1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 struct udf_map_rq; 56 57 static umode_t udf_convert_permissions(struct fileEntry *); 58 static int udf_update_inode(struct inode *, int); 59 static int udf_sync_inode(struct inode *inode); 60 static int udf_alloc_i_data(struct inode *inode, size_t size); 61 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 62 static int udf_insert_aext(struct inode *, struct extent_position, 63 struct kernel_lb_addr, uint32_t); 64 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 65 struct kernel_long_ad *, int *); 66 static void udf_prealloc_extents(struct inode *, int, int, 67 struct kernel_long_ad *, int *); 68 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 69 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 70 int, struct extent_position *); 71 static int udf_get_block_wb(struct inode *inode, sector_t block, 72 struct buffer_head *bh_result, int create); 73 74 static void __udf_clear_extent_cache(struct inode *inode) 75 { 76 struct udf_inode_info *iinfo = UDF_I(inode); 77 78 if (iinfo->cached_extent.lstart != -1) { 79 brelse(iinfo->cached_extent.epos.bh); 80 iinfo->cached_extent.lstart = -1; 81 } 82 } 83 84 /* Invalidate extent cache */ 85 static void udf_clear_extent_cache(struct inode *inode) 86 { 87 struct udf_inode_info *iinfo = UDF_I(inode); 88 89 spin_lock(&iinfo->i_extent_cache_lock); 90 __udf_clear_extent_cache(inode); 91 spin_unlock(&iinfo->i_extent_cache_lock); 92 } 93 94 /* Return contents of extent cache */ 95 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 96 loff_t *lbcount, struct extent_position *pos) 97 { 98 struct udf_inode_info *iinfo = UDF_I(inode); 99 int ret = 0; 100 101 spin_lock(&iinfo->i_extent_cache_lock); 102 if ((iinfo->cached_extent.lstart <= bcount) && 103 (iinfo->cached_extent.lstart != -1)) { 104 /* Cache hit */ 105 *lbcount = iinfo->cached_extent.lstart; 106 memcpy(pos, &iinfo->cached_extent.epos, 107 sizeof(struct extent_position)); 108 if (pos->bh) 109 get_bh(pos->bh); 110 ret = 1; 111 } 112 spin_unlock(&iinfo->i_extent_cache_lock); 113 return ret; 114 } 115 116 /* Add extent to extent cache */ 117 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 118 struct extent_position *pos) 119 { 120 struct udf_inode_info *iinfo = UDF_I(inode); 121 122 spin_lock(&iinfo->i_extent_cache_lock); 123 /* Invalidate previously cached extent */ 124 __udf_clear_extent_cache(inode); 125 if (pos->bh) 126 get_bh(pos->bh); 127 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 128 iinfo->cached_extent.lstart = estart; 129 switch (iinfo->i_alloc_type) { 130 case ICBTAG_FLAG_AD_SHORT: 131 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 132 break; 133 case ICBTAG_FLAG_AD_LONG: 134 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 135 break; 136 } 137 spin_unlock(&iinfo->i_extent_cache_lock); 138 } 139 140 void udf_evict_inode(struct inode *inode) 141 { 142 struct udf_inode_info *iinfo = UDF_I(inode); 143 int want_delete = 0; 144 145 if (!is_bad_inode(inode)) { 146 if (!inode->i_nlink) { 147 want_delete = 1; 148 udf_setsize(inode, 0); 149 udf_update_inode(inode, IS_SYNC(inode)); 150 } 151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 152 inode->i_size != iinfo->i_lenExtents) { 153 udf_warn(inode->i_sb, 154 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 155 inode->i_ino, inode->i_mode, 156 (unsigned long long)inode->i_size, 157 (unsigned long long)iinfo->i_lenExtents); 158 } 159 } 160 truncate_inode_pages_final(&inode->i_data); 161 invalidate_inode_buffers(inode); 162 clear_inode(inode); 163 kfree(iinfo->i_data); 164 iinfo->i_data = NULL; 165 udf_clear_extent_cache(inode); 166 if (want_delete) { 167 udf_free_inode(inode); 168 } 169 } 170 171 static void udf_write_failed(struct address_space *mapping, loff_t to) 172 { 173 struct inode *inode = mapping->host; 174 struct udf_inode_info *iinfo = UDF_I(inode); 175 loff_t isize = inode->i_size; 176 177 if (to > isize) { 178 truncate_pagecache(inode, isize); 179 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 180 down_write(&iinfo->i_data_sem); 181 udf_clear_extent_cache(inode); 182 udf_truncate_extents(inode); 183 up_write(&iinfo->i_data_sem); 184 } 185 } 186 } 187 188 static int udf_adinicb_writepage(struct folio *folio, 189 struct writeback_control *wbc, void *data) 190 { 191 struct inode *inode = folio->mapping->host; 192 struct udf_inode_info *iinfo = UDF_I(inode); 193 194 BUG_ON(!folio_test_locked(folio)); 195 BUG_ON(folio->index != 0); 196 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 197 i_size_read(inode)); 198 folio_unlock(folio); 199 mark_inode_dirty(inode); 200 201 return 0; 202 } 203 204 static int udf_writepages(struct address_space *mapping, 205 struct writeback_control *wbc) 206 { 207 struct inode *inode = mapping->host; 208 struct udf_inode_info *iinfo = UDF_I(inode); 209 210 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 211 return mpage_writepages(mapping, wbc, udf_get_block_wb); 212 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 213 } 214 215 static void udf_adinicb_readpage(struct page *page) 216 { 217 struct inode *inode = page->mapping->host; 218 char *kaddr; 219 struct udf_inode_info *iinfo = UDF_I(inode); 220 loff_t isize = i_size_read(inode); 221 222 kaddr = kmap_local_page(page); 223 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 224 memset(kaddr + isize, 0, PAGE_SIZE - isize); 225 flush_dcache_page(page); 226 SetPageUptodate(page); 227 kunmap_local(kaddr); 228 } 229 230 static int udf_read_folio(struct file *file, struct folio *folio) 231 { 232 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 233 234 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 235 udf_adinicb_readpage(&folio->page); 236 folio_unlock(folio); 237 return 0; 238 } 239 return mpage_read_folio(folio, udf_get_block); 240 } 241 242 static void udf_readahead(struct readahead_control *rac) 243 { 244 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 245 246 /* 247 * No readahead needed for in-ICB files and udf_get_block() would get 248 * confused for such file anyway. 249 */ 250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 251 return; 252 253 mpage_readahead(rac, udf_get_block); 254 } 255 256 static int udf_write_begin(struct file *file, struct address_space *mapping, 257 loff_t pos, unsigned len, 258 struct page **pagep, void **fsdata) 259 { 260 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 261 struct page *page; 262 int ret; 263 264 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 265 ret = block_write_begin(mapping, pos, len, pagep, 266 udf_get_block); 267 if (unlikely(ret)) 268 udf_write_failed(mapping, pos + len); 269 return ret; 270 } 271 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 272 return -EIO; 273 page = grab_cache_page_write_begin(mapping, 0); 274 if (!page) 275 return -ENOMEM; 276 *pagep = page; 277 if (!PageUptodate(page)) 278 udf_adinicb_readpage(page); 279 return 0; 280 } 281 282 static int udf_write_end(struct file *file, struct address_space *mapping, 283 loff_t pos, unsigned len, unsigned copied, 284 struct page *page, void *fsdata) 285 { 286 struct inode *inode = file_inode(file); 287 loff_t last_pos; 288 289 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 290 return generic_write_end(file, mapping, pos, len, copied, page, 291 fsdata); 292 last_pos = pos + copied; 293 if (last_pos > inode->i_size) 294 i_size_write(inode, last_pos); 295 set_page_dirty(page); 296 unlock_page(page); 297 put_page(page); 298 299 return copied; 300 } 301 302 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 303 { 304 struct file *file = iocb->ki_filp; 305 struct address_space *mapping = file->f_mapping; 306 struct inode *inode = mapping->host; 307 size_t count = iov_iter_count(iter); 308 ssize_t ret; 309 310 /* Fallback to buffered IO for in-ICB files */ 311 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 312 return 0; 313 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 314 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 315 udf_write_failed(mapping, iocb->ki_pos + count); 316 return ret; 317 } 318 319 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 320 { 321 struct udf_inode_info *iinfo = UDF_I(mapping->host); 322 323 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 324 return -EINVAL; 325 return generic_block_bmap(mapping, block, udf_get_block); 326 } 327 328 const struct address_space_operations udf_aops = { 329 .dirty_folio = block_dirty_folio, 330 .invalidate_folio = block_invalidate_folio, 331 .read_folio = udf_read_folio, 332 .readahead = udf_readahead, 333 .writepages = udf_writepages, 334 .write_begin = udf_write_begin, 335 .write_end = udf_write_end, 336 .direct_IO = udf_direct_IO, 337 .bmap = udf_bmap, 338 .migrate_folio = buffer_migrate_folio, 339 }; 340 341 /* 342 * Expand file stored in ICB to a normal one-block-file 343 * 344 * This function requires i_mutex held 345 */ 346 int udf_expand_file_adinicb(struct inode *inode) 347 { 348 struct page *page; 349 struct udf_inode_info *iinfo = UDF_I(inode); 350 int err; 351 352 WARN_ON_ONCE(!inode_is_locked(inode)); 353 if (!iinfo->i_lenAlloc) { 354 down_write(&iinfo->i_data_sem); 355 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 356 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 357 else 358 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 359 /* from now on we have normal address_space methods */ 360 inode->i_data.a_ops = &udf_aops; 361 up_write(&iinfo->i_data_sem); 362 mark_inode_dirty(inode); 363 return 0; 364 } 365 366 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 367 if (!page) 368 return -ENOMEM; 369 370 if (!PageUptodate(page)) 371 udf_adinicb_readpage(page); 372 down_write(&iinfo->i_data_sem); 373 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 374 iinfo->i_lenAlloc); 375 iinfo->i_lenAlloc = 0; 376 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 377 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 378 else 379 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 380 set_page_dirty(page); 381 unlock_page(page); 382 up_write(&iinfo->i_data_sem); 383 err = filemap_fdatawrite(inode->i_mapping); 384 if (err) { 385 /* Restore everything back so that we don't lose data... */ 386 lock_page(page); 387 down_write(&iinfo->i_data_sem); 388 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr, 389 inode->i_size); 390 unlock_page(page); 391 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 392 iinfo->i_lenAlloc = inode->i_size; 393 up_write(&iinfo->i_data_sem); 394 } 395 put_page(page); 396 mark_inode_dirty(inode); 397 398 return err; 399 } 400 401 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 402 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 403 404 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 405 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 406 407 struct udf_map_rq { 408 sector_t lblk; 409 udf_pblk_t pblk; 410 int iflags; /* UDF_MAP_ flags determining behavior */ 411 int oflags; /* UDF_BLK_ flags reporting results */ 412 }; 413 414 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 415 { 416 int err; 417 struct udf_inode_info *iinfo = UDF_I(inode); 418 419 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 420 return -EFSCORRUPTED; 421 422 map->oflags = 0; 423 if (!(map->iflags & UDF_MAP_CREATE)) { 424 struct kernel_lb_addr eloc; 425 uint32_t elen; 426 sector_t offset; 427 struct extent_position epos = {}; 428 429 down_read(&iinfo->i_data_sem); 430 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 431 == (EXT_RECORDED_ALLOCATED >> 30)) { 432 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 433 offset); 434 map->oflags |= UDF_BLK_MAPPED; 435 } 436 up_read(&iinfo->i_data_sem); 437 brelse(epos.bh); 438 439 return 0; 440 } 441 442 down_write(&iinfo->i_data_sem); 443 /* 444 * Block beyond EOF and prealloc extents? Just discard preallocation 445 * as it is not useful and complicates things. 446 */ 447 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 448 udf_discard_prealloc(inode); 449 udf_clear_extent_cache(inode); 450 err = inode_getblk(inode, map); 451 up_write(&iinfo->i_data_sem); 452 return err; 453 } 454 455 static int __udf_get_block(struct inode *inode, sector_t block, 456 struct buffer_head *bh_result, int flags) 457 { 458 int err; 459 struct udf_map_rq map = { 460 .lblk = block, 461 .iflags = flags, 462 }; 463 464 err = udf_map_block(inode, &map); 465 if (err < 0) 466 return err; 467 if (map.oflags & UDF_BLK_MAPPED) { 468 map_bh(bh_result, inode->i_sb, map.pblk); 469 if (map.oflags & UDF_BLK_NEW) 470 set_buffer_new(bh_result); 471 } 472 return 0; 473 } 474 475 int udf_get_block(struct inode *inode, sector_t block, 476 struct buffer_head *bh_result, int create) 477 { 478 int flags = create ? UDF_MAP_CREATE : 0; 479 480 /* 481 * We preallocate blocks only for regular files. It also makes sense 482 * for directories but there's a problem when to drop the 483 * preallocation. We might use some delayed work for that but I feel 484 * it's overengineering for a filesystem like UDF. 485 */ 486 if (!S_ISREG(inode->i_mode)) 487 flags |= UDF_MAP_NOPREALLOC; 488 return __udf_get_block(inode, block, bh_result, flags); 489 } 490 491 /* 492 * We shouldn't be allocating blocks on page writeback since we allocate them 493 * on page fault. We can spot dirty buffers without allocated blocks though 494 * when truncate expands file. These however don't have valid data so we can 495 * safely ignore them. So never allocate blocks from page writeback. 496 */ 497 static int udf_get_block_wb(struct inode *inode, sector_t block, 498 struct buffer_head *bh_result, int create) 499 { 500 return __udf_get_block(inode, block, bh_result, 0); 501 } 502 503 /* Extend the file with new blocks totaling 'new_block_bytes', 504 * return the number of extents added 505 */ 506 static int udf_do_extend_file(struct inode *inode, 507 struct extent_position *last_pos, 508 struct kernel_long_ad *last_ext, 509 loff_t new_block_bytes) 510 { 511 uint32_t add; 512 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 513 struct super_block *sb = inode->i_sb; 514 struct udf_inode_info *iinfo; 515 int err; 516 517 /* The previous extent is fake and we should not extend by anything 518 * - there's nothing to do... */ 519 if (!new_block_bytes && fake) 520 return 0; 521 522 iinfo = UDF_I(inode); 523 /* Round the last extent up to a multiple of block size */ 524 if (last_ext->extLength & (sb->s_blocksize - 1)) { 525 last_ext->extLength = 526 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 527 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 528 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 529 iinfo->i_lenExtents = 530 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 531 ~(sb->s_blocksize - 1); 532 } 533 534 add = 0; 535 /* Can we merge with the previous extent? */ 536 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 537 EXT_NOT_RECORDED_NOT_ALLOCATED) { 538 add = (1 << 30) - sb->s_blocksize - 539 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 540 if (add > new_block_bytes) 541 add = new_block_bytes; 542 new_block_bytes -= add; 543 last_ext->extLength += add; 544 } 545 546 if (fake) { 547 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 548 last_ext->extLength, 1); 549 if (err < 0) 550 goto out_err; 551 count++; 552 } else { 553 struct kernel_lb_addr tmploc; 554 uint32_t tmplen; 555 556 udf_write_aext(inode, last_pos, &last_ext->extLocation, 557 last_ext->extLength, 1); 558 559 /* 560 * We've rewritten the last extent. If we are going to add 561 * more extents, we may need to enter possible following 562 * empty indirect extent. 563 */ 564 if (new_block_bytes) 565 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 566 } 567 iinfo->i_lenExtents += add; 568 569 /* Managed to do everything necessary? */ 570 if (!new_block_bytes) 571 goto out; 572 573 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 574 last_ext->extLocation.logicalBlockNum = 0; 575 last_ext->extLocation.partitionReferenceNum = 0; 576 add = (1 << 30) - sb->s_blocksize; 577 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 578 579 /* Create enough extents to cover the whole hole */ 580 while (new_block_bytes > add) { 581 new_block_bytes -= add; 582 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 583 last_ext->extLength, 1); 584 if (err) 585 goto out_err; 586 iinfo->i_lenExtents += add; 587 count++; 588 } 589 if (new_block_bytes) { 590 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 591 new_block_bytes; 592 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 593 last_ext->extLength, 1); 594 if (err) 595 goto out_err; 596 iinfo->i_lenExtents += new_block_bytes; 597 count++; 598 } 599 600 out: 601 /* last_pos should point to the last written extent... */ 602 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 603 last_pos->offset -= sizeof(struct short_ad); 604 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 605 last_pos->offset -= sizeof(struct long_ad); 606 else 607 return -EIO; 608 609 return count; 610 out_err: 611 /* Remove extents we've created so far */ 612 udf_clear_extent_cache(inode); 613 udf_truncate_extents(inode); 614 return err; 615 } 616 617 /* Extend the final block of the file to final_block_len bytes */ 618 static void udf_do_extend_final_block(struct inode *inode, 619 struct extent_position *last_pos, 620 struct kernel_long_ad *last_ext, 621 uint32_t new_elen) 622 { 623 uint32_t added_bytes; 624 625 /* 626 * Extent already large enough? It may be already rounded up to block 627 * size... 628 */ 629 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 630 return; 631 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 632 last_ext->extLength += added_bytes; 633 UDF_I(inode)->i_lenExtents += added_bytes; 634 635 udf_write_aext(inode, last_pos, &last_ext->extLocation, 636 last_ext->extLength, 1); 637 } 638 639 static int udf_extend_file(struct inode *inode, loff_t newsize) 640 { 641 642 struct extent_position epos; 643 struct kernel_lb_addr eloc; 644 uint32_t elen; 645 int8_t etype; 646 struct super_block *sb = inode->i_sb; 647 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 648 loff_t new_elen; 649 int adsize; 650 struct udf_inode_info *iinfo = UDF_I(inode); 651 struct kernel_long_ad extent; 652 int err = 0; 653 bool within_last_ext; 654 655 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 656 adsize = sizeof(struct short_ad); 657 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 658 adsize = sizeof(struct long_ad); 659 else 660 BUG(); 661 662 down_write(&iinfo->i_data_sem); 663 /* 664 * When creating hole in file, just don't bother with preserving 665 * preallocation. It likely won't be very useful anyway. 666 */ 667 udf_discard_prealloc(inode); 668 669 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 670 within_last_ext = (etype != -1); 671 /* We don't expect extents past EOF... */ 672 WARN_ON_ONCE(within_last_ext && 673 elen > ((loff_t)offset + 1) << inode->i_blkbits); 674 675 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 676 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 677 /* File has no extents at all or has empty last 678 * indirect extent! Create a fake extent... */ 679 extent.extLocation.logicalBlockNum = 0; 680 extent.extLocation.partitionReferenceNum = 0; 681 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 682 } else { 683 epos.offset -= adsize; 684 etype = udf_next_aext(inode, &epos, &extent.extLocation, 685 &extent.extLength, 0); 686 extent.extLength |= etype << 30; 687 } 688 689 new_elen = ((loff_t)offset << inode->i_blkbits) | 690 (newsize & (sb->s_blocksize - 1)); 691 692 /* File has extent covering the new size (could happen when extending 693 * inside a block)? 694 */ 695 if (within_last_ext) { 696 /* Extending file within the last file block */ 697 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 698 } else { 699 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 700 } 701 702 if (err < 0) 703 goto out; 704 err = 0; 705 out: 706 brelse(epos.bh); 707 up_write(&iinfo->i_data_sem); 708 return err; 709 } 710 711 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 712 { 713 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 714 struct extent_position prev_epos, cur_epos, next_epos; 715 int count = 0, startnum = 0, endnum = 0; 716 uint32_t elen = 0, tmpelen; 717 struct kernel_lb_addr eloc, tmpeloc; 718 int c = 1; 719 loff_t lbcount = 0, b_off = 0; 720 udf_pblk_t newblocknum; 721 sector_t offset = 0; 722 int8_t etype; 723 struct udf_inode_info *iinfo = UDF_I(inode); 724 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 725 int lastblock = 0; 726 bool isBeyondEOF; 727 int ret = 0; 728 729 prev_epos.offset = udf_file_entry_alloc_offset(inode); 730 prev_epos.block = iinfo->i_location; 731 prev_epos.bh = NULL; 732 cur_epos = next_epos = prev_epos; 733 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 734 735 /* find the extent which contains the block we are looking for. 736 alternate between laarr[0] and laarr[1] for locations of the 737 current extent, and the previous extent */ 738 do { 739 if (prev_epos.bh != cur_epos.bh) { 740 brelse(prev_epos.bh); 741 get_bh(cur_epos.bh); 742 prev_epos.bh = cur_epos.bh; 743 } 744 if (cur_epos.bh != next_epos.bh) { 745 brelse(cur_epos.bh); 746 get_bh(next_epos.bh); 747 cur_epos.bh = next_epos.bh; 748 } 749 750 lbcount += elen; 751 752 prev_epos.block = cur_epos.block; 753 cur_epos.block = next_epos.block; 754 755 prev_epos.offset = cur_epos.offset; 756 cur_epos.offset = next_epos.offset; 757 758 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 759 if (etype == -1) 760 break; 761 762 c = !c; 763 764 laarr[c].extLength = (etype << 30) | elen; 765 laarr[c].extLocation = eloc; 766 767 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 768 pgoal = eloc.logicalBlockNum + 769 ((elen + inode->i_sb->s_blocksize - 1) >> 770 inode->i_sb->s_blocksize_bits); 771 772 count++; 773 } while (lbcount + elen <= b_off); 774 775 b_off -= lbcount; 776 offset = b_off >> inode->i_sb->s_blocksize_bits; 777 /* 778 * Move prev_epos and cur_epos into indirect extent if we are at 779 * the pointer to it 780 */ 781 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 782 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 783 784 /* if the extent is allocated and recorded, return the block 785 if the extent is not a multiple of the blocksize, round up */ 786 787 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 788 if (elen & (inode->i_sb->s_blocksize - 1)) { 789 elen = EXT_RECORDED_ALLOCATED | 790 ((elen + inode->i_sb->s_blocksize - 1) & 791 ~(inode->i_sb->s_blocksize - 1)); 792 iinfo->i_lenExtents = 793 ALIGN(iinfo->i_lenExtents, 794 inode->i_sb->s_blocksize); 795 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 796 } 797 map->oflags = UDF_BLK_MAPPED; 798 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 799 goto out_free; 800 } 801 802 /* Are we beyond EOF and preallocated extent? */ 803 if (etype == -1) { 804 loff_t hole_len; 805 806 isBeyondEOF = true; 807 if (count) { 808 if (c) 809 laarr[0] = laarr[1]; 810 startnum = 1; 811 } else { 812 /* Create a fake extent when there's not one */ 813 memset(&laarr[0].extLocation, 0x00, 814 sizeof(struct kernel_lb_addr)); 815 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 816 /* Will udf_do_extend_file() create real extent from 817 a fake one? */ 818 startnum = (offset > 0); 819 } 820 /* Create extents for the hole between EOF and offset */ 821 hole_len = (loff_t)offset << inode->i_blkbits; 822 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 823 if (ret < 0) 824 goto out_free; 825 c = 0; 826 offset = 0; 827 count += ret; 828 /* 829 * Is there any real extent? - otherwise we overwrite the fake 830 * one... 831 */ 832 if (count) 833 c = !c; 834 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 835 inode->i_sb->s_blocksize; 836 memset(&laarr[c].extLocation, 0x00, 837 sizeof(struct kernel_lb_addr)); 838 count++; 839 endnum = c + 1; 840 lastblock = 1; 841 } else { 842 isBeyondEOF = false; 843 endnum = startnum = ((count > 2) ? 2 : count); 844 845 /* if the current extent is in position 0, 846 swap it with the previous */ 847 if (!c && count != 1) { 848 laarr[2] = laarr[0]; 849 laarr[0] = laarr[1]; 850 laarr[1] = laarr[2]; 851 c = 1; 852 } 853 854 /* if the current block is located in an extent, 855 read the next extent */ 856 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 857 if (etype != -1) { 858 laarr[c + 1].extLength = (etype << 30) | elen; 859 laarr[c + 1].extLocation = eloc; 860 count++; 861 startnum++; 862 endnum++; 863 } else 864 lastblock = 1; 865 } 866 867 /* if the current extent is not recorded but allocated, get the 868 * block in the extent corresponding to the requested block */ 869 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 870 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 871 else { /* otherwise, allocate a new block */ 872 if (iinfo->i_next_alloc_block == map->lblk) 873 goal = iinfo->i_next_alloc_goal; 874 875 if (!goal) { 876 if (!(goal = pgoal)) /* XXX: what was intended here? */ 877 goal = iinfo->i_location.logicalBlockNum + 1; 878 } 879 880 newblocknum = udf_new_block(inode->i_sb, inode, 881 iinfo->i_location.partitionReferenceNum, 882 goal, &ret); 883 if (!newblocknum) 884 goto out_free; 885 if (isBeyondEOF) 886 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 887 } 888 889 /* if the extent the requsted block is located in contains multiple 890 * blocks, split the extent into at most three extents. blocks prior 891 * to requested block, requested block, and blocks after requested 892 * block */ 893 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 894 895 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 896 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 897 898 /* merge any continuous blocks in laarr */ 899 udf_merge_extents(inode, laarr, &endnum); 900 901 /* write back the new extents, inserting new extents if the new number 902 * of extents is greater than the old number, and deleting extents if 903 * the new number of extents is less than the old number */ 904 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 905 if (ret < 0) 906 goto out_free; 907 908 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 909 iinfo->i_location.partitionReferenceNum, 0); 910 if (!map->pblk) { 911 ret = -EFSCORRUPTED; 912 goto out_free; 913 } 914 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 915 iinfo->i_next_alloc_block = map->lblk + 1; 916 iinfo->i_next_alloc_goal = newblocknum + 1; 917 inode->i_ctime = current_time(inode); 918 919 if (IS_SYNC(inode)) 920 udf_sync_inode(inode); 921 else 922 mark_inode_dirty(inode); 923 ret = 0; 924 out_free: 925 brelse(prev_epos.bh); 926 brelse(cur_epos.bh); 927 brelse(next_epos.bh); 928 return ret; 929 } 930 931 static void udf_split_extents(struct inode *inode, int *c, int offset, 932 udf_pblk_t newblocknum, 933 struct kernel_long_ad *laarr, int *endnum) 934 { 935 unsigned long blocksize = inode->i_sb->s_blocksize; 936 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 937 938 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 939 (laarr[*c].extLength >> 30) == 940 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 941 int curr = *c; 942 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 943 blocksize - 1) >> blocksize_bits; 944 int8_t etype = (laarr[curr].extLength >> 30); 945 946 if (blen == 1) 947 ; 948 else if (!offset || blen == offset + 1) { 949 laarr[curr + 2] = laarr[curr + 1]; 950 laarr[curr + 1] = laarr[curr]; 951 } else { 952 laarr[curr + 3] = laarr[curr + 1]; 953 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 954 } 955 956 if (offset) { 957 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 958 udf_free_blocks(inode->i_sb, inode, 959 &laarr[curr].extLocation, 960 0, offset); 961 laarr[curr].extLength = 962 EXT_NOT_RECORDED_NOT_ALLOCATED | 963 (offset << blocksize_bits); 964 laarr[curr].extLocation.logicalBlockNum = 0; 965 laarr[curr].extLocation. 966 partitionReferenceNum = 0; 967 } else 968 laarr[curr].extLength = (etype << 30) | 969 (offset << blocksize_bits); 970 curr++; 971 (*c)++; 972 (*endnum)++; 973 } 974 975 laarr[curr].extLocation.logicalBlockNum = newblocknum; 976 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 977 laarr[curr].extLocation.partitionReferenceNum = 978 UDF_I(inode)->i_location.partitionReferenceNum; 979 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 980 blocksize; 981 curr++; 982 983 if (blen != offset + 1) { 984 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 985 laarr[curr].extLocation.logicalBlockNum += 986 offset + 1; 987 laarr[curr].extLength = (etype << 30) | 988 ((blen - (offset + 1)) << blocksize_bits); 989 curr++; 990 (*endnum)++; 991 } 992 } 993 } 994 995 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 996 struct kernel_long_ad *laarr, 997 int *endnum) 998 { 999 int start, length = 0, currlength = 0, i; 1000 1001 if (*endnum >= (c + 1)) { 1002 if (!lastblock) 1003 return; 1004 else 1005 start = c; 1006 } else { 1007 if ((laarr[c + 1].extLength >> 30) == 1008 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1009 start = c + 1; 1010 length = currlength = 1011 (((laarr[c + 1].extLength & 1012 UDF_EXTENT_LENGTH_MASK) + 1013 inode->i_sb->s_blocksize - 1) >> 1014 inode->i_sb->s_blocksize_bits); 1015 } else 1016 start = c; 1017 } 1018 1019 for (i = start + 1; i <= *endnum; i++) { 1020 if (i == *endnum) { 1021 if (lastblock) 1022 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1023 } else if ((laarr[i].extLength >> 30) == 1024 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1025 length += (((laarr[i].extLength & 1026 UDF_EXTENT_LENGTH_MASK) + 1027 inode->i_sb->s_blocksize - 1) >> 1028 inode->i_sb->s_blocksize_bits); 1029 } else 1030 break; 1031 } 1032 1033 if (length) { 1034 int next = laarr[start].extLocation.logicalBlockNum + 1035 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1036 inode->i_sb->s_blocksize - 1) >> 1037 inode->i_sb->s_blocksize_bits); 1038 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1039 laarr[start].extLocation.partitionReferenceNum, 1040 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1041 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1042 currlength); 1043 if (numalloc) { 1044 if (start == (c + 1)) 1045 laarr[start].extLength += 1046 (numalloc << 1047 inode->i_sb->s_blocksize_bits); 1048 else { 1049 memmove(&laarr[c + 2], &laarr[c + 1], 1050 sizeof(struct long_ad) * (*endnum - (c + 1))); 1051 (*endnum)++; 1052 laarr[c + 1].extLocation.logicalBlockNum = next; 1053 laarr[c + 1].extLocation.partitionReferenceNum = 1054 laarr[c].extLocation. 1055 partitionReferenceNum; 1056 laarr[c + 1].extLength = 1057 EXT_NOT_RECORDED_ALLOCATED | 1058 (numalloc << 1059 inode->i_sb->s_blocksize_bits); 1060 start = c + 1; 1061 } 1062 1063 for (i = start + 1; numalloc && i < *endnum; i++) { 1064 int elen = ((laarr[i].extLength & 1065 UDF_EXTENT_LENGTH_MASK) + 1066 inode->i_sb->s_blocksize - 1) >> 1067 inode->i_sb->s_blocksize_bits; 1068 1069 if (elen > numalloc) { 1070 laarr[i].extLength -= 1071 (numalloc << 1072 inode->i_sb->s_blocksize_bits); 1073 numalloc = 0; 1074 } else { 1075 numalloc -= elen; 1076 if (*endnum > (i + 1)) 1077 memmove(&laarr[i], 1078 &laarr[i + 1], 1079 sizeof(struct long_ad) * 1080 (*endnum - (i + 1))); 1081 i--; 1082 (*endnum)--; 1083 } 1084 } 1085 UDF_I(inode)->i_lenExtents += 1086 numalloc << inode->i_sb->s_blocksize_bits; 1087 } 1088 } 1089 } 1090 1091 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1092 int *endnum) 1093 { 1094 int i; 1095 unsigned long blocksize = inode->i_sb->s_blocksize; 1096 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1097 1098 for (i = 0; i < (*endnum - 1); i++) { 1099 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1100 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1101 1102 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1103 (((li->extLength >> 30) == 1104 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1105 ((lip1->extLocation.logicalBlockNum - 1106 li->extLocation.logicalBlockNum) == 1107 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1108 blocksize - 1) >> blocksize_bits)))) { 1109 1110 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1111 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1112 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1113 li->extLength = lip1->extLength + 1114 (((li->extLength & 1115 UDF_EXTENT_LENGTH_MASK) + 1116 blocksize - 1) & ~(blocksize - 1)); 1117 if (*endnum > (i + 2)) 1118 memmove(&laarr[i + 1], &laarr[i + 2], 1119 sizeof(struct long_ad) * 1120 (*endnum - (i + 2))); 1121 i--; 1122 (*endnum)--; 1123 } 1124 } else if (((li->extLength >> 30) == 1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1126 ((lip1->extLength >> 30) == 1127 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1128 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1129 ((li->extLength & 1130 UDF_EXTENT_LENGTH_MASK) + 1131 blocksize - 1) >> blocksize_bits); 1132 li->extLocation.logicalBlockNum = 0; 1133 li->extLocation.partitionReferenceNum = 0; 1134 1135 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1136 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1137 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1138 lip1->extLength = (lip1->extLength - 1139 (li->extLength & 1140 UDF_EXTENT_LENGTH_MASK) + 1141 UDF_EXTENT_LENGTH_MASK) & 1142 ~(blocksize - 1); 1143 li->extLength = (li->extLength & 1144 UDF_EXTENT_FLAG_MASK) + 1145 (UDF_EXTENT_LENGTH_MASK + 1) - 1146 blocksize; 1147 } else { 1148 li->extLength = lip1->extLength + 1149 (((li->extLength & 1150 UDF_EXTENT_LENGTH_MASK) + 1151 blocksize - 1) & ~(blocksize - 1)); 1152 if (*endnum > (i + 2)) 1153 memmove(&laarr[i + 1], &laarr[i + 2], 1154 sizeof(struct long_ad) * 1155 (*endnum - (i + 2))); 1156 i--; 1157 (*endnum)--; 1158 } 1159 } else if ((li->extLength >> 30) == 1160 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1161 udf_free_blocks(inode->i_sb, inode, 1162 &li->extLocation, 0, 1163 ((li->extLength & 1164 UDF_EXTENT_LENGTH_MASK) + 1165 blocksize - 1) >> blocksize_bits); 1166 li->extLocation.logicalBlockNum = 0; 1167 li->extLocation.partitionReferenceNum = 0; 1168 li->extLength = (li->extLength & 1169 UDF_EXTENT_LENGTH_MASK) | 1170 EXT_NOT_RECORDED_NOT_ALLOCATED; 1171 } 1172 } 1173 } 1174 1175 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1176 int startnum, int endnum, 1177 struct extent_position *epos) 1178 { 1179 int start = 0, i; 1180 struct kernel_lb_addr tmploc; 1181 uint32_t tmplen; 1182 int err; 1183 1184 if (startnum > endnum) { 1185 for (i = 0; i < (startnum - endnum); i++) 1186 udf_delete_aext(inode, *epos); 1187 } else if (startnum < endnum) { 1188 for (i = 0; i < (endnum - startnum); i++) { 1189 err = udf_insert_aext(inode, *epos, 1190 laarr[i].extLocation, 1191 laarr[i].extLength); 1192 /* 1193 * If we fail here, we are likely corrupting the extent 1194 * list and leaking blocks. At least stop early to 1195 * limit the damage. 1196 */ 1197 if (err < 0) 1198 return err; 1199 udf_next_aext(inode, epos, &laarr[i].extLocation, 1200 &laarr[i].extLength, 1); 1201 start++; 1202 } 1203 } 1204 1205 for (i = start; i < endnum; i++) { 1206 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1207 udf_write_aext(inode, epos, &laarr[i].extLocation, 1208 laarr[i].extLength, 1); 1209 } 1210 return 0; 1211 } 1212 1213 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1214 int create, int *err) 1215 { 1216 struct buffer_head *bh = NULL; 1217 struct udf_map_rq map = { 1218 .lblk = block, 1219 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1220 }; 1221 1222 *err = udf_map_block(inode, &map); 1223 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1224 return NULL; 1225 1226 bh = sb_getblk(inode->i_sb, map.pblk); 1227 if (!bh) { 1228 *err = -ENOMEM; 1229 return NULL; 1230 } 1231 if (map.oflags & UDF_BLK_NEW) { 1232 lock_buffer(bh); 1233 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1234 set_buffer_uptodate(bh); 1235 unlock_buffer(bh); 1236 mark_buffer_dirty_inode(bh, inode); 1237 return bh; 1238 } 1239 1240 if (bh_read(bh, 0) >= 0) 1241 return bh; 1242 1243 brelse(bh); 1244 *err = -EIO; 1245 return NULL; 1246 } 1247 1248 int udf_setsize(struct inode *inode, loff_t newsize) 1249 { 1250 int err = 0; 1251 struct udf_inode_info *iinfo; 1252 unsigned int bsize = i_blocksize(inode); 1253 1254 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1255 S_ISLNK(inode->i_mode))) 1256 return -EINVAL; 1257 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1258 return -EPERM; 1259 1260 filemap_invalidate_lock(inode->i_mapping); 1261 iinfo = UDF_I(inode); 1262 if (newsize > inode->i_size) { 1263 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1264 if (bsize >= 1265 (udf_file_entry_alloc_offset(inode) + newsize)) { 1266 down_write(&iinfo->i_data_sem); 1267 iinfo->i_lenAlloc = newsize; 1268 up_write(&iinfo->i_data_sem); 1269 goto set_size; 1270 } 1271 err = udf_expand_file_adinicb(inode); 1272 if (err) 1273 goto out_unlock; 1274 } 1275 err = udf_extend_file(inode, newsize); 1276 if (err) 1277 goto out_unlock; 1278 set_size: 1279 truncate_setsize(inode, newsize); 1280 } else { 1281 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1282 down_write(&iinfo->i_data_sem); 1283 udf_clear_extent_cache(inode); 1284 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1285 0x00, bsize - newsize - 1286 udf_file_entry_alloc_offset(inode)); 1287 iinfo->i_lenAlloc = newsize; 1288 truncate_setsize(inode, newsize); 1289 up_write(&iinfo->i_data_sem); 1290 goto update_time; 1291 } 1292 err = block_truncate_page(inode->i_mapping, newsize, 1293 udf_get_block); 1294 if (err) 1295 goto out_unlock; 1296 truncate_setsize(inode, newsize); 1297 down_write(&iinfo->i_data_sem); 1298 udf_clear_extent_cache(inode); 1299 err = udf_truncate_extents(inode); 1300 up_write(&iinfo->i_data_sem); 1301 if (err) 1302 goto out_unlock; 1303 } 1304 update_time: 1305 inode->i_mtime = inode->i_ctime = current_time(inode); 1306 if (IS_SYNC(inode)) 1307 udf_sync_inode(inode); 1308 else 1309 mark_inode_dirty(inode); 1310 out_unlock: 1311 filemap_invalidate_unlock(inode->i_mapping); 1312 return err; 1313 } 1314 1315 /* 1316 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1317 * arbitrary - just that we hopefully don't limit any real use of rewritten 1318 * inode on write-once media but avoid looping for too long on corrupted media. 1319 */ 1320 #define UDF_MAX_ICB_NESTING 1024 1321 1322 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1323 { 1324 struct buffer_head *bh = NULL; 1325 struct fileEntry *fe; 1326 struct extendedFileEntry *efe; 1327 uint16_t ident; 1328 struct udf_inode_info *iinfo = UDF_I(inode); 1329 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1330 struct kernel_lb_addr *iloc = &iinfo->i_location; 1331 unsigned int link_count; 1332 unsigned int indirections = 0; 1333 int bs = inode->i_sb->s_blocksize; 1334 int ret = -EIO; 1335 uint32_t uid, gid; 1336 1337 reread: 1338 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1339 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1340 iloc->partitionReferenceNum, sbi->s_partitions); 1341 return -EIO; 1342 } 1343 1344 if (iloc->logicalBlockNum >= 1345 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1346 udf_debug("block=%u, partition=%u out of range\n", 1347 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1348 return -EIO; 1349 } 1350 1351 /* 1352 * Set defaults, but the inode is still incomplete! 1353 * Note: get_new_inode() sets the following on a new inode: 1354 * i_sb = sb 1355 * i_no = ino 1356 * i_flags = sb->s_flags 1357 * i_state = 0 1358 * clean_inode(): zero fills and sets 1359 * i_count = 1 1360 * i_nlink = 1 1361 * i_op = NULL; 1362 */ 1363 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1364 if (!bh) { 1365 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1366 return -EIO; 1367 } 1368 1369 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1370 ident != TAG_IDENT_USE) { 1371 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1372 inode->i_ino, ident); 1373 goto out; 1374 } 1375 1376 fe = (struct fileEntry *)bh->b_data; 1377 efe = (struct extendedFileEntry *)bh->b_data; 1378 1379 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1380 struct buffer_head *ibh; 1381 1382 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1383 if (ident == TAG_IDENT_IE && ibh) { 1384 struct kernel_lb_addr loc; 1385 struct indirectEntry *ie; 1386 1387 ie = (struct indirectEntry *)ibh->b_data; 1388 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1389 1390 if (ie->indirectICB.extLength) { 1391 brelse(ibh); 1392 memcpy(&iinfo->i_location, &loc, 1393 sizeof(struct kernel_lb_addr)); 1394 if (++indirections > UDF_MAX_ICB_NESTING) { 1395 udf_err(inode->i_sb, 1396 "too many ICBs in ICB hierarchy" 1397 " (max %d supported)\n", 1398 UDF_MAX_ICB_NESTING); 1399 goto out; 1400 } 1401 brelse(bh); 1402 goto reread; 1403 } 1404 } 1405 brelse(ibh); 1406 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1407 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1408 le16_to_cpu(fe->icbTag.strategyType)); 1409 goto out; 1410 } 1411 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1412 iinfo->i_strat4096 = 0; 1413 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1414 iinfo->i_strat4096 = 1; 1415 1416 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1417 ICBTAG_FLAG_AD_MASK; 1418 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1419 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1420 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1421 ret = -EIO; 1422 goto out; 1423 } 1424 iinfo->i_hidden = hidden_inode; 1425 iinfo->i_unique = 0; 1426 iinfo->i_lenEAttr = 0; 1427 iinfo->i_lenExtents = 0; 1428 iinfo->i_lenAlloc = 0; 1429 iinfo->i_next_alloc_block = 0; 1430 iinfo->i_next_alloc_goal = 0; 1431 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1432 iinfo->i_efe = 1; 1433 iinfo->i_use = 0; 1434 ret = udf_alloc_i_data(inode, bs - 1435 sizeof(struct extendedFileEntry)); 1436 if (ret) 1437 goto out; 1438 memcpy(iinfo->i_data, 1439 bh->b_data + sizeof(struct extendedFileEntry), 1440 bs - sizeof(struct extendedFileEntry)); 1441 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1442 iinfo->i_efe = 0; 1443 iinfo->i_use = 0; 1444 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1445 if (ret) 1446 goto out; 1447 memcpy(iinfo->i_data, 1448 bh->b_data + sizeof(struct fileEntry), 1449 bs - sizeof(struct fileEntry)); 1450 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1451 iinfo->i_efe = 0; 1452 iinfo->i_use = 1; 1453 iinfo->i_lenAlloc = le32_to_cpu( 1454 ((struct unallocSpaceEntry *)bh->b_data)-> 1455 lengthAllocDescs); 1456 ret = udf_alloc_i_data(inode, bs - 1457 sizeof(struct unallocSpaceEntry)); 1458 if (ret) 1459 goto out; 1460 memcpy(iinfo->i_data, 1461 bh->b_data + sizeof(struct unallocSpaceEntry), 1462 bs - sizeof(struct unallocSpaceEntry)); 1463 return 0; 1464 } 1465 1466 ret = -EIO; 1467 read_lock(&sbi->s_cred_lock); 1468 uid = le32_to_cpu(fe->uid); 1469 if (uid == UDF_INVALID_ID || 1470 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1471 inode->i_uid = sbi->s_uid; 1472 else 1473 i_uid_write(inode, uid); 1474 1475 gid = le32_to_cpu(fe->gid); 1476 if (gid == UDF_INVALID_ID || 1477 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1478 inode->i_gid = sbi->s_gid; 1479 else 1480 i_gid_write(inode, gid); 1481 1482 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1483 sbi->s_fmode != UDF_INVALID_MODE) 1484 inode->i_mode = sbi->s_fmode; 1485 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1486 sbi->s_dmode != UDF_INVALID_MODE) 1487 inode->i_mode = sbi->s_dmode; 1488 else 1489 inode->i_mode = udf_convert_permissions(fe); 1490 inode->i_mode &= ~sbi->s_umask; 1491 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1492 1493 read_unlock(&sbi->s_cred_lock); 1494 1495 link_count = le16_to_cpu(fe->fileLinkCount); 1496 if (!link_count) { 1497 if (!hidden_inode) { 1498 ret = -ESTALE; 1499 goto out; 1500 } 1501 link_count = 1; 1502 } 1503 set_nlink(inode, link_count); 1504 1505 inode->i_size = le64_to_cpu(fe->informationLength); 1506 iinfo->i_lenExtents = inode->i_size; 1507 1508 if (iinfo->i_efe == 0) { 1509 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1510 (inode->i_sb->s_blocksize_bits - 9); 1511 1512 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1513 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1514 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1515 1516 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1517 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1518 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1519 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1520 iinfo->i_streamdir = 0; 1521 iinfo->i_lenStreams = 0; 1522 } else { 1523 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1524 (inode->i_sb->s_blocksize_bits - 9); 1525 1526 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1527 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1528 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1529 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1530 1531 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1532 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1533 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1534 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1535 1536 /* Named streams */ 1537 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1538 iinfo->i_locStreamdir = 1539 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1540 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1541 if (iinfo->i_lenStreams >= inode->i_size) 1542 iinfo->i_lenStreams -= inode->i_size; 1543 else 1544 iinfo->i_lenStreams = 0; 1545 } 1546 inode->i_generation = iinfo->i_unique; 1547 1548 /* 1549 * Sanity check length of allocation descriptors and extended attrs to 1550 * avoid integer overflows 1551 */ 1552 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1553 goto out; 1554 /* Now do exact checks */ 1555 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1556 goto out; 1557 /* Sanity checks for files in ICB so that we don't get confused later */ 1558 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1559 /* 1560 * For file in ICB data is stored in allocation descriptor 1561 * so sizes should match 1562 */ 1563 if (iinfo->i_lenAlloc != inode->i_size) 1564 goto out; 1565 /* File in ICB has to fit in there... */ 1566 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1567 goto out; 1568 } 1569 1570 switch (fe->icbTag.fileType) { 1571 case ICBTAG_FILE_TYPE_DIRECTORY: 1572 inode->i_op = &udf_dir_inode_operations; 1573 inode->i_fop = &udf_dir_operations; 1574 inode->i_mode |= S_IFDIR; 1575 inc_nlink(inode); 1576 break; 1577 case ICBTAG_FILE_TYPE_REALTIME: 1578 case ICBTAG_FILE_TYPE_REGULAR: 1579 case ICBTAG_FILE_TYPE_UNDEF: 1580 case ICBTAG_FILE_TYPE_VAT20: 1581 inode->i_data.a_ops = &udf_aops; 1582 inode->i_op = &udf_file_inode_operations; 1583 inode->i_fop = &udf_file_operations; 1584 inode->i_mode |= S_IFREG; 1585 break; 1586 case ICBTAG_FILE_TYPE_BLOCK: 1587 inode->i_mode |= S_IFBLK; 1588 break; 1589 case ICBTAG_FILE_TYPE_CHAR: 1590 inode->i_mode |= S_IFCHR; 1591 break; 1592 case ICBTAG_FILE_TYPE_FIFO: 1593 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1594 break; 1595 case ICBTAG_FILE_TYPE_SOCKET: 1596 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1597 break; 1598 case ICBTAG_FILE_TYPE_SYMLINK: 1599 inode->i_data.a_ops = &udf_symlink_aops; 1600 inode->i_op = &udf_symlink_inode_operations; 1601 inode_nohighmem(inode); 1602 inode->i_mode = S_IFLNK | 0777; 1603 break; 1604 case ICBTAG_FILE_TYPE_MAIN: 1605 udf_debug("METADATA FILE-----\n"); 1606 break; 1607 case ICBTAG_FILE_TYPE_MIRROR: 1608 udf_debug("METADATA MIRROR FILE-----\n"); 1609 break; 1610 case ICBTAG_FILE_TYPE_BITMAP: 1611 udf_debug("METADATA BITMAP FILE-----\n"); 1612 break; 1613 default: 1614 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1615 inode->i_ino, fe->icbTag.fileType); 1616 goto out; 1617 } 1618 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1619 struct deviceSpec *dsea = 1620 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1621 if (dsea) { 1622 init_special_inode(inode, inode->i_mode, 1623 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1624 le32_to_cpu(dsea->minorDeviceIdent))); 1625 /* Developer ID ??? */ 1626 } else 1627 goto out; 1628 } 1629 ret = 0; 1630 out: 1631 brelse(bh); 1632 return ret; 1633 } 1634 1635 static int udf_alloc_i_data(struct inode *inode, size_t size) 1636 { 1637 struct udf_inode_info *iinfo = UDF_I(inode); 1638 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1639 if (!iinfo->i_data) 1640 return -ENOMEM; 1641 return 0; 1642 } 1643 1644 static umode_t udf_convert_permissions(struct fileEntry *fe) 1645 { 1646 umode_t mode; 1647 uint32_t permissions; 1648 uint32_t flags; 1649 1650 permissions = le32_to_cpu(fe->permissions); 1651 flags = le16_to_cpu(fe->icbTag.flags); 1652 1653 mode = ((permissions) & 0007) | 1654 ((permissions >> 2) & 0070) | 1655 ((permissions >> 4) & 0700) | 1656 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1657 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1658 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1659 1660 return mode; 1661 } 1662 1663 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1664 { 1665 struct udf_inode_info *iinfo = UDF_I(inode); 1666 1667 /* 1668 * UDF 2.01 sec. 3.3.3.3 Note 2: 1669 * In Unix, delete permission tracks write 1670 */ 1671 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1672 if (mode & 0200) 1673 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1674 if (mode & 0020) 1675 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1676 if (mode & 0002) 1677 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1678 } 1679 1680 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1681 { 1682 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1683 } 1684 1685 static int udf_sync_inode(struct inode *inode) 1686 { 1687 return udf_update_inode(inode, 1); 1688 } 1689 1690 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1691 { 1692 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1693 (iinfo->i_crtime.tv_sec == time.tv_sec && 1694 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1695 iinfo->i_crtime = time; 1696 } 1697 1698 static int udf_update_inode(struct inode *inode, int do_sync) 1699 { 1700 struct buffer_head *bh = NULL; 1701 struct fileEntry *fe; 1702 struct extendedFileEntry *efe; 1703 uint64_t lb_recorded; 1704 uint32_t udfperms; 1705 uint16_t icbflags; 1706 uint16_t crclen; 1707 int err = 0; 1708 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1709 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1710 struct udf_inode_info *iinfo = UDF_I(inode); 1711 1712 bh = sb_getblk(inode->i_sb, 1713 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1714 if (!bh) { 1715 udf_debug("getblk failure\n"); 1716 return -EIO; 1717 } 1718 1719 lock_buffer(bh); 1720 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1721 fe = (struct fileEntry *)bh->b_data; 1722 efe = (struct extendedFileEntry *)bh->b_data; 1723 1724 if (iinfo->i_use) { 1725 struct unallocSpaceEntry *use = 1726 (struct unallocSpaceEntry *)bh->b_data; 1727 1728 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1729 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1730 iinfo->i_data, inode->i_sb->s_blocksize - 1731 sizeof(struct unallocSpaceEntry)); 1732 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1733 crclen = sizeof(struct unallocSpaceEntry); 1734 1735 goto finish; 1736 } 1737 1738 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1739 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1740 else 1741 fe->uid = cpu_to_le32(i_uid_read(inode)); 1742 1743 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1744 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1745 else 1746 fe->gid = cpu_to_le32(i_gid_read(inode)); 1747 1748 udfperms = ((inode->i_mode & 0007)) | 1749 ((inode->i_mode & 0070) << 2) | 1750 ((inode->i_mode & 0700) << 4); 1751 1752 udfperms |= iinfo->i_extraPerms; 1753 fe->permissions = cpu_to_le32(udfperms); 1754 1755 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1756 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1757 else { 1758 if (iinfo->i_hidden) 1759 fe->fileLinkCount = cpu_to_le16(0); 1760 else 1761 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1762 } 1763 1764 fe->informationLength = cpu_to_le64(inode->i_size); 1765 1766 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1767 struct regid *eid; 1768 struct deviceSpec *dsea = 1769 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1770 if (!dsea) { 1771 dsea = (struct deviceSpec *) 1772 udf_add_extendedattr(inode, 1773 sizeof(struct deviceSpec) + 1774 sizeof(struct regid), 12, 0x3); 1775 dsea->attrType = cpu_to_le32(12); 1776 dsea->attrSubtype = 1; 1777 dsea->attrLength = cpu_to_le32( 1778 sizeof(struct deviceSpec) + 1779 sizeof(struct regid)); 1780 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1781 } 1782 eid = (struct regid *)dsea->impUse; 1783 memset(eid, 0, sizeof(*eid)); 1784 strcpy(eid->ident, UDF_ID_DEVELOPER); 1785 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1786 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1787 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1788 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1789 } 1790 1791 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1792 lb_recorded = 0; /* No extents => no blocks! */ 1793 else 1794 lb_recorded = 1795 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1796 (blocksize_bits - 9); 1797 1798 if (iinfo->i_efe == 0) { 1799 memcpy(bh->b_data + sizeof(struct fileEntry), 1800 iinfo->i_data, 1801 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1802 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1803 1804 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1805 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1806 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1807 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1808 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1809 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1810 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1811 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1812 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1813 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1814 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1815 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1816 crclen = sizeof(struct fileEntry); 1817 } else { 1818 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1819 iinfo->i_data, 1820 inode->i_sb->s_blocksize - 1821 sizeof(struct extendedFileEntry)); 1822 efe->objectSize = 1823 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1824 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1825 1826 if (iinfo->i_streamdir) { 1827 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1828 1829 icb_lad->extLocation = 1830 cpu_to_lelb(iinfo->i_locStreamdir); 1831 icb_lad->extLength = 1832 cpu_to_le32(inode->i_sb->s_blocksize); 1833 } 1834 1835 udf_adjust_time(iinfo, inode->i_atime); 1836 udf_adjust_time(iinfo, inode->i_mtime); 1837 udf_adjust_time(iinfo, inode->i_ctime); 1838 1839 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1840 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1841 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1842 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1843 1844 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1845 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1846 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1847 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1848 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1849 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1850 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1851 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1852 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1853 crclen = sizeof(struct extendedFileEntry); 1854 } 1855 1856 finish: 1857 if (iinfo->i_strat4096) { 1858 fe->icbTag.strategyType = cpu_to_le16(4096); 1859 fe->icbTag.strategyParameter = cpu_to_le16(1); 1860 fe->icbTag.numEntries = cpu_to_le16(2); 1861 } else { 1862 fe->icbTag.strategyType = cpu_to_le16(4); 1863 fe->icbTag.numEntries = cpu_to_le16(1); 1864 } 1865 1866 if (iinfo->i_use) 1867 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1868 else if (S_ISDIR(inode->i_mode)) 1869 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1870 else if (S_ISREG(inode->i_mode)) 1871 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1872 else if (S_ISLNK(inode->i_mode)) 1873 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1874 else if (S_ISBLK(inode->i_mode)) 1875 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1876 else if (S_ISCHR(inode->i_mode)) 1877 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1878 else if (S_ISFIFO(inode->i_mode)) 1879 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1880 else if (S_ISSOCK(inode->i_mode)) 1881 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1882 1883 icbflags = iinfo->i_alloc_type | 1884 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1885 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1886 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1887 (le16_to_cpu(fe->icbTag.flags) & 1888 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1889 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1890 1891 fe->icbTag.flags = cpu_to_le16(icbflags); 1892 if (sbi->s_udfrev >= 0x0200) 1893 fe->descTag.descVersion = cpu_to_le16(3); 1894 else 1895 fe->descTag.descVersion = cpu_to_le16(2); 1896 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1897 fe->descTag.tagLocation = cpu_to_le32( 1898 iinfo->i_location.logicalBlockNum); 1899 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1900 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1901 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1902 crclen)); 1903 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1904 1905 set_buffer_uptodate(bh); 1906 unlock_buffer(bh); 1907 1908 /* write the data blocks */ 1909 mark_buffer_dirty(bh); 1910 if (do_sync) { 1911 sync_dirty_buffer(bh); 1912 if (buffer_write_io_error(bh)) { 1913 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1914 inode->i_ino); 1915 err = -EIO; 1916 } 1917 } 1918 brelse(bh); 1919 1920 return err; 1921 } 1922 1923 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1924 bool hidden_inode) 1925 { 1926 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1927 struct inode *inode = iget_locked(sb, block); 1928 int err; 1929 1930 if (!inode) 1931 return ERR_PTR(-ENOMEM); 1932 1933 if (!(inode->i_state & I_NEW)) { 1934 if (UDF_I(inode)->i_hidden != hidden_inode) { 1935 iput(inode); 1936 return ERR_PTR(-EFSCORRUPTED); 1937 } 1938 return inode; 1939 } 1940 1941 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1942 err = udf_read_inode(inode, hidden_inode); 1943 if (err < 0) { 1944 iget_failed(inode); 1945 return ERR_PTR(err); 1946 } 1947 unlock_new_inode(inode); 1948 1949 return inode; 1950 } 1951 1952 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1953 struct extent_position *epos) 1954 { 1955 struct super_block *sb = inode->i_sb; 1956 struct buffer_head *bh; 1957 struct allocExtDesc *aed; 1958 struct extent_position nepos; 1959 struct kernel_lb_addr neloc; 1960 int ver, adsize; 1961 1962 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1963 adsize = sizeof(struct short_ad); 1964 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1965 adsize = sizeof(struct long_ad); 1966 else 1967 return -EIO; 1968 1969 neloc.logicalBlockNum = block; 1970 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1971 1972 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1973 if (!bh) 1974 return -EIO; 1975 lock_buffer(bh); 1976 memset(bh->b_data, 0x00, sb->s_blocksize); 1977 set_buffer_uptodate(bh); 1978 unlock_buffer(bh); 1979 mark_buffer_dirty_inode(bh, inode); 1980 1981 aed = (struct allocExtDesc *)(bh->b_data); 1982 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1983 aed->previousAllocExtLocation = 1984 cpu_to_le32(epos->block.logicalBlockNum); 1985 } 1986 aed->lengthAllocDescs = cpu_to_le32(0); 1987 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1988 ver = 3; 1989 else 1990 ver = 2; 1991 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1992 sizeof(struct tag)); 1993 1994 nepos.block = neloc; 1995 nepos.offset = sizeof(struct allocExtDesc); 1996 nepos.bh = bh; 1997 1998 /* 1999 * Do we have to copy current last extent to make space for indirect 2000 * one? 2001 */ 2002 if (epos->offset + adsize > sb->s_blocksize) { 2003 struct kernel_lb_addr cp_loc; 2004 uint32_t cp_len; 2005 int cp_type; 2006 2007 epos->offset -= adsize; 2008 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2009 cp_len |= ((uint32_t)cp_type) << 30; 2010 2011 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2012 udf_write_aext(inode, epos, &nepos.block, 2013 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2014 } else { 2015 __udf_add_aext(inode, epos, &nepos.block, 2016 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2017 } 2018 2019 brelse(epos->bh); 2020 *epos = nepos; 2021 2022 return 0; 2023 } 2024 2025 /* 2026 * Append extent at the given position - should be the first free one in inode 2027 * / indirect extent. This function assumes there is enough space in the inode 2028 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2029 */ 2030 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2031 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2032 { 2033 struct udf_inode_info *iinfo = UDF_I(inode); 2034 struct allocExtDesc *aed; 2035 int adsize; 2036 2037 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2038 adsize = sizeof(struct short_ad); 2039 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2040 adsize = sizeof(struct long_ad); 2041 else 2042 return -EIO; 2043 2044 if (!epos->bh) { 2045 WARN_ON(iinfo->i_lenAlloc != 2046 epos->offset - udf_file_entry_alloc_offset(inode)); 2047 } else { 2048 aed = (struct allocExtDesc *)epos->bh->b_data; 2049 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2050 epos->offset - sizeof(struct allocExtDesc)); 2051 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2052 } 2053 2054 udf_write_aext(inode, epos, eloc, elen, inc); 2055 2056 if (!epos->bh) { 2057 iinfo->i_lenAlloc += adsize; 2058 mark_inode_dirty(inode); 2059 } else { 2060 aed = (struct allocExtDesc *)epos->bh->b_data; 2061 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2062 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2063 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2064 udf_update_tag(epos->bh->b_data, 2065 epos->offset + (inc ? 0 : adsize)); 2066 else 2067 udf_update_tag(epos->bh->b_data, 2068 sizeof(struct allocExtDesc)); 2069 mark_buffer_dirty_inode(epos->bh, inode); 2070 } 2071 2072 return 0; 2073 } 2074 2075 /* 2076 * Append extent at given position - should be the first free one in inode 2077 * / indirect extent. Takes care of allocating and linking indirect blocks. 2078 */ 2079 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2080 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2081 { 2082 int adsize; 2083 struct super_block *sb = inode->i_sb; 2084 2085 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2086 adsize = sizeof(struct short_ad); 2087 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2088 adsize = sizeof(struct long_ad); 2089 else 2090 return -EIO; 2091 2092 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2093 int err; 2094 udf_pblk_t new_block; 2095 2096 new_block = udf_new_block(sb, NULL, 2097 epos->block.partitionReferenceNum, 2098 epos->block.logicalBlockNum, &err); 2099 if (!new_block) 2100 return -ENOSPC; 2101 2102 err = udf_setup_indirect_aext(inode, new_block, epos); 2103 if (err) 2104 return err; 2105 } 2106 2107 return __udf_add_aext(inode, epos, eloc, elen, inc); 2108 } 2109 2110 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2111 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2112 { 2113 int adsize; 2114 uint8_t *ptr; 2115 struct short_ad *sad; 2116 struct long_ad *lad; 2117 struct udf_inode_info *iinfo = UDF_I(inode); 2118 2119 if (!epos->bh) 2120 ptr = iinfo->i_data + epos->offset - 2121 udf_file_entry_alloc_offset(inode) + 2122 iinfo->i_lenEAttr; 2123 else 2124 ptr = epos->bh->b_data + epos->offset; 2125 2126 switch (iinfo->i_alloc_type) { 2127 case ICBTAG_FLAG_AD_SHORT: 2128 sad = (struct short_ad *)ptr; 2129 sad->extLength = cpu_to_le32(elen); 2130 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2131 adsize = sizeof(struct short_ad); 2132 break; 2133 case ICBTAG_FLAG_AD_LONG: 2134 lad = (struct long_ad *)ptr; 2135 lad->extLength = cpu_to_le32(elen); 2136 lad->extLocation = cpu_to_lelb(*eloc); 2137 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2138 adsize = sizeof(struct long_ad); 2139 break; 2140 default: 2141 return; 2142 } 2143 2144 if (epos->bh) { 2145 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2146 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2147 struct allocExtDesc *aed = 2148 (struct allocExtDesc *)epos->bh->b_data; 2149 udf_update_tag(epos->bh->b_data, 2150 le32_to_cpu(aed->lengthAllocDescs) + 2151 sizeof(struct allocExtDesc)); 2152 } 2153 mark_buffer_dirty_inode(epos->bh, inode); 2154 } else { 2155 mark_inode_dirty(inode); 2156 } 2157 2158 if (inc) 2159 epos->offset += adsize; 2160 } 2161 2162 /* 2163 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2164 * someone does some weird stuff. 2165 */ 2166 #define UDF_MAX_INDIR_EXTS 16 2167 2168 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2169 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2170 { 2171 int8_t etype; 2172 unsigned int indirections = 0; 2173 2174 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2175 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2176 udf_pblk_t block; 2177 2178 if (++indirections > UDF_MAX_INDIR_EXTS) { 2179 udf_err(inode->i_sb, 2180 "too many indirect extents in inode %lu\n", 2181 inode->i_ino); 2182 return -1; 2183 } 2184 2185 epos->block = *eloc; 2186 epos->offset = sizeof(struct allocExtDesc); 2187 brelse(epos->bh); 2188 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2189 epos->bh = sb_bread(inode->i_sb, block); 2190 if (!epos->bh) { 2191 udf_debug("reading block %u failed!\n", block); 2192 return -1; 2193 } 2194 } 2195 2196 return etype; 2197 } 2198 2199 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2200 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2201 { 2202 int alen; 2203 int8_t etype; 2204 uint8_t *ptr; 2205 struct short_ad *sad; 2206 struct long_ad *lad; 2207 struct udf_inode_info *iinfo = UDF_I(inode); 2208 2209 if (!epos->bh) { 2210 if (!epos->offset) 2211 epos->offset = udf_file_entry_alloc_offset(inode); 2212 ptr = iinfo->i_data + epos->offset - 2213 udf_file_entry_alloc_offset(inode) + 2214 iinfo->i_lenEAttr; 2215 alen = udf_file_entry_alloc_offset(inode) + 2216 iinfo->i_lenAlloc; 2217 } else { 2218 if (!epos->offset) 2219 epos->offset = sizeof(struct allocExtDesc); 2220 ptr = epos->bh->b_data + epos->offset; 2221 alen = sizeof(struct allocExtDesc) + 2222 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2223 lengthAllocDescs); 2224 } 2225 2226 switch (iinfo->i_alloc_type) { 2227 case ICBTAG_FLAG_AD_SHORT: 2228 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2229 if (!sad) 2230 return -1; 2231 etype = le32_to_cpu(sad->extLength) >> 30; 2232 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2233 eloc->partitionReferenceNum = 2234 iinfo->i_location.partitionReferenceNum; 2235 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2236 break; 2237 case ICBTAG_FLAG_AD_LONG: 2238 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2239 if (!lad) 2240 return -1; 2241 etype = le32_to_cpu(lad->extLength) >> 30; 2242 *eloc = lelb_to_cpu(lad->extLocation); 2243 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2244 break; 2245 default: 2246 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2247 return -1; 2248 } 2249 2250 return etype; 2251 } 2252 2253 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2254 struct kernel_lb_addr neloc, uint32_t nelen) 2255 { 2256 struct kernel_lb_addr oeloc; 2257 uint32_t oelen; 2258 int8_t etype; 2259 int err; 2260 2261 if (epos.bh) 2262 get_bh(epos.bh); 2263 2264 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2265 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2266 neloc = oeloc; 2267 nelen = (etype << 30) | oelen; 2268 } 2269 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2270 brelse(epos.bh); 2271 2272 return err; 2273 } 2274 2275 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2276 { 2277 struct extent_position oepos; 2278 int adsize; 2279 int8_t etype; 2280 struct allocExtDesc *aed; 2281 struct udf_inode_info *iinfo; 2282 struct kernel_lb_addr eloc; 2283 uint32_t elen; 2284 2285 if (epos.bh) { 2286 get_bh(epos.bh); 2287 get_bh(epos.bh); 2288 } 2289 2290 iinfo = UDF_I(inode); 2291 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2292 adsize = sizeof(struct short_ad); 2293 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2294 adsize = sizeof(struct long_ad); 2295 else 2296 adsize = 0; 2297 2298 oepos = epos; 2299 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2300 return -1; 2301 2302 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2303 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2304 if (oepos.bh != epos.bh) { 2305 oepos.block = epos.block; 2306 brelse(oepos.bh); 2307 get_bh(epos.bh); 2308 oepos.bh = epos.bh; 2309 oepos.offset = epos.offset - adsize; 2310 } 2311 } 2312 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2313 elen = 0; 2314 2315 if (epos.bh != oepos.bh) { 2316 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2317 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2318 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2319 if (!oepos.bh) { 2320 iinfo->i_lenAlloc -= (adsize * 2); 2321 mark_inode_dirty(inode); 2322 } else { 2323 aed = (struct allocExtDesc *)oepos.bh->b_data; 2324 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2325 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2326 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2327 udf_update_tag(oepos.bh->b_data, 2328 oepos.offset - (2 * adsize)); 2329 else 2330 udf_update_tag(oepos.bh->b_data, 2331 sizeof(struct allocExtDesc)); 2332 mark_buffer_dirty_inode(oepos.bh, inode); 2333 } 2334 } else { 2335 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2336 if (!oepos.bh) { 2337 iinfo->i_lenAlloc -= adsize; 2338 mark_inode_dirty(inode); 2339 } else { 2340 aed = (struct allocExtDesc *)oepos.bh->b_data; 2341 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2342 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2343 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2344 udf_update_tag(oepos.bh->b_data, 2345 epos.offset - adsize); 2346 else 2347 udf_update_tag(oepos.bh->b_data, 2348 sizeof(struct allocExtDesc)); 2349 mark_buffer_dirty_inode(oepos.bh, inode); 2350 } 2351 } 2352 2353 brelse(epos.bh); 2354 brelse(oepos.bh); 2355 2356 return (elen >> 30); 2357 } 2358 2359 int8_t inode_bmap(struct inode *inode, sector_t block, 2360 struct extent_position *pos, struct kernel_lb_addr *eloc, 2361 uint32_t *elen, sector_t *offset) 2362 { 2363 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2364 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2365 int8_t etype; 2366 struct udf_inode_info *iinfo; 2367 2368 iinfo = UDF_I(inode); 2369 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2370 pos->offset = 0; 2371 pos->block = iinfo->i_location; 2372 pos->bh = NULL; 2373 } 2374 *elen = 0; 2375 do { 2376 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2377 if (etype == -1) { 2378 *offset = (bcount - lbcount) >> blocksize_bits; 2379 iinfo->i_lenExtents = lbcount; 2380 return -1; 2381 } 2382 lbcount += *elen; 2383 } while (lbcount <= bcount); 2384 /* update extent cache */ 2385 udf_update_extent_cache(inode, lbcount - *elen, pos); 2386 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2387 2388 return etype; 2389 } 2390