1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 static umode_t udf_convert_permissions(struct fileEntry *); 56 static int udf_update_inode(struct inode *, int); 57 static int udf_sync_inode(struct inode *inode); 58 static int udf_alloc_i_data(struct inode *inode, size_t size); 59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60 static int8_t udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64 static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135 } 136 137 void udf_evict_inode(struct inode *inode) 138 { 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepage(struct page *page, struct writeback_control *wbc) 186 { 187 return block_write_full_page(page, udf_get_block, wbc); 188 } 189 190 static int udf_writepages(struct address_space *mapping, 191 struct writeback_control *wbc) 192 { 193 return mpage_writepages(mapping, wbc, udf_get_block); 194 } 195 196 static int udf_readpage(struct file *file, struct page *page) 197 { 198 return mpage_readpage(page, udf_get_block); 199 } 200 201 static void udf_readahead(struct readahead_control *rac) 202 { 203 mpage_readahead(rac, udf_get_block); 204 } 205 206 static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, unsigned flags, 208 struct page **pagep, void **fsdata) 209 { 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216 } 217 218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 219 { 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, iocb->ki_pos + count); 229 return ret; 230 } 231 232 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233 { 234 return generic_block_bmap(mapping, block, udf_get_block); 235 } 236 237 const struct address_space_operations udf_aops = { 238 .set_page_dirty = __set_page_dirty_buffers, 239 .readpage = udf_readpage, 240 .readahead = udf_readahead, 241 .writepage = udf_writepage, 242 .writepages = udf_writepages, 243 .write_begin = udf_write_begin, 244 .write_end = generic_write_end, 245 .direct_IO = udf_direct_IO, 246 .bmap = udf_bmap, 247 }; 248 249 /* 250 * Expand file stored in ICB to a normal one-block-file 251 * 252 * This function requires i_data_sem for writing and releases it. 253 * This function requires i_mutex held 254 */ 255 int udf_expand_file_adinicb(struct inode *inode) 256 { 257 struct page *page; 258 char *kaddr; 259 struct udf_inode_info *iinfo = UDF_I(inode); 260 int err; 261 struct writeback_control udf_wbc = { 262 .sync_mode = WB_SYNC_NONE, 263 .nr_to_write = 1, 264 }; 265 266 WARN_ON_ONCE(!inode_is_locked(inode)); 267 if (!iinfo->i_lenAlloc) { 268 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 269 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 270 else 271 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 272 /* from now on we have normal address_space methods */ 273 inode->i_data.a_ops = &udf_aops; 274 up_write(&iinfo->i_data_sem); 275 mark_inode_dirty(inode); 276 return 0; 277 } 278 /* 279 * Release i_data_sem so that we can lock a page - page lock ranks 280 * above i_data_sem. i_mutex still protects us against file changes. 281 */ 282 up_write(&iinfo->i_data_sem); 283 284 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 285 if (!page) 286 return -ENOMEM; 287 288 if (!PageUptodate(page)) { 289 kaddr = kmap_atomic(page); 290 memset(kaddr + iinfo->i_lenAlloc, 0x00, 291 PAGE_SIZE - iinfo->i_lenAlloc); 292 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 293 iinfo->i_lenAlloc); 294 flush_dcache_page(page); 295 SetPageUptodate(page); 296 kunmap_atomic(kaddr); 297 } 298 down_write(&iinfo->i_data_sem); 299 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 300 iinfo->i_lenAlloc); 301 iinfo->i_lenAlloc = 0; 302 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 303 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 304 else 305 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 306 /* from now on we have normal address_space methods */ 307 inode->i_data.a_ops = &udf_aops; 308 up_write(&iinfo->i_data_sem); 309 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 310 if (err) { 311 /* Restore everything back so that we don't lose data... */ 312 lock_page(page); 313 down_write(&iinfo->i_data_sem); 314 kaddr = kmap_atomic(page); 315 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 316 kunmap_atomic(kaddr); 317 unlock_page(page); 318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 319 inode->i_data.a_ops = &udf_adinicb_aops; 320 up_write(&iinfo->i_data_sem); 321 } 322 put_page(page); 323 mark_inode_dirty(inode); 324 325 return err; 326 } 327 328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 329 udf_pblk_t *block, int *err) 330 { 331 udf_pblk_t newblock; 332 struct buffer_head *dbh = NULL; 333 struct kernel_lb_addr eloc; 334 uint8_t alloctype; 335 struct extent_position epos; 336 337 struct udf_fileident_bh sfibh, dfibh; 338 loff_t f_pos = udf_ext0_offset(inode); 339 int size = udf_ext0_offset(inode) + inode->i_size; 340 struct fileIdentDesc cfi, *sfi, *dfi; 341 struct udf_inode_info *iinfo = UDF_I(inode); 342 343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 344 alloctype = ICBTAG_FLAG_AD_SHORT; 345 else 346 alloctype = ICBTAG_FLAG_AD_LONG; 347 348 if (!inode->i_size) { 349 iinfo->i_alloc_type = alloctype; 350 mark_inode_dirty(inode); 351 return NULL; 352 } 353 354 /* alloc block, and copy data to it */ 355 *block = udf_new_block(inode->i_sb, inode, 356 iinfo->i_location.partitionReferenceNum, 357 iinfo->i_location.logicalBlockNum, err); 358 if (!(*block)) 359 return NULL; 360 newblock = udf_get_pblock(inode->i_sb, *block, 361 iinfo->i_location.partitionReferenceNum, 362 0); 363 if (!newblock) 364 return NULL; 365 dbh = udf_tgetblk(inode->i_sb, newblock); 366 if (!dbh) 367 return NULL; 368 lock_buffer(dbh); 369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 370 set_buffer_uptodate(dbh); 371 unlock_buffer(dbh); 372 mark_buffer_dirty_inode(dbh, inode); 373 374 sfibh.soffset = sfibh.eoffset = 375 f_pos & (inode->i_sb->s_blocksize - 1); 376 sfibh.sbh = sfibh.ebh = NULL; 377 dfibh.soffset = dfibh.eoffset = 0; 378 dfibh.sbh = dfibh.ebh = dbh; 379 while (f_pos < size) { 380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 382 NULL, NULL, NULL); 383 if (!sfi) { 384 brelse(dbh); 385 return NULL; 386 } 387 iinfo->i_alloc_type = alloctype; 388 sfi->descTag.tagLocation = cpu_to_le32(*block); 389 dfibh.soffset = dfibh.eoffset; 390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 393 sfi->fileIdent + 394 le16_to_cpu(sfi->lengthOfImpUse))) { 395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 396 brelse(dbh); 397 return NULL; 398 } 399 } 400 mark_buffer_dirty_inode(dbh, inode); 401 402 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 403 iinfo->i_lenAlloc = 0; 404 eloc.logicalBlockNum = *block; 405 eloc.partitionReferenceNum = 406 iinfo->i_location.partitionReferenceNum; 407 iinfo->i_lenExtents = inode->i_size; 408 epos.bh = NULL; 409 epos.block = iinfo->i_location; 410 epos.offset = udf_file_entry_alloc_offset(inode); 411 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 412 /* UniqueID stuff */ 413 414 brelse(epos.bh); 415 mark_inode_dirty(inode); 416 return dbh; 417 } 418 419 static int udf_get_block(struct inode *inode, sector_t block, 420 struct buffer_head *bh_result, int create) 421 { 422 int err, new; 423 sector_t phys = 0; 424 struct udf_inode_info *iinfo; 425 426 if (!create) { 427 phys = udf_block_map(inode, block); 428 if (phys) 429 map_bh(bh_result, inode->i_sb, phys); 430 return 0; 431 } 432 433 err = -EIO; 434 new = 0; 435 iinfo = UDF_I(inode); 436 437 down_write(&iinfo->i_data_sem); 438 if (block == iinfo->i_next_alloc_block + 1) { 439 iinfo->i_next_alloc_block++; 440 iinfo->i_next_alloc_goal++; 441 } 442 443 udf_clear_extent_cache(inode); 444 phys = inode_getblk(inode, block, &err, &new); 445 if (!phys) 446 goto abort; 447 448 if (new) 449 set_buffer_new(bh_result); 450 map_bh(bh_result, inode->i_sb, phys); 451 452 abort: 453 up_write(&iinfo->i_data_sem); 454 return err; 455 } 456 457 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 458 int create, int *err) 459 { 460 struct buffer_head *bh; 461 struct buffer_head dummy; 462 463 dummy.b_state = 0; 464 dummy.b_blocknr = -1000; 465 *err = udf_get_block(inode, block, &dummy, create); 466 if (!*err && buffer_mapped(&dummy)) { 467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 468 if (buffer_new(&dummy)) { 469 lock_buffer(bh); 470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 471 set_buffer_uptodate(bh); 472 unlock_buffer(bh); 473 mark_buffer_dirty_inode(bh, inode); 474 } 475 return bh; 476 } 477 478 return NULL; 479 } 480 481 /* Extend the file with new blocks totaling 'new_block_bytes', 482 * return the number of extents added 483 */ 484 static int udf_do_extend_file(struct inode *inode, 485 struct extent_position *last_pos, 486 struct kernel_long_ad *last_ext, 487 loff_t new_block_bytes) 488 { 489 uint32_t add; 490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 491 struct super_block *sb = inode->i_sb; 492 struct kernel_lb_addr prealloc_loc = {}; 493 uint32_t prealloc_len = 0; 494 struct udf_inode_info *iinfo; 495 int err; 496 497 /* The previous extent is fake and we should not extend by anything 498 * - there's nothing to do... */ 499 if (!new_block_bytes && fake) 500 return 0; 501 502 iinfo = UDF_I(inode); 503 /* Round the last extent up to a multiple of block size */ 504 if (last_ext->extLength & (sb->s_blocksize - 1)) { 505 last_ext->extLength = 506 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 507 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 508 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 509 iinfo->i_lenExtents = 510 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 511 ~(sb->s_blocksize - 1); 512 } 513 514 /* Last extent are just preallocated blocks? */ 515 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 516 EXT_NOT_RECORDED_ALLOCATED) { 517 /* Save the extent so that we can reattach it to the end */ 518 prealloc_loc = last_ext->extLocation; 519 prealloc_len = last_ext->extLength; 520 /* Mark the extent as a hole */ 521 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 522 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 523 last_ext->extLocation.logicalBlockNum = 0; 524 last_ext->extLocation.partitionReferenceNum = 0; 525 } 526 527 /* Can we merge with the previous extent? */ 528 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 529 EXT_NOT_RECORDED_NOT_ALLOCATED) { 530 add = (1 << 30) - sb->s_blocksize - 531 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 532 if (add > new_block_bytes) 533 add = new_block_bytes; 534 new_block_bytes -= add; 535 last_ext->extLength += add; 536 } 537 538 if (fake) { 539 udf_add_aext(inode, last_pos, &last_ext->extLocation, 540 last_ext->extLength, 1); 541 count++; 542 } else { 543 struct kernel_lb_addr tmploc; 544 uint32_t tmplen; 545 546 udf_write_aext(inode, last_pos, &last_ext->extLocation, 547 last_ext->extLength, 1); 548 549 /* 550 * We've rewritten the last extent. If we are going to add 551 * more extents, we may need to enter possible following 552 * empty indirect extent. 553 */ 554 if (new_block_bytes || prealloc_len) 555 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 556 } 557 558 /* Managed to do everything necessary? */ 559 if (!new_block_bytes) 560 goto out; 561 562 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 563 last_ext->extLocation.logicalBlockNum = 0; 564 last_ext->extLocation.partitionReferenceNum = 0; 565 add = (1 << 30) - sb->s_blocksize; 566 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 567 568 /* Create enough extents to cover the whole hole */ 569 while (new_block_bytes > add) { 570 new_block_bytes -= add; 571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 572 last_ext->extLength, 1); 573 if (err) 574 return err; 575 count++; 576 } 577 if (new_block_bytes) { 578 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 579 new_block_bytes; 580 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 581 last_ext->extLength, 1); 582 if (err) 583 return err; 584 count++; 585 } 586 587 out: 588 /* Do we have some preallocated blocks saved? */ 589 if (prealloc_len) { 590 err = udf_add_aext(inode, last_pos, &prealloc_loc, 591 prealloc_len, 1); 592 if (err) 593 return err; 594 last_ext->extLocation = prealloc_loc; 595 last_ext->extLength = prealloc_len; 596 count++; 597 } 598 599 /* last_pos should point to the last written extent... */ 600 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 601 last_pos->offset -= sizeof(struct short_ad); 602 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 603 last_pos->offset -= sizeof(struct long_ad); 604 else 605 return -EIO; 606 607 return count; 608 } 609 610 /* Extend the final block of the file to final_block_len bytes */ 611 static void udf_do_extend_final_block(struct inode *inode, 612 struct extent_position *last_pos, 613 struct kernel_long_ad *last_ext, 614 uint32_t final_block_len) 615 { 616 struct super_block *sb = inode->i_sb; 617 uint32_t added_bytes; 618 619 added_bytes = final_block_len - 620 (last_ext->extLength & (sb->s_blocksize - 1)); 621 last_ext->extLength += added_bytes; 622 UDF_I(inode)->i_lenExtents += added_bytes; 623 624 udf_write_aext(inode, last_pos, &last_ext->extLocation, 625 last_ext->extLength, 1); 626 } 627 628 static int udf_extend_file(struct inode *inode, loff_t newsize) 629 { 630 631 struct extent_position epos; 632 struct kernel_lb_addr eloc; 633 uint32_t elen; 634 int8_t etype; 635 struct super_block *sb = inode->i_sb; 636 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 637 unsigned long partial_final_block; 638 int adsize; 639 struct udf_inode_info *iinfo = UDF_I(inode); 640 struct kernel_long_ad extent; 641 int err = 0; 642 int within_final_block; 643 644 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 645 adsize = sizeof(struct short_ad); 646 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 647 adsize = sizeof(struct long_ad); 648 else 649 BUG(); 650 651 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 652 within_final_block = (etype != -1); 653 654 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 655 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 656 /* File has no extents at all or has empty last 657 * indirect extent! Create a fake extent... */ 658 extent.extLocation.logicalBlockNum = 0; 659 extent.extLocation.partitionReferenceNum = 0; 660 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 661 } else { 662 epos.offset -= adsize; 663 etype = udf_next_aext(inode, &epos, &extent.extLocation, 664 &extent.extLength, 0); 665 extent.extLength |= etype << 30; 666 } 667 668 partial_final_block = newsize & (sb->s_blocksize - 1); 669 670 /* File has extent covering the new size (could happen when extending 671 * inside a block)? 672 */ 673 if (within_final_block) { 674 /* Extending file within the last file block */ 675 udf_do_extend_final_block(inode, &epos, &extent, 676 partial_final_block); 677 } else { 678 loff_t add = ((loff_t)offset << sb->s_blocksize_bits) | 679 partial_final_block; 680 err = udf_do_extend_file(inode, &epos, &extent, add); 681 } 682 683 if (err < 0) 684 goto out; 685 err = 0; 686 iinfo->i_lenExtents = newsize; 687 out: 688 brelse(epos.bh); 689 return err; 690 } 691 692 static sector_t inode_getblk(struct inode *inode, sector_t block, 693 int *err, int *new) 694 { 695 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 696 struct extent_position prev_epos, cur_epos, next_epos; 697 int count = 0, startnum = 0, endnum = 0; 698 uint32_t elen = 0, tmpelen; 699 struct kernel_lb_addr eloc, tmpeloc; 700 int c = 1; 701 loff_t lbcount = 0, b_off = 0; 702 udf_pblk_t newblocknum, newblock; 703 sector_t offset = 0; 704 int8_t etype; 705 struct udf_inode_info *iinfo = UDF_I(inode); 706 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 707 int lastblock = 0; 708 bool isBeyondEOF; 709 710 *err = 0; 711 *new = 0; 712 prev_epos.offset = udf_file_entry_alloc_offset(inode); 713 prev_epos.block = iinfo->i_location; 714 prev_epos.bh = NULL; 715 cur_epos = next_epos = prev_epos; 716 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 717 718 /* find the extent which contains the block we are looking for. 719 alternate between laarr[0] and laarr[1] for locations of the 720 current extent, and the previous extent */ 721 do { 722 if (prev_epos.bh != cur_epos.bh) { 723 brelse(prev_epos.bh); 724 get_bh(cur_epos.bh); 725 prev_epos.bh = cur_epos.bh; 726 } 727 if (cur_epos.bh != next_epos.bh) { 728 brelse(cur_epos.bh); 729 get_bh(next_epos.bh); 730 cur_epos.bh = next_epos.bh; 731 } 732 733 lbcount += elen; 734 735 prev_epos.block = cur_epos.block; 736 cur_epos.block = next_epos.block; 737 738 prev_epos.offset = cur_epos.offset; 739 cur_epos.offset = next_epos.offset; 740 741 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 742 if (etype == -1) 743 break; 744 745 c = !c; 746 747 laarr[c].extLength = (etype << 30) | elen; 748 laarr[c].extLocation = eloc; 749 750 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 751 pgoal = eloc.logicalBlockNum + 752 ((elen + inode->i_sb->s_blocksize - 1) >> 753 inode->i_sb->s_blocksize_bits); 754 755 count++; 756 } while (lbcount + elen <= b_off); 757 758 b_off -= lbcount; 759 offset = b_off >> inode->i_sb->s_blocksize_bits; 760 /* 761 * Move prev_epos and cur_epos into indirect extent if we are at 762 * the pointer to it 763 */ 764 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 765 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 766 767 /* if the extent is allocated and recorded, return the block 768 if the extent is not a multiple of the blocksize, round up */ 769 770 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 771 if (elen & (inode->i_sb->s_blocksize - 1)) { 772 elen = EXT_RECORDED_ALLOCATED | 773 ((elen + inode->i_sb->s_blocksize - 1) & 774 ~(inode->i_sb->s_blocksize - 1)); 775 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 776 } 777 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 778 goto out_free; 779 } 780 781 /* Are we beyond EOF? */ 782 if (etype == -1) { 783 int ret; 784 loff_t hole_len; 785 isBeyondEOF = true; 786 if (count) { 787 if (c) 788 laarr[0] = laarr[1]; 789 startnum = 1; 790 } else { 791 /* Create a fake extent when there's not one */ 792 memset(&laarr[0].extLocation, 0x00, 793 sizeof(struct kernel_lb_addr)); 794 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 795 /* Will udf_do_extend_file() create real extent from 796 a fake one? */ 797 startnum = (offset > 0); 798 } 799 /* Create extents for the hole between EOF and offset */ 800 hole_len = (loff_t)offset << inode->i_blkbits; 801 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 802 if (ret < 0) { 803 *err = ret; 804 newblock = 0; 805 goto out_free; 806 } 807 c = 0; 808 offset = 0; 809 count += ret; 810 /* We are not covered by a preallocated extent? */ 811 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 812 EXT_NOT_RECORDED_ALLOCATED) { 813 /* Is there any real extent? - otherwise we overwrite 814 * the fake one... */ 815 if (count) 816 c = !c; 817 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 818 inode->i_sb->s_blocksize; 819 memset(&laarr[c].extLocation, 0x00, 820 sizeof(struct kernel_lb_addr)); 821 count++; 822 } 823 endnum = c + 1; 824 lastblock = 1; 825 } else { 826 isBeyondEOF = false; 827 endnum = startnum = ((count > 2) ? 2 : count); 828 829 /* if the current extent is in position 0, 830 swap it with the previous */ 831 if (!c && count != 1) { 832 laarr[2] = laarr[0]; 833 laarr[0] = laarr[1]; 834 laarr[1] = laarr[2]; 835 c = 1; 836 } 837 838 /* if the current block is located in an extent, 839 read the next extent */ 840 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 841 if (etype != -1) { 842 laarr[c + 1].extLength = (etype << 30) | elen; 843 laarr[c + 1].extLocation = eloc; 844 count++; 845 startnum++; 846 endnum++; 847 } else 848 lastblock = 1; 849 } 850 851 /* if the current extent is not recorded but allocated, get the 852 * block in the extent corresponding to the requested block */ 853 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 854 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 855 else { /* otherwise, allocate a new block */ 856 if (iinfo->i_next_alloc_block == block) 857 goal = iinfo->i_next_alloc_goal; 858 859 if (!goal) { 860 if (!(goal = pgoal)) /* XXX: what was intended here? */ 861 goal = iinfo->i_location.logicalBlockNum + 1; 862 } 863 864 newblocknum = udf_new_block(inode->i_sb, inode, 865 iinfo->i_location.partitionReferenceNum, 866 goal, err); 867 if (!newblocknum) { 868 *err = -ENOSPC; 869 newblock = 0; 870 goto out_free; 871 } 872 if (isBeyondEOF) 873 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 874 } 875 876 /* if the extent the requsted block is located in contains multiple 877 * blocks, split the extent into at most three extents. blocks prior 878 * to requested block, requested block, and blocks after requested 879 * block */ 880 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 881 882 /* We preallocate blocks only for regular files. It also makes sense 883 * for directories but there's a problem when to drop the 884 * preallocation. We might use some delayed work for that but I feel 885 * it's overengineering for a filesystem like UDF. */ 886 if (S_ISREG(inode->i_mode)) 887 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 888 889 /* merge any continuous blocks in laarr */ 890 udf_merge_extents(inode, laarr, &endnum); 891 892 /* write back the new extents, inserting new extents if the new number 893 * of extents is greater than the old number, and deleting extents if 894 * the new number of extents is less than the old number */ 895 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 896 897 newblock = udf_get_pblock(inode->i_sb, newblocknum, 898 iinfo->i_location.partitionReferenceNum, 0); 899 if (!newblock) { 900 *err = -EIO; 901 goto out_free; 902 } 903 *new = 1; 904 iinfo->i_next_alloc_block = block; 905 iinfo->i_next_alloc_goal = newblocknum; 906 inode->i_ctime = current_time(inode); 907 908 if (IS_SYNC(inode)) 909 udf_sync_inode(inode); 910 else 911 mark_inode_dirty(inode); 912 out_free: 913 brelse(prev_epos.bh); 914 brelse(cur_epos.bh); 915 brelse(next_epos.bh); 916 return newblock; 917 } 918 919 static void udf_split_extents(struct inode *inode, int *c, int offset, 920 udf_pblk_t newblocknum, 921 struct kernel_long_ad *laarr, int *endnum) 922 { 923 unsigned long blocksize = inode->i_sb->s_blocksize; 924 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 925 926 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 927 (laarr[*c].extLength >> 30) == 928 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 929 int curr = *c; 930 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 931 blocksize - 1) >> blocksize_bits; 932 int8_t etype = (laarr[curr].extLength >> 30); 933 934 if (blen == 1) 935 ; 936 else if (!offset || blen == offset + 1) { 937 laarr[curr + 2] = laarr[curr + 1]; 938 laarr[curr + 1] = laarr[curr]; 939 } else { 940 laarr[curr + 3] = laarr[curr + 1]; 941 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 942 } 943 944 if (offset) { 945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 946 udf_free_blocks(inode->i_sb, inode, 947 &laarr[curr].extLocation, 948 0, offset); 949 laarr[curr].extLength = 950 EXT_NOT_RECORDED_NOT_ALLOCATED | 951 (offset << blocksize_bits); 952 laarr[curr].extLocation.logicalBlockNum = 0; 953 laarr[curr].extLocation. 954 partitionReferenceNum = 0; 955 } else 956 laarr[curr].extLength = (etype << 30) | 957 (offset << blocksize_bits); 958 curr++; 959 (*c)++; 960 (*endnum)++; 961 } 962 963 laarr[curr].extLocation.logicalBlockNum = newblocknum; 964 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 965 laarr[curr].extLocation.partitionReferenceNum = 966 UDF_I(inode)->i_location.partitionReferenceNum; 967 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 968 blocksize; 969 curr++; 970 971 if (blen != offset + 1) { 972 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 973 laarr[curr].extLocation.logicalBlockNum += 974 offset + 1; 975 laarr[curr].extLength = (etype << 30) | 976 ((blen - (offset + 1)) << blocksize_bits); 977 curr++; 978 (*endnum)++; 979 } 980 } 981 } 982 983 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 984 struct kernel_long_ad *laarr, 985 int *endnum) 986 { 987 int start, length = 0, currlength = 0, i; 988 989 if (*endnum >= (c + 1)) { 990 if (!lastblock) 991 return; 992 else 993 start = c; 994 } else { 995 if ((laarr[c + 1].extLength >> 30) == 996 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 997 start = c + 1; 998 length = currlength = 999 (((laarr[c + 1].extLength & 1000 UDF_EXTENT_LENGTH_MASK) + 1001 inode->i_sb->s_blocksize - 1) >> 1002 inode->i_sb->s_blocksize_bits); 1003 } else 1004 start = c; 1005 } 1006 1007 for (i = start + 1; i <= *endnum; i++) { 1008 if (i == *endnum) { 1009 if (lastblock) 1010 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1011 } else if ((laarr[i].extLength >> 30) == 1012 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1013 length += (((laarr[i].extLength & 1014 UDF_EXTENT_LENGTH_MASK) + 1015 inode->i_sb->s_blocksize - 1) >> 1016 inode->i_sb->s_blocksize_bits); 1017 } else 1018 break; 1019 } 1020 1021 if (length) { 1022 int next = laarr[start].extLocation.logicalBlockNum + 1023 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1024 inode->i_sb->s_blocksize - 1) >> 1025 inode->i_sb->s_blocksize_bits); 1026 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1027 laarr[start].extLocation.partitionReferenceNum, 1028 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1029 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1030 currlength); 1031 if (numalloc) { 1032 if (start == (c + 1)) 1033 laarr[start].extLength += 1034 (numalloc << 1035 inode->i_sb->s_blocksize_bits); 1036 else { 1037 memmove(&laarr[c + 2], &laarr[c + 1], 1038 sizeof(struct long_ad) * (*endnum - (c + 1))); 1039 (*endnum)++; 1040 laarr[c + 1].extLocation.logicalBlockNum = next; 1041 laarr[c + 1].extLocation.partitionReferenceNum = 1042 laarr[c].extLocation. 1043 partitionReferenceNum; 1044 laarr[c + 1].extLength = 1045 EXT_NOT_RECORDED_ALLOCATED | 1046 (numalloc << 1047 inode->i_sb->s_blocksize_bits); 1048 start = c + 1; 1049 } 1050 1051 for (i = start + 1; numalloc && i < *endnum; i++) { 1052 int elen = ((laarr[i].extLength & 1053 UDF_EXTENT_LENGTH_MASK) + 1054 inode->i_sb->s_blocksize - 1) >> 1055 inode->i_sb->s_blocksize_bits; 1056 1057 if (elen > numalloc) { 1058 laarr[i].extLength -= 1059 (numalloc << 1060 inode->i_sb->s_blocksize_bits); 1061 numalloc = 0; 1062 } else { 1063 numalloc -= elen; 1064 if (*endnum > (i + 1)) 1065 memmove(&laarr[i], 1066 &laarr[i + 1], 1067 sizeof(struct long_ad) * 1068 (*endnum - (i + 1))); 1069 i--; 1070 (*endnum)--; 1071 } 1072 } 1073 UDF_I(inode)->i_lenExtents += 1074 numalloc << inode->i_sb->s_blocksize_bits; 1075 } 1076 } 1077 } 1078 1079 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1080 int *endnum) 1081 { 1082 int i; 1083 unsigned long blocksize = inode->i_sb->s_blocksize; 1084 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1085 1086 for (i = 0; i < (*endnum - 1); i++) { 1087 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1088 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1089 1090 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1091 (((li->extLength >> 30) == 1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1093 ((lip1->extLocation.logicalBlockNum - 1094 li->extLocation.logicalBlockNum) == 1095 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1096 blocksize - 1) >> blocksize_bits)))) { 1097 1098 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1099 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1100 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1101 lip1->extLength = (lip1->extLength - 1102 (li->extLength & 1103 UDF_EXTENT_LENGTH_MASK) + 1104 UDF_EXTENT_LENGTH_MASK) & 1105 ~(blocksize - 1); 1106 li->extLength = (li->extLength & 1107 UDF_EXTENT_FLAG_MASK) + 1108 (UDF_EXTENT_LENGTH_MASK + 1) - 1109 blocksize; 1110 lip1->extLocation.logicalBlockNum = 1111 li->extLocation.logicalBlockNum + 1112 ((li->extLength & 1113 UDF_EXTENT_LENGTH_MASK) >> 1114 blocksize_bits); 1115 } else { 1116 li->extLength = lip1->extLength + 1117 (((li->extLength & 1118 UDF_EXTENT_LENGTH_MASK) + 1119 blocksize - 1) & ~(blocksize - 1)); 1120 if (*endnum > (i + 2)) 1121 memmove(&laarr[i + 1], &laarr[i + 2], 1122 sizeof(struct long_ad) * 1123 (*endnum - (i + 2))); 1124 i--; 1125 (*endnum)--; 1126 } 1127 } else if (((li->extLength >> 30) == 1128 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1129 ((lip1->extLength >> 30) == 1130 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1131 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1132 ((li->extLength & 1133 UDF_EXTENT_LENGTH_MASK) + 1134 blocksize - 1) >> blocksize_bits); 1135 li->extLocation.logicalBlockNum = 0; 1136 li->extLocation.partitionReferenceNum = 0; 1137 1138 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1139 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1140 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1141 lip1->extLength = (lip1->extLength - 1142 (li->extLength & 1143 UDF_EXTENT_LENGTH_MASK) + 1144 UDF_EXTENT_LENGTH_MASK) & 1145 ~(blocksize - 1); 1146 li->extLength = (li->extLength & 1147 UDF_EXTENT_FLAG_MASK) + 1148 (UDF_EXTENT_LENGTH_MASK + 1) - 1149 blocksize; 1150 } else { 1151 li->extLength = lip1->extLength + 1152 (((li->extLength & 1153 UDF_EXTENT_LENGTH_MASK) + 1154 blocksize - 1) & ~(blocksize - 1)); 1155 if (*endnum > (i + 2)) 1156 memmove(&laarr[i + 1], &laarr[i + 2], 1157 sizeof(struct long_ad) * 1158 (*endnum - (i + 2))); 1159 i--; 1160 (*endnum)--; 1161 } 1162 } else if ((li->extLength >> 30) == 1163 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1164 udf_free_blocks(inode->i_sb, inode, 1165 &li->extLocation, 0, 1166 ((li->extLength & 1167 UDF_EXTENT_LENGTH_MASK) + 1168 blocksize - 1) >> blocksize_bits); 1169 li->extLocation.logicalBlockNum = 0; 1170 li->extLocation.partitionReferenceNum = 0; 1171 li->extLength = (li->extLength & 1172 UDF_EXTENT_LENGTH_MASK) | 1173 EXT_NOT_RECORDED_NOT_ALLOCATED; 1174 } 1175 } 1176 } 1177 1178 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1179 int startnum, int endnum, 1180 struct extent_position *epos) 1181 { 1182 int start = 0, i; 1183 struct kernel_lb_addr tmploc; 1184 uint32_t tmplen; 1185 1186 if (startnum > endnum) { 1187 for (i = 0; i < (startnum - endnum); i++) 1188 udf_delete_aext(inode, *epos); 1189 } else if (startnum < endnum) { 1190 for (i = 0; i < (endnum - startnum); i++) { 1191 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1192 laarr[i].extLength); 1193 udf_next_aext(inode, epos, &laarr[i].extLocation, 1194 &laarr[i].extLength, 1); 1195 start++; 1196 } 1197 } 1198 1199 for (i = start; i < endnum; i++) { 1200 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1201 udf_write_aext(inode, epos, &laarr[i].extLocation, 1202 laarr[i].extLength, 1); 1203 } 1204 } 1205 1206 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1207 int create, int *err) 1208 { 1209 struct buffer_head *bh = NULL; 1210 1211 bh = udf_getblk(inode, block, create, err); 1212 if (!bh) 1213 return NULL; 1214 1215 if (buffer_uptodate(bh)) 1216 return bh; 1217 1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1219 1220 wait_on_buffer(bh); 1221 if (buffer_uptodate(bh)) 1222 return bh; 1223 1224 brelse(bh); 1225 *err = -EIO; 1226 return NULL; 1227 } 1228 1229 int udf_setsize(struct inode *inode, loff_t newsize) 1230 { 1231 int err; 1232 struct udf_inode_info *iinfo; 1233 unsigned int bsize = i_blocksize(inode); 1234 1235 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1236 S_ISLNK(inode->i_mode))) 1237 return -EINVAL; 1238 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1239 return -EPERM; 1240 1241 iinfo = UDF_I(inode); 1242 if (newsize > inode->i_size) { 1243 down_write(&iinfo->i_data_sem); 1244 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1245 if (bsize < 1246 (udf_file_entry_alloc_offset(inode) + newsize)) { 1247 err = udf_expand_file_adinicb(inode); 1248 if (err) 1249 return err; 1250 down_write(&iinfo->i_data_sem); 1251 } else { 1252 iinfo->i_lenAlloc = newsize; 1253 goto set_size; 1254 } 1255 } 1256 err = udf_extend_file(inode, newsize); 1257 if (err) { 1258 up_write(&iinfo->i_data_sem); 1259 return err; 1260 } 1261 set_size: 1262 up_write(&iinfo->i_data_sem); 1263 truncate_setsize(inode, newsize); 1264 } else { 1265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1266 down_write(&iinfo->i_data_sem); 1267 udf_clear_extent_cache(inode); 1268 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1269 0x00, bsize - newsize - 1270 udf_file_entry_alloc_offset(inode)); 1271 iinfo->i_lenAlloc = newsize; 1272 truncate_setsize(inode, newsize); 1273 up_write(&iinfo->i_data_sem); 1274 goto update_time; 1275 } 1276 err = block_truncate_page(inode->i_mapping, newsize, 1277 udf_get_block); 1278 if (err) 1279 return err; 1280 truncate_setsize(inode, newsize); 1281 down_write(&iinfo->i_data_sem); 1282 udf_clear_extent_cache(inode); 1283 err = udf_truncate_extents(inode); 1284 up_write(&iinfo->i_data_sem); 1285 if (err) 1286 return err; 1287 } 1288 update_time: 1289 inode->i_mtime = inode->i_ctime = current_time(inode); 1290 if (IS_SYNC(inode)) 1291 udf_sync_inode(inode); 1292 else 1293 mark_inode_dirty(inode); 1294 return 0; 1295 } 1296 1297 /* 1298 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1299 * arbitrary - just that we hopefully don't limit any real use of rewritten 1300 * inode on write-once media but avoid looping for too long on corrupted media. 1301 */ 1302 #define UDF_MAX_ICB_NESTING 1024 1303 1304 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1305 { 1306 struct buffer_head *bh = NULL; 1307 struct fileEntry *fe; 1308 struct extendedFileEntry *efe; 1309 uint16_t ident; 1310 struct udf_inode_info *iinfo = UDF_I(inode); 1311 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1312 struct kernel_lb_addr *iloc = &iinfo->i_location; 1313 unsigned int link_count; 1314 unsigned int indirections = 0; 1315 int bs = inode->i_sb->s_blocksize; 1316 int ret = -EIO; 1317 uint32_t uid, gid; 1318 1319 reread: 1320 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1321 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1322 iloc->partitionReferenceNum, sbi->s_partitions); 1323 return -EIO; 1324 } 1325 1326 if (iloc->logicalBlockNum >= 1327 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1328 udf_debug("block=%u, partition=%u out of range\n", 1329 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1330 return -EIO; 1331 } 1332 1333 /* 1334 * Set defaults, but the inode is still incomplete! 1335 * Note: get_new_inode() sets the following on a new inode: 1336 * i_sb = sb 1337 * i_no = ino 1338 * i_flags = sb->s_flags 1339 * i_state = 0 1340 * clean_inode(): zero fills and sets 1341 * i_count = 1 1342 * i_nlink = 1 1343 * i_op = NULL; 1344 */ 1345 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1346 if (!bh) { 1347 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1348 return -EIO; 1349 } 1350 1351 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1352 ident != TAG_IDENT_USE) { 1353 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1354 inode->i_ino, ident); 1355 goto out; 1356 } 1357 1358 fe = (struct fileEntry *)bh->b_data; 1359 efe = (struct extendedFileEntry *)bh->b_data; 1360 1361 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1362 struct buffer_head *ibh; 1363 1364 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1365 if (ident == TAG_IDENT_IE && ibh) { 1366 struct kernel_lb_addr loc; 1367 struct indirectEntry *ie; 1368 1369 ie = (struct indirectEntry *)ibh->b_data; 1370 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1371 1372 if (ie->indirectICB.extLength) { 1373 brelse(ibh); 1374 memcpy(&iinfo->i_location, &loc, 1375 sizeof(struct kernel_lb_addr)); 1376 if (++indirections > UDF_MAX_ICB_NESTING) { 1377 udf_err(inode->i_sb, 1378 "too many ICBs in ICB hierarchy" 1379 " (max %d supported)\n", 1380 UDF_MAX_ICB_NESTING); 1381 goto out; 1382 } 1383 brelse(bh); 1384 goto reread; 1385 } 1386 } 1387 brelse(ibh); 1388 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1389 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1390 le16_to_cpu(fe->icbTag.strategyType)); 1391 goto out; 1392 } 1393 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1394 iinfo->i_strat4096 = 0; 1395 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1396 iinfo->i_strat4096 = 1; 1397 1398 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1399 ICBTAG_FLAG_AD_MASK; 1400 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1401 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1402 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1403 ret = -EIO; 1404 goto out; 1405 } 1406 iinfo->i_unique = 0; 1407 iinfo->i_lenEAttr = 0; 1408 iinfo->i_lenExtents = 0; 1409 iinfo->i_lenAlloc = 0; 1410 iinfo->i_next_alloc_block = 0; 1411 iinfo->i_next_alloc_goal = 0; 1412 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1413 iinfo->i_efe = 1; 1414 iinfo->i_use = 0; 1415 ret = udf_alloc_i_data(inode, bs - 1416 sizeof(struct extendedFileEntry)); 1417 if (ret) 1418 goto out; 1419 memcpy(iinfo->i_data, 1420 bh->b_data + sizeof(struct extendedFileEntry), 1421 bs - sizeof(struct extendedFileEntry)); 1422 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1423 iinfo->i_efe = 0; 1424 iinfo->i_use = 0; 1425 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1426 if (ret) 1427 goto out; 1428 memcpy(iinfo->i_data, 1429 bh->b_data + sizeof(struct fileEntry), 1430 bs - sizeof(struct fileEntry)); 1431 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1432 iinfo->i_efe = 0; 1433 iinfo->i_use = 1; 1434 iinfo->i_lenAlloc = le32_to_cpu( 1435 ((struct unallocSpaceEntry *)bh->b_data)-> 1436 lengthAllocDescs); 1437 ret = udf_alloc_i_data(inode, bs - 1438 sizeof(struct unallocSpaceEntry)); 1439 if (ret) 1440 goto out; 1441 memcpy(iinfo->i_data, 1442 bh->b_data + sizeof(struct unallocSpaceEntry), 1443 bs - sizeof(struct unallocSpaceEntry)); 1444 return 0; 1445 } 1446 1447 ret = -EIO; 1448 read_lock(&sbi->s_cred_lock); 1449 uid = le32_to_cpu(fe->uid); 1450 if (uid == UDF_INVALID_ID || 1451 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1452 inode->i_uid = sbi->s_uid; 1453 else 1454 i_uid_write(inode, uid); 1455 1456 gid = le32_to_cpu(fe->gid); 1457 if (gid == UDF_INVALID_ID || 1458 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1459 inode->i_gid = sbi->s_gid; 1460 else 1461 i_gid_write(inode, gid); 1462 1463 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1464 sbi->s_fmode != UDF_INVALID_MODE) 1465 inode->i_mode = sbi->s_fmode; 1466 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1467 sbi->s_dmode != UDF_INVALID_MODE) 1468 inode->i_mode = sbi->s_dmode; 1469 else 1470 inode->i_mode = udf_convert_permissions(fe); 1471 inode->i_mode &= ~sbi->s_umask; 1472 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1473 1474 read_unlock(&sbi->s_cred_lock); 1475 1476 link_count = le16_to_cpu(fe->fileLinkCount); 1477 if (!link_count) { 1478 if (!hidden_inode) { 1479 ret = -ESTALE; 1480 goto out; 1481 } 1482 link_count = 1; 1483 } 1484 set_nlink(inode, link_count); 1485 1486 inode->i_size = le64_to_cpu(fe->informationLength); 1487 iinfo->i_lenExtents = inode->i_size; 1488 1489 if (iinfo->i_efe == 0) { 1490 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1491 (inode->i_sb->s_blocksize_bits - 9); 1492 1493 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1494 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1495 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1496 1497 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1498 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1499 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1500 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1501 iinfo->i_streamdir = 0; 1502 iinfo->i_lenStreams = 0; 1503 } else { 1504 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1505 (inode->i_sb->s_blocksize_bits - 9); 1506 1507 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1508 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1509 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1510 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1511 1512 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1513 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1514 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1515 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1516 1517 /* Named streams */ 1518 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1519 iinfo->i_locStreamdir = 1520 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1521 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1522 if (iinfo->i_lenStreams >= inode->i_size) 1523 iinfo->i_lenStreams -= inode->i_size; 1524 else 1525 iinfo->i_lenStreams = 0; 1526 } 1527 inode->i_generation = iinfo->i_unique; 1528 1529 /* 1530 * Sanity check length of allocation descriptors and extended attrs to 1531 * avoid integer overflows 1532 */ 1533 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1534 goto out; 1535 /* Now do exact checks */ 1536 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1537 goto out; 1538 /* Sanity checks for files in ICB so that we don't get confused later */ 1539 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1540 /* 1541 * For file in ICB data is stored in allocation descriptor 1542 * so sizes should match 1543 */ 1544 if (iinfo->i_lenAlloc != inode->i_size) 1545 goto out; 1546 /* File in ICB has to fit in there... */ 1547 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1548 goto out; 1549 } 1550 1551 switch (fe->icbTag.fileType) { 1552 case ICBTAG_FILE_TYPE_DIRECTORY: 1553 inode->i_op = &udf_dir_inode_operations; 1554 inode->i_fop = &udf_dir_operations; 1555 inode->i_mode |= S_IFDIR; 1556 inc_nlink(inode); 1557 break; 1558 case ICBTAG_FILE_TYPE_REALTIME: 1559 case ICBTAG_FILE_TYPE_REGULAR: 1560 case ICBTAG_FILE_TYPE_UNDEF: 1561 case ICBTAG_FILE_TYPE_VAT20: 1562 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1563 inode->i_data.a_ops = &udf_adinicb_aops; 1564 else 1565 inode->i_data.a_ops = &udf_aops; 1566 inode->i_op = &udf_file_inode_operations; 1567 inode->i_fop = &udf_file_operations; 1568 inode->i_mode |= S_IFREG; 1569 break; 1570 case ICBTAG_FILE_TYPE_BLOCK: 1571 inode->i_mode |= S_IFBLK; 1572 break; 1573 case ICBTAG_FILE_TYPE_CHAR: 1574 inode->i_mode |= S_IFCHR; 1575 break; 1576 case ICBTAG_FILE_TYPE_FIFO: 1577 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1578 break; 1579 case ICBTAG_FILE_TYPE_SOCKET: 1580 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1581 break; 1582 case ICBTAG_FILE_TYPE_SYMLINK: 1583 inode->i_data.a_ops = &udf_symlink_aops; 1584 inode->i_op = &udf_symlink_inode_operations; 1585 inode_nohighmem(inode); 1586 inode->i_mode = S_IFLNK | 0777; 1587 break; 1588 case ICBTAG_FILE_TYPE_MAIN: 1589 udf_debug("METADATA FILE-----\n"); 1590 break; 1591 case ICBTAG_FILE_TYPE_MIRROR: 1592 udf_debug("METADATA MIRROR FILE-----\n"); 1593 break; 1594 case ICBTAG_FILE_TYPE_BITMAP: 1595 udf_debug("METADATA BITMAP FILE-----\n"); 1596 break; 1597 default: 1598 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1599 inode->i_ino, fe->icbTag.fileType); 1600 goto out; 1601 } 1602 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1603 struct deviceSpec *dsea = 1604 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1605 if (dsea) { 1606 init_special_inode(inode, inode->i_mode, 1607 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1608 le32_to_cpu(dsea->minorDeviceIdent))); 1609 /* Developer ID ??? */ 1610 } else 1611 goto out; 1612 } 1613 ret = 0; 1614 out: 1615 brelse(bh); 1616 return ret; 1617 } 1618 1619 static int udf_alloc_i_data(struct inode *inode, size_t size) 1620 { 1621 struct udf_inode_info *iinfo = UDF_I(inode); 1622 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1623 if (!iinfo->i_data) 1624 return -ENOMEM; 1625 return 0; 1626 } 1627 1628 static umode_t udf_convert_permissions(struct fileEntry *fe) 1629 { 1630 umode_t mode; 1631 uint32_t permissions; 1632 uint32_t flags; 1633 1634 permissions = le32_to_cpu(fe->permissions); 1635 flags = le16_to_cpu(fe->icbTag.flags); 1636 1637 mode = ((permissions) & 0007) | 1638 ((permissions >> 2) & 0070) | 1639 ((permissions >> 4) & 0700) | 1640 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1641 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1642 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1643 1644 return mode; 1645 } 1646 1647 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1648 { 1649 struct udf_inode_info *iinfo = UDF_I(inode); 1650 1651 /* 1652 * UDF 2.01 sec. 3.3.3.3 Note 2: 1653 * In Unix, delete permission tracks write 1654 */ 1655 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1656 if (mode & 0200) 1657 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1658 if (mode & 0020) 1659 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1660 if (mode & 0002) 1661 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1662 } 1663 1664 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1665 { 1666 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1667 } 1668 1669 static int udf_sync_inode(struct inode *inode) 1670 { 1671 return udf_update_inode(inode, 1); 1672 } 1673 1674 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1675 { 1676 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1677 (iinfo->i_crtime.tv_sec == time.tv_sec && 1678 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1679 iinfo->i_crtime = time; 1680 } 1681 1682 static int udf_update_inode(struct inode *inode, int do_sync) 1683 { 1684 struct buffer_head *bh = NULL; 1685 struct fileEntry *fe; 1686 struct extendedFileEntry *efe; 1687 uint64_t lb_recorded; 1688 uint32_t udfperms; 1689 uint16_t icbflags; 1690 uint16_t crclen; 1691 int err = 0; 1692 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1693 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1694 struct udf_inode_info *iinfo = UDF_I(inode); 1695 1696 bh = udf_tgetblk(inode->i_sb, 1697 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1698 if (!bh) { 1699 udf_debug("getblk failure\n"); 1700 return -EIO; 1701 } 1702 1703 lock_buffer(bh); 1704 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1705 fe = (struct fileEntry *)bh->b_data; 1706 efe = (struct extendedFileEntry *)bh->b_data; 1707 1708 if (iinfo->i_use) { 1709 struct unallocSpaceEntry *use = 1710 (struct unallocSpaceEntry *)bh->b_data; 1711 1712 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1713 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1714 iinfo->i_data, inode->i_sb->s_blocksize - 1715 sizeof(struct unallocSpaceEntry)); 1716 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1717 crclen = sizeof(struct unallocSpaceEntry); 1718 1719 goto finish; 1720 } 1721 1722 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1723 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1724 else 1725 fe->uid = cpu_to_le32(i_uid_read(inode)); 1726 1727 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1728 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1729 else 1730 fe->gid = cpu_to_le32(i_gid_read(inode)); 1731 1732 udfperms = ((inode->i_mode & 0007)) | 1733 ((inode->i_mode & 0070) << 2) | 1734 ((inode->i_mode & 0700) << 4); 1735 1736 udfperms |= iinfo->i_extraPerms; 1737 fe->permissions = cpu_to_le32(udfperms); 1738 1739 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1740 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1741 else 1742 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1743 1744 fe->informationLength = cpu_to_le64(inode->i_size); 1745 1746 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1747 struct regid *eid; 1748 struct deviceSpec *dsea = 1749 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1750 if (!dsea) { 1751 dsea = (struct deviceSpec *) 1752 udf_add_extendedattr(inode, 1753 sizeof(struct deviceSpec) + 1754 sizeof(struct regid), 12, 0x3); 1755 dsea->attrType = cpu_to_le32(12); 1756 dsea->attrSubtype = 1; 1757 dsea->attrLength = cpu_to_le32( 1758 sizeof(struct deviceSpec) + 1759 sizeof(struct regid)); 1760 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1761 } 1762 eid = (struct regid *)dsea->impUse; 1763 memset(eid, 0, sizeof(*eid)); 1764 strcpy(eid->ident, UDF_ID_DEVELOPER); 1765 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1766 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1767 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1768 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1769 } 1770 1771 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1772 lb_recorded = 0; /* No extents => no blocks! */ 1773 else 1774 lb_recorded = 1775 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1776 (blocksize_bits - 9); 1777 1778 if (iinfo->i_efe == 0) { 1779 memcpy(bh->b_data + sizeof(struct fileEntry), 1780 iinfo->i_data, 1781 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1782 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1783 1784 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1785 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1786 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1787 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1788 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1789 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1790 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1791 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1792 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1793 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1794 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1795 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1796 crclen = sizeof(struct fileEntry); 1797 } else { 1798 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1799 iinfo->i_data, 1800 inode->i_sb->s_blocksize - 1801 sizeof(struct extendedFileEntry)); 1802 efe->objectSize = 1803 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1804 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1805 1806 if (iinfo->i_streamdir) { 1807 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1808 1809 icb_lad->extLocation = 1810 cpu_to_lelb(iinfo->i_locStreamdir); 1811 icb_lad->extLength = 1812 cpu_to_le32(inode->i_sb->s_blocksize); 1813 } 1814 1815 udf_adjust_time(iinfo, inode->i_atime); 1816 udf_adjust_time(iinfo, inode->i_mtime); 1817 udf_adjust_time(iinfo, inode->i_ctime); 1818 1819 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1820 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1821 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1822 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1823 1824 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1825 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1826 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1827 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1828 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1829 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1830 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1831 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1832 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1833 crclen = sizeof(struct extendedFileEntry); 1834 } 1835 1836 finish: 1837 if (iinfo->i_strat4096) { 1838 fe->icbTag.strategyType = cpu_to_le16(4096); 1839 fe->icbTag.strategyParameter = cpu_to_le16(1); 1840 fe->icbTag.numEntries = cpu_to_le16(2); 1841 } else { 1842 fe->icbTag.strategyType = cpu_to_le16(4); 1843 fe->icbTag.numEntries = cpu_to_le16(1); 1844 } 1845 1846 if (iinfo->i_use) 1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1848 else if (S_ISDIR(inode->i_mode)) 1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1850 else if (S_ISREG(inode->i_mode)) 1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1852 else if (S_ISLNK(inode->i_mode)) 1853 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1854 else if (S_ISBLK(inode->i_mode)) 1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1856 else if (S_ISCHR(inode->i_mode)) 1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1858 else if (S_ISFIFO(inode->i_mode)) 1859 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1860 else if (S_ISSOCK(inode->i_mode)) 1861 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1862 1863 icbflags = iinfo->i_alloc_type | 1864 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1865 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1866 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1867 (le16_to_cpu(fe->icbTag.flags) & 1868 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1869 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1870 1871 fe->icbTag.flags = cpu_to_le16(icbflags); 1872 if (sbi->s_udfrev >= 0x0200) 1873 fe->descTag.descVersion = cpu_to_le16(3); 1874 else 1875 fe->descTag.descVersion = cpu_to_le16(2); 1876 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1877 fe->descTag.tagLocation = cpu_to_le32( 1878 iinfo->i_location.logicalBlockNum); 1879 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1880 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1881 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1882 crclen)); 1883 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1884 1885 set_buffer_uptodate(bh); 1886 unlock_buffer(bh); 1887 1888 /* write the data blocks */ 1889 mark_buffer_dirty(bh); 1890 if (do_sync) { 1891 sync_dirty_buffer(bh); 1892 if (buffer_write_io_error(bh)) { 1893 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1894 inode->i_ino); 1895 err = -EIO; 1896 } 1897 } 1898 brelse(bh); 1899 1900 return err; 1901 } 1902 1903 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1904 bool hidden_inode) 1905 { 1906 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1907 struct inode *inode = iget_locked(sb, block); 1908 int err; 1909 1910 if (!inode) 1911 return ERR_PTR(-ENOMEM); 1912 1913 if (!(inode->i_state & I_NEW)) 1914 return inode; 1915 1916 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1917 err = udf_read_inode(inode, hidden_inode); 1918 if (err < 0) { 1919 iget_failed(inode); 1920 return ERR_PTR(err); 1921 } 1922 unlock_new_inode(inode); 1923 1924 return inode; 1925 } 1926 1927 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1928 struct extent_position *epos) 1929 { 1930 struct super_block *sb = inode->i_sb; 1931 struct buffer_head *bh; 1932 struct allocExtDesc *aed; 1933 struct extent_position nepos; 1934 struct kernel_lb_addr neloc; 1935 int ver, adsize; 1936 1937 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1938 adsize = sizeof(struct short_ad); 1939 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1940 adsize = sizeof(struct long_ad); 1941 else 1942 return -EIO; 1943 1944 neloc.logicalBlockNum = block; 1945 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1946 1947 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1948 if (!bh) 1949 return -EIO; 1950 lock_buffer(bh); 1951 memset(bh->b_data, 0x00, sb->s_blocksize); 1952 set_buffer_uptodate(bh); 1953 unlock_buffer(bh); 1954 mark_buffer_dirty_inode(bh, inode); 1955 1956 aed = (struct allocExtDesc *)(bh->b_data); 1957 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1958 aed->previousAllocExtLocation = 1959 cpu_to_le32(epos->block.logicalBlockNum); 1960 } 1961 aed->lengthAllocDescs = cpu_to_le32(0); 1962 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1963 ver = 3; 1964 else 1965 ver = 2; 1966 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1967 sizeof(struct tag)); 1968 1969 nepos.block = neloc; 1970 nepos.offset = sizeof(struct allocExtDesc); 1971 nepos.bh = bh; 1972 1973 /* 1974 * Do we have to copy current last extent to make space for indirect 1975 * one? 1976 */ 1977 if (epos->offset + adsize > sb->s_blocksize) { 1978 struct kernel_lb_addr cp_loc; 1979 uint32_t cp_len; 1980 int cp_type; 1981 1982 epos->offset -= adsize; 1983 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1984 cp_len |= ((uint32_t)cp_type) << 30; 1985 1986 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1987 udf_write_aext(inode, epos, &nepos.block, 1988 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1989 } else { 1990 __udf_add_aext(inode, epos, &nepos.block, 1991 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1992 } 1993 1994 brelse(epos->bh); 1995 *epos = nepos; 1996 1997 return 0; 1998 } 1999 2000 /* 2001 * Append extent at the given position - should be the first free one in inode 2002 * / indirect extent. This function assumes there is enough space in the inode 2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2004 */ 2005 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2007 { 2008 struct udf_inode_info *iinfo = UDF_I(inode); 2009 struct allocExtDesc *aed; 2010 int adsize; 2011 2012 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2013 adsize = sizeof(struct short_ad); 2014 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2015 adsize = sizeof(struct long_ad); 2016 else 2017 return -EIO; 2018 2019 if (!epos->bh) { 2020 WARN_ON(iinfo->i_lenAlloc != 2021 epos->offset - udf_file_entry_alloc_offset(inode)); 2022 } else { 2023 aed = (struct allocExtDesc *)epos->bh->b_data; 2024 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2025 epos->offset - sizeof(struct allocExtDesc)); 2026 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2027 } 2028 2029 udf_write_aext(inode, epos, eloc, elen, inc); 2030 2031 if (!epos->bh) { 2032 iinfo->i_lenAlloc += adsize; 2033 mark_inode_dirty(inode); 2034 } else { 2035 aed = (struct allocExtDesc *)epos->bh->b_data; 2036 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2037 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2038 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2039 udf_update_tag(epos->bh->b_data, 2040 epos->offset + (inc ? 0 : adsize)); 2041 else 2042 udf_update_tag(epos->bh->b_data, 2043 sizeof(struct allocExtDesc)); 2044 mark_buffer_dirty_inode(epos->bh, inode); 2045 } 2046 2047 return 0; 2048 } 2049 2050 /* 2051 * Append extent at given position - should be the first free one in inode 2052 * / indirect extent. Takes care of allocating and linking indirect blocks. 2053 */ 2054 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2055 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2056 { 2057 int adsize; 2058 struct super_block *sb = inode->i_sb; 2059 2060 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2061 adsize = sizeof(struct short_ad); 2062 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2063 adsize = sizeof(struct long_ad); 2064 else 2065 return -EIO; 2066 2067 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2068 int err; 2069 udf_pblk_t new_block; 2070 2071 new_block = udf_new_block(sb, NULL, 2072 epos->block.partitionReferenceNum, 2073 epos->block.logicalBlockNum, &err); 2074 if (!new_block) 2075 return -ENOSPC; 2076 2077 err = udf_setup_indirect_aext(inode, new_block, epos); 2078 if (err) 2079 return err; 2080 } 2081 2082 return __udf_add_aext(inode, epos, eloc, elen, inc); 2083 } 2084 2085 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2086 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2087 { 2088 int adsize; 2089 uint8_t *ptr; 2090 struct short_ad *sad; 2091 struct long_ad *lad; 2092 struct udf_inode_info *iinfo = UDF_I(inode); 2093 2094 if (!epos->bh) 2095 ptr = iinfo->i_data + epos->offset - 2096 udf_file_entry_alloc_offset(inode) + 2097 iinfo->i_lenEAttr; 2098 else 2099 ptr = epos->bh->b_data + epos->offset; 2100 2101 switch (iinfo->i_alloc_type) { 2102 case ICBTAG_FLAG_AD_SHORT: 2103 sad = (struct short_ad *)ptr; 2104 sad->extLength = cpu_to_le32(elen); 2105 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2106 adsize = sizeof(struct short_ad); 2107 break; 2108 case ICBTAG_FLAG_AD_LONG: 2109 lad = (struct long_ad *)ptr; 2110 lad->extLength = cpu_to_le32(elen); 2111 lad->extLocation = cpu_to_lelb(*eloc); 2112 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2113 adsize = sizeof(struct long_ad); 2114 break; 2115 default: 2116 return; 2117 } 2118 2119 if (epos->bh) { 2120 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2121 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2122 struct allocExtDesc *aed = 2123 (struct allocExtDesc *)epos->bh->b_data; 2124 udf_update_tag(epos->bh->b_data, 2125 le32_to_cpu(aed->lengthAllocDescs) + 2126 sizeof(struct allocExtDesc)); 2127 } 2128 mark_buffer_dirty_inode(epos->bh, inode); 2129 } else { 2130 mark_inode_dirty(inode); 2131 } 2132 2133 if (inc) 2134 epos->offset += adsize; 2135 } 2136 2137 /* 2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2139 * someone does some weird stuff. 2140 */ 2141 #define UDF_MAX_INDIR_EXTS 16 2142 2143 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2144 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2145 { 2146 int8_t etype; 2147 unsigned int indirections = 0; 2148 2149 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2150 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2151 udf_pblk_t block; 2152 2153 if (++indirections > UDF_MAX_INDIR_EXTS) { 2154 udf_err(inode->i_sb, 2155 "too many indirect extents in inode %lu\n", 2156 inode->i_ino); 2157 return -1; 2158 } 2159 2160 epos->block = *eloc; 2161 epos->offset = sizeof(struct allocExtDesc); 2162 brelse(epos->bh); 2163 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2164 epos->bh = udf_tread(inode->i_sb, block); 2165 if (!epos->bh) { 2166 udf_debug("reading block %u failed!\n", block); 2167 return -1; 2168 } 2169 } 2170 2171 return etype; 2172 } 2173 2174 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2175 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2176 { 2177 int alen; 2178 int8_t etype; 2179 uint8_t *ptr; 2180 struct short_ad *sad; 2181 struct long_ad *lad; 2182 struct udf_inode_info *iinfo = UDF_I(inode); 2183 2184 if (!epos->bh) { 2185 if (!epos->offset) 2186 epos->offset = udf_file_entry_alloc_offset(inode); 2187 ptr = iinfo->i_data + epos->offset - 2188 udf_file_entry_alloc_offset(inode) + 2189 iinfo->i_lenEAttr; 2190 alen = udf_file_entry_alloc_offset(inode) + 2191 iinfo->i_lenAlloc; 2192 } else { 2193 if (!epos->offset) 2194 epos->offset = sizeof(struct allocExtDesc); 2195 ptr = epos->bh->b_data + epos->offset; 2196 alen = sizeof(struct allocExtDesc) + 2197 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2198 lengthAllocDescs); 2199 } 2200 2201 switch (iinfo->i_alloc_type) { 2202 case ICBTAG_FLAG_AD_SHORT: 2203 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2204 if (!sad) 2205 return -1; 2206 etype = le32_to_cpu(sad->extLength) >> 30; 2207 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2208 eloc->partitionReferenceNum = 2209 iinfo->i_location.partitionReferenceNum; 2210 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2211 break; 2212 case ICBTAG_FLAG_AD_LONG: 2213 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2214 if (!lad) 2215 return -1; 2216 etype = le32_to_cpu(lad->extLength) >> 30; 2217 *eloc = lelb_to_cpu(lad->extLocation); 2218 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2219 break; 2220 default: 2221 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2222 return -1; 2223 } 2224 2225 return etype; 2226 } 2227 2228 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2229 struct kernel_lb_addr neloc, uint32_t nelen) 2230 { 2231 struct kernel_lb_addr oeloc; 2232 uint32_t oelen; 2233 int8_t etype; 2234 2235 if (epos.bh) 2236 get_bh(epos.bh); 2237 2238 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2239 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2240 neloc = oeloc; 2241 nelen = (etype << 30) | oelen; 2242 } 2243 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2244 brelse(epos.bh); 2245 2246 return (nelen >> 30); 2247 } 2248 2249 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2250 { 2251 struct extent_position oepos; 2252 int adsize; 2253 int8_t etype; 2254 struct allocExtDesc *aed; 2255 struct udf_inode_info *iinfo; 2256 struct kernel_lb_addr eloc; 2257 uint32_t elen; 2258 2259 if (epos.bh) { 2260 get_bh(epos.bh); 2261 get_bh(epos.bh); 2262 } 2263 2264 iinfo = UDF_I(inode); 2265 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2266 adsize = sizeof(struct short_ad); 2267 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2268 adsize = sizeof(struct long_ad); 2269 else 2270 adsize = 0; 2271 2272 oepos = epos; 2273 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2274 return -1; 2275 2276 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2277 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2278 if (oepos.bh != epos.bh) { 2279 oepos.block = epos.block; 2280 brelse(oepos.bh); 2281 get_bh(epos.bh); 2282 oepos.bh = epos.bh; 2283 oepos.offset = epos.offset - adsize; 2284 } 2285 } 2286 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2287 elen = 0; 2288 2289 if (epos.bh != oepos.bh) { 2290 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2291 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2292 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2293 if (!oepos.bh) { 2294 iinfo->i_lenAlloc -= (adsize * 2); 2295 mark_inode_dirty(inode); 2296 } else { 2297 aed = (struct allocExtDesc *)oepos.bh->b_data; 2298 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2299 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2300 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2301 udf_update_tag(oepos.bh->b_data, 2302 oepos.offset - (2 * adsize)); 2303 else 2304 udf_update_tag(oepos.bh->b_data, 2305 sizeof(struct allocExtDesc)); 2306 mark_buffer_dirty_inode(oepos.bh, inode); 2307 } 2308 } else { 2309 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2310 if (!oepos.bh) { 2311 iinfo->i_lenAlloc -= adsize; 2312 mark_inode_dirty(inode); 2313 } else { 2314 aed = (struct allocExtDesc *)oepos.bh->b_data; 2315 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2316 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2317 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2318 udf_update_tag(oepos.bh->b_data, 2319 epos.offset - adsize); 2320 else 2321 udf_update_tag(oepos.bh->b_data, 2322 sizeof(struct allocExtDesc)); 2323 mark_buffer_dirty_inode(oepos.bh, inode); 2324 } 2325 } 2326 2327 brelse(epos.bh); 2328 brelse(oepos.bh); 2329 2330 return (elen >> 30); 2331 } 2332 2333 int8_t inode_bmap(struct inode *inode, sector_t block, 2334 struct extent_position *pos, struct kernel_lb_addr *eloc, 2335 uint32_t *elen, sector_t *offset) 2336 { 2337 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2338 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2339 int8_t etype; 2340 struct udf_inode_info *iinfo; 2341 2342 iinfo = UDF_I(inode); 2343 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2344 pos->offset = 0; 2345 pos->block = iinfo->i_location; 2346 pos->bh = NULL; 2347 } 2348 *elen = 0; 2349 do { 2350 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2351 if (etype == -1) { 2352 *offset = (bcount - lbcount) >> blocksize_bits; 2353 iinfo->i_lenExtents = lbcount; 2354 return -1; 2355 } 2356 lbcount += *elen; 2357 } while (lbcount <= bcount); 2358 /* update extent cache */ 2359 udf_update_extent_cache(inode, lbcount - *elen, pos); 2360 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2361 2362 return etype; 2363 } 2364 2365 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2366 { 2367 struct kernel_lb_addr eloc; 2368 uint32_t elen; 2369 sector_t offset; 2370 struct extent_position epos = {}; 2371 udf_pblk_t ret; 2372 2373 down_read(&UDF_I(inode)->i_data_sem); 2374 2375 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2376 (EXT_RECORDED_ALLOCATED >> 30)) 2377 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2378 else 2379 ret = 0; 2380 2381 up_read(&UDF_I(inode)->i_data_sem); 2382 brelse(epos.bh); 2383 2384 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2385 return udf_fixed_to_variable(ret); 2386 else 2387 return ret; 2388 } 2389