1219 1220 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1221 if (!inode->i_nlink) 1222 inode->i_nlink = 1; 1223 1224 inode->i_size = le64_to_cpu(fe->informationLength); 1225 iinfo->i_lenExtents = inode->i_size; 1226 1227 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1228 sbi->s_fmode != UDF_INVALID_MODE) 1229 inode->i_mode = sbi->s_fmode; 1230 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1231 sbi->s_dmode != UDF_INVALID_MODE) 1232 inode->i_mode = sbi->s_dmode; 1233 else 1234 inode->i_mode = udf_convert_permissions(fe); 1235 inode->i_mode &= ~sbi->s_umask; 1236 1237 if (iinfo->i_efe == 0) { 1238 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1239 (inode->i_sb->s_blocksize_bits - 9); 1240 1241 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1242 inode->i_atime = sbi->s_record_time; 1243 1244 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1245 fe->modificationTime)) 1246 inode->i_mtime = sbi->s_record_time; 1247 1248 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1249 inode->i_ctime = sbi->s_record_time; 1250 1251 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1252 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1253 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1254 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1255 } else { 1256 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1257 (inode->i_sb->s_blocksize_bits - 9); 1258 1259 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1260 inode->i_atime = sbi->s_record_time; 1261 1262 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1263 efe->modificationTime)) 1264 inode->i_mtime = sbi->s_record_time; 1265 1266 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1267 iinfo->i_crtime = sbi->s_record_time; 1268 1269 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1270 inode->i_ctime = sbi->s_record_time; 1271 1272 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1273 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1274 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1275 offset = sizeof(struct extendedFileEntry) + 1276 iinfo->i_lenEAttr; 1277 } 1278 1279 switch (fe->icbTag.fileType) { 1280 case ICBTAG_FILE_TYPE_DIRECTORY: 1281 inode->i_op = &udf_dir_inode_operations; 1282 inode->i_fop = &udf_dir_operations; 1283 inode->i_mode |= S_IFDIR; 1284 inc_nlink(inode); 1285 break; 1286 case ICBTAG_FILE_TYPE_REALTIME: 1287 case ICBTAG_FILE_TYPE_REGULAR: 1288 case ICBTAG_FILE_TYPE_UNDEF: 1289 case ICBTAG_FILE_TYPE_VAT20: 1290 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1291 inode->i_data.a_ops = &udf_adinicb_aops; 1292 else 1293 inode->i_data.a_ops = &udf_aops; 1294 inode->i_op = &udf_file_inode_operations; 1295 inode->i_fop = &udf_file_operations; 1296 inode->i_mode |= S_IFREG; 1297 break; 1298 case ICBTAG_FILE_TYPE_BLOCK: 1299 inode->i_mode |= S_IFBLK; 1300 break; 1301 case ICBTAG_FILE_TYPE_CHAR: 1302 inode->i_mode |= S_IFCHR; 1303 break; 1304 case ICBTAG_FILE_TYPE_FIFO: 1305 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1306 break; 1307 case ICBTAG_FILE_TYPE_SOCKET: 1308 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1309 break; 1310 case ICBTAG_FILE_TYPE_SYMLINK: 1311 inode->i_data.a_ops = &udf_symlink_aops; 1312 inode->i_op = &udf_symlink_inode_operations; 1313 inode->i_mode = S_IFLNK | S_IRWXUGO; 1314 break; 1315 case ICBTAG_FILE_TYPE_MAIN: 1316 udf_debug("METADATA FILE-----\n"); 1317 break; 1318 case ICBTAG_FILE_TYPE_MIRROR: 1319 udf_debug("METADATA MIRROR FILE-----\n"); 1320 break; 1321 case ICBTAG_FILE_TYPE_BITMAP: 1322 udf_debug("METADATA BITMAP FILE-----\n"); 1323 break; 1324 default: 1325 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1326 "file type=%d\n", inode->i_ino, 1327 fe->icbTag.fileType); 1328 make_bad_inode(inode); 1329 return; 1330 } 1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1332 struct deviceSpec *dsea = 1333 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1334 if (dsea) { 1335 init_special_inode(inode, inode->i_mode, 1336 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1337 le32_to_cpu(dsea->minorDeviceIdent))); 1338 /* Developer ID ??? */ 1339 } else 1340 make_bad_inode(inode); 1341 } 1342 } 1343 1344 static int udf_alloc_i_data(struct inode *inode, size_t size) 1345 { 1346 struct udf_inode_info *iinfo = UDF_I(inode); 1347 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1348 1349 if (!iinfo->i_ext.i_data) { 1350 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1351 "no free memory\n", inode->i_ino); 1352 return -ENOMEM; 1353 } 1354 1355 return 0; 1356 } 1357 1358 static mode_t udf_convert_permissions(struct fileEntry *fe) 1359 { 1360 mode_t mode; 1361 uint32_t permissions; 1362 uint32_t flags; 1363 1364 permissions = le32_to_cpu(fe->permissions); 1365 flags = le16_to_cpu(fe->icbTag.flags); 1366 1367 mode = ((permissions) & S_IRWXO) | 1368 ((permissions >> 2) & S_IRWXG) | 1369 ((permissions >> 4) & S_IRWXU) | 1370 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1371 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1372 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1373 1374 return mode; 1375 } 1376 1377 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1378 { 1379 int ret; 1380 1381 lock_kernel(); 1382 ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1383 unlock_kernel(); 1384 1385 return ret; 1386 } 1387 1388 int udf_sync_inode(struct inode *inode) 1389 { 1390 return udf_update_inode(inode, 1); 1391 } 1392 1393 static int udf_update_inode(struct inode *inode, int do_sync) 1394 { 1395 struct buffer_head *bh = NULL; 1396 struct fileEntry *fe; 1397 struct extendedFileEntry *efe; 1398 uint32_t udfperms; 1399 uint16_t icbflags; 1400 uint16_t crclen; 1401 int err = 0; 1402 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1403 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1404 struct udf_inode_info *iinfo = UDF_I(inode); 1405 1406 bh = udf_tgetblk(inode->i_sb, 1407 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1408 if (!bh) { 1409 udf_debug("getblk failure\n"); 1410 return -ENOMEM; 1411 } 1412 1413 lock_buffer(bh); 1414 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1415 fe = (struct fileEntry *)bh->b_data; 1416 efe = (struct extendedFileEntry *)bh->b_data; 1417 1418 if (iinfo->i_use) { 1419 struct unallocSpaceEntry *use = 1420 (struct unallocSpaceEntry *)bh->b_data; 1421 1422 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1423 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1424 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1425 sizeof(struct unallocSpaceEntry)); 1426 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1427 use->descTag.tagLocation = 1428 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1429 crclen = sizeof(struct unallocSpaceEntry) + 1430 iinfo->i_lenAlloc - sizeof(struct tag); 1431 use->descTag.descCRCLength = cpu_to_le16(crclen); 1432 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1433 sizeof(struct tag), 1434 crclen)); 1435 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1436 1437 goto out; 1438 } 1439 1440 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1441 fe->uid = cpu_to_le32(-1); 1442 else 1443 fe->uid = cpu_to_le32(inode->i_uid); 1444 1445 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1446 fe->gid = cpu_to_le32(-1); 1447 else 1448 fe->gid = cpu_to_le32(inode->i_gid); 1449 1450 udfperms = ((inode->i_mode & S_IRWXO)) | 1451 ((inode->i_mode & S_IRWXG) << 2) | 1452 ((inode->i_mode & S_IRWXU) << 4); 1453 1454 udfperms |= (le32_to_cpu(fe->permissions) & 1455 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1456 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1457 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1458 fe->permissions = cpu_to_le32(udfperms); 1459 1460 if (S_ISDIR(inode->i_mode)) 1461 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1462 else 1463 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1464 1465 fe->informationLength = cpu_to_le64(inode->i_size); 1466 1467 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1468 struct regid *eid; 1469 struct deviceSpec *dsea = 1470 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1471 if (!dsea) { 1472 dsea = (struct deviceSpec *) 1473 udf_add_extendedattr(inode, 1474 sizeof(struct deviceSpec) + 1475 sizeof(struct regid), 12, 0x3); 1476 dsea->attrType = cpu_to_le32(12); 1477 dsea->attrSubtype = 1; 1478 dsea->attrLength = cpu_to_le32( 1479 sizeof(struct deviceSpec) + 1480 sizeof(struct regid)); 1481 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1482 } 1483 eid = (struct regid *)dsea->impUse; 1484 memset(eid, 0, sizeof(struct regid)); 1485 strcpy(eid->ident, UDF_ID_DEVELOPER); 1486 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1487 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1488 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1489 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1490 } 1491 1492 if (iinfo->i_efe == 0) { 1493 memcpy(bh->b_data + sizeof(struct fileEntry), 1494 iinfo->i_ext.i_data, 1495 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1496 fe->logicalBlocksRecorded = cpu_to_le64( 1497 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1498 (blocksize_bits - 9)); 1499 1500 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1501 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1502 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1503 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1504 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1505 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1506 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1507 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1508 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1509 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1510 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1511 crclen = sizeof(struct fileEntry); 1512 } else { 1513 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1514 iinfo->i_ext.i_data, 1515 inode->i_sb->s_blocksize - 1516 sizeof(struct extendedFileEntry)); 1517 efe->objectSize = cpu_to_le64(inode->i_size); 1518 efe->logicalBlocksRecorded = cpu_to_le64( 1519 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1520 (blocksize_bits - 9)); 1521 1522 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1523 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1524 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1525 iinfo->i_crtime = inode->i_atime; 1526 1527 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1528 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1529 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1530 iinfo->i_crtime = inode->i_mtime; 1531 1532 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1533 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1534 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1535 iinfo->i_crtime = inode->i_ctime; 1536 1537 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1538 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1539 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1540 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1541 1542 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1543 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1544 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1545 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1546 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1547 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1548 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1549 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1550 crclen = sizeof(struct extendedFileEntry); 1551 } 1552 if (iinfo->i_strat4096) { 1553 fe->icbTag.strategyType = cpu_to_le16(4096); 1554 fe->icbTag.strategyParameter = cpu_to_le16(1); 1555 fe->icbTag.numEntries = cpu_to_le16(2); 1556 } else { 1557 fe->icbTag.strategyType = cpu_to_le16(4); 1558 fe->icbTag.numEntries = cpu_to_le16(1); 1559 } 1560 1561 if (S_ISDIR(inode->i_mode)) 1562 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1563 else if (S_ISREG(inode->i_mode)) 1564 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1565 else if (S_ISLNK(inode->i_mode)) 1566 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1567 else if (S_ISBLK(inode->i_mode)) 1568 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1569 else if (S_ISCHR(inode->i_mode)) 1570 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1571 else if (S_ISFIFO(inode->i_mode)) 1572 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1573 else if (S_ISSOCK(inode->i_mode)) 1574 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1575 1576 icbflags = iinfo->i_alloc_type | 1577 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1578 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1579 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1580 (le16_to_cpu(fe->icbTag.flags) & 1581 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1582 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1583 1584 fe->icbTag.flags = cpu_to_le16(icbflags); 1585 if (sbi->s_udfrev >= 0x0200) 1586 fe->descTag.descVersion = cpu_to_le16(3); 1587 else 1588 fe->descTag.descVersion = cpu_to_le16(2); 1589 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1590 fe->descTag.tagLocation = cpu_to_le32( 1591 iinfo->i_location.logicalBlockNum); 1592 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1593 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1594 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1595 crclen)); 1596 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1597 1598 out: 1599 set_buffer_uptodate(bh); 1600 unlock_buffer(bh); 1601 1602 /* write the data blocks */ 1603 mark_buffer_dirty(bh); 1604 if (do_sync) { 1605 sync_dirty_buffer(bh); 1606 if (buffer_write_io_error(bh)) { 1607 printk(KERN_WARNING "IO error syncing udf inode " 1608 "[%s:%08lx]\n", inode->i_sb->s_id, 1609 inode->i_ino); 1610 err = -EIO; 1611 } 1612 } 1613 brelse(bh); 1614 1615 return err; 1616 } 1617 1618 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1619 { 1620 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1621 struct inode *inode = iget_locked(sb, block); 1622 1623 if (!inode) 1624 return NULL; 1625 1626 if (inode->i_state & I_NEW) { 1627 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1628 __udf_read_inode(inode); 1629 unlock_new_inode(inode); 1630 } 1631 1632 if (is_bad_inode(inode)) 1633 goto out_iput; 1634 1635 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1636 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1637 udf_debug("block=%d, partition=%d out of range\n", 1638 ino->logicalBlockNum, ino->partitionReferenceNum); 1639 make_bad_inode(inode); 1640 goto out_iput; 1641 } 1642 1643 return inode; 1644 1645 out_iput: 1646 iput(inode); 1647 return NULL; 1648 } 1649 1650 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1651 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1652 { 1653 int adsize; 1654 struct short_ad *sad = NULL; 1655 struct long_ad *lad = NULL; 1656 struct allocExtDesc *aed; 1657 int8_t etype; 1658 uint8_t *ptr; 1659 struct udf_inode_info *iinfo = UDF_I(inode); 1660 1661 if (!epos->bh) 1662 ptr = iinfo->i_ext.i_data + epos->offset - 1663 udf_file_entry_alloc_offset(inode) + 1664 iinfo->i_lenEAttr; 1665 else 1666 ptr = epos->bh->b_data + epos->offset; 1667 1668 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1669 adsize = sizeof(struct short_ad); 1670 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1671 adsize = sizeof(struct long_ad); 1672 else 1673 return -1; 1674 1675 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1676 unsigned char *sptr, *dptr; 1677 struct buffer_head *nbh; 1678 int err, loffset; 1679 struct kernel_lb_addr obloc = epos->block; 1680 1681 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1682 obloc.partitionReferenceNum, 1683 obloc.logicalBlockNum, &err); 1684 if (!epos->block.logicalBlockNum) 1685 return -1; 1686 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1687 &epos->block, 1688 0)); 1689 if (!nbh) 1690 return -1; 1691 lock_buffer(nbh); 1692 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1693 set_buffer_uptodate(nbh); 1694 unlock_buffer(nbh); 1695 mark_buffer_dirty_inode(nbh, inode); 1696 1697 aed = (struct allocExtDesc *)(nbh->b_data); 1698 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1699 aed->previousAllocExtLocation = 1700 cpu_to_le32(obloc.logicalBlockNum); 1701 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1702 loffset = epos->offset; 1703 aed->lengthAllocDescs = cpu_to_le32(adsize); 1704 sptr = ptr - adsize; 1705 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1706 memcpy(dptr, sptr, adsize); 1707 epos->offset = sizeof(struct allocExtDesc) + adsize; 1708 } else { 1709 loffset = epos->offset + adsize; 1710 aed->lengthAllocDescs = cpu_to_le32(0); 1711 sptr = ptr; 1712 epos->offset = sizeof(struct allocExtDesc); 1713 1714 if (epos->bh) { 1715 aed = (struct allocExtDesc *)epos->bh->b_data; 1716 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1717 } else { 1718 iinfo->i_lenAlloc += adsize; 1719 mark_inode_dirty(inode); 1720 } 1721 } 1722 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1723 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1724 epos->block.logicalBlockNum, sizeof(struct tag)); 1725 else 1726 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1727 epos->block.logicalBlockNum, sizeof(struct tag)); 1728 switch (iinfo->i_alloc_type) { 1729 case ICBTAG_FLAG_AD_SHORT: 1730 sad = (struct short_ad *)sptr; 1731 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1732 inode->i_sb->s_blocksize); 1733 sad->extPosition = 1734 cpu_to_le32(epos->block.logicalBlockNum); 1735 break; 1736 case ICBTAG_FLAG_AD_LONG: 1737 lad = (struct long_ad *)sptr; 1738 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1739 inode->i_sb->s_blocksize); 1740 lad->extLocation = cpu_to_lelb(epos->block); 1741 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1742 break; 1743 } 1744 if (epos->bh) { 1745 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1746 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1747 udf_update_tag(epos->bh->b_data, loffset); 1748 else 1749 udf_update_tag(epos->bh->b_data, 1750 sizeof(struct allocExtDesc)); 1751 mark_buffer_dirty_inode(epos->bh, inode); 1752 brelse(epos->bh); 1753 } else { 1754 mark_inode_dirty(inode); 1755 } 1756 epos->bh = nbh; 1757 } 1758 1759 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1760 1761 if (!epos->bh) { 1762 iinfo->i_lenAlloc += adsize; 1763 mark_inode_dirty(inode); 1764 } else { 1765 aed = (struct allocExtDesc *)epos->bh->b_data; 1766 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1767 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1768 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1769 udf_update_tag(epos->bh->b_data, 1770 epos->offset + (inc ? 0 : adsize)); 1771 else 1772 udf_update_tag(epos->bh->b_data, 1773 sizeof(struct allocExtDesc)); 1774 mark_buffer_dirty_inode(epos->bh, inode); 1775 } 1776 1777 return etype; 1778 } 1779 1780 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1781 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1782 { 1783 int adsize; 1784 uint8_t *ptr; 1785 struct short_ad *sad; 1786 struct long_ad *lad; 1787 struct udf_inode_info *iinfo = UDF_I(inode); 1788 1789 if (!epos->bh) 1790 ptr = iinfo->i_ext.i_data + epos->offset - 1791 udf_file_entry_alloc_offset(inode) + 1792 iinfo->i_lenEAttr; 1793 else 1794 ptr = epos->bh->b_data + epos->offset; 1795 1796 switch (iinfo->i_alloc_type) { 1797 case ICBTAG_FLAG_AD_SHORT: 1798 sad = (struct short_ad *)ptr; 1799 sad->extLength = cpu_to_le32(elen); 1800 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1801 adsize = sizeof(struct short_ad); 1802 break; 1803 case ICBTAG_FLAG_AD_LONG: 1804 lad = (struct long_ad *)ptr; 1805 lad->extLength = cpu_to_le32(elen); 1806 lad->extLocation = cpu_to_lelb(*eloc); 1807 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1808 adsize = sizeof(struct long_ad); 1809 break; 1810 default: 1811 return -1; 1812 } 1813 1814 if (epos->bh) { 1815 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1816 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1817 struct allocExtDesc *aed = 1818 (struct allocExtDesc *)epos->bh->b_data; 1819 udf_update_tag(epos->bh->b_data, 1820 le32_to_cpu(aed->lengthAllocDescs) + 1821 sizeof(struct allocExtDesc)); 1822 } 1823 mark_buffer_dirty_inode(epos->bh, inode); 1824 } else { 1825 mark_inode_dirty(inode); 1826 } 1827 1828 if (inc) 1829 epos->offset += adsize; 1830 1831 return (elen >> 30); 1832 } 1833 1834 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1835 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1836 { 1837 int8_t etype; 1838 1839 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1840 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1841 int block; 1842 epos->block = *eloc; 1843 epos->offset = sizeof(struct allocExtDesc); 1844 brelse(epos->bh); 1845 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1846 epos->bh = udf_tread(inode->i_sb, block); 1847 if (!epos->bh) { 1848 udf_debug("reading block %d failed!\n", block); 1849 return -1; 1850 } 1851 } 1852 1853 return etype; 1854 } 1855 1856 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1857 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1858 { 1859 int alen; 1860 int8_t etype; 1861 uint8_t *ptr; 1862 struct short_ad *sad; 1863 struct long_ad *lad; 1864 struct udf_inode_info *iinfo = UDF_I(inode); 1865 1866 if (!epos->bh) { 1867 if (!epos->offset) 1868 epos->offset = udf_file_entry_alloc_offset(inode); 1869 ptr = iinfo->i_ext.i_data + epos->offset - 1870 udf_file_entry_alloc_offset(inode) + 1871 iinfo->i_lenEAttr; 1872 alen = udf_file_entry_alloc_offset(inode) + 1873 iinfo->i_lenAlloc; 1874 } else { 1875 if (!epos->offset) 1876 epos->offset = sizeof(struct allocExtDesc); 1877 ptr = epos->bh->b_data + epos->offset; 1878 alen = sizeof(struct allocExtDesc) + 1879 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1880 lengthAllocDescs); 1881 } 1882 1883 switch (iinfo->i_alloc_type) { 1884 case ICBTAG_FLAG_AD_SHORT: 1885 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1886 if (!sad) 1887 return -1; 1888 etype = le32_to_cpu(sad->extLength) >> 30; 1889 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1890 eloc->partitionReferenceNum = 1891 iinfo->i_location.partitionReferenceNum; 1892 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1893 break; 1894 case ICBTAG_FLAG_AD_LONG: 1895 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1896 if (!lad) 1897 return -1; 1898 etype = le32_to_cpu(lad->extLength) >> 30; 1899 *eloc = lelb_to_cpu(lad->extLocation); 1900 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1901 break; 1902 default: 1903 udf_debug("alloc_type = %d unsupported\n", 1904 iinfo->i_alloc_type); 1905 return -1; 1906 } 1907 1908 return etype; 1909 } 1910 1911 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1912 struct kernel_lb_addr neloc, uint32_t nelen) 1913 { 1914 struct kernel_lb_addr oeloc; 1915 uint32_t oelen; 1916 int8_t etype; 1917 1918 if (epos.bh) 1919 get_bh(epos.bh); 1920 1921 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1922 udf_write_aext(inode, &epos, &neloc, nelen, 1); 1923 neloc = oeloc; 1924 nelen = (etype << 30) | oelen; 1925 } 1926 udf_add_aext(inode, &epos, &neloc, nelen, 1); 1927 brelse(epos.bh); 1928 1929 return (nelen >> 30); 1930 } 1931 1932 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1933 struct kernel_lb_addr eloc, uint32_t elen) 1934 { 1935 struct extent_position oepos; 1936 int adsize; 1937 int8_t etype; 1938 struct allocExtDesc *aed; 1939 struct udf_inode_info *iinfo; 1940 1941 if (epos.bh) { 1942 get_bh(epos.bh); 1943 get_bh(epos.bh); 1944 } 1945 1946 iinfo = UDF_I(inode); 1947 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1948 adsize = sizeof(struct short_ad); 1949 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1950 adsize = sizeof(struct long_ad); 1951 else 1952 adsize = 0; 1953 1954 oepos = epos; 1955 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1956 return -1; 1957 1958 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1959 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 1960 if (oepos.bh != epos.bh) { 1961 oepos.block = epos.block; 1962 brelse(oepos.bh); 1963 get_bh(epos.bh); 1964 oepos.bh = epos.bh; 1965 oepos.offset = epos.offset - adsize; 1966 } 1967 } 1968 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 1969 elen = 0; 1970 1971 if (epos.bh != oepos.bh) { 1972 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 1973 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1974 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1975 if (!oepos.bh) { 1976 iinfo->i_lenAlloc -= (adsize * 2); 1977 mark_inode_dirty(inode); 1978 } else { 1979 aed = (struct allocExtDesc *)oepos.bh->b_data; 1980 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1981 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1982 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1983 udf_update_tag(oepos.bh->b_data, 1984 oepos.offset - (2 * adsize)); 1985 else 1986 udf_update_tag(oepos.bh->b_data, 1987 sizeof(struct allocExtDesc)); 1988 mark_buffer_dirty_inode(oepos.bh, inode); 1989 } 1990 } else { 1991 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1992 if (!oepos.bh) { 1993 iinfo->i_lenAlloc -= adsize; 1994 mark_inode_dirty(inode); 1995 } else { 1996 aed = (struct allocExtDesc *)oepos.bh->b_data; 1997 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 1998 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1999 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2000 udf_update_tag(oepos.bh->b_data, 2001 epos.offset - adsize); 2002 else 2003 udf_update_tag(oepos.bh->b_data, 2004 sizeof(struct allocExtDesc)); 2005 mark_buffer_dirty_inode(oepos.bh, inode); 2006 } 2007 } 2008 2009 brelse(epos.bh); 2010 brelse(oepos.bh); 2011 2012 return (elen >> 30); 2013 } 2014 2015 int8_t inode_bmap(struct inode *inode, sector_t block, 2016 struct extent_position *pos, struct kernel_lb_addr *eloc, 2017 uint32_t *elen, sector_t *offset) 2018 { 2019 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2020 loff_t lbcount = 0, bcount = 2021 (loff_t) block << blocksize_bits; 2022 int8_t etype; 2023 struct udf_inode_info *iinfo; 2024 2025 iinfo = UDF_I(inode); 2026 pos->offset = 0; 2027 pos->block = iinfo->i_location; 2028 pos->bh = NULL; 2029 *elen = 0; 2030 2031 do { 2032 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2033 if (etype == -1) { 2034 *offset = (bcount - lbcount) >> blocksize_bits; 2035 iinfo->i_lenExtents = lbcount; 2036 return -1; 2037 } 2038 lbcount += *elen; 2039 } while (lbcount <= bcount); 2040 2041 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2042 2043 return etype; 2044 } 2045 2046 long udf_block_map(struct inode *inode, sector_t block) 2047 { 2048 struct kernel_lb_addr eloc; 2049 uint32_t elen; 2050 sector_t offset; 2051 struct extent_position epos = {}; 2052 int ret; 2053 2054 lock_kernel(); 2055 2056 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2057 (EXT_RECORDED_ALLOCATED >> 30)) 2058 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2059 else 2060 ret = 0; 2061 2062 unlock_kernel(); 2063 brelse(epos.bh); 2064 2065 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2066 return udf_fixed_to_variable(ret); 2067 else 2068 return ret; 2069 } 2070