1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 struct udf_map_rq; 56 57 static umode_t udf_convert_permissions(struct fileEntry *); 58 static int udf_update_inode(struct inode *, int); 59 static int udf_sync_inode(struct inode *inode); 60 static int udf_alloc_i_data(struct inode *inode, size_t size); 61 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 62 static int udf_insert_aext(struct inode *, struct extent_position, 63 struct kernel_lb_addr, uint32_t); 64 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 65 struct kernel_long_ad *, int *); 66 static void udf_prealloc_extents(struct inode *, int, int, 67 struct kernel_long_ad *, int *); 68 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 69 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 70 int, struct extent_position *); 71 static int udf_get_block_wb(struct inode *inode, sector_t block, 72 struct buffer_head *bh_result, int create); 73 74 static void __udf_clear_extent_cache(struct inode *inode) 75 { 76 struct udf_inode_info *iinfo = UDF_I(inode); 77 78 if (iinfo->cached_extent.lstart != -1) { 79 brelse(iinfo->cached_extent.epos.bh); 80 iinfo->cached_extent.lstart = -1; 81 } 82 } 83 84 /* Invalidate extent cache */ 85 static void udf_clear_extent_cache(struct inode *inode) 86 { 87 struct udf_inode_info *iinfo = UDF_I(inode); 88 89 spin_lock(&iinfo->i_extent_cache_lock); 90 __udf_clear_extent_cache(inode); 91 spin_unlock(&iinfo->i_extent_cache_lock); 92 } 93 94 /* Return contents of extent cache */ 95 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 96 loff_t *lbcount, struct extent_position *pos) 97 { 98 struct udf_inode_info *iinfo = UDF_I(inode); 99 int ret = 0; 100 101 spin_lock(&iinfo->i_extent_cache_lock); 102 if ((iinfo->cached_extent.lstart <= bcount) && 103 (iinfo->cached_extent.lstart != -1)) { 104 /* Cache hit */ 105 *lbcount = iinfo->cached_extent.lstart; 106 memcpy(pos, &iinfo->cached_extent.epos, 107 sizeof(struct extent_position)); 108 if (pos->bh) 109 get_bh(pos->bh); 110 ret = 1; 111 } 112 spin_unlock(&iinfo->i_extent_cache_lock); 113 return ret; 114 } 115 116 /* Add extent to extent cache */ 117 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 118 struct extent_position *pos) 119 { 120 struct udf_inode_info *iinfo = UDF_I(inode); 121 122 spin_lock(&iinfo->i_extent_cache_lock); 123 /* Invalidate previously cached extent */ 124 __udf_clear_extent_cache(inode); 125 if (pos->bh) 126 get_bh(pos->bh); 127 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 128 iinfo->cached_extent.lstart = estart; 129 switch (iinfo->i_alloc_type) { 130 case ICBTAG_FLAG_AD_SHORT: 131 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 132 break; 133 case ICBTAG_FLAG_AD_LONG: 134 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 135 break; 136 } 137 spin_unlock(&iinfo->i_extent_cache_lock); 138 } 139 140 void udf_evict_inode(struct inode *inode) 141 { 142 struct udf_inode_info *iinfo = UDF_I(inode); 143 int want_delete = 0; 144 145 if (!is_bad_inode(inode)) { 146 if (!inode->i_nlink) { 147 want_delete = 1; 148 udf_setsize(inode, 0); 149 udf_update_inode(inode, IS_SYNC(inode)); 150 } 151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 152 inode->i_size != iinfo->i_lenExtents) { 153 udf_warn(inode->i_sb, 154 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 155 inode->i_ino, inode->i_mode, 156 (unsigned long long)inode->i_size, 157 (unsigned long long)iinfo->i_lenExtents); 158 } 159 } 160 truncate_inode_pages_final(&inode->i_data); 161 invalidate_inode_buffers(inode); 162 clear_inode(inode); 163 kfree(iinfo->i_data); 164 iinfo->i_data = NULL; 165 udf_clear_extent_cache(inode); 166 if (want_delete) { 167 udf_free_inode(inode); 168 } 169 } 170 171 static void udf_write_failed(struct address_space *mapping, loff_t to) 172 { 173 struct inode *inode = mapping->host; 174 struct udf_inode_info *iinfo = UDF_I(inode); 175 loff_t isize = inode->i_size; 176 177 if (to > isize) { 178 truncate_pagecache(inode, isize); 179 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 180 down_write(&iinfo->i_data_sem); 181 udf_clear_extent_cache(inode); 182 udf_truncate_extents(inode); 183 up_write(&iinfo->i_data_sem); 184 } 185 } 186 } 187 188 static int udf_adinicb_writepage(struct folio *folio, 189 struct writeback_control *wbc, void *data) 190 { 191 struct page *page = &folio->page; 192 struct inode *inode = page->mapping->host; 193 struct udf_inode_info *iinfo = UDF_I(inode); 194 195 BUG_ON(!PageLocked(page)); 196 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr, 197 i_size_read(inode)); 198 unlock_page(page); 199 mark_inode_dirty(inode); 200 201 return 0; 202 } 203 204 static int udf_writepages(struct address_space *mapping, 205 struct writeback_control *wbc) 206 { 207 struct inode *inode = mapping->host; 208 struct udf_inode_info *iinfo = UDF_I(inode); 209 210 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 211 return mpage_writepages(mapping, wbc, udf_get_block_wb); 212 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 213 } 214 215 static void udf_adinicb_readpage(struct page *page) 216 { 217 struct inode *inode = page->mapping->host; 218 char *kaddr; 219 struct udf_inode_info *iinfo = UDF_I(inode); 220 loff_t isize = i_size_read(inode); 221 222 kaddr = kmap_local_page(page); 223 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, isize); 224 memset(kaddr + isize, 0, PAGE_SIZE - isize); 225 flush_dcache_page(page); 226 SetPageUptodate(page); 227 kunmap_local(kaddr); 228 } 229 230 static int udf_read_folio(struct file *file, struct folio *folio) 231 { 232 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 233 234 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 235 udf_adinicb_readpage(&folio->page); 236 folio_unlock(folio); 237 return 0; 238 } 239 return mpage_read_folio(folio, udf_get_block); 240 } 241 242 static void udf_readahead(struct readahead_control *rac) 243 { 244 mpage_readahead(rac, udf_get_block); 245 } 246 247 static int udf_write_begin(struct file *file, struct address_space *mapping, 248 loff_t pos, unsigned len, 249 struct page **pagep, void **fsdata) 250 { 251 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 252 struct page *page; 253 int ret; 254 255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 256 ret = block_write_begin(mapping, pos, len, pagep, 257 udf_get_block); 258 if (unlikely(ret)) 259 udf_write_failed(mapping, pos + len); 260 return ret; 261 } 262 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 263 return -EIO; 264 page = grab_cache_page_write_begin(mapping, 0); 265 if (!page) 266 return -ENOMEM; 267 *pagep = page; 268 if (!PageUptodate(page)) 269 udf_adinicb_readpage(page); 270 return 0; 271 } 272 273 static int udf_write_end(struct file *file, struct address_space *mapping, 274 loff_t pos, unsigned len, unsigned copied, 275 struct page *page, void *fsdata) 276 { 277 struct inode *inode = file_inode(file); 278 loff_t last_pos; 279 280 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 281 return generic_write_end(file, mapping, pos, len, copied, page, 282 fsdata); 283 last_pos = pos + copied; 284 if (last_pos > inode->i_size) 285 i_size_write(inode, last_pos); 286 set_page_dirty(page); 287 unlock_page(page); 288 put_page(page); 289 290 return copied; 291 } 292 293 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 294 { 295 struct file *file = iocb->ki_filp; 296 struct address_space *mapping = file->f_mapping; 297 struct inode *inode = mapping->host; 298 size_t count = iov_iter_count(iter); 299 ssize_t ret; 300 301 /* Fallback to buffered IO for in-ICB files */ 302 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 303 return 0; 304 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 305 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 306 udf_write_failed(mapping, iocb->ki_pos + count); 307 return ret; 308 } 309 310 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 311 { 312 struct udf_inode_info *iinfo = UDF_I(mapping->host); 313 314 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 315 return -EINVAL; 316 return generic_block_bmap(mapping, block, udf_get_block); 317 } 318 319 const struct address_space_operations udf_aops = { 320 .dirty_folio = block_dirty_folio, 321 .invalidate_folio = block_invalidate_folio, 322 .read_folio = udf_read_folio, 323 .readahead = udf_readahead, 324 .writepages = udf_writepages, 325 .write_begin = udf_write_begin, 326 .write_end = udf_write_end, 327 .direct_IO = udf_direct_IO, 328 .bmap = udf_bmap, 329 .migrate_folio = buffer_migrate_folio, 330 }; 331 332 /* 333 * Expand file stored in ICB to a normal one-block-file 334 * 335 * This function requires i_mutex held 336 */ 337 int udf_expand_file_adinicb(struct inode *inode) 338 { 339 struct page *page; 340 struct udf_inode_info *iinfo = UDF_I(inode); 341 int err; 342 343 WARN_ON_ONCE(!inode_is_locked(inode)); 344 if (!iinfo->i_lenAlloc) { 345 down_write(&iinfo->i_data_sem); 346 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 347 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 348 else 349 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 350 /* from now on we have normal address_space methods */ 351 inode->i_data.a_ops = &udf_aops; 352 up_write(&iinfo->i_data_sem); 353 mark_inode_dirty(inode); 354 return 0; 355 } 356 357 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 358 if (!page) 359 return -ENOMEM; 360 361 if (!PageUptodate(page)) 362 udf_adinicb_readpage(page); 363 down_write(&iinfo->i_data_sem); 364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 365 iinfo->i_lenAlloc); 366 iinfo->i_lenAlloc = 0; 367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 369 else 370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 371 set_page_dirty(page); 372 unlock_page(page); 373 up_write(&iinfo->i_data_sem); 374 err = filemap_fdatawrite(inode->i_mapping); 375 if (err) { 376 /* Restore everything back so that we don't lose data... */ 377 lock_page(page); 378 down_write(&iinfo->i_data_sem); 379 memcpy_to_page(page, 0, iinfo->i_data + iinfo->i_lenEAttr, 380 inode->i_size); 381 unlock_page(page); 382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 383 iinfo->i_lenAlloc = inode->i_size; 384 up_write(&iinfo->i_data_sem); 385 } 386 put_page(page); 387 mark_inode_dirty(inode); 388 389 return err; 390 } 391 392 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 393 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 394 395 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 396 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 397 398 struct udf_map_rq { 399 sector_t lblk; 400 udf_pblk_t pblk; 401 int iflags; /* UDF_MAP_ flags determining behavior */ 402 int oflags; /* UDF_BLK_ flags reporting results */ 403 }; 404 405 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 406 { 407 int err; 408 struct udf_inode_info *iinfo = UDF_I(inode); 409 410 map->oflags = 0; 411 if (!(map->iflags & UDF_MAP_CREATE)) { 412 struct kernel_lb_addr eloc; 413 uint32_t elen; 414 sector_t offset; 415 struct extent_position epos = {}; 416 417 down_read(&iinfo->i_data_sem); 418 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 419 == (EXT_RECORDED_ALLOCATED >> 30)) { 420 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 421 offset); 422 map->oflags |= UDF_BLK_MAPPED; 423 } 424 up_read(&iinfo->i_data_sem); 425 brelse(epos.bh); 426 427 return 0; 428 } 429 430 down_write(&iinfo->i_data_sem); 431 /* 432 * Block beyond EOF and prealloc extents? Just discard preallocation 433 * as it is not useful and complicates things. 434 */ 435 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 436 udf_discard_prealloc(inode); 437 udf_clear_extent_cache(inode); 438 err = inode_getblk(inode, map); 439 up_write(&iinfo->i_data_sem); 440 return err; 441 } 442 443 static int __udf_get_block(struct inode *inode, sector_t block, 444 struct buffer_head *bh_result, int flags) 445 { 446 int err; 447 struct udf_map_rq map = { 448 .lblk = block, 449 .iflags = flags, 450 }; 451 452 err = udf_map_block(inode, &map); 453 if (err < 0) 454 return err; 455 if (map.oflags & UDF_BLK_MAPPED) { 456 map_bh(bh_result, inode->i_sb, map.pblk); 457 if (map.oflags & UDF_BLK_NEW) 458 set_buffer_new(bh_result); 459 } 460 return 0; 461 } 462 463 int udf_get_block(struct inode *inode, sector_t block, 464 struct buffer_head *bh_result, int create) 465 { 466 int flags = create ? UDF_MAP_CREATE : 0; 467 468 /* 469 * We preallocate blocks only for regular files. It also makes sense 470 * for directories but there's a problem when to drop the 471 * preallocation. We might use some delayed work for that but I feel 472 * it's overengineering for a filesystem like UDF. 473 */ 474 if (!S_ISREG(inode->i_mode)) 475 flags |= UDF_MAP_NOPREALLOC; 476 return __udf_get_block(inode, block, bh_result, flags); 477 } 478 479 /* 480 * We shouldn't be allocating blocks on page writeback since we allocate them 481 * on page fault. We can spot dirty buffers without allocated blocks though 482 * when truncate expands file. These however don't have valid data so we can 483 * safely ignore them. So never allocate blocks from page writeback. 484 */ 485 static int udf_get_block_wb(struct inode *inode, sector_t block, 486 struct buffer_head *bh_result, int create) 487 { 488 return __udf_get_block(inode, block, bh_result, 0); 489 } 490 491 /* Extend the file with new blocks totaling 'new_block_bytes', 492 * return the number of extents added 493 */ 494 static int udf_do_extend_file(struct inode *inode, 495 struct extent_position *last_pos, 496 struct kernel_long_ad *last_ext, 497 loff_t new_block_bytes) 498 { 499 uint32_t add; 500 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 501 struct super_block *sb = inode->i_sb; 502 struct udf_inode_info *iinfo; 503 int err; 504 505 /* The previous extent is fake and we should not extend by anything 506 * - there's nothing to do... */ 507 if (!new_block_bytes && fake) 508 return 0; 509 510 iinfo = UDF_I(inode); 511 /* Round the last extent up to a multiple of block size */ 512 if (last_ext->extLength & (sb->s_blocksize - 1)) { 513 last_ext->extLength = 514 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 515 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 516 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 517 iinfo->i_lenExtents = 518 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 519 ~(sb->s_blocksize - 1); 520 } 521 522 add = 0; 523 /* Can we merge with the previous extent? */ 524 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 525 EXT_NOT_RECORDED_NOT_ALLOCATED) { 526 add = (1 << 30) - sb->s_blocksize - 527 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 528 if (add > new_block_bytes) 529 add = new_block_bytes; 530 new_block_bytes -= add; 531 last_ext->extLength += add; 532 } 533 534 if (fake) { 535 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 536 last_ext->extLength, 1); 537 if (err < 0) 538 goto out_err; 539 count++; 540 } else { 541 struct kernel_lb_addr tmploc; 542 uint32_t tmplen; 543 544 udf_write_aext(inode, last_pos, &last_ext->extLocation, 545 last_ext->extLength, 1); 546 547 /* 548 * We've rewritten the last extent. If we are going to add 549 * more extents, we may need to enter possible following 550 * empty indirect extent. 551 */ 552 if (new_block_bytes) 553 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 554 } 555 iinfo->i_lenExtents += add; 556 557 /* Managed to do everything necessary? */ 558 if (!new_block_bytes) 559 goto out; 560 561 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 562 last_ext->extLocation.logicalBlockNum = 0; 563 last_ext->extLocation.partitionReferenceNum = 0; 564 add = (1 << 30) - sb->s_blocksize; 565 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 566 567 /* Create enough extents to cover the whole hole */ 568 while (new_block_bytes > add) { 569 new_block_bytes -= add; 570 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 571 last_ext->extLength, 1); 572 if (err) 573 goto out_err; 574 iinfo->i_lenExtents += add; 575 count++; 576 } 577 if (new_block_bytes) { 578 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 579 new_block_bytes; 580 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 581 last_ext->extLength, 1); 582 if (err) 583 goto out_err; 584 iinfo->i_lenExtents += new_block_bytes; 585 count++; 586 } 587 588 out: 589 /* last_pos should point to the last written extent... */ 590 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 591 last_pos->offset -= sizeof(struct short_ad); 592 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 593 last_pos->offset -= sizeof(struct long_ad); 594 else 595 return -EIO; 596 597 return count; 598 out_err: 599 /* Remove extents we've created so far */ 600 udf_clear_extent_cache(inode); 601 udf_truncate_extents(inode); 602 return err; 603 } 604 605 /* Extend the final block of the file to final_block_len bytes */ 606 static void udf_do_extend_final_block(struct inode *inode, 607 struct extent_position *last_pos, 608 struct kernel_long_ad *last_ext, 609 uint32_t new_elen) 610 { 611 uint32_t added_bytes; 612 613 /* 614 * Extent already large enough? It may be already rounded up to block 615 * size... 616 */ 617 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 618 return; 619 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 620 last_ext->extLength += added_bytes; 621 UDF_I(inode)->i_lenExtents += added_bytes; 622 623 udf_write_aext(inode, last_pos, &last_ext->extLocation, 624 last_ext->extLength, 1); 625 } 626 627 static int udf_extend_file(struct inode *inode, loff_t newsize) 628 { 629 630 struct extent_position epos; 631 struct kernel_lb_addr eloc; 632 uint32_t elen; 633 int8_t etype; 634 struct super_block *sb = inode->i_sb; 635 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 636 loff_t new_elen; 637 int adsize; 638 struct udf_inode_info *iinfo = UDF_I(inode); 639 struct kernel_long_ad extent; 640 int err = 0; 641 bool within_last_ext; 642 643 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 644 adsize = sizeof(struct short_ad); 645 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 646 adsize = sizeof(struct long_ad); 647 else 648 BUG(); 649 650 down_write(&iinfo->i_data_sem); 651 /* 652 * When creating hole in file, just don't bother with preserving 653 * preallocation. It likely won't be very useful anyway. 654 */ 655 udf_discard_prealloc(inode); 656 657 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 658 within_last_ext = (etype != -1); 659 /* We don't expect extents past EOF... */ 660 WARN_ON_ONCE(within_last_ext && 661 elen > ((loff_t)offset + 1) << inode->i_blkbits); 662 663 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 664 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 665 /* File has no extents at all or has empty last 666 * indirect extent! Create a fake extent... */ 667 extent.extLocation.logicalBlockNum = 0; 668 extent.extLocation.partitionReferenceNum = 0; 669 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 670 } else { 671 epos.offset -= adsize; 672 etype = udf_next_aext(inode, &epos, &extent.extLocation, 673 &extent.extLength, 0); 674 extent.extLength |= etype << 30; 675 } 676 677 new_elen = ((loff_t)offset << inode->i_blkbits) | 678 (newsize & (sb->s_blocksize - 1)); 679 680 /* File has extent covering the new size (could happen when extending 681 * inside a block)? 682 */ 683 if (within_last_ext) { 684 /* Extending file within the last file block */ 685 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 686 } else { 687 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 688 } 689 690 if (err < 0) 691 goto out; 692 err = 0; 693 out: 694 brelse(epos.bh); 695 up_write(&iinfo->i_data_sem); 696 return err; 697 } 698 699 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 700 { 701 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 702 struct extent_position prev_epos, cur_epos, next_epos; 703 int count = 0, startnum = 0, endnum = 0; 704 uint32_t elen = 0, tmpelen; 705 struct kernel_lb_addr eloc, tmpeloc; 706 int c = 1; 707 loff_t lbcount = 0, b_off = 0; 708 udf_pblk_t newblocknum; 709 sector_t offset = 0; 710 int8_t etype; 711 struct udf_inode_info *iinfo = UDF_I(inode); 712 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 713 int lastblock = 0; 714 bool isBeyondEOF; 715 int ret = 0; 716 717 prev_epos.offset = udf_file_entry_alloc_offset(inode); 718 prev_epos.block = iinfo->i_location; 719 prev_epos.bh = NULL; 720 cur_epos = next_epos = prev_epos; 721 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 722 723 /* find the extent which contains the block we are looking for. 724 alternate between laarr[0] and laarr[1] for locations of the 725 current extent, and the previous extent */ 726 do { 727 if (prev_epos.bh != cur_epos.bh) { 728 brelse(prev_epos.bh); 729 get_bh(cur_epos.bh); 730 prev_epos.bh = cur_epos.bh; 731 } 732 if (cur_epos.bh != next_epos.bh) { 733 brelse(cur_epos.bh); 734 get_bh(next_epos.bh); 735 cur_epos.bh = next_epos.bh; 736 } 737 738 lbcount += elen; 739 740 prev_epos.block = cur_epos.block; 741 cur_epos.block = next_epos.block; 742 743 prev_epos.offset = cur_epos.offset; 744 cur_epos.offset = next_epos.offset; 745 746 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 747 if (etype == -1) 748 break; 749 750 c = !c; 751 752 laarr[c].extLength = (etype << 30) | elen; 753 laarr[c].extLocation = eloc; 754 755 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 756 pgoal = eloc.logicalBlockNum + 757 ((elen + inode->i_sb->s_blocksize - 1) >> 758 inode->i_sb->s_blocksize_bits); 759 760 count++; 761 } while (lbcount + elen <= b_off); 762 763 b_off -= lbcount; 764 offset = b_off >> inode->i_sb->s_blocksize_bits; 765 /* 766 * Move prev_epos and cur_epos into indirect extent if we are at 767 * the pointer to it 768 */ 769 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 770 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 771 772 /* if the extent is allocated and recorded, return the block 773 if the extent is not a multiple of the blocksize, round up */ 774 775 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 776 if (elen & (inode->i_sb->s_blocksize - 1)) { 777 elen = EXT_RECORDED_ALLOCATED | 778 ((elen + inode->i_sb->s_blocksize - 1) & 779 ~(inode->i_sb->s_blocksize - 1)); 780 iinfo->i_lenExtents = 781 ALIGN(iinfo->i_lenExtents, 782 inode->i_sb->s_blocksize); 783 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 784 } 785 map->oflags = UDF_BLK_MAPPED; 786 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 787 goto out_free; 788 } 789 790 /* Are we beyond EOF and preallocated extent? */ 791 if (etype == -1) { 792 loff_t hole_len; 793 794 isBeyondEOF = true; 795 if (count) { 796 if (c) 797 laarr[0] = laarr[1]; 798 startnum = 1; 799 } else { 800 /* Create a fake extent when there's not one */ 801 memset(&laarr[0].extLocation, 0x00, 802 sizeof(struct kernel_lb_addr)); 803 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 804 /* Will udf_do_extend_file() create real extent from 805 a fake one? */ 806 startnum = (offset > 0); 807 } 808 /* Create extents for the hole between EOF and offset */ 809 hole_len = (loff_t)offset << inode->i_blkbits; 810 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 811 if (ret < 0) 812 goto out_free; 813 c = 0; 814 offset = 0; 815 count += ret; 816 /* 817 * Is there any real extent? - otherwise we overwrite the fake 818 * one... 819 */ 820 if (count) 821 c = !c; 822 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 823 inode->i_sb->s_blocksize; 824 memset(&laarr[c].extLocation, 0x00, 825 sizeof(struct kernel_lb_addr)); 826 count++; 827 endnum = c + 1; 828 lastblock = 1; 829 } else { 830 isBeyondEOF = false; 831 endnum = startnum = ((count > 2) ? 2 : count); 832 833 /* if the current extent is in position 0, 834 swap it with the previous */ 835 if (!c && count != 1) { 836 laarr[2] = laarr[0]; 837 laarr[0] = laarr[1]; 838 laarr[1] = laarr[2]; 839 c = 1; 840 } 841 842 /* if the current block is located in an extent, 843 read the next extent */ 844 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 845 if (etype != -1) { 846 laarr[c + 1].extLength = (etype << 30) | elen; 847 laarr[c + 1].extLocation = eloc; 848 count++; 849 startnum++; 850 endnum++; 851 } else 852 lastblock = 1; 853 } 854 855 /* if the current extent is not recorded but allocated, get the 856 * block in the extent corresponding to the requested block */ 857 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 858 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 859 else { /* otherwise, allocate a new block */ 860 if (iinfo->i_next_alloc_block == map->lblk) 861 goal = iinfo->i_next_alloc_goal; 862 863 if (!goal) { 864 if (!(goal = pgoal)) /* XXX: what was intended here? */ 865 goal = iinfo->i_location.logicalBlockNum + 1; 866 } 867 868 newblocknum = udf_new_block(inode->i_sb, inode, 869 iinfo->i_location.partitionReferenceNum, 870 goal, &ret); 871 if (!newblocknum) 872 goto out_free; 873 if (isBeyondEOF) 874 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 875 } 876 877 /* if the extent the requsted block is located in contains multiple 878 * blocks, split the extent into at most three extents. blocks prior 879 * to requested block, requested block, and blocks after requested 880 * block */ 881 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 882 883 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 884 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 885 886 /* merge any continuous blocks in laarr */ 887 udf_merge_extents(inode, laarr, &endnum); 888 889 /* write back the new extents, inserting new extents if the new number 890 * of extents is greater than the old number, and deleting extents if 891 * the new number of extents is less than the old number */ 892 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 893 if (ret < 0) 894 goto out_free; 895 896 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 897 iinfo->i_location.partitionReferenceNum, 0); 898 if (!map->pblk) { 899 ret = -EFSCORRUPTED; 900 goto out_free; 901 } 902 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 903 iinfo->i_next_alloc_block = map->lblk + 1; 904 iinfo->i_next_alloc_goal = newblocknum + 1; 905 inode->i_ctime = current_time(inode); 906 907 if (IS_SYNC(inode)) 908 udf_sync_inode(inode); 909 else 910 mark_inode_dirty(inode); 911 ret = 0; 912 out_free: 913 brelse(prev_epos.bh); 914 brelse(cur_epos.bh); 915 brelse(next_epos.bh); 916 return ret; 917 } 918 919 static void udf_split_extents(struct inode *inode, int *c, int offset, 920 udf_pblk_t newblocknum, 921 struct kernel_long_ad *laarr, int *endnum) 922 { 923 unsigned long blocksize = inode->i_sb->s_blocksize; 924 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 925 926 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 927 (laarr[*c].extLength >> 30) == 928 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 929 int curr = *c; 930 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 931 blocksize - 1) >> blocksize_bits; 932 int8_t etype = (laarr[curr].extLength >> 30); 933 934 if (blen == 1) 935 ; 936 else if (!offset || blen == offset + 1) { 937 laarr[curr + 2] = laarr[curr + 1]; 938 laarr[curr + 1] = laarr[curr]; 939 } else { 940 laarr[curr + 3] = laarr[curr + 1]; 941 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 942 } 943 944 if (offset) { 945 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 946 udf_free_blocks(inode->i_sb, inode, 947 &laarr[curr].extLocation, 948 0, offset); 949 laarr[curr].extLength = 950 EXT_NOT_RECORDED_NOT_ALLOCATED | 951 (offset << blocksize_bits); 952 laarr[curr].extLocation.logicalBlockNum = 0; 953 laarr[curr].extLocation. 954 partitionReferenceNum = 0; 955 } else 956 laarr[curr].extLength = (etype << 30) | 957 (offset << blocksize_bits); 958 curr++; 959 (*c)++; 960 (*endnum)++; 961 } 962 963 laarr[curr].extLocation.logicalBlockNum = newblocknum; 964 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 965 laarr[curr].extLocation.partitionReferenceNum = 966 UDF_I(inode)->i_location.partitionReferenceNum; 967 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 968 blocksize; 969 curr++; 970 971 if (blen != offset + 1) { 972 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 973 laarr[curr].extLocation.logicalBlockNum += 974 offset + 1; 975 laarr[curr].extLength = (etype << 30) | 976 ((blen - (offset + 1)) << blocksize_bits); 977 curr++; 978 (*endnum)++; 979 } 980 } 981 } 982 983 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 984 struct kernel_long_ad *laarr, 985 int *endnum) 986 { 987 int start, length = 0, currlength = 0, i; 988 989 if (*endnum >= (c + 1)) { 990 if (!lastblock) 991 return; 992 else 993 start = c; 994 } else { 995 if ((laarr[c + 1].extLength >> 30) == 996 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 997 start = c + 1; 998 length = currlength = 999 (((laarr[c + 1].extLength & 1000 UDF_EXTENT_LENGTH_MASK) + 1001 inode->i_sb->s_blocksize - 1) >> 1002 inode->i_sb->s_blocksize_bits); 1003 } else 1004 start = c; 1005 } 1006 1007 for (i = start + 1; i <= *endnum; i++) { 1008 if (i == *endnum) { 1009 if (lastblock) 1010 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1011 } else if ((laarr[i].extLength >> 30) == 1012 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1013 length += (((laarr[i].extLength & 1014 UDF_EXTENT_LENGTH_MASK) + 1015 inode->i_sb->s_blocksize - 1) >> 1016 inode->i_sb->s_blocksize_bits); 1017 } else 1018 break; 1019 } 1020 1021 if (length) { 1022 int next = laarr[start].extLocation.logicalBlockNum + 1023 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1024 inode->i_sb->s_blocksize - 1) >> 1025 inode->i_sb->s_blocksize_bits); 1026 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1027 laarr[start].extLocation.partitionReferenceNum, 1028 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1029 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1030 currlength); 1031 if (numalloc) { 1032 if (start == (c + 1)) 1033 laarr[start].extLength += 1034 (numalloc << 1035 inode->i_sb->s_blocksize_bits); 1036 else { 1037 memmove(&laarr[c + 2], &laarr[c + 1], 1038 sizeof(struct long_ad) * (*endnum - (c + 1))); 1039 (*endnum)++; 1040 laarr[c + 1].extLocation.logicalBlockNum = next; 1041 laarr[c + 1].extLocation.partitionReferenceNum = 1042 laarr[c].extLocation. 1043 partitionReferenceNum; 1044 laarr[c + 1].extLength = 1045 EXT_NOT_RECORDED_ALLOCATED | 1046 (numalloc << 1047 inode->i_sb->s_blocksize_bits); 1048 start = c + 1; 1049 } 1050 1051 for (i = start + 1; numalloc && i < *endnum; i++) { 1052 int elen = ((laarr[i].extLength & 1053 UDF_EXTENT_LENGTH_MASK) + 1054 inode->i_sb->s_blocksize - 1) >> 1055 inode->i_sb->s_blocksize_bits; 1056 1057 if (elen > numalloc) { 1058 laarr[i].extLength -= 1059 (numalloc << 1060 inode->i_sb->s_blocksize_bits); 1061 numalloc = 0; 1062 } else { 1063 numalloc -= elen; 1064 if (*endnum > (i + 1)) 1065 memmove(&laarr[i], 1066 &laarr[i + 1], 1067 sizeof(struct long_ad) * 1068 (*endnum - (i + 1))); 1069 i--; 1070 (*endnum)--; 1071 } 1072 } 1073 UDF_I(inode)->i_lenExtents += 1074 numalloc << inode->i_sb->s_blocksize_bits; 1075 } 1076 } 1077 } 1078 1079 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1080 int *endnum) 1081 { 1082 int i; 1083 unsigned long blocksize = inode->i_sb->s_blocksize; 1084 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1085 1086 for (i = 0; i < (*endnum - 1); i++) { 1087 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1088 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1089 1090 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1091 (((li->extLength >> 30) == 1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1093 ((lip1->extLocation.logicalBlockNum - 1094 li->extLocation.logicalBlockNum) == 1095 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1096 blocksize - 1) >> blocksize_bits)))) { 1097 1098 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1099 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1100 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1101 li->extLength = lip1->extLength + 1102 (((li->extLength & 1103 UDF_EXTENT_LENGTH_MASK) + 1104 blocksize - 1) & ~(blocksize - 1)); 1105 if (*endnum > (i + 2)) 1106 memmove(&laarr[i + 1], &laarr[i + 2], 1107 sizeof(struct long_ad) * 1108 (*endnum - (i + 2))); 1109 i--; 1110 (*endnum)--; 1111 } 1112 } else if (((li->extLength >> 30) == 1113 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1114 ((lip1->extLength >> 30) == 1115 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1116 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1117 ((li->extLength & 1118 UDF_EXTENT_LENGTH_MASK) + 1119 blocksize - 1) >> blocksize_bits); 1120 li->extLocation.logicalBlockNum = 0; 1121 li->extLocation.partitionReferenceNum = 0; 1122 1123 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1124 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1125 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1126 lip1->extLength = (lip1->extLength - 1127 (li->extLength & 1128 UDF_EXTENT_LENGTH_MASK) + 1129 UDF_EXTENT_LENGTH_MASK) & 1130 ~(blocksize - 1); 1131 li->extLength = (li->extLength & 1132 UDF_EXTENT_FLAG_MASK) + 1133 (UDF_EXTENT_LENGTH_MASK + 1) - 1134 blocksize; 1135 } else { 1136 li->extLength = lip1->extLength + 1137 (((li->extLength & 1138 UDF_EXTENT_LENGTH_MASK) + 1139 blocksize - 1) & ~(blocksize - 1)); 1140 if (*endnum > (i + 2)) 1141 memmove(&laarr[i + 1], &laarr[i + 2], 1142 sizeof(struct long_ad) * 1143 (*endnum - (i + 2))); 1144 i--; 1145 (*endnum)--; 1146 } 1147 } else if ((li->extLength >> 30) == 1148 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1149 udf_free_blocks(inode->i_sb, inode, 1150 &li->extLocation, 0, 1151 ((li->extLength & 1152 UDF_EXTENT_LENGTH_MASK) + 1153 blocksize - 1) >> blocksize_bits); 1154 li->extLocation.logicalBlockNum = 0; 1155 li->extLocation.partitionReferenceNum = 0; 1156 li->extLength = (li->extLength & 1157 UDF_EXTENT_LENGTH_MASK) | 1158 EXT_NOT_RECORDED_NOT_ALLOCATED; 1159 } 1160 } 1161 } 1162 1163 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1164 int startnum, int endnum, 1165 struct extent_position *epos) 1166 { 1167 int start = 0, i; 1168 struct kernel_lb_addr tmploc; 1169 uint32_t tmplen; 1170 int err; 1171 1172 if (startnum > endnum) { 1173 for (i = 0; i < (startnum - endnum); i++) 1174 udf_delete_aext(inode, *epos); 1175 } else if (startnum < endnum) { 1176 for (i = 0; i < (endnum - startnum); i++) { 1177 err = udf_insert_aext(inode, *epos, 1178 laarr[i].extLocation, 1179 laarr[i].extLength); 1180 /* 1181 * If we fail here, we are likely corrupting the extent 1182 * list and leaking blocks. At least stop early to 1183 * limit the damage. 1184 */ 1185 if (err < 0) 1186 return err; 1187 udf_next_aext(inode, epos, &laarr[i].extLocation, 1188 &laarr[i].extLength, 1); 1189 start++; 1190 } 1191 } 1192 1193 for (i = start; i < endnum; i++) { 1194 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1195 udf_write_aext(inode, epos, &laarr[i].extLocation, 1196 laarr[i].extLength, 1); 1197 } 1198 return 0; 1199 } 1200 1201 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1202 int create, int *err) 1203 { 1204 struct buffer_head *bh = NULL; 1205 struct udf_map_rq map = { 1206 .lblk = block, 1207 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1208 }; 1209 1210 *err = udf_map_block(inode, &map); 1211 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1212 return NULL; 1213 1214 bh = sb_getblk(inode->i_sb, map.pblk); 1215 if (!bh) { 1216 *err = -ENOMEM; 1217 return NULL; 1218 } 1219 if (map.oflags & UDF_BLK_NEW) { 1220 lock_buffer(bh); 1221 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1222 set_buffer_uptodate(bh); 1223 unlock_buffer(bh); 1224 mark_buffer_dirty_inode(bh, inode); 1225 return bh; 1226 } 1227 1228 if (bh_read(bh, 0) >= 0) 1229 return bh; 1230 1231 brelse(bh); 1232 *err = -EIO; 1233 return NULL; 1234 } 1235 1236 int udf_setsize(struct inode *inode, loff_t newsize) 1237 { 1238 int err = 0; 1239 struct udf_inode_info *iinfo; 1240 unsigned int bsize = i_blocksize(inode); 1241 1242 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1243 S_ISLNK(inode->i_mode))) 1244 return -EINVAL; 1245 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1246 return -EPERM; 1247 1248 filemap_invalidate_lock(inode->i_mapping); 1249 iinfo = UDF_I(inode); 1250 if (newsize > inode->i_size) { 1251 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1252 if (bsize >= 1253 (udf_file_entry_alloc_offset(inode) + newsize)) { 1254 down_write(&iinfo->i_data_sem); 1255 iinfo->i_lenAlloc = newsize; 1256 up_write(&iinfo->i_data_sem); 1257 goto set_size; 1258 } 1259 err = udf_expand_file_adinicb(inode); 1260 if (err) 1261 goto out_unlock; 1262 } 1263 err = udf_extend_file(inode, newsize); 1264 if (err) 1265 goto out_unlock; 1266 set_size: 1267 truncate_setsize(inode, newsize); 1268 } else { 1269 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1270 down_write(&iinfo->i_data_sem); 1271 udf_clear_extent_cache(inode); 1272 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1273 0x00, bsize - newsize - 1274 udf_file_entry_alloc_offset(inode)); 1275 iinfo->i_lenAlloc = newsize; 1276 truncate_setsize(inode, newsize); 1277 up_write(&iinfo->i_data_sem); 1278 goto update_time; 1279 } 1280 err = block_truncate_page(inode->i_mapping, newsize, 1281 udf_get_block); 1282 if (err) 1283 goto out_unlock; 1284 truncate_setsize(inode, newsize); 1285 down_write(&iinfo->i_data_sem); 1286 udf_clear_extent_cache(inode); 1287 err = udf_truncate_extents(inode); 1288 up_write(&iinfo->i_data_sem); 1289 if (err) 1290 goto out_unlock; 1291 } 1292 update_time: 1293 inode->i_mtime = inode->i_ctime = current_time(inode); 1294 if (IS_SYNC(inode)) 1295 udf_sync_inode(inode); 1296 else 1297 mark_inode_dirty(inode); 1298 out_unlock: 1299 filemap_invalidate_unlock(inode->i_mapping); 1300 return err; 1301 } 1302 1303 /* 1304 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1305 * arbitrary - just that we hopefully don't limit any real use of rewritten 1306 * inode on write-once media but avoid looping for too long on corrupted media. 1307 */ 1308 #define UDF_MAX_ICB_NESTING 1024 1309 1310 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1311 { 1312 struct buffer_head *bh = NULL; 1313 struct fileEntry *fe; 1314 struct extendedFileEntry *efe; 1315 uint16_t ident; 1316 struct udf_inode_info *iinfo = UDF_I(inode); 1317 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1318 struct kernel_lb_addr *iloc = &iinfo->i_location; 1319 unsigned int link_count; 1320 unsigned int indirections = 0; 1321 int bs = inode->i_sb->s_blocksize; 1322 int ret = -EIO; 1323 uint32_t uid, gid; 1324 1325 reread: 1326 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1327 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1328 iloc->partitionReferenceNum, sbi->s_partitions); 1329 return -EIO; 1330 } 1331 1332 if (iloc->logicalBlockNum >= 1333 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1334 udf_debug("block=%u, partition=%u out of range\n", 1335 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1336 return -EIO; 1337 } 1338 1339 /* 1340 * Set defaults, but the inode is still incomplete! 1341 * Note: get_new_inode() sets the following on a new inode: 1342 * i_sb = sb 1343 * i_no = ino 1344 * i_flags = sb->s_flags 1345 * i_state = 0 1346 * clean_inode(): zero fills and sets 1347 * i_count = 1 1348 * i_nlink = 1 1349 * i_op = NULL; 1350 */ 1351 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1352 if (!bh) { 1353 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1354 return -EIO; 1355 } 1356 1357 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1358 ident != TAG_IDENT_USE) { 1359 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1360 inode->i_ino, ident); 1361 goto out; 1362 } 1363 1364 fe = (struct fileEntry *)bh->b_data; 1365 efe = (struct extendedFileEntry *)bh->b_data; 1366 1367 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1368 struct buffer_head *ibh; 1369 1370 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1371 if (ident == TAG_IDENT_IE && ibh) { 1372 struct kernel_lb_addr loc; 1373 struct indirectEntry *ie; 1374 1375 ie = (struct indirectEntry *)ibh->b_data; 1376 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1377 1378 if (ie->indirectICB.extLength) { 1379 brelse(ibh); 1380 memcpy(&iinfo->i_location, &loc, 1381 sizeof(struct kernel_lb_addr)); 1382 if (++indirections > UDF_MAX_ICB_NESTING) { 1383 udf_err(inode->i_sb, 1384 "too many ICBs in ICB hierarchy" 1385 " (max %d supported)\n", 1386 UDF_MAX_ICB_NESTING); 1387 goto out; 1388 } 1389 brelse(bh); 1390 goto reread; 1391 } 1392 } 1393 brelse(ibh); 1394 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1395 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1396 le16_to_cpu(fe->icbTag.strategyType)); 1397 goto out; 1398 } 1399 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1400 iinfo->i_strat4096 = 0; 1401 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1402 iinfo->i_strat4096 = 1; 1403 1404 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1405 ICBTAG_FLAG_AD_MASK; 1406 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1407 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1408 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1409 ret = -EIO; 1410 goto out; 1411 } 1412 iinfo->i_hidden = hidden_inode; 1413 iinfo->i_unique = 0; 1414 iinfo->i_lenEAttr = 0; 1415 iinfo->i_lenExtents = 0; 1416 iinfo->i_lenAlloc = 0; 1417 iinfo->i_next_alloc_block = 0; 1418 iinfo->i_next_alloc_goal = 0; 1419 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1420 iinfo->i_efe = 1; 1421 iinfo->i_use = 0; 1422 ret = udf_alloc_i_data(inode, bs - 1423 sizeof(struct extendedFileEntry)); 1424 if (ret) 1425 goto out; 1426 memcpy(iinfo->i_data, 1427 bh->b_data + sizeof(struct extendedFileEntry), 1428 bs - sizeof(struct extendedFileEntry)); 1429 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1430 iinfo->i_efe = 0; 1431 iinfo->i_use = 0; 1432 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1433 if (ret) 1434 goto out; 1435 memcpy(iinfo->i_data, 1436 bh->b_data + sizeof(struct fileEntry), 1437 bs - sizeof(struct fileEntry)); 1438 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1439 iinfo->i_efe = 0; 1440 iinfo->i_use = 1; 1441 iinfo->i_lenAlloc = le32_to_cpu( 1442 ((struct unallocSpaceEntry *)bh->b_data)-> 1443 lengthAllocDescs); 1444 ret = udf_alloc_i_data(inode, bs - 1445 sizeof(struct unallocSpaceEntry)); 1446 if (ret) 1447 goto out; 1448 memcpy(iinfo->i_data, 1449 bh->b_data + sizeof(struct unallocSpaceEntry), 1450 bs - sizeof(struct unallocSpaceEntry)); 1451 return 0; 1452 } 1453 1454 ret = -EIO; 1455 read_lock(&sbi->s_cred_lock); 1456 uid = le32_to_cpu(fe->uid); 1457 if (uid == UDF_INVALID_ID || 1458 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1459 inode->i_uid = sbi->s_uid; 1460 else 1461 i_uid_write(inode, uid); 1462 1463 gid = le32_to_cpu(fe->gid); 1464 if (gid == UDF_INVALID_ID || 1465 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1466 inode->i_gid = sbi->s_gid; 1467 else 1468 i_gid_write(inode, gid); 1469 1470 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1471 sbi->s_fmode != UDF_INVALID_MODE) 1472 inode->i_mode = sbi->s_fmode; 1473 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1474 sbi->s_dmode != UDF_INVALID_MODE) 1475 inode->i_mode = sbi->s_dmode; 1476 else 1477 inode->i_mode = udf_convert_permissions(fe); 1478 inode->i_mode &= ~sbi->s_umask; 1479 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1480 1481 read_unlock(&sbi->s_cred_lock); 1482 1483 link_count = le16_to_cpu(fe->fileLinkCount); 1484 if (!link_count) { 1485 if (!hidden_inode) { 1486 ret = -ESTALE; 1487 goto out; 1488 } 1489 link_count = 1; 1490 } 1491 set_nlink(inode, link_count); 1492 1493 inode->i_size = le64_to_cpu(fe->informationLength); 1494 iinfo->i_lenExtents = inode->i_size; 1495 1496 if (iinfo->i_efe == 0) { 1497 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1498 (inode->i_sb->s_blocksize_bits - 9); 1499 1500 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1501 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1502 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1503 1504 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1505 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1506 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1507 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1508 iinfo->i_streamdir = 0; 1509 iinfo->i_lenStreams = 0; 1510 } else { 1511 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1512 (inode->i_sb->s_blocksize_bits - 9); 1513 1514 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1515 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1516 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1517 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1518 1519 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1520 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1521 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1522 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1523 1524 /* Named streams */ 1525 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1526 iinfo->i_locStreamdir = 1527 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1528 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1529 if (iinfo->i_lenStreams >= inode->i_size) 1530 iinfo->i_lenStreams -= inode->i_size; 1531 else 1532 iinfo->i_lenStreams = 0; 1533 } 1534 inode->i_generation = iinfo->i_unique; 1535 1536 /* 1537 * Sanity check length of allocation descriptors and extended attrs to 1538 * avoid integer overflows 1539 */ 1540 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1541 goto out; 1542 /* Now do exact checks */ 1543 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1544 goto out; 1545 /* Sanity checks for files in ICB so that we don't get confused later */ 1546 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1547 /* 1548 * For file in ICB data is stored in allocation descriptor 1549 * so sizes should match 1550 */ 1551 if (iinfo->i_lenAlloc != inode->i_size) 1552 goto out; 1553 /* File in ICB has to fit in there... */ 1554 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1555 goto out; 1556 } 1557 1558 switch (fe->icbTag.fileType) { 1559 case ICBTAG_FILE_TYPE_DIRECTORY: 1560 inode->i_op = &udf_dir_inode_operations; 1561 inode->i_fop = &udf_dir_operations; 1562 inode->i_mode |= S_IFDIR; 1563 inc_nlink(inode); 1564 break; 1565 case ICBTAG_FILE_TYPE_REALTIME: 1566 case ICBTAG_FILE_TYPE_REGULAR: 1567 case ICBTAG_FILE_TYPE_UNDEF: 1568 case ICBTAG_FILE_TYPE_VAT20: 1569 inode->i_data.a_ops = &udf_aops; 1570 inode->i_op = &udf_file_inode_operations; 1571 inode->i_fop = &udf_file_operations; 1572 inode->i_mode |= S_IFREG; 1573 break; 1574 case ICBTAG_FILE_TYPE_BLOCK: 1575 inode->i_mode |= S_IFBLK; 1576 break; 1577 case ICBTAG_FILE_TYPE_CHAR: 1578 inode->i_mode |= S_IFCHR; 1579 break; 1580 case ICBTAG_FILE_TYPE_FIFO: 1581 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1582 break; 1583 case ICBTAG_FILE_TYPE_SOCKET: 1584 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1585 break; 1586 case ICBTAG_FILE_TYPE_SYMLINK: 1587 inode->i_data.a_ops = &udf_symlink_aops; 1588 inode->i_op = &udf_symlink_inode_operations; 1589 inode_nohighmem(inode); 1590 inode->i_mode = S_IFLNK | 0777; 1591 break; 1592 case ICBTAG_FILE_TYPE_MAIN: 1593 udf_debug("METADATA FILE-----\n"); 1594 break; 1595 case ICBTAG_FILE_TYPE_MIRROR: 1596 udf_debug("METADATA MIRROR FILE-----\n"); 1597 break; 1598 case ICBTAG_FILE_TYPE_BITMAP: 1599 udf_debug("METADATA BITMAP FILE-----\n"); 1600 break; 1601 default: 1602 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1603 inode->i_ino, fe->icbTag.fileType); 1604 goto out; 1605 } 1606 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1607 struct deviceSpec *dsea = 1608 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1609 if (dsea) { 1610 init_special_inode(inode, inode->i_mode, 1611 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1612 le32_to_cpu(dsea->minorDeviceIdent))); 1613 /* Developer ID ??? */ 1614 } else 1615 goto out; 1616 } 1617 ret = 0; 1618 out: 1619 brelse(bh); 1620 return ret; 1621 } 1622 1623 static int udf_alloc_i_data(struct inode *inode, size_t size) 1624 { 1625 struct udf_inode_info *iinfo = UDF_I(inode); 1626 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1627 if (!iinfo->i_data) 1628 return -ENOMEM; 1629 return 0; 1630 } 1631 1632 static umode_t udf_convert_permissions(struct fileEntry *fe) 1633 { 1634 umode_t mode; 1635 uint32_t permissions; 1636 uint32_t flags; 1637 1638 permissions = le32_to_cpu(fe->permissions); 1639 flags = le16_to_cpu(fe->icbTag.flags); 1640 1641 mode = ((permissions) & 0007) | 1642 ((permissions >> 2) & 0070) | 1643 ((permissions >> 4) & 0700) | 1644 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1645 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1646 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1647 1648 return mode; 1649 } 1650 1651 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1652 { 1653 struct udf_inode_info *iinfo = UDF_I(inode); 1654 1655 /* 1656 * UDF 2.01 sec. 3.3.3.3 Note 2: 1657 * In Unix, delete permission tracks write 1658 */ 1659 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1660 if (mode & 0200) 1661 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1662 if (mode & 0020) 1663 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1664 if (mode & 0002) 1665 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1666 } 1667 1668 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1669 { 1670 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1671 } 1672 1673 static int udf_sync_inode(struct inode *inode) 1674 { 1675 return udf_update_inode(inode, 1); 1676 } 1677 1678 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1679 { 1680 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1681 (iinfo->i_crtime.tv_sec == time.tv_sec && 1682 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1683 iinfo->i_crtime = time; 1684 } 1685 1686 static int udf_update_inode(struct inode *inode, int do_sync) 1687 { 1688 struct buffer_head *bh = NULL; 1689 struct fileEntry *fe; 1690 struct extendedFileEntry *efe; 1691 uint64_t lb_recorded; 1692 uint32_t udfperms; 1693 uint16_t icbflags; 1694 uint16_t crclen; 1695 int err = 0; 1696 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1697 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1698 struct udf_inode_info *iinfo = UDF_I(inode); 1699 1700 bh = sb_getblk(inode->i_sb, 1701 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1702 if (!bh) { 1703 udf_debug("getblk failure\n"); 1704 return -EIO; 1705 } 1706 1707 lock_buffer(bh); 1708 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1709 fe = (struct fileEntry *)bh->b_data; 1710 efe = (struct extendedFileEntry *)bh->b_data; 1711 1712 if (iinfo->i_use) { 1713 struct unallocSpaceEntry *use = 1714 (struct unallocSpaceEntry *)bh->b_data; 1715 1716 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1717 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1718 iinfo->i_data, inode->i_sb->s_blocksize - 1719 sizeof(struct unallocSpaceEntry)); 1720 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1721 crclen = sizeof(struct unallocSpaceEntry); 1722 1723 goto finish; 1724 } 1725 1726 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1727 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1728 else 1729 fe->uid = cpu_to_le32(i_uid_read(inode)); 1730 1731 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1732 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1733 else 1734 fe->gid = cpu_to_le32(i_gid_read(inode)); 1735 1736 udfperms = ((inode->i_mode & 0007)) | 1737 ((inode->i_mode & 0070) << 2) | 1738 ((inode->i_mode & 0700) << 4); 1739 1740 udfperms |= iinfo->i_extraPerms; 1741 fe->permissions = cpu_to_le32(udfperms); 1742 1743 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1744 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1745 else { 1746 if (iinfo->i_hidden) 1747 fe->fileLinkCount = cpu_to_le16(0); 1748 else 1749 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1750 } 1751 1752 fe->informationLength = cpu_to_le64(inode->i_size); 1753 1754 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1755 struct regid *eid; 1756 struct deviceSpec *dsea = 1757 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1758 if (!dsea) { 1759 dsea = (struct deviceSpec *) 1760 udf_add_extendedattr(inode, 1761 sizeof(struct deviceSpec) + 1762 sizeof(struct regid), 12, 0x3); 1763 dsea->attrType = cpu_to_le32(12); 1764 dsea->attrSubtype = 1; 1765 dsea->attrLength = cpu_to_le32( 1766 sizeof(struct deviceSpec) + 1767 sizeof(struct regid)); 1768 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1769 } 1770 eid = (struct regid *)dsea->impUse; 1771 memset(eid, 0, sizeof(*eid)); 1772 strcpy(eid->ident, UDF_ID_DEVELOPER); 1773 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1774 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1775 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1776 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1777 } 1778 1779 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1780 lb_recorded = 0; /* No extents => no blocks! */ 1781 else 1782 lb_recorded = 1783 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1784 (blocksize_bits - 9); 1785 1786 if (iinfo->i_efe == 0) { 1787 memcpy(bh->b_data + sizeof(struct fileEntry), 1788 iinfo->i_data, 1789 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1790 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1791 1792 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1793 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1794 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1795 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1796 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1797 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1798 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1799 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1800 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1801 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1802 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1803 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1804 crclen = sizeof(struct fileEntry); 1805 } else { 1806 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1807 iinfo->i_data, 1808 inode->i_sb->s_blocksize - 1809 sizeof(struct extendedFileEntry)); 1810 efe->objectSize = 1811 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1812 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1813 1814 if (iinfo->i_streamdir) { 1815 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1816 1817 icb_lad->extLocation = 1818 cpu_to_lelb(iinfo->i_locStreamdir); 1819 icb_lad->extLength = 1820 cpu_to_le32(inode->i_sb->s_blocksize); 1821 } 1822 1823 udf_adjust_time(iinfo, inode->i_atime); 1824 udf_adjust_time(iinfo, inode->i_mtime); 1825 udf_adjust_time(iinfo, inode->i_ctime); 1826 1827 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1828 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1829 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1830 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1831 1832 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1833 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1834 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1835 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1836 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1837 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1838 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1839 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1840 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1841 crclen = sizeof(struct extendedFileEntry); 1842 } 1843 1844 finish: 1845 if (iinfo->i_strat4096) { 1846 fe->icbTag.strategyType = cpu_to_le16(4096); 1847 fe->icbTag.strategyParameter = cpu_to_le16(1); 1848 fe->icbTag.numEntries = cpu_to_le16(2); 1849 } else { 1850 fe->icbTag.strategyType = cpu_to_le16(4); 1851 fe->icbTag.numEntries = cpu_to_le16(1); 1852 } 1853 1854 if (iinfo->i_use) 1855 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1856 else if (S_ISDIR(inode->i_mode)) 1857 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1858 else if (S_ISREG(inode->i_mode)) 1859 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1860 else if (S_ISLNK(inode->i_mode)) 1861 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1862 else if (S_ISBLK(inode->i_mode)) 1863 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1864 else if (S_ISCHR(inode->i_mode)) 1865 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1866 else if (S_ISFIFO(inode->i_mode)) 1867 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1868 else if (S_ISSOCK(inode->i_mode)) 1869 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1870 1871 icbflags = iinfo->i_alloc_type | 1872 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1873 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1874 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1875 (le16_to_cpu(fe->icbTag.flags) & 1876 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1877 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1878 1879 fe->icbTag.flags = cpu_to_le16(icbflags); 1880 if (sbi->s_udfrev >= 0x0200) 1881 fe->descTag.descVersion = cpu_to_le16(3); 1882 else 1883 fe->descTag.descVersion = cpu_to_le16(2); 1884 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1885 fe->descTag.tagLocation = cpu_to_le32( 1886 iinfo->i_location.logicalBlockNum); 1887 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1888 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1889 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1890 crclen)); 1891 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1892 1893 set_buffer_uptodate(bh); 1894 unlock_buffer(bh); 1895 1896 /* write the data blocks */ 1897 mark_buffer_dirty(bh); 1898 if (do_sync) { 1899 sync_dirty_buffer(bh); 1900 if (buffer_write_io_error(bh)) { 1901 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1902 inode->i_ino); 1903 err = -EIO; 1904 } 1905 } 1906 brelse(bh); 1907 1908 return err; 1909 } 1910 1911 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1912 bool hidden_inode) 1913 { 1914 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1915 struct inode *inode = iget_locked(sb, block); 1916 int err; 1917 1918 if (!inode) 1919 return ERR_PTR(-ENOMEM); 1920 1921 if (!(inode->i_state & I_NEW)) { 1922 if (UDF_I(inode)->i_hidden != hidden_inode) { 1923 iput(inode); 1924 return ERR_PTR(-EFSCORRUPTED); 1925 } 1926 return inode; 1927 } 1928 1929 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1930 err = udf_read_inode(inode, hidden_inode); 1931 if (err < 0) { 1932 iget_failed(inode); 1933 return ERR_PTR(err); 1934 } 1935 unlock_new_inode(inode); 1936 1937 return inode; 1938 } 1939 1940 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1941 struct extent_position *epos) 1942 { 1943 struct super_block *sb = inode->i_sb; 1944 struct buffer_head *bh; 1945 struct allocExtDesc *aed; 1946 struct extent_position nepos; 1947 struct kernel_lb_addr neloc; 1948 int ver, adsize; 1949 1950 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1951 adsize = sizeof(struct short_ad); 1952 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1953 adsize = sizeof(struct long_ad); 1954 else 1955 return -EIO; 1956 1957 neloc.logicalBlockNum = block; 1958 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1959 1960 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1961 if (!bh) 1962 return -EIO; 1963 lock_buffer(bh); 1964 memset(bh->b_data, 0x00, sb->s_blocksize); 1965 set_buffer_uptodate(bh); 1966 unlock_buffer(bh); 1967 mark_buffer_dirty_inode(bh, inode); 1968 1969 aed = (struct allocExtDesc *)(bh->b_data); 1970 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1971 aed->previousAllocExtLocation = 1972 cpu_to_le32(epos->block.logicalBlockNum); 1973 } 1974 aed->lengthAllocDescs = cpu_to_le32(0); 1975 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1976 ver = 3; 1977 else 1978 ver = 2; 1979 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1980 sizeof(struct tag)); 1981 1982 nepos.block = neloc; 1983 nepos.offset = sizeof(struct allocExtDesc); 1984 nepos.bh = bh; 1985 1986 /* 1987 * Do we have to copy current last extent to make space for indirect 1988 * one? 1989 */ 1990 if (epos->offset + adsize > sb->s_blocksize) { 1991 struct kernel_lb_addr cp_loc; 1992 uint32_t cp_len; 1993 int cp_type; 1994 1995 epos->offset -= adsize; 1996 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1997 cp_len |= ((uint32_t)cp_type) << 30; 1998 1999 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2000 udf_write_aext(inode, epos, &nepos.block, 2001 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2002 } else { 2003 __udf_add_aext(inode, epos, &nepos.block, 2004 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2005 } 2006 2007 brelse(epos->bh); 2008 *epos = nepos; 2009 2010 return 0; 2011 } 2012 2013 /* 2014 * Append extent at the given position - should be the first free one in inode 2015 * / indirect extent. This function assumes there is enough space in the inode 2016 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2017 */ 2018 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2019 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2020 { 2021 struct udf_inode_info *iinfo = UDF_I(inode); 2022 struct allocExtDesc *aed; 2023 int adsize; 2024 2025 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2026 adsize = sizeof(struct short_ad); 2027 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2028 adsize = sizeof(struct long_ad); 2029 else 2030 return -EIO; 2031 2032 if (!epos->bh) { 2033 WARN_ON(iinfo->i_lenAlloc != 2034 epos->offset - udf_file_entry_alloc_offset(inode)); 2035 } else { 2036 aed = (struct allocExtDesc *)epos->bh->b_data; 2037 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2038 epos->offset - sizeof(struct allocExtDesc)); 2039 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2040 } 2041 2042 udf_write_aext(inode, epos, eloc, elen, inc); 2043 2044 if (!epos->bh) { 2045 iinfo->i_lenAlloc += adsize; 2046 mark_inode_dirty(inode); 2047 } else { 2048 aed = (struct allocExtDesc *)epos->bh->b_data; 2049 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2050 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2051 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2052 udf_update_tag(epos->bh->b_data, 2053 epos->offset + (inc ? 0 : adsize)); 2054 else 2055 udf_update_tag(epos->bh->b_data, 2056 sizeof(struct allocExtDesc)); 2057 mark_buffer_dirty_inode(epos->bh, inode); 2058 } 2059 2060 return 0; 2061 } 2062 2063 /* 2064 * Append extent at given position - should be the first free one in inode 2065 * / indirect extent. Takes care of allocating and linking indirect blocks. 2066 */ 2067 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2068 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2069 { 2070 int adsize; 2071 struct super_block *sb = inode->i_sb; 2072 2073 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2074 adsize = sizeof(struct short_ad); 2075 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2076 adsize = sizeof(struct long_ad); 2077 else 2078 return -EIO; 2079 2080 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2081 int err; 2082 udf_pblk_t new_block; 2083 2084 new_block = udf_new_block(sb, NULL, 2085 epos->block.partitionReferenceNum, 2086 epos->block.logicalBlockNum, &err); 2087 if (!new_block) 2088 return -ENOSPC; 2089 2090 err = udf_setup_indirect_aext(inode, new_block, epos); 2091 if (err) 2092 return err; 2093 } 2094 2095 return __udf_add_aext(inode, epos, eloc, elen, inc); 2096 } 2097 2098 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2099 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2100 { 2101 int adsize; 2102 uint8_t *ptr; 2103 struct short_ad *sad; 2104 struct long_ad *lad; 2105 struct udf_inode_info *iinfo = UDF_I(inode); 2106 2107 if (!epos->bh) 2108 ptr = iinfo->i_data + epos->offset - 2109 udf_file_entry_alloc_offset(inode) + 2110 iinfo->i_lenEAttr; 2111 else 2112 ptr = epos->bh->b_data + epos->offset; 2113 2114 switch (iinfo->i_alloc_type) { 2115 case ICBTAG_FLAG_AD_SHORT: 2116 sad = (struct short_ad *)ptr; 2117 sad->extLength = cpu_to_le32(elen); 2118 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2119 adsize = sizeof(struct short_ad); 2120 break; 2121 case ICBTAG_FLAG_AD_LONG: 2122 lad = (struct long_ad *)ptr; 2123 lad->extLength = cpu_to_le32(elen); 2124 lad->extLocation = cpu_to_lelb(*eloc); 2125 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2126 adsize = sizeof(struct long_ad); 2127 break; 2128 default: 2129 return; 2130 } 2131 2132 if (epos->bh) { 2133 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2134 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2135 struct allocExtDesc *aed = 2136 (struct allocExtDesc *)epos->bh->b_data; 2137 udf_update_tag(epos->bh->b_data, 2138 le32_to_cpu(aed->lengthAllocDescs) + 2139 sizeof(struct allocExtDesc)); 2140 } 2141 mark_buffer_dirty_inode(epos->bh, inode); 2142 } else { 2143 mark_inode_dirty(inode); 2144 } 2145 2146 if (inc) 2147 epos->offset += adsize; 2148 } 2149 2150 /* 2151 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2152 * someone does some weird stuff. 2153 */ 2154 #define UDF_MAX_INDIR_EXTS 16 2155 2156 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2157 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2158 { 2159 int8_t etype; 2160 unsigned int indirections = 0; 2161 2162 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2163 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2164 udf_pblk_t block; 2165 2166 if (++indirections > UDF_MAX_INDIR_EXTS) { 2167 udf_err(inode->i_sb, 2168 "too many indirect extents in inode %lu\n", 2169 inode->i_ino); 2170 return -1; 2171 } 2172 2173 epos->block = *eloc; 2174 epos->offset = sizeof(struct allocExtDesc); 2175 brelse(epos->bh); 2176 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2177 epos->bh = sb_bread(inode->i_sb, block); 2178 if (!epos->bh) { 2179 udf_debug("reading block %u failed!\n", block); 2180 return -1; 2181 } 2182 } 2183 2184 return etype; 2185 } 2186 2187 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2188 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2189 { 2190 int alen; 2191 int8_t etype; 2192 uint8_t *ptr; 2193 struct short_ad *sad; 2194 struct long_ad *lad; 2195 struct udf_inode_info *iinfo = UDF_I(inode); 2196 2197 if (!epos->bh) { 2198 if (!epos->offset) 2199 epos->offset = udf_file_entry_alloc_offset(inode); 2200 ptr = iinfo->i_data + epos->offset - 2201 udf_file_entry_alloc_offset(inode) + 2202 iinfo->i_lenEAttr; 2203 alen = udf_file_entry_alloc_offset(inode) + 2204 iinfo->i_lenAlloc; 2205 } else { 2206 if (!epos->offset) 2207 epos->offset = sizeof(struct allocExtDesc); 2208 ptr = epos->bh->b_data + epos->offset; 2209 alen = sizeof(struct allocExtDesc) + 2210 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2211 lengthAllocDescs); 2212 } 2213 2214 switch (iinfo->i_alloc_type) { 2215 case ICBTAG_FLAG_AD_SHORT: 2216 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2217 if (!sad) 2218 return -1; 2219 etype = le32_to_cpu(sad->extLength) >> 30; 2220 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2221 eloc->partitionReferenceNum = 2222 iinfo->i_location.partitionReferenceNum; 2223 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2224 break; 2225 case ICBTAG_FLAG_AD_LONG: 2226 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2227 if (!lad) 2228 return -1; 2229 etype = le32_to_cpu(lad->extLength) >> 30; 2230 *eloc = lelb_to_cpu(lad->extLocation); 2231 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2232 break; 2233 default: 2234 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2235 return -1; 2236 } 2237 2238 return etype; 2239 } 2240 2241 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2242 struct kernel_lb_addr neloc, uint32_t nelen) 2243 { 2244 struct kernel_lb_addr oeloc; 2245 uint32_t oelen; 2246 int8_t etype; 2247 int err; 2248 2249 if (epos.bh) 2250 get_bh(epos.bh); 2251 2252 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2253 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2254 neloc = oeloc; 2255 nelen = (etype << 30) | oelen; 2256 } 2257 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2258 brelse(epos.bh); 2259 2260 return err; 2261 } 2262 2263 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2264 { 2265 struct extent_position oepos; 2266 int adsize; 2267 int8_t etype; 2268 struct allocExtDesc *aed; 2269 struct udf_inode_info *iinfo; 2270 struct kernel_lb_addr eloc; 2271 uint32_t elen; 2272 2273 if (epos.bh) { 2274 get_bh(epos.bh); 2275 get_bh(epos.bh); 2276 } 2277 2278 iinfo = UDF_I(inode); 2279 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2280 adsize = sizeof(struct short_ad); 2281 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2282 adsize = sizeof(struct long_ad); 2283 else 2284 adsize = 0; 2285 2286 oepos = epos; 2287 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2288 return -1; 2289 2290 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2291 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2292 if (oepos.bh != epos.bh) { 2293 oepos.block = epos.block; 2294 brelse(oepos.bh); 2295 get_bh(epos.bh); 2296 oepos.bh = epos.bh; 2297 oepos.offset = epos.offset - adsize; 2298 } 2299 } 2300 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2301 elen = 0; 2302 2303 if (epos.bh != oepos.bh) { 2304 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2305 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2306 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2307 if (!oepos.bh) { 2308 iinfo->i_lenAlloc -= (adsize * 2); 2309 mark_inode_dirty(inode); 2310 } else { 2311 aed = (struct allocExtDesc *)oepos.bh->b_data; 2312 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2313 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2314 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2315 udf_update_tag(oepos.bh->b_data, 2316 oepos.offset - (2 * adsize)); 2317 else 2318 udf_update_tag(oepos.bh->b_data, 2319 sizeof(struct allocExtDesc)); 2320 mark_buffer_dirty_inode(oepos.bh, inode); 2321 } 2322 } else { 2323 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2324 if (!oepos.bh) { 2325 iinfo->i_lenAlloc -= adsize; 2326 mark_inode_dirty(inode); 2327 } else { 2328 aed = (struct allocExtDesc *)oepos.bh->b_data; 2329 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2330 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2331 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2332 udf_update_tag(oepos.bh->b_data, 2333 epos.offset - adsize); 2334 else 2335 udf_update_tag(oepos.bh->b_data, 2336 sizeof(struct allocExtDesc)); 2337 mark_buffer_dirty_inode(oepos.bh, inode); 2338 } 2339 } 2340 2341 brelse(epos.bh); 2342 brelse(oepos.bh); 2343 2344 return (elen >> 30); 2345 } 2346 2347 int8_t inode_bmap(struct inode *inode, sector_t block, 2348 struct extent_position *pos, struct kernel_lb_addr *eloc, 2349 uint32_t *elen, sector_t *offset) 2350 { 2351 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2352 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2353 int8_t etype; 2354 struct udf_inode_info *iinfo; 2355 2356 iinfo = UDF_I(inode); 2357 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2358 pos->offset = 0; 2359 pos->block = iinfo->i_location; 2360 pos->bh = NULL; 2361 } 2362 *elen = 0; 2363 do { 2364 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2365 if (etype == -1) { 2366 *offset = (bcount - lbcount) >> blocksize_bits; 2367 iinfo->i_lenExtents = lbcount; 2368 return -1; 2369 } 2370 lbcount += *elen; 2371 } while (lbcount <= bcount); 2372 /* update extent cache */ 2373 udf_update_extent_cache(inode, lbcount - *elen, pos); 2374 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2375 2376 return etype; 2377 } 2378