1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/slab.h> 40 #include <linux/crc-itu-t.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static mode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 56 sector_t *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_delete_inode(struct inode *inode) 72 { 73 truncate_inode_pages(&inode->i_data, 0); 74 75 if (is_bad_inode(inode)) 76 goto no_delete; 77 78 inode->i_size = 0; 79 udf_truncate(inode); 80 lock_kernel(); 81 82 udf_update_inode(inode, IS_SYNC(inode)); 83 udf_free_inode(inode); 84 85 unlock_kernel(); 86 return; 87 88 no_delete: 89 clear_inode(inode); 90 } 91 92 /* 93 * If we are going to release inode from memory, we discard preallocation and 94 * truncate last inode extent to proper length. We could use drop_inode() but 95 * it's called under inode_lock and thus we cannot mark inode dirty there. We 96 * use clear_inode() but we have to make sure to write inode as it's not written 97 * automatically. 98 */ 99 void udf_clear_inode(struct inode *inode) 100 { 101 struct udf_inode_info *iinfo; 102 if (!(inode->i_sb->s_flags & MS_RDONLY)) { 103 lock_kernel(); 104 /* Discard preallocation for directories, symlinks, etc. */ 105 udf_discard_prealloc(inode); 106 udf_truncate_tail_extent(inode); 107 unlock_kernel(); 108 write_inode_now(inode, 0); 109 } 110 iinfo = UDF_I(inode); 111 kfree(iinfo->i_ext.i_data); 112 iinfo->i_ext.i_data = NULL; 113 } 114 115 static int udf_writepage(struct page *page, struct writeback_control *wbc) 116 { 117 return block_write_full_page(page, udf_get_block, wbc); 118 } 119 120 static int udf_readpage(struct file *file, struct page *page) 121 { 122 return block_read_full_page(page, udf_get_block); 123 } 124 125 static int udf_write_begin(struct file *file, struct address_space *mapping, 126 loff_t pos, unsigned len, unsigned flags, 127 struct page **pagep, void **fsdata) 128 { 129 *pagep = NULL; 130 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 131 udf_get_block); 132 } 133 134 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 135 { 136 return generic_block_bmap(mapping, block, udf_get_block); 137 } 138 139 const struct address_space_operations udf_aops = { 140 .readpage = udf_readpage, 141 .writepage = udf_writepage, 142 .sync_page = block_sync_page, 143 .write_begin = udf_write_begin, 144 .write_end = generic_write_end, 145 .bmap = udf_bmap, 146 }; 147 148 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 149 { 150 struct page *page; 151 char *kaddr; 152 struct udf_inode_info *iinfo = UDF_I(inode); 153 struct writeback_control udf_wbc = { 154 .sync_mode = WB_SYNC_NONE, 155 .nr_to_write = 1, 156 }; 157 158 /* from now on we have normal address_space methods */ 159 inode->i_data.a_ops = &udf_aops; 160 161 if (!iinfo->i_lenAlloc) { 162 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 163 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 164 else 165 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 166 mark_inode_dirty(inode); 167 return; 168 } 169 170 page = grab_cache_page(inode->i_mapping, 0); 171 BUG_ON(!PageLocked(page)); 172 173 if (!PageUptodate(page)) { 174 kaddr = kmap(page); 175 memset(kaddr + iinfo->i_lenAlloc, 0x00, 176 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 177 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 178 iinfo->i_lenAlloc); 179 flush_dcache_page(page); 180 SetPageUptodate(page); 181 kunmap(page); 182 } 183 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 184 iinfo->i_lenAlloc); 185 iinfo->i_lenAlloc = 0; 186 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 187 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 188 else 189 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 190 191 inode->i_data.a_ops->writepage(page, &udf_wbc); 192 page_cache_release(page); 193 194 mark_inode_dirty(inode); 195 } 196 197 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 198 int *err) 199 { 200 int newblock; 201 struct buffer_head *dbh = NULL; 202 kernel_lb_addr eloc; 203 uint32_t elen; 204 uint8_t alloctype; 205 struct extent_position epos; 206 207 struct udf_fileident_bh sfibh, dfibh; 208 loff_t f_pos = udf_ext0_offset(inode); 209 int size = udf_ext0_offset(inode) + inode->i_size; 210 struct fileIdentDesc cfi, *sfi, *dfi; 211 struct udf_inode_info *iinfo = UDF_I(inode); 212 213 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 214 alloctype = ICBTAG_FLAG_AD_SHORT; 215 else 216 alloctype = ICBTAG_FLAG_AD_LONG; 217 218 if (!inode->i_size) { 219 iinfo->i_alloc_type = alloctype; 220 mark_inode_dirty(inode); 221 return NULL; 222 } 223 224 /* alloc block, and copy data to it */ 225 *block = udf_new_block(inode->i_sb, inode, 226 iinfo->i_location.partitionReferenceNum, 227 iinfo->i_location.logicalBlockNum, err); 228 if (!(*block)) 229 return NULL; 230 newblock = udf_get_pblock(inode->i_sb, *block, 231 iinfo->i_location.partitionReferenceNum, 232 0); 233 if (!newblock) 234 return NULL; 235 dbh = udf_tgetblk(inode->i_sb, newblock); 236 if (!dbh) 237 return NULL; 238 lock_buffer(dbh); 239 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 240 set_buffer_uptodate(dbh); 241 unlock_buffer(dbh); 242 mark_buffer_dirty_inode(dbh, inode); 243 244 sfibh.soffset = sfibh.eoffset = 245 f_pos & (inode->i_sb->s_blocksize - 1); 246 sfibh.sbh = sfibh.ebh = NULL; 247 dfibh.soffset = dfibh.eoffset = 0; 248 dfibh.sbh = dfibh.ebh = dbh; 249 while (f_pos < size) { 250 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 251 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 252 NULL, NULL, NULL); 253 if (!sfi) { 254 brelse(dbh); 255 return NULL; 256 } 257 iinfo->i_alloc_type = alloctype; 258 sfi->descTag.tagLocation = cpu_to_le32(*block); 259 dfibh.soffset = dfibh.eoffset; 260 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 261 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 262 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 263 sfi->fileIdent + 264 le16_to_cpu(sfi->lengthOfImpUse))) { 265 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 266 brelse(dbh); 267 return NULL; 268 } 269 } 270 mark_buffer_dirty_inode(dbh, inode); 271 272 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 273 iinfo->i_lenAlloc); 274 iinfo->i_lenAlloc = 0; 275 eloc.logicalBlockNum = *block; 276 eloc.partitionReferenceNum = 277 iinfo->i_location.partitionReferenceNum; 278 elen = inode->i_sb->s_blocksize; 279 iinfo->i_lenExtents = elen; 280 epos.bh = NULL; 281 epos.block = iinfo->i_location; 282 epos.offset = udf_file_entry_alloc_offset(inode); 283 udf_add_aext(inode, &epos, eloc, elen, 0); 284 /* UniqueID stuff */ 285 286 brelse(epos.bh); 287 mark_inode_dirty(inode); 288 return dbh; 289 } 290 291 static int udf_get_block(struct inode *inode, sector_t block, 292 struct buffer_head *bh_result, int create) 293 { 294 int err, new; 295 struct buffer_head *bh; 296 sector_t phys = 0; 297 struct udf_inode_info *iinfo; 298 299 if (!create) { 300 phys = udf_block_map(inode, block); 301 if (phys) 302 map_bh(bh_result, inode->i_sb, phys); 303 return 0; 304 } 305 306 err = -EIO; 307 new = 0; 308 bh = NULL; 309 310 lock_kernel(); 311 312 iinfo = UDF_I(inode); 313 if (block == iinfo->i_next_alloc_block + 1) { 314 iinfo->i_next_alloc_block++; 315 iinfo->i_next_alloc_goal++; 316 } 317 318 err = 0; 319 320 bh = inode_getblk(inode, block, &err, &phys, &new); 321 BUG_ON(bh); 322 if (err) 323 goto abort; 324 BUG_ON(!phys); 325 326 if (new) 327 set_buffer_new(bh_result); 328 map_bh(bh_result, inode->i_sb, phys); 329 330 abort: 331 unlock_kernel(); 332 return err; 333 } 334 335 static struct buffer_head *udf_getblk(struct inode *inode, long block, 336 int create, int *err) 337 { 338 struct buffer_head *bh; 339 struct buffer_head dummy; 340 341 dummy.b_state = 0; 342 dummy.b_blocknr = -1000; 343 *err = udf_get_block(inode, block, &dummy, create); 344 if (!*err && buffer_mapped(&dummy)) { 345 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 346 if (buffer_new(&dummy)) { 347 lock_buffer(bh); 348 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 349 set_buffer_uptodate(bh); 350 unlock_buffer(bh); 351 mark_buffer_dirty_inode(bh, inode); 352 } 353 return bh; 354 } 355 356 return NULL; 357 } 358 359 /* Extend the file by 'blocks' blocks, return the number of extents added */ 360 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 361 kernel_long_ad *last_ext, sector_t blocks) 362 { 363 sector_t add; 364 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 365 struct super_block *sb = inode->i_sb; 366 kernel_lb_addr prealloc_loc = {}; 367 int prealloc_len = 0; 368 struct udf_inode_info *iinfo; 369 370 /* The previous extent is fake and we should not extend by anything 371 * - there's nothing to do... */ 372 if (!blocks && fake) 373 return 0; 374 375 iinfo = UDF_I(inode); 376 /* Round the last extent up to a multiple of block size */ 377 if (last_ext->extLength & (sb->s_blocksize - 1)) { 378 last_ext->extLength = 379 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 380 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 381 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 382 iinfo->i_lenExtents = 383 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 384 ~(sb->s_blocksize - 1); 385 } 386 387 /* Last extent are just preallocated blocks? */ 388 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 389 EXT_NOT_RECORDED_ALLOCATED) { 390 /* Save the extent so that we can reattach it to the end */ 391 prealloc_loc = last_ext->extLocation; 392 prealloc_len = last_ext->extLength; 393 /* Mark the extent as a hole */ 394 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 395 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 396 last_ext->extLocation.logicalBlockNum = 0; 397 last_ext->extLocation.partitionReferenceNum = 0; 398 } 399 400 /* Can we merge with the previous extent? */ 401 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 402 EXT_NOT_RECORDED_NOT_ALLOCATED) { 403 add = ((1 << 30) - sb->s_blocksize - 404 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 405 sb->s_blocksize_bits; 406 if (add > blocks) 407 add = blocks; 408 blocks -= add; 409 last_ext->extLength += add << sb->s_blocksize_bits; 410 } 411 412 if (fake) { 413 udf_add_aext(inode, last_pos, last_ext->extLocation, 414 last_ext->extLength, 1); 415 count++; 416 } else 417 udf_write_aext(inode, last_pos, last_ext->extLocation, 418 last_ext->extLength, 1); 419 420 /* Managed to do everything necessary? */ 421 if (!blocks) 422 goto out; 423 424 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 425 last_ext->extLocation.logicalBlockNum = 0; 426 last_ext->extLocation.partitionReferenceNum = 0; 427 add = (1 << (30-sb->s_blocksize_bits)) - 1; 428 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 429 (add << sb->s_blocksize_bits); 430 431 /* Create enough extents to cover the whole hole */ 432 while (blocks > add) { 433 blocks -= add; 434 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 435 last_ext->extLength, 1) == -1) 436 return -1; 437 count++; 438 } 439 if (blocks) { 440 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 441 (blocks << sb->s_blocksize_bits); 442 if (udf_add_aext(inode, last_pos, last_ext->extLocation, 443 last_ext->extLength, 1) == -1) 444 return -1; 445 count++; 446 } 447 448 out: 449 /* Do we have some preallocated blocks saved? */ 450 if (prealloc_len) { 451 if (udf_add_aext(inode, last_pos, prealloc_loc, 452 prealloc_len, 1) == -1) 453 return -1; 454 last_ext->extLocation = prealloc_loc; 455 last_ext->extLength = prealloc_len; 456 count++; 457 } 458 459 /* last_pos should point to the last written extent... */ 460 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 461 last_pos->offset -= sizeof(short_ad); 462 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 463 last_pos->offset -= sizeof(long_ad); 464 else 465 return -1; 466 467 return count; 468 } 469 470 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 471 int *err, sector_t *phys, int *new) 472 { 473 static sector_t last_block; 474 struct buffer_head *result = NULL; 475 kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 476 struct extent_position prev_epos, cur_epos, next_epos; 477 int count = 0, startnum = 0, endnum = 0; 478 uint32_t elen = 0, tmpelen; 479 kernel_lb_addr eloc, tmpeloc; 480 int c = 1; 481 loff_t lbcount = 0, b_off = 0; 482 uint32_t newblocknum, newblock; 483 sector_t offset = 0; 484 int8_t etype; 485 struct udf_inode_info *iinfo = UDF_I(inode); 486 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 487 int lastblock = 0; 488 489 prev_epos.offset = udf_file_entry_alloc_offset(inode); 490 prev_epos.block = iinfo->i_location; 491 prev_epos.bh = NULL; 492 cur_epos = next_epos = prev_epos; 493 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 494 495 /* find the extent which contains the block we are looking for. 496 alternate between laarr[0] and laarr[1] for locations of the 497 current extent, and the previous extent */ 498 do { 499 if (prev_epos.bh != cur_epos.bh) { 500 brelse(prev_epos.bh); 501 get_bh(cur_epos.bh); 502 prev_epos.bh = cur_epos.bh; 503 } 504 if (cur_epos.bh != next_epos.bh) { 505 brelse(cur_epos.bh); 506 get_bh(next_epos.bh); 507 cur_epos.bh = next_epos.bh; 508 } 509 510 lbcount += elen; 511 512 prev_epos.block = cur_epos.block; 513 cur_epos.block = next_epos.block; 514 515 prev_epos.offset = cur_epos.offset; 516 cur_epos.offset = next_epos.offset; 517 518 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 519 if (etype == -1) 520 break; 521 522 c = !c; 523 524 laarr[c].extLength = (etype << 30) | elen; 525 laarr[c].extLocation = eloc; 526 527 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 528 pgoal = eloc.logicalBlockNum + 529 ((elen + inode->i_sb->s_blocksize - 1) >> 530 inode->i_sb->s_blocksize_bits); 531 532 count++; 533 } while (lbcount + elen <= b_off); 534 535 b_off -= lbcount; 536 offset = b_off >> inode->i_sb->s_blocksize_bits; 537 /* 538 * Move prev_epos and cur_epos into indirect extent if we are at 539 * the pointer to it 540 */ 541 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 542 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 543 544 /* if the extent is allocated and recorded, return the block 545 if the extent is not a multiple of the blocksize, round up */ 546 547 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 548 if (elen & (inode->i_sb->s_blocksize - 1)) { 549 elen = EXT_RECORDED_ALLOCATED | 550 ((elen + inode->i_sb->s_blocksize - 1) & 551 ~(inode->i_sb->s_blocksize - 1)); 552 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1); 553 } 554 brelse(prev_epos.bh); 555 brelse(cur_epos.bh); 556 brelse(next_epos.bh); 557 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset); 558 *phys = newblock; 559 return NULL; 560 } 561 562 last_block = block; 563 /* Are we beyond EOF? */ 564 if (etype == -1) { 565 int ret; 566 567 if (count) { 568 if (c) 569 laarr[0] = laarr[1]; 570 startnum = 1; 571 } else { 572 /* Create a fake extent when there's not one */ 573 memset(&laarr[0].extLocation, 0x00, 574 sizeof(kernel_lb_addr)); 575 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 576 /* Will udf_extend_file() create real extent from 577 a fake one? */ 578 startnum = (offset > 0); 579 } 580 /* Create extents for the hole between EOF and offset */ 581 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 582 if (ret == -1) { 583 brelse(prev_epos.bh); 584 brelse(cur_epos.bh); 585 brelse(next_epos.bh); 586 /* We don't really know the error here so we just make 587 * something up */ 588 *err = -ENOSPC; 589 return NULL; 590 } 591 c = 0; 592 offset = 0; 593 count += ret; 594 /* We are not covered by a preallocated extent? */ 595 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 596 EXT_NOT_RECORDED_ALLOCATED) { 597 /* Is there any real extent? - otherwise we overwrite 598 * the fake one... */ 599 if (count) 600 c = !c; 601 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 602 inode->i_sb->s_blocksize; 603 memset(&laarr[c].extLocation, 0x00, 604 sizeof(kernel_lb_addr)); 605 count++; 606 endnum++; 607 } 608 endnum = c + 1; 609 lastblock = 1; 610 } else { 611 endnum = startnum = ((count > 2) ? 2 : count); 612 613 /* if the current extent is in position 0, 614 swap it with the previous */ 615 if (!c && count != 1) { 616 laarr[2] = laarr[0]; 617 laarr[0] = laarr[1]; 618 laarr[1] = laarr[2]; 619 c = 1; 620 } 621 622 /* if the current block is located in an extent, 623 read the next extent */ 624 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 625 if (etype != -1) { 626 laarr[c + 1].extLength = (etype << 30) | elen; 627 laarr[c + 1].extLocation = eloc; 628 count++; 629 startnum++; 630 endnum++; 631 } else 632 lastblock = 1; 633 } 634 635 /* if the current extent is not recorded but allocated, get the 636 * block in the extent corresponding to the requested block */ 637 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 638 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 639 else { /* otherwise, allocate a new block */ 640 if (iinfo->i_next_alloc_block == block) 641 goal = iinfo->i_next_alloc_goal; 642 643 if (!goal) { 644 if (!(goal = pgoal)) /* XXX: what was intended here? */ 645 goal = iinfo->i_location.logicalBlockNum + 1; 646 } 647 648 newblocknum = udf_new_block(inode->i_sb, inode, 649 iinfo->i_location.partitionReferenceNum, 650 goal, err); 651 if (!newblocknum) { 652 brelse(prev_epos.bh); 653 *err = -ENOSPC; 654 return NULL; 655 } 656 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 657 } 658 659 /* if the extent the requsted block is located in contains multiple 660 * blocks, split the extent into at most three extents. blocks prior 661 * to requested block, requested block, and blocks after requested 662 * block */ 663 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 664 665 #ifdef UDF_PREALLOCATE 666 /* preallocate blocks */ 667 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 668 #endif 669 670 /* merge any continuous blocks in laarr */ 671 udf_merge_extents(inode, laarr, &endnum); 672 673 /* write back the new extents, inserting new extents if the new number 674 * of extents is greater than the old number, and deleting extents if 675 * the new number of extents is less than the old number */ 676 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 677 678 brelse(prev_epos.bh); 679 680 newblock = udf_get_pblock(inode->i_sb, newblocknum, 681 iinfo->i_location.partitionReferenceNum, 0); 682 if (!newblock) 683 return NULL; 684 *phys = newblock; 685 *err = 0; 686 *new = 1; 687 iinfo->i_next_alloc_block = block; 688 iinfo->i_next_alloc_goal = newblocknum; 689 inode->i_ctime = current_fs_time(inode->i_sb); 690 691 if (IS_SYNC(inode)) 692 udf_sync_inode(inode); 693 else 694 mark_inode_dirty(inode); 695 696 return result; 697 } 698 699 static void udf_split_extents(struct inode *inode, int *c, int offset, 700 int newblocknum, 701 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 702 int *endnum) 703 { 704 unsigned long blocksize = inode->i_sb->s_blocksize; 705 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 706 707 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 708 (laarr[*c].extLength >> 30) == 709 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 710 int curr = *c; 711 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 712 blocksize - 1) >> blocksize_bits; 713 int8_t etype = (laarr[curr].extLength >> 30); 714 715 if (blen == 1) 716 ; 717 else if (!offset || blen == offset + 1) { 718 laarr[curr + 2] = laarr[curr + 1]; 719 laarr[curr + 1] = laarr[curr]; 720 } else { 721 laarr[curr + 3] = laarr[curr + 1]; 722 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 723 } 724 725 if (offset) { 726 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 727 udf_free_blocks(inode->i_sb, inode, 728 laarr[curr].extLocation, 729 0, offset); 730 laarr[curr].extLength = 731 EXT_NOT_RECORDED_NOT_ALLOCATED | 732 (offset << blocksize_bits); 733 laarr[curr].extLocation.logicalBlockNum = 0; 734 laarr[curr].extLocation. 735 partitionReferenceNum = 0; 736 } else 737 laarr[curr].extLength = (etype << 30) | 738 (offset << blocksize_bits); 739 curr++; 740 (*c)++; 741 (*endnum)++; 742 } 743 744 laarr[curr].extLocation.logicalBlockNum = newblocknum; 745 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 746 laarr[curr].extLocation.partitionReferenceNum = 747 UDF_I(inode)->i_location.partitionReferenceNum; 748 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 749 blocksize; 750 curr++; 751 752 if (blen != offset + 1) { 753 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 754 laarr[curr].extLocation.logicalBlockNum += 755 offset + 1; 756 laarr[curr].extLength = (etype << 30) | 757 ((blen - (offset + 1)) << blocksize_bits); 758 curr++; 759 (*endnum)++; 760 } 761 } 762 } 763 764 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 765 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 766 int *endnum) 767 { 768 int start, length = 0, currlength = 0, i; 769 770 if (*endnum >= (c + 1)) { 771 if (!lastblock) 772 return; 773 else 774 start = c; 775 } else { 776 if ((laarr[c + 1].extLength >> 30) == 777 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 778 start = c + 1; 779 length = currlength = 780 (((laarr[c + 1].extLength & 781 UDF_EXTENT_LENGTH_MASK) + 782 inode->i_sb->s_blocksize - 1) >> 783 inode->i_sb->s_blocksize_bits); 784 } else 785 start = c; 786 } 787 788 for (i = start + 1; i <= *endnum; i++) { 789 if (i == *endnum) { 790 if (lastblock) 791 length += UDF_DEFAULT_PREALLOC_BLOCKS; 792 } else if ((laarr[i].extLength >> 30) == 793 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 794 length += (((laarr[i].extLength & 795 UDF_EXTENT_LENGTH_MASK) + 796 inode->i_sb->s_blocksize - 1) >> 797 inode->i_sb->s_blocksize_bits); 798 } else 799 break; 800 } 801 802 if (length) { 803 int next = laarr[start].extLocation.logicalBlockNum + 804 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 805 inode->i_sb->s_blocksize - 1) >> 806 inode->i_sb->s_blocksize_bits); 807 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 808 laarr[start].extLocation.partitionReferenceNum, 809 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 810 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 811 currlength); 812 if (numalloc) { 813 if (start == (c + 1)) 814 laarr[start].extLength += 815 (numalloc << 816 inode->i_sb->s_blocksize_bits); 817 else { 818 memmove(&laarr[c + 2], &laarr[c + 1], 819 sizeof(long_ad) * (*endnum - (c + 1))); 820 (*endnum)++; 821 laarr[c + 1].extLocation.logicalBlockNum = next; 822 laarr[c + 1].extLocation.partitionReferenceNum = 823 laarr[c].extLocation. 824 partitionReferenceNum; 825 laarr[c + 1].extLength = 826 EXT_NOT_RECORDED_ALLOCATED | 827 (numalloc << 828 inode->i_sb->s_blocksize_bits); 829 start = c + 1; 830 } 831 832 for (i = start + 1; numalloc && i < *endnum; i++) { 833 int elen = ((laarr[i].extLength & 834 UDF_EXTENT_LENGTH_MASK) + 835 inode->i_sb->s_blocksize - 1) >> 836 inode->i_sb->s_blocksize_bits; 837 838 if (elen > numalloc) { 839 laarr[i].extLength -= 840 (numalloc << 841 inode->i_sb->s_blocksize_bits); 842 numalloc = 0; 843 } else { 844 numalloc -= elen; 845 if (*endnum > (i + 1)) 846 memmove(&laarr[i], 847 &laarr[i + 1], 848 sizeof(long_ad) * 849 (*endnum - (i + 1))); 850 i--; 851 (*endnum)--; 852 } 853 } 854 UDF_I(inode)->i_lenExtents += 855 numalloc << inode->i_sb->s_blocksize_bits; 856 } 857 } 858 } 859 860 static void udf_merge_extents(struct inode *inode, 861 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 862 int *endnum) 863 { 864 int i; 865 unsigned long blocksize = inode->i_sb->s_blocksize; 866 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 867 868 for (i = 0; i < (*endnum - 1); i++) { 869 kernel_long_ad *li /*l[i]*/ = &laarr[i]; 870 kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 871 872 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 873 (((li->extLength >> 30) == 874 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 875 ((lip1->extLocation.logicalBlockNum - 876 li->extLocation.logicalBlockNum) == 877 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 878 blocksize - 1) >> blocksize_bits)))) { 879 880 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 881 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 882 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 883 lip1->extLength = (lip1->extLength - 884 (li->extLength & 885 UDF_EXTENT_LENGTH_MASK) + 886 UDF_EXTENT_LENGTH_MASK) & 887 ~(blocksize - 1); 888 li->extLength = (li->extLength & 889 UDF_EXTENT_FLAG_MASK) + 890 (UDF_EXTENT_LENGTH_MASK + 1) - 891 blocksize; 892 lip1->extLocation.logicalBlockNum = 893 li->extLocation.logicalBlockNum + 894 ((li->extLength & 895 UDF_EXTENT_LENGTH_MASK) >> 896 blocksize_bits); 897 } else { 898 li->extLength = lip1->extLength + 899 (((li->extLength & 900 UDF_EXTENT_LENGTH_MASK) + 901 blocksize - 1) & ~(blocksize - 1)); 902 if (*endnum > (i + 2)) 903 memmove(&laarr[i + 1], &laarr[i + 2], 904 sizeof(long_ad) * 905 (*endnum - (i + 2))); 906 i--; 907 (*endnum)--; 908 } 909 } else if (((li->extLength >> 30) == 910 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 911 ((lip1->extLength >> 30) == 912 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 913 udf_free_blocks(inode->i_sb, inode, li->extLocation, 0, 914 ((li->extLength & 915 UDF_EXTENT_LENGTH_MASK) + 916 blocksize - 1) >> blocksize_bits); 917 li->extLocation.logicalBlockNum = 0; 918 li->extLocation.partitionReferenceNum = 0; 919 920 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 921 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 922 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 923 lip1->extLength = (lip1->extLength - 924 (li->extLength & 925 UDF_EXTENT_LENGTH_MASK) + 926 UDF_EXTENT_LENGTH_MASK) & 927 ~(blocksize - 1); 928 li->extLength = (li->extLength & 929 UDF_EXTENT_FLAG_MASK) + 930 (UDF_EXTENT_LENGTH_MASK + 1) - 931 blocksize; 932 } else { 933 li->extLength = lip1->extLength + 934 (((li->extLength & 935 UDF_EXTENT_LENGTH_MASK) + 936 blocksize - 1) & ~(blocksize - 1)); 937 if (*endnum > (i + 2)) 938 memmove(&laarr[i + 1], &laarr[i + 2], 939 sizeof(long_ad) * 940 (*endnum - (i + 2))); 941 i--; 942 (*endnum)--; 943 } 944 } else if ((li->extLength >> 30) == 945 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 946 udf_free_blocks(inode->i_sb, inode, 947 li->extLocation, 0, 948 ((li->extLength & 949 UDF_EXTENT_LENGTH_MASK) + 950 blocksize - 1) >> blocksize_bits); 951 li->extLocation.logicalBlockNum = 0; 952 li->extLocation.partitionReferenceNum = 0; 953 li->extLength = (li->extLength & 954 UDF_EXTENT_LENGTH_MASK) | 955 EXT_NOT_RECORDED_NOT_ALLOCATED; 956 } 957 } 958 } 959 960 static void udf_update_extents(struct inode *inode, 961 kernel_long_ad laarr[EXTENT_MERGE_SIZE], 962 int startnum, int endnum, 963 struct extent_position *epos) 964 { 965 int start = 0, i; 966 kernel_lb_addr tmploc; 967 uint32_t tmplen; 968 969 if (startnum > endnum) { 970 for (i = 0; i < (startnum - endnum); i++) 971 udf_delete_aext(inode, *epos, laarr[i].extLocation, 972 laarr[i].extLength); 973 } else if (startnum < endnum) { 974 for (i = 0; i < (endnum - startnum); i++) { 975 udf_insert_aext(inode, *epos, laarr[i].extLocation, 976 laarr[i].extLength); 977 udf_next_aext(inode, epos, &laarr[i].extLocation, 978 &laarr[i].extLength, 1); 979 start++; 980 } 981 } 982 983 for (i = start; i < endnum; i++) { 984 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 985 udf_write_aext(inode, epos, laarr[i].extLocation, 986 laarr[i].extLength, 1); 987 } 988 } 989 990 struct buffer_head *udf_bread(struct inode *inode, int block, 991 int create, int *err) 992 { 993 struct buffer_head *bh = NULL; 994 995 bh = udf_getblk(inode, block, create, err); 996 if (!bh) 997 return NULL; 998 999 if (buffer_uptodate(bh)) 1000 return bh; 1001 1002 ll_rw_block(READ, 1, &bh); 1003 1004 wait_on_buffer(bh); 1005 if (buffer_uptodate(bh)) 1006 return bh; 1007 1008 brelse(bh); 1009 *err = -EIO; 1010 return NULL; 1011 } 1012 1013 void udf_truncate(struct inode *inode) 1014 { 1015 int offset; 1016 int err; 1017 struct udf_inode_info *iinfo; 1018 1019 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1020 S_ISLNK(inode->i_mode))) 1021 return; 1022 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1023 return; 1024 1025 lock_kernel(); 1026 iinfo = UDF_I(inode); 1027 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1028 if (inode->i_sb->s_blocksize < 1029 (udf_file_entry_alloc_offset(inode) + 1030 inode->i_size)) { 1031 udf_expand_file_adinicb(inode, inode->i_size, &err); 1032 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1033 inode->i_size = iinfo->i_lenAlloc; 1034 unlock_kernel(); 1035 return; 1036 } else 1037 udf_truncate_extents(inode); 1038 } else { 1039 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1040 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1041 0x00, inode->i_sb->s_blocksize - 1042 offset - udf_file_entry_alloc_offset(inode)); 1043 iinfo->i_lenAlloc = inode->i_size; 1044 } 1045 } else { 1046 block_truncate_page(inode->i_mapping, inode->i_size, 1047 udf_get_block); 1048 udf_truncate_extents(inode); 1049 } 1050 1051 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1052 if (IS_SYNC(inode)) 1053 udf_sync_inode(inode); 1054 else 1055 mark_inode_dirty(inode); 1056 unlock_kernel(); 1057 } 1058 1059 static void __udf_read_inode(struct inode *inode) 1060 { 1061 struct buffer_head *bh = NULL; 1062 struct fileEntry *fe; 1063 uint16_t ident; 1064 struct udf_inode_info *iinfo = UDF_I(inode); 1065 1066 /* 1067 * Set defaults, but the inode is still incomplete! 1068 * Note: get_new_inode() sets the following on a new inode: 1069 * i_sb = sb 1070 * i_no = ino 1071 * i_flags = sb->s_flags 1072 * i_state = 0 1073 * clean_inode(): zero fills and sets 1074 * i_count = 1 1075 * i_nlink = 1 1076 * i_op = NULL; 1077 */ 1078 bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident); 1079 if (!bh) { 1080 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1081 inode->i_ino); 1082 make_bad_inode(inode); 1083 return; 1084 } 1085 1086 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1087 ident != TAG_IDENT_USE) { 1088 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1089 "failed ident=%d\n", inode->i_ino, ident); 1090 brelse(bh); 1091 make_bad_inode(inode); 1092 return; 1093 } 1094 1095 fe = (struct fileEntry *)bh->b_data; 1096 1097 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1098 struct buffer_head *ibh; 1099 1100 ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1, 1101 &ident); 1102 if (ident == TAG_IDENT_IE && ibh) { 1103 struct buffer_head *nbh = NULL; 1104 kernel_lb_addr loc; 1105 struct indirectEntry *ie; 1106 1107 ie = (struct indirectEntry *)ibh->b_data; 1108 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1109 1110 if (ie->indirectICB.extLength && 1111 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, 1112 &ident))) { 1113 if (ident == TAG_IDENT_FE || 1114 ident == TAG_IDENT_EFE) { 1115 memcpy(&iinfo->i_location, 1116 &loc, 1117 sizeof(kernel_lb_addr)); 1118 brelse(bh); 1119 brelse(ibh); 1120 brelse(nbh); 1121 __udf_read_inode(inode); 1122 return; 1123 } 1124 brelse(nbh); 1125 } 1126 } 1127 brelse(ibh); 1128 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1129 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1130 le16_to_cpu(fe->icbTag.strategyType)); 1131 brelse(bh); 1132 make_bad_inode(inode); 1133 return; 1134 } 1135 udf_fill_inode(inode, bh); 1136 1137 brelse(bh); 1138 } 1139 1140 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1141 { 1142 struct fileEntry *fe; 1143 struct extendedFileEntry *efe; 1144 int offset; 1145 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1146 struct udf_inode_info *iinfo = UDF_I(inode); 1147 1148 fe = (struct fileEntry *)bh->b_data; 1149 efe = (struct extendedFileEntry *)bh->b_data; 1150 1151 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1152 iinfo->i_strat4096 = 0; 1153 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1154 iinfo->i_strat4096 = 1; 1155 1156 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1157 ICBTAG_FLAG_AD_MASK; 1158 iinfo->i_unique = 0; 1159 iinfo->i_lenEAttr = 0; 1160 iinfo->i_lenExtents = 0; 1161 iinfo->i_lenAlloc = 0; 1162 iinfo->i_next_alloc_block = 0; 1163 iinfo->i_next_alloc_goal = 0; 1164 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1165 iinfo->i_efe = 1; 1166 iinfo->i_use = 0; 1167 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1168 sizeof(struct extendedFileEntry))) { 1169 make_bad_inode(inode); 1170 return; 1171 } 1172 memcpy(iinfo->i_ext.i_data, 1173 bh->b_data + sizeof(struct extendedFileEntry), 1174 inode->i_sb->s_blocksize - 1175 sizeof(struct extendedFileEntry)); 1176 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1177 iinfo->i_efe = 0; 1178 iinfo->i_use = 0; 1179 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1180 sizeof(struct fileEntry))) { 1181 make_bad_inode(inode); 1182 return; 1183 } 1184 memcpy(iinfo->i_ext.i_data, 1185 bh->b_data + sizeof(struct fileEntry), 1186 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1187 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1188 iinfo->i_efe = 0; 1189 iinfo->i_use = 1; 1190 iinfo->i_lenAlloc = le32_to_cpu( 1191 ((struct unallocSpaceEntry *)bh->b_data)-> 1192 lengthAllocDescs); 1193 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1194 sizeof(struct unallocSpaceEntry))) { 1195 make_bad_inode(inode); 1196 return; 1197 } 1198 memcpy(iinfo->i_ext.i_data, 1199 bh->b_data + sizeof(struct unallocSpaceEntry), 1200 inode->i_sb->s_blocksize - 1201 sizeof(struct unallocSpaceEntry)); 1202 return; 1203 } 1204 1205 inode->i_uid = le32_to_cpu(fe->uid); 1206 if (inode->i_uid == -1 || 1207 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1208 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1209 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1210 1211 inode->i_gid = le32_to_cpu(fe->gid); 1212 if (inode->i_gid == -1 || 1213 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1214 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1215 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1216 1217 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1218 if (!inode->i_nlink) 1219 inode->i_nlink = 1; 1220 1221 inode->i_size = le64_to_cpu(fe->informationLength); 1222 iinfo->i_lenExtents = inode->i_size; 1223 1224 inode->i_mode = udf_convert_permissions(fe); 1225 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; 1226 1227 if (iinfo->i_efe == 0) { 1228 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1229 (inode->i_sb->s_blocksize_bits - 9); 1230 1231 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1232 inode->i_atime = sbi->s_record_time; 1233 1234 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1235 fe->modificationTime)) 1236 inode->i_mtime = sbi->s_record_time; 1237 1238 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1239 inode->i_ctime = sbi->s_record_time; 1240 1241 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1242 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1243 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1244 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1245 } else { 1246 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1247 (inode->i_sb->s_blocksize_bits - 9); 1248 1249 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1250 inode->i_atime = sbi->s_record_time; 1251 1252 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1253 efe->modificationTime)) 1254 inode->i_mtime = sbi->s_record_time; 1255 1256 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1257 iinfo->i_crtime = sbi->s_record_time; 1258 1259 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1260 inode->i_ctime = sbi->s_record_time; 1261 1262 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1263 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1264 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1265 offset = sizeof(struct extendedFileEntry) + 1266 iinfo->i_lenEAttr; 1267 } 1268 1269 switch (fe->icbTag.fileType) { 1270 case ICBTAG_FILE_TYPE_DIRECTORY: 1271 inode->i_op = &udf_dir_inode_operations; 1272 inode->i_fop = &udf_dir_operations; 1273 inode->i_mode |= S_IFDIR; 1274 inc_nlink(inode); 1275 break; 1276 case ICBTAG_FILE_TYPE_REALTIME: 1277 case ICBTAG_FILE_TYPE_REGULAR: 1278 case ICBTAG_FILE_TYPE_UNDEF: 1279 case ICBTAG_FILE_TYPE_VAT20: 1280 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1281 inode->i_data.a_ops = &udf_adinicb_aops; 1282 else 1283 inode->i_data.a_ops = &udf_aops; 1284 inode->i_op = &udf_file_inode_operations; 1285 inode->i_fop = &udf_file_operations; 1286 inode->i_mode |= S_IFREG; 1287 break; 1288 case ICBTAG_FILE_TYPE_BLOCK: 1289 inode->i_mode |= S_IFBLK; 1290 break; 1291 case ICBTAG_FILE_TYPE_CHAR: 1292 inode->i_mode |= S_IFCHR; 1293 break; 1294 case ICBTAG_FILE_TYPE_FIFO: 1295 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1296 break; 1297 case ICBTAG_FILE_TYPE_SOCKET: 1298 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1299 break; 1300 case ICBTAG_FILE_TYPE_SYMLINK: 1301 inode->i_data.a_ops = &udf_symlink_aops; 1302 inode->i_op = &page_symlink_inode_operations; 1303 inode->i_mode = S_IFLNK | S_IRWXUGO; 1304 break; 1305 case ICBTAG_FILE_TYPE_MAIN: 1306 udf_debug("METADATA FILE-----\n"); 1307 break; 1308 case ICBTAG_FILE_TYPE_MIRROR: 1309 udf_debug("METADATA MIRROR FILE-----\n"); 1310 break; 1311 case ICBTAG_FILE_TYPE_BITMAP: 1312 udf_debug("METADATA BITMAP FILE-----\n"); 1313 break; 1314 default: 1315 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1316 "file type=%d\n", inode->i_ino, 1317 fe->icbTag.fileType); 1318 make_bad_inode(inode); 1319 return; 1320 } 1321 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1322 struct deviceSpec *dsea = 1323 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1324 if (dsea) { 1325 init_special_inode(inode, inode->i_mode, 1326 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1327 le32_to_cpu(dsea->minorDeviceIdent))); 1328 /* Developer ID ??? */ 1329 } else 1330 make_bad_inode(inode); 1331 } 1332 } 1333 1334 static int udf_alloc_i_data(struct inode *inode, size_t size) 1335 { 1336 struct udf_inode_info *iinfo = UDF_I(inode); 1337 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1338 1339 if (!iinfo->i_ext.i_data) { 1340 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1341 "no free memory\n", inode->i_ino); 1342 return -ENOMEM; 1343 } 1344 1345 return 0; 1346 } 1347 1348 static mode_t udf_convert_permissions(struct fileEntry *fe) 1349 { 1350 mode_t mode; 1351 uint32_t permissions; 1352 uint32_t flags; 1353 1354 permissions = le32_to_cpu(fe->permissions); 1355 flags = le16_to_cpu(fe->icbTag.flags); 1356 1357 mode = ((permissions) & S_IRWXO) | 1358 ((permissions >> 2) & S_IRWXG) | 1359 ((permissions >> 4) & S_IRWXU) | 1360 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1361 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1362 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1363 1364 return mode; 1365 } 1366 1367 int udf_write_inode(struct inode *inode, int sync) 1368 { 1369 int ret; 1370 1371 lock_kernel(); 1372 ret = udf_update_inode(inode, sync); 1373 unlock_kernel(); 1374 1375 return ret; 1376 } 1377 1378 int udf_sync_inode(struct inode *inode) 1379 { 1380 return udf_update_inode(inode, 1); 1381 } 1382 1383 static int udf_update_inode(struct inode *inode, int do_sync) 1384 { 1385 struct buffer_head *bh = NULL; 1386 struct fileEntry *fe; 1387 struct extendedFileEntry *efe; 1388 uint32_t udfperms; 1389 uint16_t icbflags; 1390 uint16_t crclen; 1391 int err = 0; 1392 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1393 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1394 struct udf_inode_info *iinfo = UDF_I(inode); 1395 1396 bh = udf_tread(inode->i_sb, 1397 udf_get_lb_pblock(inode->i_sb, 1398 iinfo->i_location, 0)); 1399 if (!bh) { 1400 udf_debug("bread failure\n"); 1401 return -EIO; 1402 } 1403 1404 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1405 1406 fe = (struct fileEntry *)bh->b_data; 1407 efe = (struct extendedFileEntry *)bh->b_data; 1408 1409 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1410 struct unallocSpaceEntry *use = 1411 (struct unallocSpaceEntry *)bh->b_data; 1412 1413 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1414 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1415 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1416 sizeof(struct unallocSpaceEntry)); 1417 crclen = sizeof(struct unallocSpaceEntry) + 1418 iinfo->i_lenAlloc - sizeof(tag); 1419 use->descTag.tagLocation = cpu_to_le32( 1420 iinfo->i_location. 1421 logicalBlockNum); 1422 use->descTag.descCRCLength = cpu_to_le16(crclen); 1423 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1424 sizeof(tag), 1425 crclen)); 1426 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1427 1428 mark_buffer_dirty(bh); 1429 brelse(bh); 1430 return err; 1431 } 1432 1433 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1434 fe->uid = cpu_to_le32(-1); 1435 else 1436 fe->uid = cpu_to_le32(inode->i_uid); 1437 1438 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1439 fe->gid = cpu_to_le32(-1); 1440 else 1441 fe->gid = cpu_to_le32(inode->i_gid); 1442 1443 udfperms = ((inode->i_mode & S_IRWXO)) | 1444 ((inode->i_mode & S_IRWXG) << 2) | 1445 ((inode->i_mode & S_IRWXU) << 4); 1446 1447 udfperms |= (le32_to_cpu(fe->permissions) & 1448 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1449 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1450 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1451 fe->permissions = cpu_to_le32(udfperms); 1452 1453 if (S_ISDIR(inode->i_mode)) 1454 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1455 else 1456 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1457 1458 fe->informationLength = cpu_to_le64(inode->i_size); 1459 1460 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1461 regid *eid; 1462 struct deviceSpec *dsea = 1463 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1464 if (!dsea) { 1465 dsea = (struct deviceSpec *) 1466 udf_add_extendedattr(inode, 1467 sizeof(struct deviceSpec) + 1468 sizeof(regid), 12, 0x3); 1469 dsea->attrType = cpu_to_le32(12); 1470 dsea->attrSubtype = 1; 1471 dsea->attrLength = cpu_to_le32( 1472 sizeof(struct deviceSpec) + 1473 sizeof(regid)); 1474 dsea->impUseLength = cpu_to_le32(sizeof(regid)); 1475 } 1476 eid = (regid *)dsea->impUse; 1477 memset(eid, 0, sizeof(regid)); 1478 strcpy(eid->ident, UDF_ID_DEVELOPER); 1479 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1480 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1481 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1482 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1483 } 1484 1485 if (iinfo->i_efe == 0) { 1486 memcpy(bh->b_data + sizeof(struct fileEntry), 1487 iinfo->i_ext.i_data, 1488 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1489 fe->logicalBlocksRecorded = cpu_to_le64( 1490 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1491 (blocksize_bits - 9)); 1492 1493 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1494 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1495 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1496 memset(&(fe->impIdent), 0, sizeof(regid)); 1497 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1498 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1499 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1500 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1501 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1502 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1503 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1504 crclen = sizeof(struct fileEntry); 1505 } else { 1506 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1507 iinfo->i_ext.i_data, 1508 inode->i_sb->s_blocksize - 1509 sizeof(struct extendedFileEntry)); 1510 efe->objectSize = cpu_to_le64(inode->i_size); 1511 efe->logicalBlocksRecorded = cpu_to_le64( 1512 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1513 (blocksize_bits - 9)); 1514 1515 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1516 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1517 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1518 iinfo->i_crtime = inode->i_atime; 1519 1520 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1521 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1522 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1523 iinfo->i_crtime = inode->i_mtime; 1524 1525 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1526 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1527 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1528 iinfo->i_crtime = inode->i_ctime; 1529 1530 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1531 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1532 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1533 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1534 1535 memset(&(efe->impIdent), 0, sizeof(regid)); 1536 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1537 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1538 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1539 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1540 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1541 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1542 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1543 crclen = sizeof(struct extendedFileEntry); 1544 } 1545 if (iinfo->i_strat4096) { 1546 fe->icbTag.strategyType = cpu_to_le16(4096); 1547 fe->icbTag.strategyParameter = cpu_to_le16(1); 1548 fe->icbTag.numEntries = cpu_to_le16(2); 1549 } else { 1550 fe->icbTag.strategyType = cpu_to_le16(4); 1551 fe->icbTag.numEntries = cpu_to_le16(1); 1552 } 1553 1554 if (S_ISDIR(inode->i_mode)) 1555 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1556 else if (S_ISREG(inode->i_mode)) 1557 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1558 else if (S_ISLNK(inode->i_mode)) 1559 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1560 else if (S_ISBLK(inode->i_mode)) 1561 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1562 else if (S_ISCHR(inode->i_mode)) 1563 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1564 else if (S_ISFIFO(inode->i_mode)) 1565 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1566 else if (S_ISSOCK(inode->i_mode)) 1567 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1568 1569 icbflags = iinfo->i_alloc_type | 1570 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1571 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1572 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1573 (le16_to_cpu(fe->icbTag.flags) & 1574 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1575 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1576 1577 fe->icbTag.flags = cpu_to_le16(icbflags); 1578 if (sbi->s_udfrev >= 0x0200) 1579 fe->descTag.descVersion = cpu_to_le16(3); 1580 else 1581 fe->descTag.descVersion = cpu_to_le16(2); 1582 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1583 fe->descTag.tagLocation = cpu_to_le32( 1584 iinfo->i_location.logicalBlockNum); 1585 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - 1586 sizeof(tag); 1587 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1588 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(tag), 1589 crclen)); 1590 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1591 1592 /* write the data blocks */ 1593 mark_buffer_dirty(bh); 1594 if (do_sync) { 1595 sync_dirty_buffer(bh); 1596 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1597 printk(KERN_WARNING "IO error syncing udf inode " 1598 "[%s:%08lx]\n", inode->i_sb->s_id, 1599 inode->i_ino); 1600 err = -EIO; 1601 } 1602 } 1603 brelse(bh); 1604 1605 return err; 1606 } 1607 1608 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino) 1609 { 1610 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1611 struct inode *inode = iget_locked(sb, block); 1612 1613 if (!inode) 1614 return NULL; 1615 1616 if (inode->i_state & I_NEW) { 1617 memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr)); 1618 __udf_read_inode(inode); 1619 unlock_new_inode(inode); 1620 } 1621 1622 if (is_bad_inode(inode)) 1623 goto out_iput; 1624 1625 if (ino.logicalBlockNum >= UDF_SB(sb)-> 1626 s_partmaps[ino.partitionReferenceNum].s_partition_len) { 1627 udf_debug("block=%d, partition=%d out of range\n", 1628 ino.logicalBlockNum, ino.partitionReferenceNum); 1629 make_bad_inode(inode); 1630 goto out_iput; 1631 } 1632 1633 return inode; 1634 1635 out_iput: 1636 iput(inode); 1637 return NULL; 1638 } 1639 1640 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1641 kernel_lb_addr eloc, uint32_t elen, int inc) 1642 { 1643 int adsize; 1644 short_ad *sad = NULL; 1645 long_ad *lad = NULL; 1646 struct allocExtDesc *aed; 1647 int8_t etype; 1648 uint8_t *ptr; 1649 struct udf_inode_info *iinfo = UDF_I(inode); 1650 1651 if (!epos->bh) 1652 ptr = iinfo->i_ext.i_data + epos->offset - 1653 udf_file_entry_alloc_offset(inode) + 1654 iinfo->i_lenEAttr; 1655 else 1656 ptr = epos->bh->b_data + epos->offset; 1657 1658 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1659 adsize = sizeof(short_ad); 1660 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1661 adsize = sizeof(long_ad); 1662 else 1663 return -1; 1664 1665 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1666 char *sptr, *dptr; 1667 struct buffer_head *nbh; 1668 int err, loffset; 1669 kernel_lb_addr obloc = epos->block; 1670 1671 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1672 obloc.partitionReferenceNum, 1673 obloc.logicalBlockNum, &err); 1674 if (!epos->block.logicalBlockNum) 1675 return -1; 1676 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1677 epos->block, 1678 0)); 1679 if (!nbh) 1680 return -1; 1681 lock_buffer(nbh); 1682 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1683 set_buffer_uptodate(nbh); 1684 unlock_buffer(nbh); 1685 mark_buffer_dirty_inode(nbh, inode); 1686 1687 aed = (struct allocExtDesc *)(nbh->b_data); 1688 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1689 aed->previousAllocExtLocation = 1690 cpu_to_le32(obloc.logicalBlockNum); 1691 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1692 loffset = epos->offset; 1693 aed->lengthAllocDescs = cpu_to_le32(adsize); 1694 sptr = ptr - adsize; 1695 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1696 memcpy(dptr, sptr, adsize); 1697 epos->offset = sizeof(struct allocExtDesc) + adsize; 1698 } else { 1699 loffset = epos->offset + adsize; 1700 aed->lengthAllocDescs = cpu_to_le32(0); 1701 sptr = ptr; 1702 epos->offset = sizeof(struct allocExtDesc); 1703 1704 if (epos->bh) { 1705 aed = (struct allocExtDesc *)epos->bh->b_data; 1706 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1707 } else { 1708 iinfo->i_lenAlloc += adsize; 1709 mark_inode_dirty(inode); 1710 } 1711 } 1712 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1713 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1714 epos->block.logicalBlockNum, sizeof(tag)); 1715 else 1716 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1717 epos->block.logicalBlockNum, sizeof(tag)); 1718 switch (iinfo->i_alloc_type) { 1719 case ICBTAG_FLAG_AD_SHORT: 1720 sad = (short_ad *)sptr; 1721 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1722 inode->i_sb->s_blocksize); 1723 sad->extPosition = 1724 cpu_to_le32(epos->block.logicalBlockNum); 1725 break; 1726 case ICBTAG_FLAG_AD_LONG: 1727 lad = (long_ad *)sptr; 1728 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1729 inode->i_sb->s_blocksize); 1730 lad->extLocation = cpu_to_lelb(epos->block); 1731 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1732 break; 1733 } 1734 if (epos->bh) { 1735 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1736 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1737 udf_update_tag(epos->bh->b_data, loffset); 1738 else 1739 udf_update_tag(epos->bh->b_data, 1740 sizeof(struct allocExtDesc)); 1741 mark_buffer_dirty_inode(epos->bh, inode); 1742 brelse(epos->bh); 1743 } else { 1744 mark_inode_dirty(inode); 1745 } 1746 epos->bh = nbh; 1747 } 1748 1749 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1750 1751 if (!epos->bh) { 1752 iinfo->i_lenAlloc += adsize; 1753 mark_inode_dirty(inode); 1754 } else { 1755 aed = (struct allocExtDesc *)epos->bh->b_data; 1756 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1757 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1758 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1759 udf_update_tag(epos->bh->b_data, 1760 epos->offset + (inc ? 0 : adsize)); 1761 else 1762 udf_update_tag(epos->bh->b_data, 1763 sizeof(struct allocExtDesc)); 1764 mark_buffer_dirty_inode(epos->bh, inode); 1765 } 1766 1767 return etype; 1768 } 1769 1770 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1771 kernel_lb_addr eloc, uint32_t elen, int inc) 1772 { 1773 int adsize; 1774 uint8_t *ptr; 1775 short_ad *sad; 1776 long_ad *lad; 1777 struct udf_inode_info *iinfo = UDF_I(inode); 1778 1779 if (!epos->bh) 1780 ptr = iinfo->i_ext.i_data + epos->offset - 1781 udf_file_entry_alloc_offset(inode) + 1782 iinfo->i_lenEAttr; 1783 else 1784 ptr = epos->bh->b_data + epos->offset; 1785 1786 switch (iinfo->i_alloc_type) { 1787 case ICBTAG_FLAG_AD_SHORT: 1788 sad = (short_ad *)ptr; 1789 sad->extLength = cpu_to_le32(elen); 1790 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum); 1791 adsize = sizeof(short_ad); 1792 break; 1793 case ICBTAG_FLAG_AD_LONG: 1794 lad = (long_ad *)ptr; 1795 lad->extLength = cpu_to_le32(elen); 1796 lad->extLocation = cpu_to_lelb(eloc); 1797 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1798 adsize = sizeof(long_ad); 1799 break; 1800 default: 1801 return -1; 1802 } 1803 1804 if (epos->bh) { 1805 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1806 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1807 struct allocExtDesc *aed = 1808 (struct allocExtDesc *)epos->bh->b_data; 1809 udf_update_tag(epos->bh->b_data, 1810 le32_to_cpu(aed->lengthAllocDescs) + 1811 sizeof(struct allocExtDesc)); 1812 } 1813 mark_buffer_dirty_inode(epos->bh, inode); 1814 } else { 1815 mark_inode_dirty(inode); 1816 } 1817 1818 if (inc) 1819 epos->offset += adsize; 1820 1821 return (elen >> 30); 1822 } 1823 1824 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1825 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1826 { 1827 int8_t etype; 1828 1829 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1830 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1831 int block; 1832 epos->block = *eloc; 1833 epos->offset = sizeof(struct allocExtDesc); 1834 brelse(epos->bh); 1835 block = udf_get_lb_pblock(inode->i_sb, epos->block, 0); 1836 epos->bh = udf_tread(inode->i_sb, block); 1837 if (!epos->bh) { 1838 udf_debug("reading block %d failed!\n", block); 1839 return -1; 1840 } 1841 } 1842 1843 return etype; 1844 } 1845 1846 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1847 kernel_lb_addr *eloc, uint32_t *elen, int inc) 1848 { 1849 int alen; 1850 int8_t etype; 1851 uint8_t *ptr; 1852 short_ad *sad; 1853 long_ad *lad; 1854 struct udf_inode_info *iinfo = UDF_I(inode); 1855 1856 if (!epos->bh) { 1857 if (!epos->offset) 1858 epos->offset = udf_file_entry_alloc_offset(inode); 1859 ptr = iinfo->i_ext.i_data + epos->offset - 1860 udf_file_entry_alloc_offset(inode) + 1861 iinfo->i_lenEAttr; 1862 alen = udf_file_entry_alloc_offset(inode) + 1863 iinfo->i_lenAlloc; 1864 } else { 1865 if (!epos->offset) 1866 epos->offset = sizeof(struct allocExtDesc); 1867 ptr = epos->bh->b_data + epos->offset; 1868 alen = sizeof(struct allocExtDesc) + 1869 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1870 lengthAllocDescs); 1871 } 1872 1873 switch (iinfo->i_alloc_type) { 1874 case ICBTAG_FLAG_AD_SHORT: 1875 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1876 if (!sad) 1877 return -1; 1878 etype = le32_to_cpu(sad->extLength) >> 30; 1879 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1880 eloc->partitionReferenceNum = 1881 iinfo->i_location.partitionReferenceNum; 1882 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1883 break; 1884 case ICBTAG_FLAG_AD_LONG: 1885 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1886 if (!lad) 1887 return -1; 1888 etype = le32_to_cpu(lad->extLength) >> 30; 1889 *eloc = lelb_to_cpu(lad->extLocation); 1890 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1891 break; 1892 default: 1893 udf_debug("alloc_type = %d unsupported\n", 1894 iinfo->i_alloc_type); 1895 return -1; 1896 } 1897 1898 return etype; 1899 } 1900 1901 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1902 kernel_lb_addr neloc, uint32_t nelen) 1903 { 1904 kernel_lb_addr oeloc; 1905 uint32_t oelen; 1906 int8_t etype; 1907 1908 if (epos.bh) 1909 get_bh(epos.bh); 1910 1911 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1912 udf_write_aext(inode, &epos, neloc, nelen, 1); 1913 neloc = oeloc; 1914 nelen = (etype << 30) | oelen; 1915 } 1916 udf_add_aext(inode, &epos, neloc, nelen, 1); 1917 brelse(epos.bh); 1918 1919 return (nelen >> 30); 1920 } 1921 1922 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1923 kernel_lb_addr eloc, uint32_t elen) 1924 { 1925 struct extent_position oepos; 1926 int adsize; 1927 int8_t etype; 1928 struct allocExtDesc *aed; 1929 struct udf_inode_info *iinfo; 1930 1931 if (epos.bh) { 1932 get_bh(epos.bh); 1933 get_bh(epos.bh); 1934 } 1935 1936 iinfo = UDF_I(inode); 1937 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1938 adsize = sizeof(short_ad); 1939 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1940 adsize = sizeof(long_ad); 1941 else 1942 adsize = 0; 1943 1944 oepos = epos; 1945 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1946 return -1; 1947 1948 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1949 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1); 1950 if (oepos.bh != epos.bh) { 1951 oepos.block = epos.block; 1952 brelse(oepos.bh); 1953 get_bh(epos.bh); 1954 oepos.bh = epos.bh; 1955 oepos.offset = epos.offset - adsize; 1956 } 1957 } 1958 memset(&eloc, 0x00, sizeof(kernel_lb_addr)); 1959 elen = 0; 1960 1961 if (epos.bh != oepos.bh) { 1962 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1); 1963 udf_write_aext(inode, &oepos, eloc, elen, 1); 1964 udf_write_aext(inode, &oepos, eloc, elen, 1); 1965 if (!oepos.bh) { 1966 iinfo->i_lenAlloc -= (adsize * 2); 1967 mark_inode_dirty(inode); 1968 } else { 1969 aed = (struct allocExtDesc *)oepos.bh->b_data; 1970 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1971 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1972 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1973 udf_update_tag(oepos.bh->b_data, 1974 oepos.offset - (2 * adsize)); 1975 else 1976 udf_update_tag(oepos.bh->b_data, 1977 sizeof(struct allocExtDesc)); 1978 mark_buffer_dirty_inode(oepos.bh, inode); 1979 } 1980 } else { 1981 udf_write_aext(inode, &oepos, eloc, elen, 1); 1982 if (!oepos.bh) { 1983 iinfo->i_lenAlloc -= adsize; 1984 mark_inode_dirty(inode); 1985 } else { 1986 aed = (struct allocExtDesc *)oepos.bh->b_data; 1987 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 1988 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1989 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1990 udf_update_tag(oepos.bh->b_data, 1991 epos.offset - adsize); 1992 else 1993 udf_update_tag(oepos.bh->b_data, 1994 sizeof(struct allocExtDesc)); 1995 mark_buffer_dirty_inode(oepos.bh, inode); 1996 } 1997 } 1998 1999 brelse(epos.bh); 2000 brelse(oepos.bh); 2001 2002 return (elen >> 30); 2003 } 2004 2005 int8_t inode_bmap(struct inode *inode, sector_t block, 2006 struct extent_position *pos, kernel_lb_addr *eloc, 2007 uint32_t *elen, sector_t *offset) 2008 { 2009 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2010 loff_t lbcount = 0, bcount = 2011 (loff_t) block << blocksize_bits; 2012 int8_t etype; 2013 struct udf_inode_info *iinfo; 2014 2015 iinfo = UDF_I(inode); 2016 pos->offset = 0; 2017 pos->block = iinfo->i_location; 2018 pos->bh = NULL; 2019 *elen = 0; 2020 2021 do { 2022 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2023 if (etype == -1) { 2024 *offset = (bcount - lbcount) >> blocksize_bits; 2025 iinfo->i_lenExtents = lbcount; 2026 return -1; 2027 } 2028 lbcount += *elen; 2029 } while (lbcount <= bcount); 2030 2031 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2032 2033 return etype; 2034 } 2035 2036 long udf_block_map(struct inode *inode, sector_t block) 2037 { 2038 kernel_lb_addr eloc; 2039 uint32_t elen; 2040 sector_t offset; 2041 struct extent_position epos = {}; 2042 int ret; 2043 2044 lock_kernel(); 2045 2046 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2047 (EXT_RECORDED_ALLOCATED >> 30)) 2048 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset); 2049 else 2050 ret = 0; 2051 2052 unlock_kernel(); 2053 brelse(epos.bh); 2054 2055 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2056 return udf_fixed_to_variable(ret); 2057 else 2058 return ret; 2059 } 2060