xref: /linux/fs/udf/inode.c (revision add07519ea6b6c2ba2b7842225eb87e0f08f2b0f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * inode.c
4  *
5  * PURPOSE
6  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1998 Dave Boynton
10  *  (C) 1998-2004 Ben Fennema
11  *  (C) 1999-2000 Stelias Computing Inc
12  *
13  * HISTORY
14  *
15  *  10/04/98 dgb  Added rudimentary directory functions
16  *  10/07/98      Fully working udf_block_map! It works!
17  *  11/25/98      bmap altered to better support extents
18  *  12/06/98 blf  partition support in udf_iget, udf_block_map
19  *                and udf_read_inode
20  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21  *                block boundaries (which is not actually allowed)
22  *  12/20/98      added support for strategy 4096
23  *  03/07/99      rewrote udf_block_map (again)
24  *                New funcs, inode_bmap, udf_next_aext
25  *  04/19/99      Support for writing device EA's for major/minor #
26  */
27 
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 
39 #include "udf_i.h"
40 #include "udf_sb.h"
41 
42 #define EXTENT_MERGE_SIZE 5
43 
44 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47 
48 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 			 FE_PERM_O_DELETE)
50 
51 struct udf_map_rq;
52 
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 			   struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 			      struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 			      int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 			    struct buffer_head *bh_result, int create);
69 
70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 	struct udf_inode_info *iinfo = UDF_I(inode);
73 
74 	if (iinfo->cached_extent.lstart != -1) {
75 		brelse(iinfo->cached_extent.epos.bh);
76 		iinfo->cached_extent.lstart = -1;
77 	}
78 }
79 
80 /* Invalidate extent cache */
81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 	struct udf_inode_info *iinfo = UDF_I(inode);
84 
85 	spin_lock(&iinfo->i_extent_cache_lock);
86 	__udf_clear_extent_cache(inode);
87 	spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89 
90 /* Return contents of extent cache */
91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 				 loff_t *lbcount, struct extent_position *pos)
93 {
94 	struct udf_inode_info *iinfo = UDF_I(inode);
95 	int ret = 0;
96 
97 	spin_lock(&iinfo->i_extent_cache_lock);
98 	if ((iinfo->cached_extent.lstart <= bcount) &&
99 	    (iinfo->cached_extent.lstart != -1)) {
100 		/* Cache hit */
101 		*lbcount = iinfo->cached_extent.lstart;
102 		memcpy(pos, &iinfo->cached_extent.epos,
103 		       sizeof(struct extent_position));
104 		if (pos->bh)
105 			get_bh(pos->bh);
106 		ret = 1;
107 	}
108 	spin_unlock(&iinfo->i_extent_cache_lock);
109 	return ret;
110 }
111 
112 /* Add extent to extent cache */
113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 				    struct extent_position *pos)
115 {
116 	struct udf_inode_info *iinfo = UDF_I(inode);
117 
118 	spin_lock(&iinfo->i_extent_cache_lock);
119 	/* Invalidate previously cached extent */
120 	__udf_clear_extent_cache(inode);
121 	if (pos->bh)
122 		get_bh(pos->bh);
123 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 	iinfo->cached_extent.lstart = estart;
125 	switch (iinfo->i_alloc_type) {
126 	case ICBTAG_FLAG_AD_SHORT:
127 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 		break;
129 	case ICBTAG_FLAG_AD_LONG:
130 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 		break;
132 	}
133 	spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135 
136 void udf_evict_inode(struct inode *inode)
137 {
138 	struct udf_inode_info *iinfo = UDF_I(inode);
139 	int want_delete = 0;
140 
141 	if (!is_bad_inode(inode)) {
142 		if (!inode->i_nlink) {
143 			want_delete = 1;
144 			udf_setsize(inode, 0);
145 			udf_update_inode(inode, IS_SYNC(inode));
146 		}
147 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 		    inode->i_size != iinfo->i_lenExtents) {
149 			udf_warn(inode->i_sb,
150 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 				 inode->i_ino, inode->i_mode,
152 				 (unsigned long long)inode->i_size,
153 				 (unsigned long long)iinfo->i_lenExtents);
154 		}
155 	}
156 	truncate_inode_pages_final(&inode->i_data);
157 	invalidate_inode_buffers(inode);
158 	clear_inode(inode);
159 	kfree(iinfo->i_data);
160 	iinfo->i_data = NULL;
161 	udf_clear_extent_cache(inode);
162 	if (want_delete) {
163 		udf_free_inode(inode);
164 	}
165 }
166 
167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 	struct inode *inode = mapping->host;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	loff_t isize = inode->i_size;
172 
173 	if (to > isize) {
174 		truncate_pagecache(inode, isize);
175 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 			down_write(&iinfo->i_data_sem);
177 			udf_clear_extent_cache(inode);
178 			udf_truncate_extents(inode);
179 			up_write(&iinfo->i_data_sem);
180 		}
181 	}
182 }
183 
184 static int udf_adinicb_writepage(struct folio *folio,
185 				 struct writeback_control *wbc, void *data)
186 {
187 	struct inode *inode = folio->mapping->host;
188 	struct udf_inode_info *iinfo = UDF_I(inode);
189 
190 	BUG_ON(!folio_test_locked(folio));
191 	BUG_ON(folio->index != 0);
192 	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 		       i_size_read(inode));
194 	folio_unlock(folio);
195 	mark_inode_dirty(inode);
196 
197 	return 0;
198 }
199 
200 static int udf_writepages(struct address_space *mapping,
201 			  struct writeback_control *wbc)
202 {
203 	struct inode *inode = mapping->host;
204 	struct udf_inode_info *iinfo = UDF_I(inode);
205 
206 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 		return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209 }
210 
211 static void udf_adinicb_read_folio(struct folio *folio)
212 {
213 	struct inode *inode = folio->mapping->host;
214 	struct udf_inode_info *iinfo = UDF_I(inode);
215 	loff_t isize = i_size_read(inode);
216 
217 	folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
218 	folio_mark_uptodate(folio);
219 }
220 
221 static int udf_read_folio(struct file *file, struct folio *folio)
222 {
223 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
224 
225 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
226 		udf_adinicb_read_folio(folio);
227 		folio_unlock(folio);
228 		return 0;
229 	}
230 	return mpage_read_folio(folio, udf_get_block);
231 }
232 
233 static void udf_readahead(struct readahead_control *rac)
234 {
235 	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
236 
237 	/*
238 	 * No readahead needed for in-ICB files and udf_get_block() would get
239 	 * confused for such file anyway.
240 	 */
241 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
242 		return;
243 
244 	mpage_readahead(rac, udf_get_block);
245 }
246 
247 static int udf_write_begin(const struct kiocb *iocb,
248 			   struct address_space *mapping,
249 			   loff_t pos, unsigned len,
250 			   struct folio **foliop, void **fsdata)
251 {
252 	struct file *file = iocb->ki_filp;
253 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
254 	struct folio *folio;
255 	int ret;
256 
257 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
258 		ret = block_write_begin(mapping, pos, len, foliop,
259 					udf_get_block);
260 		if (unlikely(ret))
261 			udf_write_failed(mapping, pos + len);
262 		return ret;
263 	}
264 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
265 		return -EIO;
266 	folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
267 			mapping_gfp_mask(mapping));
268 	if (IS_ERR(folio))
269 		return PTR_ERR(folio);
270 	*foliop = folio;
271 	if (!folio_test_uptodate(folio))
272 		udf_adinicb_read_folio(folio);
273 	return 0;
274 }
275 
276 static int udf_write_end(const struct kiocb *iocb,
277 			 struct address_space *mapping,
278 			 loff_t pos, unsigned len, unsigned copied,
279 			 struct folio *folio, void *fsdata)
280 {
281 	struct inode *inode = file_inode(iocb->ki_filp);
282 	loff_t last_pos;
283 
284 	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
285 		return generic_write_end(iocb, mapping, pos, len, copied, folio,
286 					 fsdata);
287 	last_pos = pos + copied;
288 	if (last_pos > inode->i_size)
289 		i_size_write(inode, last_pos);
290 	folio_mark_dirty(folio);
291 	folio_unlock(folio);
292 	folio_put(folio);
293 
294 	return copied;
295 }
296 
297 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
298 {
299 	struct file *file = iocb->ki_filp;
300 	struct address_space *mapping = file->f_mapping;
301 	struct inode *inode = mapping->host;
302 	size_t count = iov_iter_count(iter);
303 	ssize_t ret;
304 
305 	/* Fallback to buffered IO for in-ICB files */
306 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
307 		return 0;
308 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
309 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
310 		udf_write_failed(mapping, iocb->ki_pos + count);
311 	return ret;
312 }
313 
314 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
315 {
316 	struct udf_inode_info *iinfo = UDF_I(mapping->host);
317 
318 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
319 		return -EINVAL;
320 	return generic_block_bmap(mapping, block, udf_get_block);
321 }
322 
323 const struct address_space_operations udf_aops = {
324 	.dirty_folio	= block_dirty_folio,
325 	.invalidate_folio = block_invalidate_folio,
326 	.read_folio	= udf_read_folio,
327 	.readahead	= udf_readahead,
328 	.writepages	= udf_writepages,
329 	.write_begin	= udf_write_begin,
330 	.write_end	= udf_write_end,
331 	.direct_IO	= udf_direct_IO,
332 	.bmap		= udf_bmap,
333 	.migrate_folio	= buffer_migrate_folio,
334 };
335 
336 /*
337  * Expand file stored in ICB to a normal one-block-file
338  *
339  * This function requires i_mutex held
340  */
341 int udf_expand_file_adinicb(struct inode *inode)
342 {
343 	struct folio *folio;
344 	struct udf_inode_info *iinfo = UDF_I(inode);
345 	int err;
346 
347 	WARN_ON_ONCE(!inode_is_locked(inode));
348 	if (!iinfo->i_lenAlloc) {
349 		down_write(&iinfo->i_data_sem);
350 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
351 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
352 		else
353 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
354 		up_write(&iinfo->i_data_sem);
355 		mark_inode_dirty(inode);
356 		return 0;
357 	}
358 
359 	folio = __filemap_get_folio(inode->i_mapping, 0,
360 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
361 	if (IS_ERR(folio))
362 		return PTR_ERR(folio);
363 
364 	if (!folio_test_uptodate(folio))
365 		udf_adinicb_read_folio(folio);
366 	down_write(&iinfo->i_data_sem);
367 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
368 	       iinfo->i_lenAlloc);
369 	iinfo->i_lenAlloc = 0;
370 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
371 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
372 	else
373 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
374 	folio_mark_dirty(folio);
375 	folio_unlock(folio);
376 	up_write(&iinfo->i_data_sem);
377 	err = filemap_fdatawrite(inode->i_mapping);
378 	if (err) {
379 		/* Restore everything back so that we don't lose data... */
380 		folio_lock(folio);
381 		down_write(&iinfo->i_data_sem);
382 		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
383 				folio, 0, inode->i_size);
384 		folio_unlock(folio);
385 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
386 		iinfo->i_lenAlloc = inode->i_size;
387 		up_write(&iinfo->i_data_sem);
388 	}
389 	folio_put(folio);
390 	mark_inode_dirty(inode);
391 
392 	return err;
393 }
394 
395 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
396 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
397 
398 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
399 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
400 
401 struct udf_map_rq {
402 	sector_t lblk;
403 	udf_pblk_t pblk;
404 	int iflags;		/* UDF_MAP_ flags determining behavior */
405 	int oflags;		/* UDF_BLK_ flags reporting results */
406 };
407 
408 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
409 {
410 	int ret;
411 	struct udf_inode_info *iinfo = UDF_I(inode);
412 
413 	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
414 		return -EFSCORRUPTED;
415 
416 	map->oflags = 0;
417 	if (!(map->iflags & UDF_MAP_CREATE)) {
418 		struct kernel_lb_addr eloc;
419 		uint32_t elen;
420 		sector_t offset;
421 		struct extent_position epos = {};
422 		int8_t etype;
423 
424 		down_read(&iinfo->i_data_sem);
425 		ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
426 				 &etype);
427 		if (ret < 0)
428 			goto out_read;
429 		if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
430 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
431 							offset);
432 			map->oflags |= UDF_BLK_MAPPED;
433 			ret = 0;
434 		}
435 out_read:
436 		up_read(&iinfo->i_data_sem);
437 		brelse(epos.bh);
438 
439 		return ret;
440 	}
441 
442 	down_write(&iinfo->i_data_sem);
443 	/*
444 	 * Block beyond EOF and prealloc extents? Just discard preallocation
445 	 * as it is not useful and complicates things.
446 	 */
447 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
448 		udf_discard_prealloc(inode);
449 	udf_clear_extent_cache(inode);
450 	ret = inode_getblk(inode, map);
451 	up_write(&iinfo->i_data_sem);
452 	return ret;
453 }
454 
455 static int __udf_get_block(struct inode *inode, sector_t block,
456 			   struct buffer_head *bh_result, int flags)
457 {
458 	int err;
459 	struct udf_map_rq map = {
460 		.lblk = block,
461 		.iflags = flags,
462 	};
463 
464 	err = udf_map_block(inode, &map);
465 	if (err < 0)
466 		return err;
467 	if (map.oflags & UDF_BLK_MAPPED) {
468 		map_bh(bh_result, inode->i_sb, map.pblk);
469 		if (map.oflags & UDF_BLK_NEW)
470 			set_buffer_new(bh_result);
471 	}
472 	return 0;
473 }
474 
475 int udf_get_block(struct inode *inode, sector_t block,
476 		  struct buffer_head *bh_result, int create)
477 {
478 	int flags = create ? UDF_MAP_CREATE : 0;
479 
480 	/*
481 	 * We preallocate blocks only for regular files. It also makes sense
482 	 * for directories but there's a problem when to drop the
483 	 * preallocation. We might use some delayed work for that but I feel
484 	 * it's overengineering for a filesystem like UDF.
485 	 */
486 	if (!S_ISREG(inode->i_mode))
487 		flags |= UDF_MAP_NOPREALLOC;
488 	return __udf_get_block(inode, block, bh_result, flags);
489 }
490 
491 /*
492  * We shouldn't be allocating blocks on page writeback since we allocate them
493  * on page fault. We can spot dirty buffers without allocated blocks though
494  * when truncate expands file. These however don't have valid data so we can
495  * safely ignore them. So never allocate blocks from page writeback.
496  */
497 static int udf_get_block_wb(struct inode *inode, sector_t block,
498 			    struct buffer_head *bh_result, int create)
499 {
500 	return __udf_get_block(inode, block, bh_result, 0);
501 }
502 
503 /* Extend the file with new blocks totaling 'new_block_bytes',
504  * return the number of extents added
505  */
506 static int udf_do_extend_file(struct inode *inode,
507 			      struct extent_position *last_pos,
508 			      struct kernel_long_ad *last_ext,
509 			      loff_t new_block_bytes)
510 {
511 	uint32_t add;
512 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 	struct super_block *sb = inode->i_sb;
514 	struct udf_inode_info *iinfo;
515 	int err;
516 
517 	/* The previous extent is fake and we should not extend by anything
518 	 * - there's nothing to do... */
519 	if (!new_block_bytes && fake)
520 		return 0;
521 
522 	iinfo = UDF_I(inode);
523 	/* Round the last extent up to a multiple of block size */
524 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
525 		last_ext->extLength =
526 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
527 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
528 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
529 		iinfo->i_lenExtents =
530 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
531 			~(sb->s_blocksize - 1);
532 	}
533 
534 	add = 0;
535 	/* Can we merge with the previous extent? */
536 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
537 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
538 		add = (1 << 30) - sb->s_blocksize -
539 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
540 		if (add > new_block_bytes)
541 			add = new_block_bytes;
542 		new_block_bytes -= add;
543 		last_ext->extLength += add;
544 	}
545 
546 	if (fake) {
547 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
548 				   last_ext->extLength, 1);
549 		if (err < 0)
550 			goto out_err;
551 		count++;
552 	} else {
553 		struct kernel_lb_addr tmploc;
554 		uint32_t tmplen;
555 		int8_t tmptype;
556 
557 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
558 				last_ext->extLength, 1);
559 
560 		/*
561 		 * We've rewritten the last extent. If we are going to add
562 		 * more extents, we may need to enter possible following
563 		 * empty indirect extent.
564 		 */
565 		if (new_block_bytes) {
566 			err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
567 					    &tmptype, 0);
568 			if (err < 0)
569 				goto out_err;
570 		}
571 	}
572 	iinfo->i_lenExtents += add;
573 
574 	/* Managed to do everything necessary? */
575 	if (!new_block_bytes)
576 		goto out;
577 
578 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
579 	last_ext->extLocation.logicalBlockNum = 0;
580 	last_ext->extLocation.partitionReferenceNum = 0;
581 	add = (1 << 30) - sb->s_blocksize;
582 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
583 
584 	/* Create enough extents to cover the whole hole */
585 	while (new_block_bytes > add) {
586 		new_block_bytes -= add;
587 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
588 				   last_ext->extLength, 1);
589 		if (err)
590 			goto out_err;
591 		iinfo->i_lenExtents += add;
592 		count++;
593 	}
594 	if (new_block_bytes) {
595 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
596 			new_block_bytes;
597 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
598 				   last_ext->extLength, 1);
599 		if (err)
600 			goto out_err;
601 		iinfo->i_lenExtents += new_block_bytes;
602 		count++;
603 	}
604 
605 out:
606 	/* last_pos should point to the last written extent... */
607 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
608 		last_pos->offset -= sizeof(struct short_ad);
609 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
610 		last_pos->offset -= sizeof(struct long_ad);
611 	else
612 		return -EIO;
613 
614 	return count;
615 out_err:
616 	/* Remove extents we've created so far */
617 	udf_clear_extent_cache(inode);
618 	udf_truncate_extents(inode);
619 	return err;
620 }
621 
622 /* Extend the final block of the file to final_block_len bytes */
623 static void udf_do_extend_final_block(struct inode *inode,
624 				      struct extent_position *last_pos,
625 				      struct kernel_long_ad *last_ext,
626 				      uint32_t new_elen)
627 {
628 	uint32_t added_bytes;
629 
630 	/*
631 	 * Extent already large enough? It may be already rounded up to block
632 	 * size...
633 	 */
634 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
635 		return;
636 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
637 	last_ext->extLength += added_bytes;
638 	UDF_I(inode)->i_lenExtents += added_bytes;
639 
640 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
641 			last_ext->extLength, 1);
642 }
643 
644 static int udf_extend_file(struct inode *inode, loff_t newsize)
645 {
646 
647 	struct extent_position epos;
648 	struct kernel_lb_addr eloc;
649 	uint32_t elen;
650 	int8_t etype;
651 	struct super_block *sb = inode->i_sb;
652 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
653 	loff_t new_elen;
654 	int adsize;
655 	struct udf_inode_info *iinfo = UDF_I(inode);
656 	struct kernel_long_ad extent;
657 	int err = 0;
658 	bool within_last_ext;
659 
660 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
661 		adsize = sizeof(struct short_ad);
662 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
663 		adsize = sizeof(struct long_ad);
664 	else
665 		BUG();
666 
667 	down_write(&iinfo->i_data_sem);
668 	/*
669 	 * When creating hole in file, just don't bother with preserving
670 	 * preallocation. It likely won't be very useful anyway.
671 	 */
672 	udf_discard_prealloc(inode);
673 
674 	err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
675 	if (err < 0)
676 		goto out;
677 	within_last_ext = (err == 1);
678 	/* We don't expect extents past EOF... */
679 	WARN_ON_ONCE(within_last_ext &&
680 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
681 
682 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
683 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
684 		/* File has no extents at all or has empty last
685 		 * indirect extent! Create a fake extent... */
686 		extent.extLocation.logicalBlockNum = 0;
687 		extent.extLocation.partitionReferenceNum = 0;
688 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
689 	} else {
690 		epos.offset -= adsize;
691 		err = udf_next_aext(inode, &epos, &extent.extLocation,
692 				    &extent.extLength, &etype, 0);
693 		if (err <= 0)
694 			goto out;
695 		extent.extLength |= etype << 30;
696 	}
697 
698 	new_elen = ((loff_t)offset << inode->i_blkbits) |
699 					(newsize & (sb->s_blocksize - 1));
700 
701 	/* File has extent covering the new size (could happen when extending
702 	 * inside a block)?
703 	 */
704 	if (within_last_ext) {
705 		/* Extending file within the last file block */
706 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
707 	} else {
708 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
709 	}
710 
711 	if (err < 0)
712 		goto out;
713 	err = 0;
714 out:
715 	brelse(epos.bh);
716 	up_write(&iinfo->i_data_sem);
717 	return err;
718 }
719 
720 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
721 {
722 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
723 	struct extent_position prev_epos, cur_epos, next_epos;
724 	int count = 0, startnum = 0, endnum = 0;
725 	uint32_t elen = 0, tmpelen;
726 	struct kernel_lb_addr eloc, tmpeloc;
727 	int c = 1;
728 	loff_t lbcount = 0, b_off = 0;
729 	udf_pblk_t newblocknum;
730 	sector_t offset = 0;
731 	int8_t etype, tmpetype;
732 	struct udf_inode_info *iinfo = UDF_I(inode);
733 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
734 	int lastblock = 0;
735 	bool isBeyondEOF = false;
736 	int ret = 0;
737 
738 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
739 	prev_epos.block = iinfo->i_location;
740 	prev_epos.bh = NULL;
741 	cur_epos = next_epos = prev_epos;
742 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
743 
744 	/* find the extent which contains the block we are looking for.
745 	   alternate between laarr[0] and laarr[1] for locations of the
746 	   current extent, and the previous extent */
747 	do {
748 		if (prev_epos.bh != cur_epos.bh) {
749 			brelse(prev_epos.bh);
750 			get_bh(cur_epos.bh);
751 			prev_epos.bh = cur_epos.bh;
752 		}
753 		if (cur_epos.bh != next_epos.bh) {
754 			brelse(cur_epos.bh);
755 			get_bh(next_epos.bh);
756 			cur_epos.bh = next_epos.bh;
757 		}
758 
759 		lbcount += elen;
760 
761 		prev_epos.block = cur_epos.block;
762 		cur_epos.block = next_epos.block;
763 
764 		prev_epos.offset = cur_epos.offset;
765 		cur_epos.offset = next_epos.offset;
766 
767 		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
768 		if (ret < 0) {
769 			goto out_free;
770 		} else if (ret == 0) {
771 			isBeyondEOF = true;
772 			break;
773 		}
774 
775 		c = !c;
776 
777 		laarr[c].extLength = (etype << 30) | elen;
778 		laarr[c].extLocation = eloc;
779 
780 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
781 			pgoal = eloc.logicalBlockNum +
782 				((elen + inode->i_sb->s_blocksize - 1) >>
783 				 inode->i_sb->s_blocksize_bits);
784 
785 		count++;
786 	} while (lbcount + elen <= b_off);
787 
788 	b_off -= lbcount;
789 	offset = b_off >> inode->i_sb->s_blocksize_bits;
790 	/*
791 	 * Move prev_epos and cur_epos into indirect extent if we are at
792 	 * the pointer to it
793 	 */
794 	ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
795 	if (ret < 0)
796 		goto out_free;
797 	ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
798 	if (ret < 0)
799 		goto out_free;
800 
801 	/* if the extent is allocated and recorded, return the block
802 	   if the extent is not a multiple of the blocksize, round up */
803 
804 	if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
805 		if (elen & (inode->i_sb->s_blocksize - 1)) {
806 			elen = EXT_RECORDED_ALLOCATED |
807 				((elen + inode->i_sb->s_blocksize - 1) &
808 				 ~(inode->i_sb->s_blocksize - 1));
809 			iinfo->i_lenExtents =
810 				ALIGN(iinfo->i_lenExtents,
811 				      inode->i_sb->s_blocksize);
812 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
813 		}
814 		map->oflags = UDF_BLK_MAPPED;
815 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
816 		ret = 0;
817 		goto out_free;
818 	}
819 
820 	/* Are we beyond EOF and preallocated extent? */
821 	if (isBeyondEOF) {
822 		loff_t hole_len;
823 
824 		if (count) {
825 			if (c)
826 				laarr[0] = laarr[1];
827 			startnum = 1;
828 		} else {
829 			/* Create a fake extent when there's not one */
830 			memset(&laarr[0].extLocation, 0x00,
831 				sizeof(struct kernel_lb_addr));
832 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
833 			/* Will udf_do_extend_file() create real extent from
834 			   a fake one? */
835 			startnum = (offset > 0);
836 		}
837 		/* Create extents for the hole between EOF and offset */
838 		hole_len = (loff_t)offset << inode->i_blkbits;
839 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
840 		if (ret < 0)
841 			goto out_free;
842 		c = 0;
843 		offset = 0;
844 		count += ret;
845 		/*
846 		 * Is there any real extent? - otherwise we overwrite the fake
847 		 * one...
848 		 */
849 		if (count)
850 			c = !c;
851 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
852 			inode->i_sb->s_blocksize;
853 		memset(&laarr[c].extLocation, 0x00,
854 			sizeof(struct kernel_lb_addr));
855 		count++;
856 		endnum = c + 1;
857 		lastblock = 1;
858 	} else {
859 		endnum = startnum = ((count > 2) ? 2 : count);
860 
861 		/* if the current extent is in position 0,
862 		   swap it with the previous */
863 		if (!c && count != 1) {
864 			laarr[2] = laarr[0];
865 			laarr[0] = laarr[1];
866 			laarr[1] = laarr[2];
867 			c = 1;
868 		}
869 
870 		/* if the current block is located in an extent,
871 		   read the next extent */
872 		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
873 		if (ret > 0) {
874 			laarr[c + 1].extLength = (etype << 30) | elen;
875 			laarr[c + 1].extLocation = eloc;
876 			count++;
877 			startnum++;
878 			endnum++;
879 		} else if (ret == 0)
880 			lastblock = 1;
881 		else
882 			goto out_free;
883 	}
884 
885 	/* if the current extent is not recorded but allocated, get the
886 	 * block in the extent corresponding to the requested block */
887 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
888 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
889 	else { /* otherwise, allocate a new block */
890 		if (iinfo->i_next_alloc_block == map->lblk)
891 			goal = iinfo->i_next_alloc_goal;
892 
893 		if (!goal) {
894 			if (!(goal = pgoal)) /* XXX: what was intended here? */
895 				goal = iinfo->i_location.logicalBlockNum + 1;
896 		}
897 
898 		newblocknum = udf_new_block(inode->i_sb, inode,
899 				iinfo->i_location.partitionReferenceNum,
900 				goal, &ret);
901 		if (!newblocknum)
902 			goto out_free;
903 		if (isBeyondEOF)
904 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
905 	}
906 
907 	/* if the extent the requsted block is located in contains multiple
908 	 * blocks, split the extent into at most three extents. blocks prior
909 	 * to requested block, requested block, and blocks after requested
910 	 * block */
911 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
912 
913 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
914 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
915 
916 	/* merge any continuous blocks in laarr */
917 	udf_merge_extents(inode, laarr, &endnum);
918 
919 	/* write back the new extents, inserting new extents if the new number
920 	 * of extents is greater than the old number, and deleting extents if
921 	 * the new number of extents is less than the old number */
922 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
923 	if (ret < 0)
924 		goto out_free;
925 
926 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
927 				iinfo->i_location.partitionReferenceNum, 0);
928 	if (!map->pblk) {
929 		ret = -EFSCORRUPTED;
930 		goto out_free;
931 	}
932 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
933 	iinfo->i_next_alloc_block = map->lblk + 1;
934 	iinfo->i_next_alloc_goal = newblocknum + 1;
935 	inode_set_ctime_current(inode);
936 
937 	if (IS_SYNC(inode))
938 		udf_sync_inode(inode);
939 	else
940 		mark_inode_dirty(inode);
941 	ret = 0;
942 out_free:
943 	brelse(prev_epos.bh);
944 	brelse(cur_epos.bh);
945 	brelse(next_epos.bh);
946 	return ret;
947 }
948 
949 static void udf_split_extents(struct inode *inode, int *c, int offset,
950 			       udf_pblk_t newblocknum,
951 			       struct kernel_long_ad *laarr, int *endnum)
952 {
953 	unsigned long blocksize = inode->i_sb->s_blocksize;
954 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
955 
956 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
957 	    (laarr[*c].extLength >> 30) ==
958 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
959 		int curr = *c;
960 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
961 			    blocksize - 1) >> blocksize_bits;
962 		int8_t etype = (laarr[curr].extLength >> 30);
963 
964 		if (blen == 1)
965 			;
966 		else if (!offset || blen == offset + 1) {
967 			laarr[curr + 2] = laarr[curr + 1];
968 			laarr[curr + 1] = laarr[curr];
969 		} else {
970 			laarr[curr + 3] = laarr[curr + 1];
971 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
972 		}
973 
974 		if (offset) {
975 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
976 				udf_free_blocks(inode->i_sb, inode,
977 						&laarr[curr].extLocation,
978 						0, offset);
979 				laarr[curr].extLength =
980 					EXT_NOT_RECORDED_NOT_ALLOCATED |
981 					(offset << blocksize_bits);
982 				laarr[curr].extLocation.logicalBlockNum = 0;
983 				laarr[curr].extLocation.
984 						partitionReferenceNum = 0;
985 			} else
986 				laarr[curr].extLength = (etype << 30) |
987 					(offset << blocksize_bits);
988 			curr++;
989 			(*c)++;
990 			(*endnum)++;
991 		}
992 
993 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
994 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
995 			laarr[curr].extLocation.partitionReferenceNum =
996 				UDF_I(inode)->i_location.partitionReferenceNum;
997 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
998 			blocksize;
999 		curr++;
1000 
1001 		if (blen != offset + 1) {
1002 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
1003 				laarr[curr].extLocation.logicalBlockNum +=
1004 								offset + 1;
1005 			laarr[curr].extLength = (etype << 30) |
1006 				((blen - (offset + 1)) << blocksize_bits);
1007 			curr++;
1008 			(*endnum)++;
1009 		}
1010 	}
1011 }
1012 
1013 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1014 				 struct kernel_long_ad *laarr,
1015 				 int *endnum)
1016 {
1017 	int start, length = 0, currlength = 0, i;
1018 
1019 	if (*endnum >= (c + 1)) {
1020 		if (!lastblock)
1021 			return;
1022 		else
1023 			start = c;
1024 	} else {
1025 		if ((laarr[c + 1].extLength >> 30) ==
1026 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1027 			start = c + 1;
1028 			length = currlength =
1029 				(((laarr[c + 1].extLength &
1030 					UDF_EXTENT_LENGTH_MASK) +
1031 				inode->i_sb->s_blocksize - 1) >>
1032 				inode->i_sb->s_blocksize_bits);
1033 		} else
1034 			start = c;
1035 	}
1036 
1037 	for (i = start + 1; i <= *endnum; i++) {
1038 		if (i == *endnum) {
1039 			if (lastblock)
1040 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1041 		} else if ((laarr[i].extLength >> 30) ==
1042 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1043 			length += (((laarr[i].extLength &
1044 						UDF_EXTENT_LENGTH_MASK) +
1045 				    inode->i_sb->s_blocksize - 1) >>
1046 				    inode->i_sb->s_blocksize_bits);
1047 		} else
1048 			break;
1049 	}
1050 
1051 	if (length) {
1052 		int next = laarr[start].extLocation.logicalBlockNum +
1053 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1054 			  inode->i_sb->s_blocksize - 1) >>
1055 			  inode->i_sb->s_blocksize_bits);
1056 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1057 				laarr[start].extLocation.partitionReferenceNum,
1058 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1059 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1060 				currlength);
1061 		if (numalloc) 	{
1062 			if (start == (c + 1))
1063 				laarr[start].extLength +=
1064 					(numalloc <<
1065 					 inode->i_sb->s_blocksize_bits);
1066 			else {
1067 				memmove(&laarr[c + 2], &laarr[c + 1],
1068 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1069 				(*endnum)++;
1070 				laarr[c + 1].extLocation.logicalBlockNum = next;
1071 				laarr[c + 1].extLocation.partitionReferenceNum =
1072 					laarr[c].extLocation.
1073 							partitionReferenceNum;
1074 				laarr[c + 1].extLength =
1075 					EXT_NOT_RECORDED_ALLOCATED |
1076 					(numalloc <<
1077 					 inode->i_sb->s_blocksize_bits);
1078 				start = c + 1;
1079 			}
1080 
1081 			for (i = start + 1; numalloc && i < *endnum; i++) {
1082 				int elen = ((laarr[i].extLength &
1083 						UDF_EXTENT_LENGTH_MASK) +
1084 					    inode->i_sb->s_blocksize - 1) >>
1085 					    inode->i_sb->s_blocksize_bits;
1086 
1087 				if (elen > numalloc) {
1088 					laarr[i].extLength -=
1089 						(numalloc <<
1090 						 inode->i_sb->s_blocksize_bits);
1091 					numalloc = 0;
1092 				} else {
1093 					numalloc -= elen;
1094 					if (*endnum > (i + 1))
1095 						memmove(&laarr[i],
1096 							&laarr[i + 1],
1097 							sizeof(struct long_ad) *
1098 							(*endnum - (i + 1)));
1099 					i--;
1100 					(*endnum)--;
1101 				}
1102 			}
1103 			UDF_I(inode)->i_lenExtents +=
1104 				numalloc << inode->i_sb->s_blocksize_bits;
1105 		}
1106 	}
1107 }
1108 
1109 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1110 			      int *endnum)
1111 {
1112 	int i;
1113 	unsigned long blocksize = inode->i_sb->s_blocksize;
1114 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1115 
1116 	for (i = 0; i < (*endnum - 1); i++) {
1117 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1118 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1119 
1120 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1121 			(((li->extLength >> 30) ==
1122 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1123 			((lip1->extLocation.logicalBlockNum -
1124 			  li->extLocation.logicalBlockNum) ==
1125 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1126 			blocksize - 1) >> blocksize_bits)))) {
1127 
1128 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1129 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1131 				li->extLength = lip1->extLength +
1132 					(((li->extLength &
1133 						UDF_EXTENT_LENGTH_MASK) +
1134 					 blocksize - 1) & ~(blocksize - 1));
1135 				if (*endnum > (i + 2))
1136 					memmove(&laarr[i + 1], &laarr[i + 2],
1137 						sizeof(struct long_ad) *
1138 						(*endnum - (i + 2)));
1139 				i--;
1140 				(*endnum)--;
1141 			}
1142 		} else if (((li->extLength >> 30) ==
1143 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1144 			   ((lip1->extLength >> 30) ==
1145 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1146 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1147 					((li->extLength &
1148 					  UDF_EXTENT_LENGTH_MASK) +
1149 					 blocksize - 1) >> blocksize_bits);
1150 			li->extLocation.logicalBlockNum = 0;
1151 			li->extLocation.partitionReferenceNum = 0;
1152 
1153 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1154 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1155 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1156 				lip1->extLength = (lip1->extLength -
1157 						   (li->extLength &
1158 						   UDF_EXTENT_LENGTH_MASK) +
1159 						   UDF_EXTENT_LENGTH_MASK) &
1160 						   ~(blocksize - 1);
1161 				li->extLength = (li->extLength &
1162 						 UDF_EXTENT_FLAG_MASK) +
1163 						(UDF_EXTENT_LENGTH_MASK + 1) -
1164 						blocksize;
1165 			} else {
1166 				li->extLength = lip1->extLength +
1167 					(((li->extLength &
1168 						UDF_EXTENT_LENGTH_MASK) +
1169 					  blocksize - 1) & ~(blocksize - 1));
1170 				if (*endnum > (i + 2))
1171 					memmove(&laarr[i + 1], &laarr[i + 2],
1172 						sizeof(struct long_ad) *
1173 						(*endnum - (i + 2)));
1174 				i--;
1175 				(*endnum)--;
1176 			}
1177 		} else if ((li->extLength >> 30) ==
1178 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1179 			udf_free_blocks(inode->i_sb, inode,
1180 					&li->extLocation, 0,
1181 					((li->extLength &
1182 						UDF_EXTENT_LENGTH_MASK) +
1183 					 blocksize - 1) >> blocksize_bits);
1184 			li->extLocation.logicalBlockNum = 0;
1185 			li->extLocation.partitionReferenceNum = 0;
1186 			li->extLength = (li->extLength &
1187 						UDF_EXTENT_LENGTH_MASK) |
1188 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1189 		}
1190 	}
1191 }
1192 
1193 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1194 			      int startnum, int endnum,
1195 			      struct extent_position *epos)
1196 {
1197 	int start = 0, i;
1198 	struct kernel_lb_addr tmploc;
1199 	uint32_t tmplen;
1200 	int8_t tmpetype;
1201 	int err;
1202 
1203 	if (startnum > endnum) {
1204 		for (i = 0; i < (startnum - endnum); i++)
1205 			udf_delete_aext(inode, *epos);
1206 	} else if (startnum < endnum) {
1207 		for (i = 0; i < (endnum - startnum); i++) {
1208 			err = udf_insert_aext(inode, *epos,
1209 					      laarr[i].extLocation,
1210 					      laarr[i].extLength);
1211 			/*
1212 			 * If we fail here, we are likely corrupting the extent
1213 			 * list and leaking blocks. At least stop early to
1214 			 * limit the damage.
1215 			 */
1216 			if (err < 0)
1217 				return err;
1218 			err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1219 				      &laarr[i].extLength, &tmpetype, 1);
1220 			if (err < 0)
1221 				return err;
1222 			start++;
1223 		}
1224 	}
1225 
1226 	for (i = start; i < endnum; i++) {
1227 		err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1228 		if (err < 0)
1229 			return err;
1230 
1231 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1232 			       laarr[i].extLength, 1);
1233 	}
1234 	return 0;
1235 }
1236 
1237 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1238 			      int create, int *err)
1239 {
1240 	struct buffer_head *bh = NULL;
1241 	struct udf_map_rq map = {
1242 		.lblk = block,
1243 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1244 	};
1245 
1246 	*err = udf_map_block(inode, &map);
1247 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1248 		return NULL;
1249 
1250 	bh = sb_getblk(inode->i_sb, map.pblk);
1251 	if (!bh) {
1252 		*err = -ENOMEM;
1253 		return NULL;
1254 	}
1255 	if (map.oflags & UDF_BLK_NEW) {
1256 		lock_buffer(bh);
1257 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1258 		set_buffer_uptodate(bh);
1259 		unlock_buffer(bh);
1260 		mark_buffer_dirty_inode(bh, inode);
1261 		return bh;
1262 	}
1263 
1264 	if (bh_read(bh, 0) >= 0)
1265 		return bh;
1266 
1267 	brelse(bh);
1268 	*err = -EIO;
1269 	return NULL;
1270 }
1271 
1272 int udf_setsize(struct inode *inode, loff_t newsize)
1273 {
1274 	int err = 0;
1275 	struct udf_inode_info *iinfo;
1276 	unsigned int bsize = i_blocksize(inode);
1277 
1278 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1279 	      S_ISLNK(inode->i_mode)))
1280 		return -EINVAL;
1281 
1282 	iinfo = UDF_I(inode);
1283 	if (newsize > inode->i_size) {
1284 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1285 			if (bsize >=
1286 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1287 				down_write(&iinfo->i_data_sem);
1288 				iinfo->i_lenAlloc = newsize;
1289 				up_write(&iinfo->i_data_sem);
1290 				goto set_size;
1291 			}
1292 			err = udf_expand_file_adinicb(inode);
1293 			if (err)
1294 				return err;
1295 		}
1296 		err = udf_extend_file(inode, newsize);
1297 		if (err)
1298 			return err;
1299 set_size:
1300 		truncate_setsize(inode, newsize);
1301 	} else {
1302 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1303 			down_write(&iinfo->i_data_sem);
1304 			udf_clear_extent_cache(inode);
1305 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1306 			       0x00, bsize - newsize -
1307 			       udf_file_entry_alloc_offset(inode));
1308 			iinfo->i_lenAlloc = newsize;
1309 			truncate_setsize(inode, newsize);
1310 			up_write(&iinfo->i_data_sem);
1311 			goto update_time;
1312 		}
1313 		err = block_truncate_page(inode->i_mapping, newsize,
1314 					  udf_get_block);
1315 		if (err)
1316 			return err;
1317 		truncate_setsize(inode, newsize);
1318 		down_write(&iinfo->i_data_sem);
1319 		udf_clear_extent_cache(inode);
1320 		err = udf_truncate_extents(inode);
1321 		up_write(&iinfo->i_data_sem);
1322 		if (err)
1323 			return err;
1324 	}
1325 update_time:
1326 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1327 	if (IS_SYNC(inode))
1328 		udf_sync_inode(inode);
1329 	else
1330 		mark_inode_dirty(inode);
1331 	return err;
1332 }
1333 
1334 /*
1335  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1336  * arbitrary - just that we hopefully don't limit any real use of rewritten
1337  * inode on write-once media but avoid looping for too long on corrupted media.
1338  */
1339 #define UDF_MAX_ICB_NESTING 1024
1340 
1341 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1342 {
1343 	struct buffer_head *bh = NULL;
1344 	struct fileEntry *fe;
1345 	struct extendedFileEntry *efe;
1346 	uint16_t ident;
1347 	struct udf_inode_info *iinfo = UDF_I(inode);
1348 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1349 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1350 	unsigned int link_count;
1351 	unsigned int indirections = 0;
1352 	int bs = inode->i_sb->s_blocksize;
1353 	int ret = -EIO;
1354 	uint32_t uid, gid;
1355 	struct timespec64 ts;
1356 
1357 reread:
1358 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1359 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1360 			  iloc->partitionReferenceNum, sbi->s_partitions);
1361 		return -EIO;
1362 	}
1363 
1364 	if (iloc->logicalBlockNum >=
1365 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1366 		udf_debug("block=%u, partition=%u out of range\n",
1367 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1368 		return -EIO;
1369 	}
1370 
1371 	/*
1372 	 * Set defaults, but the inode is still incomplete!
1373 	 * Note: get_new_inode() sets the following on a new inode:
1374 	 *      i_sb = sb
1375 	 *      i_no = ino
1376 	 *      i_flags = sb->s_flags
1377 	 *      i_state = 0
1378 	 * clean_inode(): zero fills and sets
1379 	 *      i_count = 1
1380 	 *      i_nlink = 1
1381 	 *      i_op = NULL;
1382 	 */
1383 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1384 	if (!bh) {
1385 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1386 		return -EIO;
1387 	}
1388 
1389 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1390 	    ident != TAG_IDENT_USE) {
1391 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1392 			inode->i_ino, ident);
1393 		goto out;
1394 	}
1395 
1396 	fe = (struct fileEntry *)bh->b_data;
1397 	efe = (struct extendedFileEntry *)bh->b_data;
1398 
1399 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1400 		struct buffer_head *ibh;
1401 
1402 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1403 		if (ident == TAG_IDENT_IE && ibh) {
1404 			struct kernel_lb_addr loc;
1405 			struct indirectEntry *ie;
1406 
1407 			ie = (struct indirectEntry *)ibh->b_data;
1408 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1409 
1410 			if (ie->indirectICB.extLength) {
1411 				brelse(ibh);
1412 				memcpy(&iinfo->i_location, &loc,
1413 				       sizeof(struct kernel_lb_addr));
1414 				if (++indirections > UDF_MAX_ICB_NESTING) {
1415 					udf_err(inode->i_sb,
1416 						"too many ICBs in ICB hierarchy"
1417 						" (max %d supported)\n",
1418 						UDF_MAX_ICB_NESTING);
1419 					goto out;
1420 				}
1421 				brelse(bh);
1422 				goto reread;
1423 			}
1424 		}
1425 		brelse(ibh);
1426 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1427 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1428 			le16_to_cpu(fe->icbTag.strategyType));
1429 		goto out;
1430 	}
1431 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1432 		iinfo->i_strat4096 = 0;
1433 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1434 		iinfo->i_strat4096 = 1;
1435 
1436 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1437 							ICBTAG_FLAG_AD_MASK;
1438 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1439 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1440 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1441 		ret = -EIO;
1442 		goto out;
1443 	}
1444 	iinfo->i_hidden = hidden_inode;
1445 	iinfo->i_unique = 0;
1446 	iinfo->i_lenEAttr = 0;
1447 	iinfo->i_lenExtents = 0;
1448 	iinfo->i_lenAlloc = 0;
1449 	iinfo->i_next_alloc_block = 0;
1450 	iinfo->i_next_alloc_goal = 0;
1451 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1452 		iinfo->i_efe = 1;
1453 		iinfo->i_use = 0;
1454 		ret = udf_alloc_i_data(inode, bs -
1455 					sizeof(struct extendedFileEntry));
1456 		if (ret)
1457 			goto out;
1458 		memcpy(iinfo->i_data,
1459 		       bh->b_data + sizeof(struct extendedFileEntry),
1460 		       bs - sizeof(struct extendedFileEntry));
1461 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1462 		iinfo->i_efe = 0;
1463 		iinfo->i_use = 0;
1464 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1465 		if (ret)
1466 			goto out;
1467 		memcpy(iinfo->i_data,
1468 		       bh->b_data + sizeof(struct fileEntry),
1469 		       bs - sizeof(struct fileEntry));
1470 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1471 		iinfo->i_efe = 0;
1472 		iinfo->i_use = 1;
1473 		iinfo->i_lenAlloc = le32_to_cpu(
1474 				((struct unallocSpaceEntry *)bh->b_data)->
1475 				 lengthAllocDescs);
1476 		ret = udf_alloc_i_data(inode, bs -
1477 					sizeof(struct unallocSpaceEntry));
1478 		if (ret)
1479 			goto out;
1480 		memcpy(iinfo->i_data,
1481 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1482 		       bs - sizeof(struct unallocSpaceEntry));
1483 		return 0;
1484 	}
1485 
1486 	ret = -EIO;
1487 	read_lock(&sbi->s_cred_lock);
1488 	uid = le32_to_cpu(fe->uid);
1489 	if (uid == UDF_INVALID_ID ||
1490 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1491 		inode->i_uid = sbi->s_uid;
1492 	else
1493 		i_uid_write(inode, uid);
1494 
1495 	gid = le32_to_cpu(fe->gid);
1496 	if (gid == UDF_INVALID_ID ||
1497 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1498 		inode->i_gid = sbi->s_gid;
1499 	else
1500 		i_gid_write(inode, gid);
1501 
1502 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1503 			sbi->s_fmode != UDF_INVALID_MODE)
1504 		inode->i_mode = sbi->s_fmode;
1505 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1506 			sbi->s_dmode != UDF_INVALID_MODE)
1507 		inode->i_mode = sbi->s_dmode;
1508 	else
1509 		inode->i_mode = udf_convert_permissions(fe);
1510 	inode->i_mode &= ~sbi->s_umask;
1511 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1512 
1513 	read_unlock(&sbi->s_cred_lock);
1514 
1515 	link_count = le16_to_cpu(fe->fileLinkCount);
1516 	if (!link_count) {
1517 		if (!hidden_inode) {
1518 			ret = -ESTALE;
1519 			goto out;
1520 		}
1521 		link_count = 1;
1522 	}
1523 	set_nlink(inode, link_count);
1524 
1525 	inode->i_size = le64_to_cpu(fe->informationLength);
1526 	iinfo->i_lenExtents = inode->i_size;
1527 
1528 	if (iinfo->i_efe == 0) {
1529 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1530 			(inode->i_sb->s_blocksize_bits - 9);
1531 
1532 		udf_disk_stamp_to_time(&ts, fe->accessTime);
1533 		inode_set_atime_to_ts(inode, ts);
1534 		udf_disk_stamp_to_time(&ts, fe->modificationTime);
1535 		inode_set_mtime_to_ts(inode, ts);
1536 		udf_disk_stamp_to_time(&ts, fe->attrTime);
1537 		inode_set_ctime_to_ts(inode, ts);
1538 
1539 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1540 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1541 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1542 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1543 		iinfo->i_streamdir = 0;
1544 		iinfo->i_lenStreams = 0;
1545 	} else {
1546 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1547 		    (inode->i_sb->s_blocksize_bits - 9);
1548 
1549 		udf_disk_stamp_to_time(&ts, efe->accessTime);
1550 		inode_set_atime_to_ts(inode, ts);
1551 		udf_disk_stamp_to_time(&ts, efe->modificationTime);
1552 		inode_set_mtime_to_ts(inode, ts);
1553 		udf_disk_stamp_to_time(&ts, efe->attrTime);
1554 		inode_set_ctime_to_ts(inode, ts);
1555 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1556 
1557 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1558 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1559 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1560 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1561 
1562 		/* Named streams */
1563 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1564 		iinfo->i_locStreamdir =
1565 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1566 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1567 		if (iinfo->i_lenStreams >= inode->i_size)
1568 			iinfo->i_lenStreams -= inode->i_size;
1569 		else
1570 			iinfo->i_lenStreams = 0;
1571 	}
1572 	inode->i_generation = iinfo->i_unique;
1573 
1574 	/*
1575 	 * Sanity check length of allocation descriptors and extended attrs to
1576 	 * avoid integer overflows
1577 	 */
1578 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1579 		goto out;
1580 	/* Now do exact checks */
1581 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1582 		goto out;
1583 	/* Sanity checks for files in ICB so that we don't get confused later */
1584 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1585 		/*
1586 		 * For file in ICB data is stored in allocation descriptor
1587 		 * so sizes should match
1588 		 */
1589 		if (iinfo->i_lenAlloc != inode->i_size)
1590 			goto out;
1591 		/* File in ICB has to fit in there... */
1592 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1593 			goto out;
1594 	}
1595 
1596 	switch (fe->icbTag.fileType) {
1597 	case ICBTAG_FILE_TYPE_DIRECTORY:
1598 		inode->i_op = &udf_dir_inode_operations;
1599 		inode->i_fop = &udf_dir_operations;
1600 		inode->i_mode |= S_IFDIR;
1601 		inc_nlink(inode);
1602 		break;
1603 	case ICBTAG_FILE_TYPE_REALTIME:
1604 	case ICBTAG_FILE_TYPE_REGULAR:
1605 	case ICBTAG_FILE_TYPE_UNDEF:
1606 	case ICBTAG_FILE_TYPE_VAT20:
1607 		inode->i_data.a_ops = &udf_aops;
1608 		inode->i_op = &udf_file_inode_operations;
1609 		inode->i_fop = &udf_file_operations;
1610 		inode->i_mode |= S_IFREG;
1611 		break;
1612 	case ICBTAG_FILE_TYPE_BLOCK:
1613 		inode->i_mode |= S_IFBLK;
1614 		break;
1615 	case ICBTAG_FILE_TYPE_CHAR:
1616 		inode->i_mode |= S_IFCHR;
1617 		break;
1618 	case ICBTAG_FILE_TYPE_FIFO:
1619 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1620 		break;
1621 	case ICBTAG_FILE_TYPE_SOCKET:
1622 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1623 		break;
1624 	case ICBTAG_FILE_TYPE_SYMLINK:
1625 		inode->i_data.a_ops = &udf_symlink_aops;
1626 		inode->i_op = &udf_symlink_inode_operations;
1627 		inode_nohighmem(inode);
1628 		inode->i_mode = S_IFLNK | 0777;
1629 		break;
1630 	case ICBTAG_FILE_TYPE_MAIN:
1631 		udf_debug("METADATA FILE-----\n");
1632 		break;
1633 	case ICBTAG_FILE_TYPE_MIRROR:
1634 		udf_debug("METADATA MIRROR FILE-----\n");
1635 		break;
1636 	case ICBTAG_FILE_TYPE_BITMAP:
1637 		udf_debug("METADATA BITMAP FILE-----\n");
1638 		break;
1639 	default:
1640 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1641 			inode->i_ino, fe->icbTag.fileType);
1642 		goto out;
1643 	}
1644 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1645 		struct deviceSpec *dsea =
1646 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1647 		if (dsea) {
1648 			init_special_inode(inode, inode->i_mode,
1649 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1650 				      le32_to_cpu(dsea->minorDeviceIdent)));
1651 			/* Developer ID ??? */
1652 		} else
1653 			goto out;
1654 	}
1655 	ret = 0;
1656 out:
1657 	brelse(bh);
1658 	return ret;
1659 }
1660 
1661 static int udf_alloc_i_data(struct inode *inode, size_t size)
1662 {
1663 	struct udf_inode_info *iinfo = UDF_I(inode);
1664 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1665 	if (!iinfo->i_data)
1666 		return -ENOMEM;
1667 	return 0;
1668 }
1669 
1670 static umode_t udf_convert_permissions(struct fileEntry *fe)
1671 {
1672 	umode_t mode;
1673 	uint32_t permissions;
1674 	uint32_t flags;
1675 
1676 	permissions = le32_to_cpu(fe->permissions);
1677 	flags = le16_to_cpu(fe->icbTag.flags);
1678 
1679 	mode =	((permissions) & 0007) |
1680 		((permissions >> 2) & 0070) |
1681 		((permissions >> 4) & 0700) |
1682 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1683 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1684 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1685 
1686 	return mode;
1687 }
1688 
1689 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1690 {
1691 	struct udf_inode_info *iinfo = UDF_I(inode);
1692 
1693 	/*
1694 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1695 	 * In Unix, delete permission tracks write
1696 	 */
1697 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1698 	if (mode & 0200)
1699 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1700 	if (mode & 0020)
1701 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1702 	if (mode & 0002)
1703 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1704 }
1705 
1706 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1707 {
1708 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1709 }
1710 
1711 static int udf_sync_inode(struct inode *inode)
1712 {
1713 	return udf_update_inode(inode, 1);
1714 }
1715 
1716 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1717 {
1718 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1719 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1720 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1721 		iinfo->i_crtime = time;
1722 }
1723 
1724 static int udf_update_inode(struct inode *inode, int do_sync)
1725 {
1726 	struct buffer_head *bh = NULL;
1727 	struct fileEntry *fe;
1728 	struct extendedFileEntry *efe;
1729 	uint64_t lb_recorded;
1730 	uint32_t udfperms;
1731 	uint16_t icbflags;
1732 	uint16_t crclen;
1733 	int err = 0;
1734 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1735 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1736 	struct udf_inode_info *iinfo = UDF_I(inode);
1737 
1738 	bh = sb_getblk(inode->i_sb,
1739 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1740 	if (!bh) {
1741 		udf_debug("getblk failure\n");
1742 		return -EIO;
1743 	}
1744 
1745 	lock_buffer(bh);
1746 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1747 	fe = (struct fileEntry *)bh->b_data;
1748 	efe = (struct extendedFileEntry *)bh->b_data;
1749 
1750 	if (iinfo->i_use) {
1751 		struct unallocSpaceEntry *use =
1752 			(struct unallocSpaceEntry *)bh->b_data;
1753 
1754 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1755 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1756 		       iinfo->i_data, inode->i_sb->s_blocksize -
1757 					sizeof(struct unallocSpaceEntry));
1758 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1759 		crclen = sizeof(struct unallocSpaceEntry);
1760 
1761 		goto finish;
1762 	}
1763 
1764 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1765 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1766 	else
1767 		fe->uid = cpu_to_le32(i_uid_read(inode));
1768 
1769 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1770 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1771 	else
1772 		fe->gid = cpu_to_le32(i_gid_read(inode));
1773 
1774 	udfperms = ((inode->i_mode & 0007)) |
1775 		   ((inode->i_mode & 0070) << 2) |
1776 		   ((inode->i_mode & 0700) << 4);
1777 
1778 	udfperms |= iinfo->i_extraPerms;
1779 	fe->permissions = cpu_to_le32(udfperms);
1780 
1781 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1782 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1783 	else {
1784 		if (iinfo->i_hidden)
1785 			fe->fileLinkCount = cpu_to_le16(0);
1786 		else
1787 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1788 	}
1789 
1790 	fe->informationLength = cpu_to_le64(inode->i_size);
1791 
1792 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1793 		struct regid *eid;
1794 		struct deviceSpec *dsea =
1795 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1796 		if (!dsea) {
1797 			dsea = (struct deviceSpec *)
1798 				udf_add_extendedattr(inode,
1799 						     sizeof(struct deviceSpec) +
1800 						     sizeof(struct regid), 12, 0x3);
1801 			dsea->attrType = cpu_to_le32(12);
1802 			dsea->attrSubtype = 1;
1803 			dsea->attrLength = cpu_to_le32(
1804 						sizeof(struct deviceSpec) +
1805 						sizeof(struct regid));
1806 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1807 		}
1808 		eid = (struct regid *)dsea->impUse;
1809 		memset(eid, 0, sizeof(*eid));
1810 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1811 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1812 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1813 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1814 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1815 	}
1816 
1817 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1818 		lb_recorded = 0; /* No extents => no blocks! */
1819 	else
1820 		lb_recorded =
1821 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1822 			(blocksize_bits - 9);
1823 
1824 	if (iinfo->i_efe == 0) {
1825 		memcpy(bh->b_data + sizeof(struct fileEntry),
1826 		       iinfo->i_data,
1827 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1828 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1829 
1830 		udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1831 		udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1832 		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1833 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1834 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1835 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1836 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1837 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1838 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1839 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1840 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1841 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1842 		crclen = sizeof(struct fileEntry);
1843 	} else {
1844 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1845 		       iinfo->i_data,
1846 		       inode->i_sb->s_blocksize -
1847 					sizeof(struct extendedFileEntry));
1848 		efe->objectSize =
1849 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1850 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1851 
1852 		if (iinfo->i_streamdir) {
1853 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1854 
1855 			icb_lad->extLocation =
1856 				cpu_to_lelb(iinfo->i_locStreamdir);
1857 			icb_lad->extLength =
1858 				cpu_to_le32(inode->i_sb->s_blocksize);
1859 		}
1860 
1861 		udf_adjust_time(iinfo, inode_get_atime(inode));
1862 		udf_adjust_time(iinfo, inode_get_mtime(inode));
1863 		udf_adjust_time(iinfo, inode_get_ctime(inode));
1864 
1865 		udf_time_to_disk_stamp(&efe->accessTime,
1866 				       inode_get_atime(inode));
1867 		udf_time_to_disk_stamp(&efe->modificationTime,
1868 				       inode_get_mtime(inode));
1869 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1870 		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1871 
1872 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1873 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1874 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1875 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1876 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1877 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1878 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1879 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1880 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1881 		crclen = sizeof(struct extendedFileEntry);
1882 	}
1883 
1884 finish:
1885 	if (iinfo->i_strat4096) {
1886 		fe->icbTag.strategyType = cpu_to_le16(4096);
1887 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1888 		fe->icbTag.numEntries = cpu_to_le16(2);
1889 	} else {
1890 		fe->icbTag.strategyType = cpu_to_le16(4);
1891 		fe->icbTag.numEntries = cpu_to_le16(1);
1892 	}
1893 
1894 	if (iinfo->i_use)
1895 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1896 	else if (S_ISDIR(inode->i_mode))
1897 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1898 	else if (S_ISREG(inode->i_mode))
1899 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1900 	else if (S_ISLNK(inode->i_mode))
1901 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1902 	else if (S_ISBLK(inode->i_mode))
1903 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1904 	else if (S_ISCHR(inode->i_mode))
1905 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1906 	else if (S_ISFIFO(inode->i_mode))
1907 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1908 	else if (S_ISSOCK(inode->i_mode))
1909 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1910 
1911 	icbflags =	iinfo->i_alloc_type |
1912 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1913 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1914 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1915 			(le16_to_cpu(fe->icbTag.flags) &
1916 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1917 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1918 
1919 	fe->icbTag.flags = cpu_to_le16(icbflags);
1920 	if (sbi->s_udfrev >= 0x0200)
1921 		fe->descTag.descVersion = cpu_to_le16(3);
1922 	else
1923 		fe->descTag.descVersion = cpu_to_le16(2);
1924 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1925 	fe->descTag.tagLocation = cpu_to_le32(
1926 					iinfo->i_location.logicalBlockNum);
1927 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1928 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1929 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1930 						  crclen));
1931 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1932 
1933 	set_buffer_uptodate(bh);
1934 	unlock_buffer(bh);
1935 
1936 	/* write the data blocks */
1937 	mark_buffer_dirty(bh);
1938 	if (do_sync) {
1939 		sync_dirty_buffer(bh);
1940 		if (buffer_write_io_error(bh)) {
1941 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1942 				 inode->i_ino);
1943 			err = -EIO;
1944 		}
1945 	}
1946 	brelse(bh);
1947 
1948 	return err;
1949 }
1950 
1951 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1952 			 bool hidden_inode)
1953 {
1954 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1955 	struct inode *inode = iget_locked(sb, block);
1956 	int err;
1957 
1958 	if (!inode)
1959 		return ERR_PTR(-ENOMEM);
1960 
1961 	if (!(inode->i_state & I_NEW)) {
1962 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1963 			iput(inode);
1964 			return ERR_PTR(-EFSCORRUPTED);
1965 		}
1966 		return inode;
1967 	}
1968 
1969 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1970 	err = udf_read_inode(inode, hidden_inode);
1971 	if (err < 0) {
1972 		iget_failed(inode);
1973 		return ERR_PTR(err);
1974 	}
1975 	unlock_new_inode(inode);
1976 
1977 	return inode;
1978 }
1979 
1980 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1981 			    struct extent_position *epos)
1982 {
1983 	struct super_block *sb = inode->i_sb;
1984 	struct buffer_head *bh;
1985 	struct allocExtDesc *aed;
1986 	struct extent_position nepos;
1987 	struct kernel_lb_addr neloc;
1988 	int ver, adsize;
1989 	int err = 0;
1990 
1991 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1992 		adsize = sizeof(struct short_ad);
1993 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1994 		adsize = sizeof(struct long_ad);
1995 	else
1996 		return -EIO;
1997 
1998 	neloc.logicalBlockNum = block;
1999 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
2000 
2001 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
2002 	if (!bh)
2003 		return -EIO;
2004 	lock_buffer(bh);
2005 	memset(bh->b_data, 0x00, sb->s_blocksize);
2006 	set_buffer_uptodate(bh);
2007 	unlock_buffer(bh);
2008 	mark_buffer_dirty_inode(bh, inode);
2009 
2010 	aed = (struct allocExtDesc *)(bh->b_data);
2011 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2012 		aed->previousAllocExtLocation =
2013 				cpu_to_le32(epos->block.logicalBlockNum);
2014 	}
2015 	aed->lengthAllocDescs = cpu_to_le32(0);
2016 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
2017 		ver = 3;
2018 	else
2019 		ver = 2;
2020 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2021 		    sizeof(struct tag));
2022 
2023 	nepos.block = neloc;
2024 	nepos.offset = sizeof(struct allocExtDesc);
2025 	nepos.bh = bh;
2026 
2027 	/*
2028 	 * Do we have to copy current last extent to make space for indirect
2029 	 * one?
2030 	 */
2031 	if (epos->offset + adsize > sb->s_blocksize) {
2032 		struct kernel_lb_addr cp_loc;
2033 		uint32_t cp_len;
2034 		int8_t cp_type;
2035 
2036 		epos->offset -= adsize;
2037 		err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2038 		if (err <= 0)
2039 			goto err_out;
2040 		cp_len |= ((uint32_t)cp_type) << 30;
2041 
2042 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2043 		udf_write_aext(inode, epos, &nepos.block,
2044 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2045 	} else {
2046 		__udf_add_aext(inode, epos, &nepos.block,
2047 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2048 	}
2049 
2050 	brelse(epos->bh);
2051 	*epos = nepos;
2052 
2053 	return 0;
2054 err_out:
2055 	brelse(bh);
2056 	return err;
2057 }
2058 
2059 /*
2060  * Append extent at the given position - should be the first free one in inode
2061  * / indirect extent. This function assumes there is enough space in the inode
2062  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2063  */
2064 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2065 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2066 {
2067 	struct udf_inode_info *iinfo = UDF_I(inode);
2068 	struct allocExtDesc *aed;
2069 	int adsize;
2070 
2071 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2072 		adsize = sizeof(struct short_ad);
2073 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2074 		adsize = sizeof(struct long_ad);
2075 	else
2076 		return -EIO;
2077 
2078 	if (!epos->bh) {
2079 		WARN_ON(iinfo->i_lenAlloc !=
2080 			epos->offset - udf_file_entry_alloc_offset(inode));
2081 	} else {
2082 		aed = (struct allocExtDesc *)epos->bh->b_data;
2083 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2084 			epos->offset - sizeof(struct allocExtDesc));
2085 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2086 	}
2087 
2088 	udf_write_aext(inode, epos, eloc, elen, inc);
2089 
2090 	if (!epos->bh) {
2091 		iinfo->i_lenAlloc += adsize;
2092 		mark_inode_dirty(inode);
2093 	} else {
2094 		aed = (struct allocExtDesc *)epos->bh->b_data;
2095 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2096 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2097 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2098 			udf_update_tag(epos->bh->b_data,
2099 					epos->offset + (inc ? 0 : adsize));
2100 		else
2101 			udf_update_tag(epos->bh->b_data,
2102 					sizeof(struct allocExtDesc));
2103 		mark_buffer_dirty_inode(epos->bh, inode);
2104 	}
2105 
2106 	return 0;
2107 }
2108 
2109 /*
2110  * Append extent at given position - should be the first free one in inode
2111  * / indirect extent. Takes care of allocating and linking indirect blocks.
2112  */
2113 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2114 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2115 {
2116 	int adsize;
2117 	struct super_block *sb = inode->i_sb;
2118 
2119 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2120 		adsize = sizeof(struct short_ad);
2121 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2122 		adsize = sizeof(struct long_ad);
2123 	else
2124 		return -EIO;
2125 
2126 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2127 		int err;
2128 		udf_pblk_t new_block;
2129 
2130 		new_block = udf_new_block(sb, NULL,
2131 					  epos->block.partitionReferenceNum,
2132 					  epos->block.logicalBlockNum, &err);
2133 		if (!new_block)
2134 			return -ENOSPC;
2135 
2136 		err = udf_setup_indirect_aext(inode, new_block, epos);
2137 		if (err)
2138 			return err;
2139 	}
2140 
2141 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2142 }
2143 
2144 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2145 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2146 {
2147 	int adsize;
2148 	uint8_t *ptr;
2149 	struct short_ad *sad;
2150 	struct long_ad *lad;
2151 	struct udf_inode_info *iinfo = UDF_I(inode);
2152 
2153 	if (!epos->bh)
2154 		ptr = iinfo->i_data + epos->offset -
2155 			udf_file_entry_alloc_offset(inode) +
2156 			iinfo->i_lenEAttr;
2157 	else
2158 		ptr = epos->bh->b_data + epos->offset;
2159 
2160 	switch (iinfo->i_alloc_type) {
2161 	case ICBTAG_FLAG_AD_SHORT:
2162 		sad = (struct short_ad *)ptr;
2163 		sad->extLength = cpu_to_le32(elen);
2164 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2165 		adsize = sizeof(struct short_ad);
2166 		break;
2167 	case ICBTAG_FLAG_AD_LONG:
2168 		lad = (struct long_ad *)ptr;
2169 		lad->extLength = cpu_to_le32(elen);
2170 		lad->extLocation = cpu_to_lelb(*eloc);
2171 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2172 		adsize = sizeof(struct long_ad);
2173 		break;
2174 	default:
2175 		return;
2176 	}
2177 
2178 	if (epos->bh) {
2179 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2180 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2181 			struct allocExtDesc *aed =
2182 				(struct allocExtDesc *)epos->bh->b_data;
2183 			udf_update_tag(epos->bh->b_data,
2184 				       le32_to_cpu(aed->lengthAllocDescs) +
2185 				       sizeof(struct allocExtDesc));
2186 		}
2187 		mark_buffer_dirty_inode(epos->bh, inode);
2188 	} else {
2189 		mark_inode_dirty(inode);
2190 	}
2191 
2192 	if (inc)
2193 		epos->offset += adsize;
2194 }
2195 
2196 /*
2197  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2198  * someone does some weird stuff.
2199  */
2200 #define UDF_MAX_INDIR_EXTS 16
2201 
2202 /*
2203  * Returns 1 on success, -errno on error, 0 on hit EOF.
2204  */
2205 int udf_next_aext(struct inode *inode, struct extent_position *epos,
2206 		  struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2207 		  int inc)
2208 {
2209 	unsigned int indirections = 0;
2210 	int ret = 0;
2211 	udf_pblk_t block;
2212 
2213 	while (1) {
2214 		ret = udf_current_aext(inode, epos, eloc, elen,
2215 				       etype, inc);
2216 		if (ret <= 0)
2217 			return ret;
2218 		if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2219 			return ret;
2220 
2221 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2222 			udf_err(inode->i_sb,
2223 				"too many indirect extents in inode %lu\n",
2224 				inode->i_ino);
2225 			return -EFSCORRUPTED;
2226 		}
2227 
2228 		epos->block = *eloc;
2229 		epos->offset = sizeof(struct allocExtDesc);
2230 		brelse(epos->bh);
2231 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2232 		epos->bh = sb_bread(inode->i_sb, block);
2233 		if (!epos->bh) {
2234 			udf_debug("reading block %u failed!\n", block);
2235 			return -EIO;
2236 		}
2237 	}
2238 }
2239 
2240 /*
2241  * Returns 1 on success, -errno on error, 0 on hit EOF.
2242  */
2243 int udf_current_aext(struct inode *inode, struct extent_position *epos,
2244 		     struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2245 		     int inc)
2246 {
2247 	int alen;
2248 	uint8_t *ptr;
2249 	struct short_ad *sad;
2250 	struct long_ad *lad;
2251 	struct udf_inode_info *iinfo = UDF_I(inode);
2252 
2253 	if (!epos->bh) {
2254 		if (!epos->offset)
2255 			epos->offset = udf_file_entry_alloc_offset(inode);
2256 		ptr = iinfo->i_data + epos->offset -
2257 			udf_file_entry_alloc_offset(inode) +
2258 			iinfo->i_lenEAttr;
2259 		alen = udf_file_entry_alloc_offset(inode) +
2260 							iinfo->i_lenAlloc;
2261 	} else {
2262 		struct allocExtDesc *header =
2263 			(struct allocExtDesc *)epos->bh->b_data;
2264 
2265 		if (!epos->offset)
2266 			epos->offset = sizeof(struct allocExtDesc);
2267 		ptr = epos->bh->b_data + epos->offset;
2268 		if (check_add_overflow(sizeof(struct allocExtDesc),
2269 				le32_to_cpu(header->lengthAllocDescs), &alen))
2270 			return -1;
2271 	}
2272 
2273 	switch (iinfo->i_alloc_type) {
2274 	case ICBTAG_FLAG_AD_SHORT:
2275 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2276 		if (!sad)
2277 			return 0;
2278 		*etype = le32_to_cpu(sad->extLength) >> 30;
2279 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2280 		eloc->partitionReferenceNum =
2281 				iinfo->i_location.partitionReferenceNum;
2282 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2283 		break;
2284 	case ICBTAG_FLAG_AD_LONG:
2285 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2286 		if (!lad)
2287 			return 0;
2288 		*etype = le32_to_cpu(lad->extLength) >> 30;
2289 		*eloc = lelb_to_cpu(lad->extLocation);
2290 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2291 		break;
2292 	default:
2293 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2294 		return -EINVAL;
2295 	}
2296 
2297 	return 1;
2298 }
2299 
2300 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2301 			   struct kernel_lb_addr neloc, uint32_t nelen)
2302 {
2303 	struct kernel_lb_addr oeloc;
2304 	uint32_t oelen;
2305 	int8_t etype;
2306 	int ret;
2307 
2308 	if (epos.bh)
2309 		get_bh(epos.bh);
2310 
2311 	while (1) {
2312 		ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2313 		if (ret <= 0)
2314 			break;
2315 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2316 		neloc = oeloc;
2317 		nelen = (etype << 30) | oelen;
2318 	}
2319 	if (ret == 0)
2320 		ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2321 	brelse(epos.bh);
2322 
2323 	return ret;
2324 }
2325 
2326 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2327 {
2328 	struct extent_position oepos;
2329 	int adsize;
2330 	int8_t etype;
2331 	struct allocExtDesc *aed;
2332 	struct udf_inode_info *iinfo;
2333 	struct kernel_lb_addr eloc;
2334 	uint32_t elen;
2335 	int ret;
2336 
2337 	if (epos.bh) {
2338 		get_bh(epos.bh);
2339 		get_bh(epos.bh);
2340 	}
2341 
2342 	iinfo = UDF_I(inode);
2343 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2344 		adsize = sizeof(struct short_ad);
2345 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2346 		adsize = sizeof(struct long_ad);
2347 	else
2348 		adsize = 0;
2349 
2350 	oepos = epos;
2351 	if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2352 		return -1;
2353 
2354 	while (1) {
2355 		ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2356 		if (ret < 0) {
2357 			brelse(epos.bh);
2358 			brelse(oepos.bh);
2359 			return -1;
2360 		}
2361 		if (ret == 0)
2362 			break;
2363 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2364 		if (oepos.bh != epos.bh) {
2365 			oepos.block = epos.block;
2366 			brelse(oepos.bh);
2367 			get_bh(epos.bh);
2368 			oepos.bh = epos.bh;
2369 			oepos.offset = epos.offset - adsize;
2370 		}
2371 	}
2372 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2373 	elen = 0;
2374 
2375 	if (epos.bh != oepos.bh) {
2376 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2377 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2378 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2379 		if (!oepos.bh) {
2380 			iinfo->i_lenAlloc -= (adsize * 2);
2381 			mark_inode_dirty(inode);
2382 		} else {
2383 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2384 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2385 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2386 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2387 				udf_update_tag(oepos.bh->b_data,
2388 						oepos.offset - (2 * adsize));
2389 			else
2390 				udf_update_tag(oepos.bh->b_data,
2391 						sizeof(struct allocExtDesc));
2392 			mark_buffer_dirty_inode(oepos.bh, inode);
2393 		}
2394 	} else {
2395 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2396 		if (!oepos.bh) {
2397 			iinfo->i_lenAlloc -= adsize;
2398 			mark_inode_dirty(inode);
2399 		} else {
2400 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2401 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2402 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2403 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2404 				udf_update_tag(oepos.bh->b_data,
2405 						epos.offset - adsize);
2406 			else
2407 				udf_update_tag(oepos.bh->b_data,
2408 						sizeof(struct allocExtDesc));
2409 			mark_buffer_dirty_inode(oepos.bh, inode);
2410 		}
2411 	}
2412 
2413 	brelse(epos.bh);
2414 	brelse(oepos.bh);
2415 
2416 	return (elen >> 30);
2417 }
2418 
2419 /*
2420  * Returns 1 on success, -errno on error, 0 on hit EOF.
2421  */
2422 int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2423 	       struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2424 	       int8_t *etype)
2425 {
2426 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2427 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2428 	struct udf_inode_info *iinfo;
2429 	int err = 0;
2430 
2431 	iinfo = UDF_I(inode);
2432 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2433 		pos->offset = 0;
2434 		pos->block = iinfo->i_location;
2435 		pos->bh = NULL;
2436 	}
2437 	*elen = 0;
2438 	do {
2439 		err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2440 		if (err <= 0) {
2441 			if (err == 0) {
2442 				*offset = (bcount - lbcount) >> blocksize_bits;
2443 				iinfo->i_lenExtents = lbcount;
2444 			}
2445 			return err;
2446 		}
2447 		lbcount += *elen;
2448 	} while (lbcount <= bcount);
2449 	/* update extent cache */
2450 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2451 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2452 
2453 	return 1;
2454 }
2455