1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static umode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static int udf_sync_inode(struct inode *inode); 54 static int udf_alloc_i_data(struct inode *inode, size_t size); 55 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 56 static int8_t udf_insert_aext(struct inode *, struct extent_position, 57 struct kernel_lb_addr, uint32_t); 58 static void udf_split_extents(struct inode *, int *, int, int, 59 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 60 static void udf_prealloc_extents(struct inode *, int, int, 61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_merge_extents(struct inode *, 63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_update_extents(struct inode *, 65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 66 struct extent_position *); 67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 68 69 static void __udf_clear_extent_cache(struct inode *inode) 70 { 71 struct udf_inode_info *iinfo = UDF_I(inode); 72 73 if (iinfo->cached_extent.lstart != -1) { 74 brelse(iinfo->cached_extent.epos.bh); 75 iinfo->cached_extent.lstart = -1; 76 } 77 } 78 79 /* Invalidate extent cache */ 80 static void udf_clear_extent_cache(struct inode *inode) 81 { 82 struct udf_inode_info *iinfo = UDF_I(inode); 83 84 spin_lock(&iinfo->i_extent_cache_lock); 85 __udf_clear_extent_cache(inode); 86 spin_unlock(&iinfo->i_extent_cache_lock); 87 } 88 89 /* Return contents of extent cache */ 90 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 91 loff_t *lbcount, struct extent_position *pos) 92 { 93 struct udf_inode_info *iinfo = UDF_I(inode); 94 int ret = 0; 95 96 spin_lock(&iinfo->i_extent_cache_lock); 97 if ((iinfo->cached_extent.lstart <= bcount) && 98 (iinfo->cached_extent.lstart != -1)) { 99 /* Cache hit */ 100 *lbcount = iinfo->cached_extent.lstart; 101 memcpy(pos, &iinfo->cached_extent.epos, 102 sizeof(struct extent_position)); 103 if (pos->bh) 104 get_bh(pos->bh); 105 ret = 1; 106 } 107 spin_unlock(&iinfo->i_extent_cache_lock); 108 return ret; 109 } 110 111 /* Add extent to extent cache */ 112 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 113 struct extent_position *pos, int next_epos) 114 { 115 struct udf_inode_info *iinfo = UDF_I(inode); 116 117 spin_lock(&iinfo->i_extent_cache_lock); 118 /* Invalidate previously cached extent */ 119 __udf_clear_extent_cache(inode); 120 if (pos->bh) 121 get_bh(pos->bh); 122 memcpy(&iinfo->cached_extent.epos, pos, 123 sizeof(struct extent_position)); 124 iinfo->cached_extent.lstart = estart; 125 if (next_epos) 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= 129 sizeof(struct short_ad); 130 break; 131 case ICBTAG_FLAG_AD_LONG: 132 iinfo->cached_extent.epos.offset -= 133 sizeof(struct long_ad); 134 } 135 spin_unlock(&iinfo->i_extent_cache_lock); 136 } 137 138 void udf_evict_inode(struct inode *inode) 139 { 140 struct udf_inode_info *iinfo = UDF_I(inode); 141 int want_delete = 0; 142 143 if (!inode->i_nlink && !is_bad_inode(inode)) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 truncate_inode_pages_final(&inode->i_data); 149 invalidate_inode_buffers(inode); 150 clear_inode(inode); 151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 152 inode->i_size != iinfo->i_lenExtents) { 153 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 154 inode->i_ino, inode->i_mode, 155 (unsigned long long)inode->i_size, 156 (unsigned long long)iinfo->i_lenExtents); 157 } 158 kfree(iinfo->i_ext.i_data); 159 iinfo->i_ext.i_data = NULL; 160 udf_clear_extent_cache(inode); 161 if (want_delete) { 162 udf_free_inode(inode); 163 } 164 } 165 166 static void udf_write_failed(struct address_space *mapping, loff_t to) 167 { 168 struct inode *inode = mapping->host; 169 struct udf_inode_info *iinfo = UDF_I(inode); 170 loff_t isize = inode->i_size; 171 172 if (to > isize) { 173 truncate_pagecache(inode, isize); 174 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 175 down_write(&iinfo->i_data_sem); 176 udf_clear_extent_cache(inode); 177 udf_truncate_extents(inode); 178 up_write(&iinfo->i_data_sem); 179 } 180 } 181 } 182 183 static int udf_writepage(struct page *page, struct writeback_control *wbc) 184 { 185 return block_write_full_page(page, udf_get_block, wbc); 186 } 187 188 static int udf_writepages(struct address_space *mapping, 189 struct writeback_control *wbc) 190 { 191 return mpage_writepages(mapping, wbc, udf_get_block); 192 } 193 194 static int udf_readpage(struct file *file, struct page *page) 195 { 196 return mpage_readpage(page, udf_get_block); 197 } 198 199 static int udf_readpages(struct file *file, struct address_space *mapping, 200 struct list_head *pages, unsigned nr_pages) 201 { 202 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 203 } 204 205 static int udf_write_begin(struct file *file, struct address_space *mapping, 206 loff_t pos, unsigned len, unsigned flags, 207 struct page **pagep, void **fsdata) 208 { 209 int ret; 210 211 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 212 if (unlikely(ret)) 213 udf_write_failed(mapping, pos + len); 214 return ret; 215 } 216 217 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 218 loff_t offset) 219 { 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, offset, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, offset + count); 229 return ret; 230 } 231 232 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233 { 234 return generic_block_bmap(mapping, block, udf_get_block); 235 } 236 237 const struct address_space_operations udf_aops = { 238 .readpage = udf_readpage, 239 .readpages = udf_readpages, 240 .writepage = udf_writepage, 241 .writepages = udf_writepages, 242 .write_begin = udf_write_begin, 243 .write_end = generic_write_end, 244 .direct_IO = udf_direct_IO, 245 .bmap = udf_bmap, 246 }; 247 248 /* 249 * Expand file stored in ICB to a normal one-block-file 250 * 251 * This function requires i_data_sem for writing and releases it. 252 * This function requires i_mutex held 253 */ 254 int udf_expand_file_adinicb(struct inode *inode) 255 { 256 struct page *page; 257 char *kaddr; 258 struct udf_inode_info *iinfo = UDF_I(inode); 259 int err; 260 struct writeback_control udf_wbc = { 261 .sync_mode = WB_SYNC_NONE, 262 .nr_to_write = 1, 263 }; 264 265 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex)); 266 if (!iinfo->i_lenAlloc) { 267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 269 else 270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 271 /* from now on we have normal address_space methods */ 272 inode->i_data.a_ops = &udf_aops; 273 up_write(&iinfo->i_data_sem); 274 mark_inode_dirty(inode); 275 return 0; 276 } 277 /* 278 * Release i_data_sem so that we can lock a page - page lock ranks 279 * above i_data_sem. i_mutex still protects us against file changes. 280 */ 281 up_write(&iinfo->i_data_sem); 282 283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 284 if (!page) 285 return -ENOMEM; 286 287 if (!PageUptodate(page)) { 288 kaddr = kmap(page); 289 memset(kaddr + iinfo->i_lenAlloc, 0x00, 290 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 291 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 292 iinfo->i_lenAlloc); 293 flush_dcache_page(page); 294 SetPageUptodate(page); 295 kunmap(page); 296 } 297 down_write(&iinfo->i_data_sem); 298 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 299 iinfo->i_lenAlloc); 300 iinfo->i_lenAlloc = 0; 301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 303 else 304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 305 /* from now on we have normal address_space methods */ 306 inode->i_data.a_ops = &udf_aops; 307 up_write(&iinfo->i_data_sem); 308 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 309 if (err) { 310 /* Restore everything back so that we don't lose data... */ 311 lock_page(page); 312 kaddr = kmap(page); 313 down_write(&iinfo->i_data_sem); 314 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 315 inode->i_size); 316 kunmap(page); 317 unlock_page(page); 318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 319 inode->i_data.a_ops = &udf_adinicb_aops; 320 up_write(&iinfo->i_data_sem); 321 } 322 page_cache_release(page); 323 mark_inode_dirty(inode); 324 325 return err; 326 } 327 328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 329 int *err) 330 { 331 int newblock; 332 struct buffer_head *dbh = NULL; 333 struct kernel_lb_addr eloc; 334 uint8_t alloctype; 335 struct extent_position epos; 336 337 struct udf_fileident_bh sfibh, dfibh; 338 loff_t f_pos = udf_ext0_offset(inode); 339 int size = udf_ext0_offset(inode) + inode->i_size; 340 struct fileIdentDesc cfi, *sfi, *dfi; 341 struct udf_inode_info *iinfo = UDF_I(inode); 342 343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 344 alloctype = ICBTAG_FLAG_AD_SHORT; 345 else 346 alloctype = ICBTAG_FLAG_AD_LONG; 347 348 if (!inode->i_size) { 349 iinfo->i_alloc_type = alloctype; 350 mark_inode_dirty(inode); 351 return NULL; 352 } 353 354 /* alloc block, and copy data to it */ 355 *block = udf_new_block(inode->i_sb, inode, 356 iinfo->i_location.partitionReferenceNum, 357 iinfo->i_location.logicalBlockNum, err); 358 if (!(*block)) 359 return NULL; 360 newblock = udf_get_pblock(inode->i_sb, *block, 361 iinfo->i_location.partitionReferenceNum, 362 0); 363 if (!newblock) 364 return NULL; 365 dbh = udf_tgetblk(inode->i_sb, newblock); 366 if (!dbh) 367 return NULL; 368 lock_buffer(dbh); 369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 370 set_buffer_uptodate(dbh); 371 unlock_buffer(dbh); 372 mark_buffer_dirty_inode(dbh, inode); 373 374 sfibh.soffset = sfibh.eoffset = 375 f_pos & (inode->i_sb->s_blocksize - 1); 376 sfibh.sbh = sfibh.ebh = NULL; 377 dfibh.soffset = dfibh.eoffset = 0; 378 dfibh.sbh = dfibh.ebh = dbh; 379 while (f_pos < size) { 380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 382 NULL, NULL, NULL); 383 if (!sfi) { 384 brelse(dbh); 385 return NULL; 386 } 387 iinfo->i_alloc_type = alloctype; 388 sfi->descTag.tagLocation = cpu_to_le32(*block); 389 dfibh.soffset = dfibh.eoffset; 390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 393 sfi->fileIdent + 394 le16_to_cpu(sfi->lengthOfImpUse))) { 395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 396 brelse(dbh); 397 return NULL; 398 } 399 } 400 mark_buffer_dirty_inode(dbh, inode); 401 402 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 403 iinfo->i_lenAlloc); 404 iinfo->i_lenAlloc = 0; 405 eloc.logicalBlockNum = *block; 406 eloc.partitionReferenceNum = 407 iinfo->i_location.partitionReferenceNum; 408 iinfo->i_lenExtents = inode->i_size; 409 epos.bh = NULL; 410 epos.block = iinfo->i_location; 411 epos.offset = udf_file_entry_alloc_offset(inode); 412 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 413 /* UniqueID stuff */ 414 415 brelse(epos.bh); 416 mark_inode_dirty(inode); 417 return dbh; 418 } 419 420 static int udf_get_block(struct inode *inode, sector_t block, 421 struct buffer_head *bh_result, int create) 422 { 423 int err, new; 424 sector_t phys = 0; 425 struct udf_inode_info *iinfo; 426 427 if (!create) { 428 phys = udf_block_map(inode, block); 429 if (phys) 430 map_bh(bh_result, inode->i_sb, phys); 431 return 0; 432 } 433 434 err = -EIO; 435 new = 0; 436 iinfo = UDF_I(inode); 437 438 down_write(&iinfo->i_data_sem); 439 if (block == iinfo->i_next_alloc_block + 1) { 440 iinfo->i_next_alloc_block++; 441 iinfo->i_next_alloc_goal++; 442 } 443 444 udf_clear_extent_cache(inode); 445 phys = inode_getblk(inode, block, &err, &new); 446 if (!phys) 447 goto abort; 448 449 if (new) 450 set_buffer_new(bh_result); 451 map_bh(bh_result, inode->i_sb, phys); 452 453 abort: 454 up_write(&iinfo->i_data_sem); 455 return err; 456 } 457 458 static struct buffer_head *udf_getblk(struct inode *inode, long block, 459 int create, int *err) 460 { 461 struct buffer_head *bh; 462 struct buffer_head dummy; 463 464 dummy.b_state = 0; 465 dummy.b_blocknr = -1000; 466 *err = udf_get_block(inode, block, &dummy, create); 467 if (!*err && buffer_mapped(&dummy)) { 468 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 469 if (buffer_new(&dummy)) { 470 lock_buffer(bh); 471 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 472 set_buffer_uptodate(bh); 473 unlock_buffer(bh); 474 mark_buffer_dirty_inode(bh, inode); 475 } 476 return bh; 477 } 478 479 return NULL; 480 } 481 482 /* Extend the file by 'blocks' blocks, return the number of extents added */ 483 static int udf_do_extend_file(struct inode *inode, 484 struct extent_position *last_pos, 485 struct kernel_long_ad *last_ext, 486 sector_t blocks) 487 { 488 sector_t add; 489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 490 struct super_block *sb = inode->i_sb; 491 struct kernel_lb_addr prealloc_loc = {}; 492 int prealloc_len = 0; 493 struct udf_inode_info *iinfo; 494 int err; 495 496 /* The previous extent is fake and we should not extend by anything 497 * - there's nothing to do... */ 498 if (!blocks && fake) 499 return 0; 500 501 iinfo = UDF_I(inode); 502 /* Round the last extent up to a multiple of block size */ 503 if (last_ext->extLength & (sb->s_blocksize - 1)) { 504 last_ext->extLength = 505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 508 iinfo->i_lenExtents = 509 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 510 ~(sb->s_blocksize - 1); 511 } 512 513 /* Last extent are just preallocated blocks? */ 514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 515 EXT_NOT_RECORDED_ALLOCATED) { 516 /* Save the extent so that we can reattach it to the end */ 517 prealloc_loc = last_ext->extLocation; 518 prealloc_len = last_ext->extLength; 519 /* Mark the extent as a hole */ 520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 522 last_ext->extLocation.logicalBlockNum = 0; 523 last_ext->extLocation.partitionReferenceNum = 0; 524 } 525 526 /* Can we merge with the previous extent? */ 527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 528 EXT_NOT_RECORDED_NOT_ALLOCATED) { 529 add = ((1 << 30) - sb->s_blocksize - 530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 531 sb->s_blocksize_bits; 532 if (add > blocks) 533 add = blocks; 534 blocks -= add; 535 last_ext->extLength += add << sb->s_blocksize_bits; 536 } 537 538 if (fake) { 539 udf_add_aext(inode, last_pos, &last_ext->extLocation, 540 last_ext->extLength, 1); 541 count++; 542 } else 543 udf_write_aext(inode, last_pos, &last_ext->extLocation, 544 last_ext->extLength, 1); 545 546 /* Managed to do everything necessary? */ 547 if (!blocks) 548 goto out; 549 550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 551 last_ext->extLocation.logicalBlockNum = 0; 552 last_ext->extLocation.partitionReferenceNum = 0; 553 add = (1 << (30-sb->s_blocksize_bits)) - 1; 554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 555 (add << sb->s_blocksize_bits); 556 557 /* Create enough extents to cover the whole hole */ 558 while (blocks > add) { 559 blocks -= add; 560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 561 last_ext->extLength, 1); 562 if (err) 563 return err; 564 count++; 565 } 566 if (blocks) { 567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 568 (blocks << sb->s_blocksize_bits); 569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 570 last_ext->extLength, 1); 571 if (err) 572 return err; 573 count++; 574 } 575 576 out: 577 /* Do we have some preallocated blocks saved? */ 578 if (prealloc_len) { 579 err = udf_add_aext(inode, last_pos, &prealloc_loc, 580 prealloc_len, 1); 581 if (err) 582 return err; 583 last_ext->extLocation = prealloc_loc; 584 last_ext->extLength = prealloc_len; 585 count++; 586 } 587 588 /* last_pos should point to the last written extent... */ 589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 590 last_pos->offset -= sizeof(struct short_ad); 591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 592 last_pos->offset -= sizeof(struct long_ad); 593 else 594 return -EIO; 595 596 return count; 597 } 598 599 static int udf_extend_file(struct inode *inode, loff_t newsize) 600 { 601 602 struct extent_position epos; 603 struct kernel_lb_addr eloc; 604 uint32_t elen; 605 int8_t etype; 606 struct super_block *sb = inode->i_sb; 607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 608 int adsize; 609 struct udf_inode_info *iinfo = UDF_I(inode); 610 struct kernel_long_ad extent; 611 int err; 612 613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 614 adsize = sizeof(struct short_ad); 615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 616 adsize = sizeof(struct long_ad); 617 else 618 BUG(); 619 620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 621 622 /* File has extent covering the new size (could happen when extending 623 * inside a block)? */ 624 if (etype != -1) 625 return 0; 626 if (newsize & (sb->s_blocksize - 1)) 627 offset++; 628 /* Extended file just to the boundary of the last file block? */ 629 if (offset == 0) 630 return 0; 631 632 /* Truncate is extending the file by 'offset' blocks */ 633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 635 /* File has no extents at all or has empty last 636 * indirect extent! Create a fake extent... */ 637 extent.extLocation.logicalBlockNum = 0; 638 extent.extLocation.partitionReferenceNum = 0; 639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 640 } else { 641 epos.offset -= adsize; 642 etype = udf_next_aext(inode, &epos, &extent.extLocation, 643 &extent.extLength, 0); 644 extent.extLength |= etype << 30; 645 } 646 err = udf_do_extend_file(inode, &epos, &extent, offset); 647 if (err < 0) 648 goto out; 649 err = 0; 650 iinfo->i_lenExtents = newsize; 651 out: 652 brelse(epos.bh); 653 return err; 654 } 655 656 static sector_t inode_getblk(struct inode *inode, sector_t block, 657 int *err, int *new) 658 { 659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 660 struct extent_position prev_epos, cur_epos, next_epos; 661 int count = 0, startnum = 0, endnum = 0; 662 uint32_t elen = 0, tmpelen; 663 struct kernel_lb_addr eloc, tmpeloc; 664 int c = 1; 665 loff_t lbcount = 0, b_off = 0; 666 uint32_t newblocknum, newblock; 667 sector_t offset = 0; 668 int8_t etype; 669 struct udf_inode_info *iinfo = UDF_I(inode); 670 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 671 int lastblock = 0; 672 bool isBeyondEOF; 673 674 *err = 0; 675 *new = 0; 676 prev_epos.offset = udf_file_entry_alloc_offset(inode); 677 prev_epos.block = iinfo->i_location; 678 prev_epos.bh = NULL; 679 cur_epos = next_epos = prev_epos; 680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 681 682 /* find the extent which contains the block we are looking for. 683 alternate between laarr[0] and laarr[1] for locations of the 684 current extent, and the previous extent */ 685 do { 686 if (prev_epos.bh != cur_epos.bh) { 687 brelse(prev_epos.bh); 688 get_bh(cur_epos.bh); 689 prev_epos.bh = cur_epos.bh; 690 } 691 if (cur_epos.bh != next_epos.bh) { 692 brelse(cur_epos.bh); 693 get_bh(next_epos.bh); 694 cur_epos.bh = next_epos.bh; 695 } 696 697 lbcount += elen; 698 699 prev_epos.block = cur_epos.block; 700 cur_epos.block = next_epos.block; 701 702 prev_epos.offset = cur_epos.offset; 703 cur_epos.offset = next_epos.offset; 704 705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 706 if (etype == -1) 707 break; 708 709 c = !c; 710 711 laarr[c].extLength = (etype << 30) | elen; 712 laarr[c].extLocation = eloc; 713 714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 715 pgoal = eloc.logicalBlockNum + 716 ((elen + inode->i_sb->s_blocksize - 1) >> 717 inode->i_sb->s_blocksize_bits); 718 719 count++; 720 } while (lbcount + elen <= b_off); 721 722 b_off -= lbcount; 723 offset = b_off >> inode->i_sb->s_blocksize_bits; 724 /* 725 * Move prev_epos and cur_epos into indirect extent if we are at 726 * the pointer to it 727 */ 728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 730 731 /* if the extent is allocated and recorded, return the block 732 if the extent is not a multiple of the blocksize, round up */ 733 734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 735 if (elen & (inode->i_sb->s_blocksize - 1)) { 736 elen = EXT_RECORDED_ALLOCATED | 737 ((elen + inode->i_sb->s_blocksize - 1) & 738 ~(inode->i_sb->s_blocksize - 1)); 739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 740 } 741 brelse(prev_epos.bh); 742 brelse(cur_epos.bh); 743 brelse(next_epos.bh); 744 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 745 return newblock; 746 } 747 748 /* Are we beyond EOF? */ 749 if (etype == -1) { 750 int ret; 751 isBeyondEOF = true; 752 if (count) { 753 if (c) 754 laarr[0] = laarr[1]; 755 startnum = 1; 756 } else { 757 /* Create a fake extent when there's not one */ 758 memset(&laarr[0].extLocation, 0x00, 759 sizeof(struct kernel_lb_addr)); 760 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 761 /* Will udf_do_extend_file() create real extent from 762 a fake one? */ 763 startnum = (offset > 0); 764 } 765 /* Create extents for the hole between EOF and offset */ 766 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 767 if (ret < 0) { 768 brelse(prev_epos.bh); 769 brelse(cur_epos.bh); 770 brelse(next_epos.bh); 771 *err = ret; 772 return 0; 773 } 774 c = 0; 775 offset = 0; 776 count += ret; 777 /* We are not covered by a preallocated extent? */ 778 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 779 EXT_NOT_RECORDED_ALLOCATED) { 780 /* Is there any real extent? - otherwise we overwrite 781 * the fake one... */ 782 if (count) 783 c = !c; 784 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 785 inode->i_sb->s_blocksize; 786 memset(&laarr[c].extLocation, 0x00, 787 sizeof(struct kernel_lb_addr)); 788 count++; 789 } 790 endnum = c + 1; 791 lastblock = 1; 792 } else { 793 isBeyondEOF = false; 794 endnum = startnum = ((count > 2) ? 2 : count); 795 796 /* if the current extent is in position 0, 797 swap it with the previous */ 798 if (!c && count != 1) { 799 laarr[2] = laarr[0]; 800 laarr[0] = laarr[1]; 801 laarr[1] = laarr[2]; 802 c = 1; 803 } 804 805 /* if the current block is located in an extent, 806 read the next extent */ 807 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 808 if (etype != -1) { 809 laarr[c + 1].extLength = (etype << 30) | elen; 810 laarr[c + 1].extLocation = eloc; 811 count++; 812 startnum++; 813 endnum++; 814 } else 815 lastblock = 1; 816 } 817 818 /* if the current extent is not recorded but allocated, get the 819 * block in the extent corresponding to the requested block */ 820 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 821 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 822 else { /* otherwise, allocate a new block */ 823 if (iinfo->i_next_alloc_block == block) 824 goal = iinfo->i_next_alloc_goal; 825 826 if (!goal) { 827 if (!(goal = pgoal)) /* XXX: what was intended here? */ 828 goal = iinfo->i_location.logicalBlockNum + 1; 829 } 830 831 newblocknum = udf_new_block(inode->i_sb, inode, 832 iinfo->i_location.partitionReferenceNum, 833 goal, err); 834 if (!newblocknum) { 835 brelse(prev_epos.bh); 836 brelse(cur_epos.bh); 837 brelse(next_epos.bh); 838 *err = -ENOSPC; 839 return 0; 840 } 841 if (isBeyondEOF) 842 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 843 } 844 845 /* if the extent the requsted block is located in contains multiple 846 * blocks, split the extent into at most three extents. blocks prior 847 * to requested block, requested block, and blocks after requested 848 * block */ 849 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 850 851 #ifdef UDF_PREALLOCATE 852 /* We preallocate blocks only for regular files. It also makes sense 853 * for directories but there's a problem when to drop the 854 * preallocation. We might use some delayed work for that but I feel 855 * it's overengineering for a filesystem like UDF. */ 856 if (S_ISREG(inode->i_mode)) 857 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 858 #endif 859 860 /* merge any continuous blocks in laarr */ 861 udf_merge_extents(inode, laarr, &endnum); 862 863 /* write back the new extents, inserting new extents if the new number 864 * of extents is greater than the old number, and deleting extents if 865 * the new number of extents is less than the old number */ 866 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 867 868 brelse(prev_epos.bh); 869 brelse(cur_epos.bh); 870 brelse(next_epos.bh); 871 872 newblock = udf_get_pblock(inode->i_sb, newblocknum, 873 iinfo->i_location.partitionReferenceNum, 0); 874 if (!newblock) { 875 *err = -EIO; 876 return 0; 877 } 878 *new = 1; 879 iinfo->i_next_alloc_block = block; 880 iinfo->i_next_alloc_goal = newblocknum; 881 inode->i_ctime = current_fs_time(inode->i_sb); 882 883 if (IS_SYNC(inode)) 884 udf_sync_inode(inode); 885 else 886 mark_inode_dirty(inode); 887 888 return newblock; 889 } 890 891 static void udf_split_extents(struct inode *inode, int *c, int offset, 892 int newblocknum, 893 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 894 int *endnum) 895 { 896 unsigned long blocksize = inode->i_sb->s_blocksize; 897 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 898 899 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 900 (laarr[*c].extLength >> 30) == 901 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 902 int curr = *c; 903 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 904 blocksize - 1) >> blocksize_bits; 905 int8_t etype = (laarr[curr].extLength >> 30); 906 907 if (blen == 1) 908 ; 909 else if (!offset || blen == offset + 1) { 910 laarr[curr + 2] = laarr[curr + 1]; 911 laarr[curr + 1] = laarr[curr]; 912 } else { 913 laarr[curr + 3] = laarr[curr + 1]; 914 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 915 } 916 917 if (offset) { 918 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 919 udf_free_blocks(inode->i_sb, inode, 920 &laarr[curr].extLocation, 921 0, offset); 922 laarr[curr].extLength = 923 EXT_NOT_RECORDED_NOT_ALLOCATED | 924 (offset << blocksize_bits); 925 laarr[curr].extLocation.logicalBlockNum = 0; 926 laarr[curr].extLocation. 927 partitionReferenceNum = 0; 928 } else 929 laarr[curr].extLength = (etype << 30) | 930 (offset << blocksize_bits); 931 curr++; 932 (*c)++; 933 (*endnum)++; 934 } 935 936 laarr[curr].extLocation.logicalBlockNum = newblocknum; 937 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 938 laarr[curr].extLocation.partitionReferenceNum = 939 UDF_I(inode)->i_location.partitionReferenceNum; 940 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 941 blocksize; 942 curr++; 943 944 if (blen != offset + 1) { 945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 946 laarr[curr].extLocation.logicalBlockNum += 947 offset + 1; 948 laarr[curr].extLength = (etype << 30) | 949 ((blen - (offset + 1)) << blocksize_bits); 950 curr++; 951 (*endnum)++; 952 } 953 } 954 } 955 956 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 957 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 958 int *endnum) 959 { 960 int start, length = 0, currlength = 0, i; 961 962 if (*endnum >= (c + 1)) { 963 if (!lastblock) 964 return; 965 else 966 start = c; 967 } else { 968 if ((laarr[c + 1].extLength >> 30) == 969 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 970 start = c + 1; 971 length = currlength = 972 (((laarr[c + 1].extLength & 973 UDF_EXTENT_LENGTH_MASK) + 974 inode->i_sb->s_blocksize - 1) >> 975 inode->i_sb->s_blocksize_bits); 976 } else 977 start = c; 978 } 979 980 for (i = start + 1; i <= *endnum; i++) { 981 if (i == *endnum) { 982 if (lastblock) 983 length += UDF_DEFAULT_PREALLOC_BLOCKS; 984 } else if ((laarr[i].extLength >> 30) == 985 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 986 length += (((laarr[i].extLength & 987 UDF_EXTENT_LENGTH_MASK) + 988 inode->i_sb->s_blocksize - 1) >> 989 inode->i_sb->s_blocksize_bits); 990 } else 991 break; 992 } 993 994 if (length) { 995 int next = laarr[start].extLocation.logicalBlockNum + 996 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 997 inode->i_sb->s_blocksize - 1) >> 998 inode->i_sb->s_blocksize_bits); 999 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1000 laarr[start].extLocation.partitionReferenceNum, 1001 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1002 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1003 currlength); 1004 if (numalloc) { 1005 if (start == (c + 1)) 1006 laarr[start].extLength += 1007 (numalloc << 1008 inode->i_sb->s_blocksize_bits); 1009 else { 1010 memmove(&laarr[c + 2], &laarr[c + 1], 1011 sizeof(struct long_ad) * (*endnum - (c + 1))); 1012 (*endnum)++; 1013 laarr[c + 1].extLocation.logicalBlockNum = next; 1014 laarr[c + 1].extLocation.partitionReferenceNum = 1015 laarr[c].extLocation. 1016 partitionReferenceNum; 1017 laarr[c + 1].extLength = 1018 EXT_NOT_RECORDED_ALLOCATED | 1019 (numalloc << 1020 inode->i_sb->s_blocksize_bits); 1021 start = c + 1; 1022 } 1023 1024 for (i = start + 1; numalloc && i < *endnum; i++) { 1025 int elen = ((laarr[i].extLength & 1026 UDF_EXTENT_LENGTH_MASK) + 1027 inode->i_sb->s_blocksize - 1) >> 1028 inode->i_sb->s_blocksize_bits; 1029 1030 if (elen > numalloc) { 1031 laarr[i].extLength -= 1032 (numalloc << 1033 inode->i_sb->s_blocksize_bits); 1034 numalloc = 0; 1035 } else { 1036 numalloc -= elen; 1037 if (*endnum > (i + 1)) 1038 memmove(&laarr[i], 1039 &laarr[i + 1], 1040 sizeof(struct long_ad) * 1041 (*endnum - (i + 1))); 1042 i--; 1043 (*endnum)--; 1044 } 1045 } 1046 UDF_I(inode)->i_lenExtents += 1047 numalloc << inode->i_sb->s_blocksize_bits; 1048 } 1049 } 1050 } 1051 1052 static void udf_merge_extents(struct inode *inode, 1053 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1054 int *endnum) 1055 { 1056 int i; 1057 unsigned long blocksize = inode->i_sb->s_blocksize; 1058 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1059 1060 for (i = 0; i < (*endnum - 1); i++) { 1061 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1062 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1063 1064 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1065 (((li->extLength >> 30) == 1066 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1067 ((lip1->extLocation.logicalBlockNum - 1068 li->extLocation.logicalBlockNum) == 1069 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1070 blocksize - 1) >> blocksize_bits)))) { 1071 1072 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1073 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1074 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1075 lip1->extLength = (lip1->extLength - 1076 (li->extLength & 1077 UDF_EXTENT_LENGTH_MASK) + 1078 UDF_EXTENT_LENGTH_MASK) & 1079 ~(blocksize - 1); 1080 li->extLength = (li->extLength & 1081 UDF_EXTENT_FLAG_MASK) + 1082 (UDF_EXTENT_LENGTH_MASK + 1) - 1083 blocksize; 1084 lip1->extLocation.logicalBlockNum = 1085 li->extLocation.logicalBlockNum + 1086 ((li->extLength & 1087 UDF_EXTENT_LENGTH_MASK) >> 1088 blocksize_bits); 1089 } else { 1090 li->extLength = lip1->extLength + 1091 (((li->extLength & 1092 UDF_EXTENT_LENGTH_MASK) + 1093 blocksize - 1) & ~(blocksize - 1)); 1094 if (*endnum > (i + 2)) 1095 memmove(&laarr[i + 1], &laarr[i + 2], 1096 sizeof(struct long_ad) * 1097 (*endnum - (i + 2))); 1098 i--; 1099 (*endnum)--; 1100 } 1101 } else if (((li->extLength >> 30) == 1102 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1103 ((lip1->extLength >> 30) == 1104 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1105 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1106 ((li->extLength & 1107 UDF_EXTENT_LENGTH_MASK) + 1108 blocksize - 1) >> blocksize_bits); 1109 li->extLocation.logicalBlockNum = 0; 1110 li->extLocation.partitionReferenceNum = 0; 1111 1112 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1113 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1114 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1115 lip1->extLength = (lip1->extLength - 1116 (li->extLength & 1117 UDF_EXTENT_LENGTH_MASK) + 1118 UDF_EXTENT_LENGTH_MASK) & 1119 ~(blocksize - 1); 1120 li->extLength = (li->extLength & 1121 UDF_EXTENT_FLAG_MASK) + 1122 (UDF_EXTENT_LENGTH_MASK + 1) - 1123 blocksize; 1124 } else { 1125 li->extLength = lip1->extLength + 1126 (((li->extLength & 1127 UDF_EXTENT_LENGTH_MASK) + 1128 blocksize - 1) & ~(blocksize - 1)); 1129 if (*endnum > (i + 2)) 1130 memmove(&laarr[i + 1], &laarr[i + 2], 1131 sizeof(struct long_ad) * 1132 (*endnum - (i + 2))); 1133 i--; 1134 (*endnum)--; 1135 } 1136 } else if ((li->extLength >> 30) == 1137 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1138 udf_free_blocks(inode->i_sb, inode, 1139 &li->extLocation, 0, 1140 ((li->extLength & 1141 UDF_EXTENT_LENGTH_MASK) + 1142 blocksize - 1) >> blocksize_bits); 1143 li->extLocation.logicalBlockNum = 0; 1144 li->extLocation.partitionReferenceNum = 0; 1145 li->extLength = (li->extLength & 1146 UDF_EXTENT_LENGTH_MASK) | 1147 EXT_NOT_RECORDED_NOT_ALLOCATED; 1148 } 1149 } 1150 } 1151 1152 static void udf_update_extents(struct inode *inode, 1153 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1154 int startnum, int endnum, 1155 struct extent_position *epos) 1156 { 1157 int start = 0, i; 1158 struct kernel_lb_addr tmploc; 1159 uint32_t tmplen; 1160 1161 if (startnum > endnum) { 1162 for (i = 0; i < (startnum - endnum); i++) 1163 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1164 laarr[i].extLength); 1165 } else if (startnum < endnum) { 1166 for (i = 0; i < (endnum - startnum); i++) { 1167 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1168 laarr[i].extLength); 1169 udf_next_aext(inode, epos, &laarr[i].extLocation, 1170 &laarr[i].extLength, 1); 1171 start++; 1172 } 1173 } 1174 1175 for (i = start; i < endnum; i++) { 1176 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1177 udf_write_aext(inode, epos, &laarr[i].extLocation, 1178 laarr[i].extLength, 1); 1179 } 1180 } 1181 1182 struct buffer_head *udf_bread(struct inode *inode, int block, 1183 int create, int *err) 1184 { 1185 struct buffer_head *bh = NULL; 1186 1187 bh = udf_getblk(inode, block, create, err); 1188 if (!bh) 1189 return NULL; 1190 1191 if (buffer_uptodate(bh)) 1192 return bh; 1193 1194 ll_rw_block(READ, 1, &bh); 1195 1196 wait_on_buffer(bh); 1197 if (buffer_uptodate(bh)) 1198 return bh; 1199 1200 brelse(bh); 1201 *err = -EIO; 1202 return NULL; 1203 } 1204 1205 int udf_setsize(struct inode *inode, loff_t newsize) 1206 { 1207 int err; 1208 struct udf_inode_info *iinfo; 1209 int bsize = 1 << inode->i_blkbits; 1210 1211 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1212 S_ISLNK(inode->i_mode))) 1213 return -EINVAL; 1214 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1215 return -EPERM; 1216 1217 iinfo = UDF_I(inode); 1218 if (newsize > inode->i_size) { 1219 down_write(&iinfo->i_data_sem); 1220 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1221 if (bsize < 1222 (udf_file_entry_alloc_offset(inode) + newsize)) { 1223 err = udf_expand_file_adinicb(inode); 1224 if (err) 1225 return err; 1226 down_write(&iinfo->i_data_sem); 1227 } else { 1228 iinfo->i_lenAlloc = newsize; 1229 goto set_size; 1230 } 1231 } 1232 err = udf_extend_file(inode, newsize); 1233 if (err) { 1234 up_write(&iinfo->i_data_sem); 1235 return err; 1236 } 1237 set_size: 1238 truncate_setsize(inode, newsize); 1239 up_write(&iinfo->i_data_sem); 1240 } else { 1241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1242 down_write(&iinfo->i_data_sem); 1243 udf_clear_extent_cache(inode); 1244 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1245 0x00, bsize - newsize - 1246 udf_file_entry_alloc_offset(inode)); 1247 iinfo->i_lenAlloc = newsize; 1248 truncate_setsize(inode, newsize); 1249 up_write(&iinfo->i_data_sem); 1250 goto update_time; 1251 } 1252 err = block_truncate_page(inode->i_mapping, newsize, 1253 udf_get_block); 1254 if (err) 1255 return err; 1256 down_write(&iinfo->i_data_sem); 1257 udf_clear_extent_cache(inode); 1258 truncate_setsize(inode, newsize); 1259 udf_truncate_extents(inode); 1260 up_write(&iinfo->i_data_sem); 1261 } 1262 update_time: 1263 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1264 if (IS_SYNC(inode)) 1265 udf_sync_inode(inode); 1266 else 1267 mark_inode_dirty(inode); 1268 return 0; 1269 } 1270 1271 /* 1272 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1273 * arbitrary - just that we hopefully don't limit any real use of rewritten 1274 * inode on write-once media but avoid looping for too long on corrupted media. 1275 */ 1276 #define UDF_MAX_ICB_NESTING 1024 1277 1278 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1279 { 1280 struct buffer_head *bh = NULL; 1281 struct fileEntry *fe; 1282 struct extendedFileEntry *efe; 1283 uint16_t ident; 1284 struct udf_inode_info *iinfo = UDF_I(inode); 1285 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1286 struct kernel_lb_addr *iloc = &iinfo->i_location; 1287 unsigned int link_count; 1288 unsigned int indirections = 0; 1289 int bs = inode->i_sb->s_blocksize; 1290 int ret = -EIO; 1291 1292 reread: 1293 if (iloc->logicalBlockNum >= 1294 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1295 udf_debug("block=%d, partition=%d out of range\n", 1296 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1297 return -EIO; 1298 } 1299 1300 /* 1301 * Set defaults, but the inode is still incomplete! 1302 * Note: get_new_inode() sets the following on a new inode: 1303 * i_sb = sb 1304 * i_no = ino 1305 * i_flags = sb->s_flags 1306 * i_state = 0 1307 * clean_inode(): zero fills and sets 1308 * i_count = 1 1309 * i_nlink = 1 1310 * i_op = NULL; 1311 */ 1312 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1313 if (!bh) { 1314 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1315 return -EIO; 1316 } 1317 1318 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1319 ident != TAG_IDENT_USE) { 1320 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1321 inode->i_ino, ident); 1322 goto out; 1323 } 1324 1325 fe = (struct fileEntry *)bh->b_data; 1326 efe = (struct extendedFileEntry *)bh->b_data; 1327 1328 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1329 struct buffer_head *ibh; 1330 1331 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1332 if (ident == TAG_IDENT_IE && ibh) { 1333 struct kernel_lb_addr loc; 1334 struct indirectEntry *ie; 1335 1336 ie = (struct indirectEntry *)ibh->b_data; 1337 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1338 1339 if (ie->indirectICB.extLength) { 1340 brelse(ibh); 1341 memcpy(&iinfo->i_location, &loc, 1342 sizeof(struct kernel_lb_addr)); 1343 if (++indirections > UDF_MAX_ICB_NESTING) { 1344 udf_err(inode->i_sb, 1345 "too many ICBs in ICB hierarchy" 1346 " (max %d supported)\n", 1347 UDF_MAX_ICB_NESTING); 1348 goto out; 1349 } 1350 brelse(bh); 1351 goto reread; 1352 } 1353 } 1354 brelse(ibh); 1355 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1356 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1357 le16_to_cpu(fe->icbTag.strategyType)); 1358 goto out; 1359 } 1360 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1361 iinfo->i_strat4096 = 0; 1362 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1363 iinfo->i_strat4096 = 1; 1364 1365 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1366 ICBTAG_FLAG_AD_MASK; 1367 iinfo->i_unique = 0; 1368 iinfo->i_lenEAttr = 0; 1369 iinfo->i_lenExtents = 0; 1370 iinfo->i_lenAlloc = 0; 1371 iinfo->i_next_alloc_block = 0; 1372 iinfo->i_next_alloc_goal = 0; 1373 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1374 iinfo->i_efe = 1; 1375 iinfo->i_use = 0; 1376 ret = udf_alloc_i_data(inode, bs - 1377 sizeof(struct extendedFileEntry)); 1378 if (ret) 1379 goto out; 1380 memcpy(iinfo->i_ext.i_data, 1381 bh->b_data + sizeof(struct extendedFileEntry), 1382 bs - sizeof(struct extendedFileEntry)); 1383 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1384 iinfo->i_efe = 0; 1385 iinfo->i_use = 0; 1386 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1387 if (ret) 1388 goto out; 1389 memcpy(iinfo->i_ext.i_data, 1390 bh->b_data + sizeof(struct fileEntry), 1391 bs - sizeof(struct fileEntry)); 1392 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1393 iinfo->i_efe = 0; 1394 iinfo->i_use = 1; 1395 iinfo->i_lenAlloc = le32_to_cpu( 1396 ((struct unallocSpaceEntry *)bh->b_data)-> 1397 lengthAllocDescs); 1398 ret = udf_alloc_i_data(inode, bs - 1399 sizeof(struct unallocSpaceEntry)); 1400 if (ret) 1401 goto out; 1402 memcpy(iinfo->i_ext.i_data, 1403 bh->b_data + sizeof(struct unallocSpaceEntry), 1404 bs - sizeof(struct unallocSpaceEntry)); 1405 return 0; 1406 } 1407 1408 ret = -EIO; 1409 read_lock(&sbi->s_cred_lock); 1410 i_uid_write(inode, le32_to_cpu(fe->uid)); 1411 if (!uid_valid(inode->i_uid) || 1412 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1413 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1414 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1415 1416 i_gid_write(inode, le32_to_cpu(fe->gid)); 1417 if (!gid_valid(inode->i_gid) || 1418 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1419 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1420 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1421 1422 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1423 sbi->s_fmode != UDF_INVALID_MODE) 1424 inode->i_mode = sbi->s_fmode; 1425 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1426 sbi->s_dmode != UDF_INVALID_MODE) 1427 inode->i_mode = sbi->s_dmode; 1428 else 1429 inode->i_mode = udf_convert_permissions(fe); 1430 inode->i_mode &= ~sbi->s_umask; 1431 read_unlock(&sbi->s_cred_lock); 1432 1433 link_count = le16_to_cpu(fe->fileLinkCount); 1434 if (!link_count) { 1435 if (!hidden_inode) { 1436 ret = -ESTALE; 1437 goto out; 1438 } 1439 link_count = 1; 1440 } 1441 set_nlink(inode, link_count); 1442 1443 inode->i_size = le64_to_cpu(fe->informationLength); 1444 iinfo->i_lenExtents = inode->i_size; 1445 1446 if (iinfo->i_efe == 0) { 1447 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1448 (inode->i_sb->s_blocksize_bits - 9); 1449 1450 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1451 inode->i_atime = sbi->s_record_time; 1452 1453 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1454 fe->modificationTime)) 1455 inode->i_mtime = sbi->s_record_time; 1456 1457 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1458 inode->i_ctime = sbi->s_record_time; 1459 1460 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1461 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1462 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1463 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1464 } else { 1465 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1466 (inode->i_sb->s_blocksize_bits - 9); 1467 1468 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1469 inode->i_atime = sbi->s_record_time; 1470 1471 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1472 efe->modificationTime)) 1473 inode->i_mtime = sbi->s_record_time; 1474 1475 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1476 iinfo->i_crtime = sbi->s_record_time; 1477 1478 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1479 inode->i_ctime = sbi->s_record_time; 1480 1481 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1482 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1483 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1484 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1485 } 1486 inode->i_generation = iinfo->i_unique; 1487 1488 /* 1489 * Sanity check length of allocation descriptors and extended attrs to 1490 * avoid integer overflows 1491 */ 1492 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1493 goto out; 1494 /* Now do exact checks */ 1495 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1496 goto out; 1497 /* Sanity checks for files in ICB so that we don't get confused later */ 1498 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1499 /* 1500 * For file in ICB data is stored in allocation descriptor 1501 * so sizes should match 1502 */ 1503 if (iinfo->i_lenAlloc != inode->i_size) 1504 goto out; 1505 /* File in ICB has to fit in there... */ 1506 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1507 goto out; 1508 } 1509 1510 switch (fe->icbTag.fileType) { 1511 case ICBTAG_FILE_TYPE_DIRECTORY: 1512 inode->i_op = &udf_dir_inode_operations; 1513 inode->i_fop = &udf_dir_operations; 1514 inode->i_mode |= S_IFDIR; 1515 inc_nlink(inode); 1516 break; 1517 case ICBTAG_FILE_TYPE_REALTIME: 1518 case ICBTAG_FILE_TYPE_REGULAR: 1519 case ICBTAG_FILE_TYPE_UNDEF: 1520 case ICBTAG_FILE_TYPE_VAT20: 1521 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1522 inode->i_data.a_ops = &udf_adinicb_aops; 1523 else 1524 inode->i_data.a_ops = &udf_aops; 1525 inode->i_op = &udf_file_inode_operations; 1526 inode->i_fop = &udf_file_operations; 1527 inode->i_mode |= S_IFREG; 1528 break; 1529 case ICBTAG_FILE_TYPE_BLOCK: 1530 inode->i_mode |= S_IFBLK; 1531 break; 1532 case ICBTAG_FILE_TYPE_CHAR: 1533 inode->i_mode |= S_IFCHR; 1534 break; 1535 case ICBTAG_FILE_TYPE_FIFO: 1536 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1537 break; 1538 case ICBTAG_FILE_TYPE_SOCKET: 1539 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1540 break; 1541 case ICBTAG_FILE_TYPE_SYMLINK: 1542 inode->i_data.a_ops = &udf_symlink_aops; 1543 inode->i_op = &udf_symlink_inode_operations; 1544 inode->i_mode = S_IFLNK | S_IRWXUGO; 1545 break; 1546 case ICBTAG_FILE_TYPE_MAIN: 1547 udf_debug("METADATA FILE-----\n"); 1548 break; 1549 case ICBTAG_FILE_TYPE_MIRROR: 1550 udf_debug("METADATA MIRROR FILE-----\n"); 1551 break; 1552 case ICBTAG_FILE_TYPE_BITMAP: 1553 udf_debug("METADATA BITMAP FILE-----\n"); 1554 break; 1555 default: 1556 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1557 inode->i_ino, fe->icbTag.fileType); 1558 goto out; 1559 } 1560 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1561 struct deviceSpec *dsea = 1562 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1563 if (dsea) { 1564 init_special_inode(inode, inode->i_mode, 1565 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1566 le32_to_cpu(dsea->minorDeviceIdent))); 1567 /* Developer ID ??? */ 1568 } else 1569 goto out; 1570 } 1571 ret = 0; 1572 out: 1573 brelse(bh); 1574 return ret; 1575 } 1576 1577 static int udf_alloc_i_data(struct inode *inode, size_t size) 1578 { 1579 struct udf_inode_info *iinfo = UDF_I(inode); 1580 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1581 1582 if (!iinfo->i_ext.i_data) { 1583 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1584 inode->i_ino); 1585 return -ENOMEM; 1586 } 1587 1588 return 0; 1589 } 1590 1591 static umode_t udf_convert_permissions(struct fileEntry *fe) 1592 { 1593 umode_t mode; 1594 uint32_t permissions; 1595 uint32_t flags; 1596 1597 permissions = le32_to_cpu(fe->permissions); 1598 flags = le16_to_cpu(fe->icbTag.flags); 1599 1600 mode = ((permissions) & S_IRWXO) | 1601 ((permissions >> 2) & S_IRWXG) | 1602 ((permissions >> 4) & S_IRWXU) | 1603 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1604 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1605 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1606 1607 return mode; 1608 } 1609 1610 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1611 { 1612 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1613 } 1614 1615 static int udf_sync_inode(struct inode *inode) 1616 { 1617 return udf_update_inode(inode, 1); 1618 } 1619 1620 static int udf_update_inode(struct inode *inode, int do_sync) 1621 { 1622 struct buffer_head *bh = NULL; 1623 struct fileEntry *fe; 1624 struct extendedFileEntry *efe; 1625 uint64_t lb_recorded; 1626 uint32_t udfperms; 1627 uint16_t icbflags; 1628 uint16_t crclen; 1629 int err = 0; 1630 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1631 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1632 struct udf_inode_info *iinfo = UDF_I(inode); 1633 1634 bh = udf_tgetblk(inode->i_sb, 1635 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1636 if (!bh) { 1637 udf_debug("getblk failure\n"); 1638 return -EIO; 1639 } 1640 1641 lock_buffer(bh); 1642 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1643 fe = (struct fileEntry *)bh->b_data; 1644 efe = (struct extendedFileEntry *)bh->b_data; 1645 1646 if (iinfo->i_use) { 1647 struct unallocSpaceEntry *use = 1648 (struct unallocSpaceEntry *)bh->b_data; 1649 1650 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1651 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1652 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1653 sizeof(struct unallocSpaceEntry)); 1654 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1655 use->descTag.tagLocation = 1656 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1657 crclen = sizeof(struct unallocSpaceEntry) + 1658 iinfo->i_lenAlloc - sizeof(struct tag); 1659 use->descTag.descCRCLength = cpu_to_le16(crclen); 1660 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1661 sizeof(struct tag), 1662 crclen)); 1663 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1664 1665 goto out; 1666 } 1667 1668 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1669 fe->uid = cpu_to_le32(-1); 1670 else 1671 fe->uid = cpu_to_le32(i_uid_read(inode)); 1672 1673 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1674 fe->gid = cpu_to_le32(-1); 1675 else 1676 fe->gid = cpu_to_le32(i_gid_read(inode)); 1677 1678 udfperms = ((inode->i_mode & S_IRWXO)) | 1679 ((inode->i_mode & S_IRWXG) << 2) | 1680 ((inode->i_mode & S_IRWXU) << 4); 1681 1682 udfperms |= (le32_to_cpu(fe->permissions) & 1683 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1684 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1685 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1686 fe->permissions = cpu_to_le32(udfperms); 1687 1688 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1689 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1690 else 1691 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1692 1693 fe->informationLength = cpu_to_le64(inode->i_size); 1694 1695 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1696 struct regid *eid; 1697 struct deviceSpec *dsea = 1698 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1699 if (!dsea) { 1700 dsea = (struct deviceSpec *) 1701 udf_add_extendedattr(inode, 1702 sizeof(struct deviceSpec) + 1703 sizeof(struct regid), 12, 0x3); 1704 dsea->attrType = cpu_to_le32(12); 1705 dsea->attrSubtype = 1; 1706 dsea->attrLength = cpu_to_le32( 1707 sizeof(struct deviceSpec) + 1708 sizeof(struct regid)); 1709 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1710 } 1711 eid = (struct regid *)dsea->impUse; 1712 memset(eid, 0, sizeof(struct regid)); 1713 strcpy(eid->ident, UDF_ID_DEVELOPER); 1714 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1715 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1716 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1717 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1718 } 1719 1720 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1721 lb_recorded = 0; /* No extents => no blocks! */ 1722 else 1723 lb_recorded = 1724 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1725 (blocksize_bits - 9); 1726 1727 if (iinfo->i_efe == 0) { 1728 memcpy(bh->b_data + sizeof(struct fileEntry), 1729 iinfo->i_ext.i_data, 1730 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1731 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1732 1733 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1734 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1735 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1736 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1737 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1738 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1739 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1740 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1741 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1742 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1743 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1744 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1745 crclen = sizeof(struct fileEntry); 1746 } else { 1747 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1748 iinfo->i_ext.i_data, 1749 inode->i_sb->s_blocksize - 1750 sizeof(struct extendedFileEntry)); 1751 efe->objectSize = cpu_to_le64(inode->i_size); 1752 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1753 1754 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1755 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1756 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1757 iinfo->i_crtime = inode->i_atime; 1758 1759 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1760 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1761 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1762 iinfo->i_crtime = inode->i_mtime; 1763 1764 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1765 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1766 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1767 iinfo->i_crtime = inode->i_ctime; 1768 1769 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1770 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1771 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1772 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1773 1774 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1775 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1776 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1777 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1778 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1779 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1780 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1781 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1782 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1783 crclen = sizeof(struct extendedFileEntry); 1784 } 1785 if (iinfo->i_strat4096) { 1786 fe->icbTag.strategyType = cpu_to_le16(4096); 1787 fe->icbTag.strategyParameter = cpu_to_le16(1); 1788 fe->icbTag.numEntries = cpu_to_le16(2); 1789 } else { 1790 fe->icbTag.strategyType = cpu_to_le16(4); 1791 fe->icbTag.numEntries = cpu_to_le16(1); 1792 } 1793 1794 if (S_ISDIR(inode->i_mode)) 1795 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1796 else if (S_ISREG(inode->i_mode)) 1797 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1798 else if (S_ISLNK(inode->i_mode)) 1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1800 else if (S_ISBLK(inode->i_mode)) 1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1802 else if (S_ISCHR(inode->i_mode)) 1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1804 else if (S_ISFIFO(inode->i_mode)) 1805 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1806 else if (S_ISSOCK(inode->i_mode)) 1807 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1808 1809 icbflags = iinfo->i_alloc_type | 1810 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1811 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1812 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1813 (le16_to_cpu(fe->icbTag.flags) & 1814 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1815 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1816 1817 fe->icbTag.flags = cpu_to_le16(icbflags); 1818 if (sbi->s_udfrev >= 0x0200) 1819 fe->descTag.descVersion = cpu_to_le16(3); 1820 else 1821 fe->descTag.descVersion = cpu_to_le16(2); 1822 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1823 fe->descTag.tagLocation = cpu_to_le32( 1824 iinfo->i_location.logicalBlockNum); 1825 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1826 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1827 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1828 crclen)); 1829 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1830 1831 out: 1832 set_buffer_uptodate(bh); 1833 unlock_buffer(bh); 1834 1835 /* write the data blocks */ 1836 mark_buffer_dirty(bh); 1837 if (do_sync) { 1838 sync_dirty_buffer(bh); 1839 if (buffer_write_io_error(bh)) { 1840 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1841 inode->i_ino); 1842 err = -EIO; 1843 } 1844 } 1845 brelse(bh); 1846 1847 return err; 1848 } 1849 1850 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1851 bool hidden_inode) 1852 { 1853 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1854 struct inode *inode = iget_locked(sb, block); 1855 int err; 1856 1857 if (!inode) 1858 return ERR_PTR(-ENOMEM); 1859 1860 if (!(inode->i_state & I_NEW)) 1861 return inode; 1862 1863 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1864 err = udf_read_inode(inode, hidden_inode); 1865 if (err < 0) { 1866 iget_failed(inode); 1867 return ERR_PTR(err); 1868 } 1869 unlock_new_inode(inode); 1870 1871 return inode; 1872 } 1873 1874 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1875 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1876 { 1877 int adsize; 1878 struct short_ad *sad = NULL; 1879 struct long_ad *lad = NULL; 1880 struct allocExtDesc *aed; 1881 uint8_t *ptr; 1882 struct udf_inode_info *iinfo = UDF_I(inode); 1883 1884 if (!epos->bh) 1885 ptr = iinfo->i_ext.i_data + epos->offset - 1886 udf_file_entry_alloc_offset(inode) + 1887 iinfo->i_lenEAttr; 1888 else 1889 ptr = epos->bh->b_data + epos->offset; 1890 1891 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1892 adsize = sizeof(struct short_ad); 1893 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1894 adsize = sizeof(struct long_ad); 1895 else 1896 return -EIO; 1897 1898 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1899 unsigned char *sptr, *dptr; 1900 struct buffer_head *nbh; 1901 int err, loffset; 1902 struct kernel_lb_addr obloc = epos->block; 1903 1904 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1905 obloc.partitionReferenceNum, 1906 obloc.logicalBlockNum, &err); 1907 if (!epos->block.logicalBlockNum) 1908 return -ENOSPC; 1909 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1910 &epos->block, 1911 0)); 1912 if (!nbh) 1913 return -EIO; 1914 lock_buffer(nbh); 1915 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1916 set_buffer_uptodate(nbh); 1917 unlock_buffer(nbh); 1918 mark_buffer_dirty_inode(nbh, inode); 1919 1920 aed = (struct allocExtDesc *)(nbh->b_data); 1921 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1922 aed->previousAllocExtLocation = 1923 cpu_to_le32(obloc.logicalBlockNum); 1924 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1925 loffset = epos->offset; 1926 aed->lengthAllocDescs = cpu_to_le32(adsize); 1927 sptr = ptr - adsize; 1928 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1929 memcpy(dptr, sptr, adsize); 1930 epos->offset = sizeof(struct allocExtDesc) + adsize; 1931 } else { 1932 loffset = epos->offset + adsize; 1933 aed->lengthAllocDescs = cpu_to_le32(0); 1934 sptr = ptr; 1935 epos->offset = sizeof(struct allocExtDesc); 1936 1937 if (epos->bh) { 1938 aed = (struct allocExtDesc *)epos->bh->b_data; 1939 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1940 } else { 1941 iinfo->i_lenAlloc += adsize; 1942 mark_inode_dirty(inode); 1943 } 1944 } 1945 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1946 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1947 epos->block.logicalBlockNum, sizeof(struct tag)); 1948 else 1949 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1950 epos->block.logicalBlockNum, sizeof(struct tag)); 1951 switch (iinfo->i_alloc_type) { 1952 case ICBTAG_FLAG_AD_SHORT: 1953 sad = (struct short_ad *)sptr; 1954 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1955 inode->i_sb->s_blocksize); 1956 sad->extPosition = 1957 cpu_to_le32(epos->block.logicalBlockNum); 1958 break; 1959 case ICBTAG_FLAG_AD_LONG: 1960 lad = (struct long_ad *)sptr; 1961 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1962 inode->i_sb->s_blocksize); 1963 lad->extLocation = cpu_to_lelb(epos->block); 1964 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1965 break; 1966 } 1967 if (epos->bh) { 1968 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1969 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1970 udf_update_tag(epos->bh->b_data, loffset); 1971 else 1972 udf_update_tag(epos->bh->b_data, 1973 sizeof(struct allocExtDesc)); 1974 mark_buffer_dirty_inode(epos->bh, inode); 1975 brelse(epos->bh); 1976 } else { 1977 mark_inode_dirty(inode); 1978 } 1979 epos->bh = nbh; 1980 } 1981 1982 udf_write_aext(inode, epos, eloc, elen, inc); 1983 1984 if (!epos->bh) { 1985 iinfo->i_lenAlloc += adsize; 1986 mark_inode_dirty(inode); 1987 } else { 1988 aed = (struct allocExtDesc *)epos->bh->b_data; 1989 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1990 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1991 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1992 udf_update_tag(epos->bh->b_data, 1993 epos->offset + (inc ? 0 : adsize)); 1994 else 1995 udf_update_tag(epos->bh->b_data, 1996 sizeof(struct allocExtDesc)); 1997 mark_buffer_dirty_inode(epos->bh, inode); 1998 } 1999 2000 return 0; 2001 } 2002 2003 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2004 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2005 { 2006 int adsize; 2007 uint8_t *ptr; 2008 struct short_ad *sad; 2009 struct long_ad *lad; 2010 struct udf_inode_info *iinfo = UDF_I(inode); 2011 2012 if (!epos->bh) 2013 ptr = iinfo->i_ext.i_data + epos->offset - 2014 udf_file_entry_alloc_offset(inode) + 2015 iinfo->i_lenEAttr; 2016 else 2017 ptr = epos->bh->b_data + epos->offset; 2018 2019 switch (iinfo->i_alloc_type) { 2020 case ICBTAG_FLAG_AD_SHORT: 2021 sad = (struct short_ad *)ptr; 2022 sad->extLength = cpu_to_le32(elen); 2023 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2024 adsize = sizeof(struct short_ad); 2025 break; 2026 case ICBTAG_FLAG_AD_LONG: 2027 lad = (struct long_ad *)ptr; 2028 lad->extLength = cpu_to_le32(elen); 2029 lad->extLocation = cpu_to_lelb(*eloc); 2030 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2031 adsize = sizeof(struct long_ad); 2032 break; 2033 default: 2034 return; 2035 } 2036 2037 if (epos->bh) { 2038 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2039 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2040 struct allocExtDesc *aed = 2041 (struct allocExtDesc *)epos->bh->b_data; 2042 udf_update_tag(epos->bh->b_data, 2043 le32_to_cpu(aed->lengthAllocDescs) + 2044 sizeof(struct allocExtDesc)); 2045 } 2046 mark_buffer_dirty_inode(epos->bh, inode); 2047 } else { 2048 mark_inode_dirty(inode); 2049 } 2050 2051 if (inc) 2052 epos->offset += adsize; 2053 } 2054 2055 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2056 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2057 { 2058 int8_t etype; 2059 2060 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2061 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 2062 int block; 2063 epos->block = *eloc; 2064 epos->offset = sizeof(struct allocExtDesc); 2065 brelse(epos->bh); 2066 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2067 epos->bh = udf_tread(inode->i_sb, block); 2068 if (!epos->bh) { 2069 udf_debug("reading block %d failed!\n", block); 2070 return -1; 2071 } 2072 } 2073 2074 return etype; 2075 } 2076 2077 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2078 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2079 { 2080 int alen; 2081 int8_t etype; 2082 uint8_t *ptr; 2083 struct short_ad *sad; 2084 struct long_ad *lad; 2085 struct udf_inode_info *iinfo = UDF_I(inode); 2086 2087 if (!epos->bh) { 2088 if (!epos->offset) 2089 epos->offset = udf_file_entry_alloc_offset(inode); 2090 ptr = iinfo->i_ext.i_data + epos->offset - 2091 udf_file_entry_alloc_offset(inode) + 2092 iinfo->i_lenEAttr; 2093 alen = udf_file_entry_alloc_offset(inode) + 2094 iinfo->i_lenAlloc; 2095 } else { 2096 if (!epos->offset) 2097 epos->offset = sizeof(struct allocExtDesc); 2098 ptr = epos->bh->b_data + epos->offset; 2099 alen = sizeof(struct allocExtDesc) + 2100 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2101 lengthAllocDescs); 2102 } 2103 2104 switch (iinfo->i_alloc_type) { 2105 case ICBTAG_FLAG_AD_SHORT: 2106 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2107 if (!sad) 2108 return -1; 2109 etype = le32_to_cpu(sad->extLength) >> 30; 2110 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2111 eloc->partitionReferenceNum = 2112 iinfo->i_location.partitionReferenceNum; 2113 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2114 break; 2115 case ICBTAG_FLAG_AD_LONG: 2116 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2117 if (!lad) 2118 return -1; 2119 etype = le32_to_cpu(lad->extLength) >> 30; 2120 *eloc = lelb_to_cpu(lad->extLocation); 2121 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2122 break; 2123 default: 2124 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2125 return -1; 2126 } 2127 2128 return etype; 2129 } 2130 2131 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2132 struct kernel_lb_addr neloc, uint32_t nelen) 2133 { 2134 struct kernel_lb_addr oeloc; 2135 uint32_t oelen; 2136 int8_t etype; 2137 2138 if (epos.bh) 2139 get_bh(epos.bh); 2140 2141 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2142 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2143 neloc = oeloc; 2144 nelen = (etype << 30) | oelen; 2145 } 2146 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2147 brelse(epos.bh); 2148 2149 return (nelen >> 30); 2150 } 2151 2152 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2153 struct kernel_lb_addr eloc, uint32_t elen) 2154 { 2155 struct extent_position oepos; 2156 int adsize; 2157 int8_t etype; 2158 struct allocExtDesc *aed; 2159 struct udf_inode_info *iinfo; 2160 2161 if (epos.bh) { 2162 get_bh(epos.bh); 2163 get_bh(epos.bh); 2164 } 2165 2166 iinfo = UDF_I(inode); 2167 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2168 adsize = sizeof(struct short_ad); 2169 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2170 adsize = sizeof(struct long_ad); 2171 else 2172 adsize = 0; 2173 2174 oepos = epos; 2175 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2176 return -1; 2177 2178 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2179 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2180 if (oepos.bh != epos.bh) { 2181 oepos.block = epos.block; 2182 brelse(oepos.bh); 2183 get_bh(epos.bh); 2184 oepos.bh = epos.bh; 2185 oepos.offset = epos.offset - adsize; 2186 } 2187 } 2188 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2189 elen = 0; 2190 2191 if (epos.bh != oepos.bh) { 2192 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2193 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2194 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2195 if (!oepos.bh) { 2196 iinfo->i_lenAlloc -= (adsize * 2); 2197 mark_inode_dirty(inode); 2198 } else { 2199 aed = (struct allocExtDesc *)oepos.bh->b_data; 2200 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2201 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2202 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2203 udf_update_tag(oepos.bh->b_data, 2204 oepos.offset - (2 * adsize)); 2205 else 2206 udf_update_tag(oepos.bh->b_data, 2207 sizeof(struct allocExtDesc)); 2208 mark_buffer_dirty_inode(oepos.bh, inode); 2209 } 2210 } else { 2211 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2212 if (!oepos.bh) { 2213 iinfo->i_lenAlloc -= adsize; 2214 mark_inode_dirty(inode); 2215 } else { 2216 aed = (struct allocExtDesc *)oepos.bh->b_data; 2217 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2218 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2219 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2220 udf_update_tag(oepos.bh->b_data, 2221 epos.offset - adsize); 2222 else 2223 udf_update_tag(oepos.bh->b_data, 2224 sizeof(struct allocExtDesc)); 2225 mark_buffer_dirty_inode(oepos.bh, inode); 2226 } 2227 } 2228 2229 brelse(epos.bh); 2230 brelse(oepos.bh); 2231 2232 return (elen >> 30); 2233 } 2234 2235 int8_t inode_bmap(struct inode *inode, sector_t block, 2236 struct extent_position *pos, struct kernel_lb_addr *eloc, 2237 uint32_t *elen, sector_t *offset) 2238 { 2239 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2240 loff_t lbcount = 0, bcount = 2241 (loff_t) block << blocksize_bits; 2242 int8_t etype; 2243 struct udf_inode_info *iinfo; 2244 2245 iinfo = UDF_I(inode); 2246 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2247 pos->offset = 0; 2248 pos->block = iinfo->i_location; 2249 pos->bh = NULL; 2250 } 2251 *elen = 0; 2252 do { 2253 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2254 if (etype == -1) { 2255 *offset = (bcount - lbcount) >> blocksize_bits; 2256 iinfo->i_lenExtents = lbcount; 2257 return -1; 2258 } 2259 lbcount += *elen; 2260 } while (lbcount <= bcount); 2261 /* update extent cache */ 2262 udf_update_extent_cache(inode, lbcount - *elen, pos, 1); 2263 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2264 2265 return etype; 2266 } 2267 2268 long udf_block_map(struct inode *inode, sector_t block) 2269 { 2270 struct kernel_lb_addr eloc; 2271 uint32_t elen; 2272 sector_t offset; 2273 struct extent_position epos = {}; 2274 int ret; 2275 2276 down_read(&UDF_I(inode)->i_data_sem); 2277 2278 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2279 (EXT_RECORDED_ALLOCATED >> 30)) 2280 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2281 else 2282 ret = 0; 2283 2284 up_read(&UDF_I(inode)->i_data_sem); 2285 brelse(epos.bh); 2286 2287 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2288 return udf_fixed_to_variable(ret); 2289 else 2290 return ret; 2291 } 2292