xref: /linux/fs/udf/inode.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/quotaops.h>
40 #include <linux/slab.h>
41 #include <linux/crc-itu-t.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 MODULE_AUTHOR("Ben Fennema");
47 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48 MODULE_LICENSE("GPL");
49 
50 #define EXTENT_MERGE_SIZE 5
51 
52 static mode_t udf_convert_permissions(struct fileEntry *);
53 static int udf_update_inode(struct inode *, int);
54 static void udf_fill_inode(struct inode *, struct buffer_head *);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
57 					sector_t *, int *);
58 static int8_t udf_insert_aext(struct inode *, struct extent_position,
59 			      struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, int,
61 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_merge_extents(struct inode *,
65 			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
66 static void udf_update_extents(struct inode *,
67 			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
68 			       struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 
72 void udf_delete_inode(struct inode *inode)
73 {
74 	if (!is_bad_inode(inode))
75 		dquot_initialize(inode);
76 
77 	truncate_inode_pages(&inode->i_data, 0);
78 
79 	if (is_bad_inode(inode))
80 		goto no_delete;
81 
82 	inode->i_size = 0;
83 	udf_truncate(inode);
84 	lock_kernel();
85 
86 	udf_update_inode(inode, IS_SYNC(inode));
87 	udf_free_inode(inode);
88 
89 	unlock_kernel();
90 	return;
91 
92 no_delete:
93 	clear_inode(inode);
94 }
95 
96 /*
97  * If we are going to release inode from memory, we truncate last inode extent
98  * to proper length. We could use drop_inode() but it's called under inode_lock
99  * and thus we cannot mark inode dirty there.  We use clear_inode() but we have
100  * to make sure to write inode as it's not written automatically.
101  */
102 void udf_clear_inode(struct inode *inode)
103 {
104 	struct udf_inode_info *iinfo = UDF_I(inode);
105 
106 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
107 	    inode->i_size != iinfo->i_lenExtents) {
108 		printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
109 			"inode size %llu different from extent length %llu. "
110 			"Filesystem need not be standards compliant.\n",
111 			inode->i_sb->s_id, inode->i_ino, inode->i_mode,
112 			(unsigned long long)inode->i_size,
113 			(unsigned long long)iinfo->i_lenExtents);
114 	}
115 
116 	dquot_drop(inode);
117 	kfree(iinfo->i_ext.i_data);
118 	iinfo->i_ext.i_data = NULL;
119 }
120 
121 static int udf_writepage(struct page *page, struct writeback_control *wbc)
122 {
123 	return block_write_full_page(page, udf_get_block, wbc);
124 }
125 
126 static int udf_readpage(struct file *file, struct page *page)
127 {
128 	return block_read_full_page(page, udf_get_block);
129 }
130 
131 static int udf_write_begin(struct file *file, struct address_space *mapping,
132 			loff_t pos, unsigned len, unsigned flags,
133 			struct page **pagep, void **fsdata)
134 {
135 	*pagep = NULL;
136 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
137 				udf_get_block);
138 }
139 
140 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
141 {
142 	return generic_block_bmap(mapping, block, udf_get_block);
143 }
144 
145 const struct address_space_operations udf_aops = {
146 	.readpage	= udf_readpage,
147 	.writepage	= udf_writepage,
148 	.sync_page	= block_sync_page,
149 	.write_begin		= udf_write_begin,
150 	.write_end		= generic_write_end,
151 	.bmap		= udf_bmap,
152 };
153 
154 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
155 {
156 	struct page *page;
157 	char *kaddr;
158 	struct udf_inode_info *iinfo = UDF_I(inode);
159 	struct writeback_control udf_wbc = {
160 		.sync_mode = WB_SYNC_NONE,
161 		.nr_to_write = 1,
162 	};
163 
164 	/* from now on we have normal address_space methods */
165 	inode->i_data.a_ops = &udf_aops;
166 
167 	if (!iinfo->i_lenAlloc) {
168 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
169 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
170 		else
171 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
172 		mark_inode_dirty(inode);
173 		return;
174 	}
175 
176 	page = grab_cache_page(inode->i_mapping, 0);
177 	BUG_ON(!PageLocked(page));
178 
179 	if (!PageUptodate(page)) {
180 		kaddr = kmap(page);
181 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
182 		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
183 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
184 			iinfo->i_lenAlloc);
185 		flush_dcache_page(page);
186 		SetPageUptodate(page);
187 		kunmap(page);
188 	}
189 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
190 	       iinfo->i_lenAlloc);
191 	iinfo->i_lenAlloc = 0;
192 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
193 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
194 	else
195 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
196 
197 	inode->i_data.a_ops->writepage(page, &udf_wbc);
198 	page_cache_release(page);
199 
200 	mark_inode_dirty(inode);
201 }
202 
203 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
204 					   int *err)
205 {
206 	int newblock;
207 	struct buffer_head *dbh = NULL;
208 	struct kernel_lb_addr eloc;
209 	uint8_t alloctype;
210 	struct extent_position epos;
211 
212 	struct udf_fileident_bh sfibh, dfibh;
213 	loff_t f_pos = udf_ext0_offset(inode);
214 	int size = udf_ext0_offset(inode) + inode->i_size;
215 	struct fileIdentDesc cfi, *sfi, *dfi;
216 	struct udf_inode_info *iinfo = UDF_I(inode);
217 
218 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
219 		alloctype = ICBTAG_FLAG_AD_SHORT;
220 	else
221 		alloctype = ICBTAG_FLAG_AD_LONG;
222 
223 	if (!inode->i_size) {
224 		iinfo->i_alloc_type = alloctype;
225 		mark_inode_dirty(inode);
226 		return NULL;
227 	}
228 
229 	/* alloc block, and copy data to it */
230 	*block = udf_new_block(inode->i_sb, inode,
231 			       iinfo->i_location.partitionReferenceNum,
232 			       iinfo->i_location.logicalBlockNum, err);
233 	if (!(*block))
234 		return NULL;
235 	newblock = udf_get_pblock(inode->i_sb, *block,
236 				  iinfo->i_location.partitionReferenceNum,
237 				0);
238 	if (!newblock)
239 		return NULL;
240 	dbh = udf_tgetblk(inode->i_sb, newblock);
241 	if (!dbh)
242 		return NULL;
243 	lock_buffer(dbh);
244 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
245 	set_buffer_uptodate(dbh);
246 	unlock_buffer(dbh);
247 	mark_buffer_dirty_inode(dbh, inode);
248 
249 	sfibh.soffset = sfibh.eoffset =
250 			f_pos & (inode->i_sb->s_blocksize - 1);
251 	sfibh.sbh = sfibh.ebh = NULL;
252 	dfibh.soffset = dfibh.eoffset = 0;
253 	dfibh.sbh = dfibh.ebh = dbh;
254 	while (f_pos < size) {
255 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
256 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
257 					 NULL, NULL, NULL);
258 		if (!sfi) {
259 			brelse(dbh);
260 			return NULL;
261 		}
262 		iinfo->i_alloc_type = alloctype;
263 		sfi->descTag.tagLocation = cpu_to_le32(*block);
264 		dfibh.soffset = dfibh.eoffset;
265 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
266 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
267 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
268 				 sfi->fileIdent +
269 					le16_to_cpu(sfi->lengthOfImpUse))) {
270 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
271 			brelse(dbh);
272 			return NULL;
273 		}
274 	}
275 	mark_buffer_dirty_inode(dbh, inode);
276 
277 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
278 		iinfo->i_lenAlloc);
279 	iinfo->i_lenAlloc = 0;
280 	eloc.logicalBlockNum = *block;
281 	eloc.partitionReferenceNum =
282 				iinfo->i_location.partitionReferenceNum;
283 	iinfo->i_lenExtents = inode->i_size;
284 	epos.bh = NULL;
285 	epos.block = iinfo->i_location;
286 	epos.offset = udf_file_entry_alloc_offset(inode);
287 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
288 	/* UniqueID stuff */
289 
290 	brelse(epos.bh);
291 	mark_inode_dirty(inode);
292 	return dbh;
293 }
294 
295 static int udf_get_block(struct inode *inode, sector_t block,
296 			 struct buffer_head *bh_result, int create)
297 {
298 	int err, new;
299 	struct buffer_head *bh;
300 	sector_t phys = 0;
301 	struct udf_inode_info *iinfo;
302 
303 	if (!create) {
304 		phys = udf_block_map(inode, block);
305 		if (phys)
306 			map_bh(bh_result, inode->i_sb, phys);
307 		return 0;
308 	}
309 
310 	err = -EIO;
311 	new = 0;
312 	bh = NULL;
313 
314 	lock_kernel();
315 
316 	iinfo = UDF_I(inode);
317 	if (block == iinfo->i_next_alloc_block + 1) {
318 		iinfo->i_next_alloc_block++;
319 		iinfo->i_next_alloc_goal++;
320 	}
321 
322 	err = 0;
323 
324 	bh = inode_getblk(inode, block, &err, &phys, &new);
325 	BUG_ON(bh);
326 	if (err)
327 		goto abort;
328 	BUG_ON(!phys);
329 
330 	if (new)
331 		set_buffer_new(bh_result);
332 	map_bh(bh_result, inode->i_sb, phys);
333 
334 abort:
335 	unlock_kernel();
336 	return err;
337 }
338 
339 static struct buffer_head *udf_getblk(struct inode *inode, long block,
340 				      int create, int *err)
341 {
342 	struct buffer_head *bh;
343 	struct buffer_head dummy;
344 
345 	dummy.b_state = 0;
346 	dummy.b_blocknr = -1000;
347 	*err = udf_get_block(inode, block, &dummy, create);
348 	if (!*err && buffer_mapped(&dummy)) {
349 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
350 		if (buffer_new(&dummy)) {
351 			lock_buffer(bh);
352 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
353 			set_buffer_uptodate(bh);
354 			unlock_buffer(bh);
355 			mark_buffer_dirty_inode(bh, inode);
356 		}
357 		return bh;
358 	}
359 
360 	return NULL;
361 }
362 
363 /* Extend the file by 'blocks' blocks, return the number of extents added */
364 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
365 		    struct kernel_long_ad *last_ext, sector_t blocks)
366 {
367 	sector_t add;
368 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
369 	struct super_block *sb = inode->i_sb;
370 	struct kernel_lb_addr prealloc_loc = {};
371 	int prealloc_len = 0;
372 	struct udf_inode_info *iinfo;
373 
374 	/* The previous extent is fake and we should not extend by anything
375 	 * - there's nothing to do... */
376 	if (!blocks && fake)
377 		return 0;
378 
379 	iinfo = UDF_I(inode);
380 	/* Round the last extent up to a multiple of block size */
381 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
382 		last_ext->extLength =
383 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
384 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
385 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
386 		iinfo->i_lenExtents =
387 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
388 			~(sb->s_blocksize - 1);
389 	}
390 
391 	/* Last extent are just preallocated blocks? */
392 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
393 						EXT_NOT_RECORDED_ALLOCATED) {
394 		/* Save the extent so that we can reattach it to the end */
395 		prealloc_loc = last_ext->extLocation;
396 		prealloc_len = last_ext->extLength;
397 		/* Mark the extent as a hole */
398 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
399 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
400 		last_ext->extLocation.logicalBlockNum = 0;
401 		last_ext->extLocation.partitionReferenceNum = 0;
402 	}
403 
404 	/* Can we merge with the previous extent? */
405 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
406 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
407 		add = ((1 << 30) - sb->s_blocksize -
408 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
409 			sb->s_blocksize_bits;
410 		if (add > blocks)
411 			add = blocks;
412 		blocks -= add;
413 		last_ext->extLength += add << sb->s_blocksize_bits;
414 	}
415 
416 	if (fake) {
417 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
418 			     last_ext->extLength, 1);
419 		count++;
420 	} else
421 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
422 				last_ext->extLength, 1);
423 
424 	/* Managed to do everything necessary? */
425 	if (!blocks)
426 		goto out;
427 
428 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
429 	last_ext->extLocation.logicalBlockNum = 0;
430 	last_ext->extLocation.partitionReferenceNum = 0;
431 	add = (1 << (30-sb->s_blocksize_bits)) - 1;
432 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
433 				(add << sb->s_blocksize_bits);
434 
435 	/* Create enough extents to cover the whole hole */
436 	while (blocks > add) {
437 		blocks -= add;
438 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
439 				 last_ext->extLength, 1) == -1)
440 			return -1;
441 		count++;
442 	}
443 	if (blocks) {
444 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
445 			(blocks << sb->s_blocksize_bits);
446 		if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
447 				 last_ext->extLength, 1) == -1)
448 			return -1;
449 		count++;
450 	}
451 
452 out:
453 	/* Do we have some preallocated blocks saved? */
454 	if (prealloc_len) {
455 		if (udf_add_aext(inode, last_pos, &prealloc_loc,
456 				 prealloc_len, 1) == -1)
457 			return -1;
458 		last_ext->extLocation = prealloc_loc;
459 		last_ext->extLength = prealloc_len;
460 		count++;
461 	}
462 
463 	/* last_pos should point to the last written extent... */
464 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
465 		last_pos->offset -= sizeof(struct short_ad);
466 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
467 		last_pos->offset -= sizeof(struct long_ad);
468 	else
469 		return -1;
470 
471 	return count;
472 }
473 
474 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
475 					int *err, sector_t *phys, int *new)
476 {
477 	static sector_t last_block;
478 	struct buffer_head *result = NULL;
479 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
480 	struct extent_position prev_epos, cur_epos, next_epos;
481 	int count = 0, startnum = 0, endnum = 0;
482 	uint32_t elen = 0, tmpelen;
483 	struct kernel_lb_addr eloc, tmpeloc;
484 	int c = 1;
485 	loff_t lbcount = 0, b_off = 0;
486 	uint32_t newblocknum, newblock;
487 	sector_t offset = 0;
488 	int8_t etype;
489 	struct udf_inode_info *iinfo = UDF_I(inode);
490 	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
491 	int lastblock = 0;
492 
493 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
494 	prev_epos.block = iinfo->i_location;
495 	prev_epos.bh = NULL;
496 	cur_epos = next_epos = prev_epos;
497 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
498 
499 	/* find the extent which contains the block we are looking for.
500 	   alternate between laarr[0] and laarr[1] for locations of the
501 	   current extent, and the previous extent */
502 	do {
503 		if (prev_epos.bh != cur_epos.bh) {
504 			brelse(prev_epos.bh);
505 			get_bh(cur_epos.bh);
506 			prev_epos.bh = cur_epos.bh;
507 		}
508 		if (cur_epos.bh != next_epos.bh) {
509 			brelse(cur_epos.bh);
510 			get_bh(next_epos.bh);
511 			cur_epos.bh = next_epos.bh;
512 		}
513 
514 		lbcount += elen;
515 
516 		prev_epos.block = cur_epos.block;
517 		cur_epos.block = next_epos.block;
518 
519 		prev_epos.offset = cur_epos.offset;
520 		cur_epos.offset = next_epos.offset;
521 
522 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
523 		if (etype == -1)
524 			break;
525 
526 		c = !c;
527 
528 		laarr[c].extLength = (etype << 30) | elen;
529 		laarr[c].extLocation = eloc;
530 
531 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
532 			pgoal = eloc.logicalBlockNum +
533 				((elen + inode->i_sb->s_blocksize - 1) >>
534 				 inode->i_sb->s_blocksize_bits);
535 
536 		count++;
537 	} while (lbcount + elen <= b_off);
538 
539 	b_off -= lbcount;
540 	offset = b_off >> inode->i_sb->s_blocksize_bits;
541 	/*
542 	 * Move prev_epos and cur_epos into indirect extent if we are at
543 	 * the pointer to it
544 	 */
545 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
546 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
547 
548 	/* if the extent is allocated and recorded, return the block
549 	   if the extent is not a multiple of the blocksize, round up */
550 
551 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
552 		if (elen & (inode->i_sb->s_blocksize - 1)) {
553 			elen = EXT_RECORDED_ALLOCATED |
554 				((elen + inode->i_sb->s_blocksize - 1) &
555 				 ~(inode->i_sb->s_blocksize - 1));
556 			etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
557 		}
558 		brelse(prev_epos.bh);
559 		brelse(cur_epos.bh);
560 		brelse(next_epos.bh);
561 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
562 		*phys = newblock;
563 		return NULL;
564 	}
565 
566 	last_block = block;
567 	/* Are we beyond EOF? */
568 	if (etype == -1) {
569 		int ret;
570 
571 		if (count) {
572 			if (c)
573 				laarr[0] = laarr[1];
574 			startnum = 1;
575 		} else {
576 			/* Create a fake extent when there's not one */
577 			memset(&laarr[0].extLocation, 0x00,
578 				sizeof(struct kernel_lb_addr));
579 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
580 			/* Will udf_extend_file() create real extent from
581 			   a fake one? */
582 			startnum = (offset > 0);
583 		}
584 		/* Create extents for the hole between EOF and offset */
585 		ret = udf_extend_file(inode, &prev_epos, laarr, offset);
586 		if (ret == -1) {
587 			brelse(prev_epos.bh);
588 			brelse(cur_epos.bh);
589 			brelse(next_epos.bh);
590 			/* We don't really know the error here so we just make
591 			 * something up */
592 			*err = -ENOSPC;
593 			return NULL;
594 		}
595 		c = 0;
596 		offset = 0;
597 		count += ret;
598 		/* We are not covered by a preallocated extent? */
599 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
600 						EXT_NOT_RECORDED_ALLOCATED) {
601 			/* Is there any real extent? - otherwise we overwrite
602 			 * the fake one... */
603 			if (count)
604 				c = !c;
605 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
606 				inode->i_sb->s_blocksize;
607 			memset(&laarr[c].extLocation, 0x00,
608 				sizeof(struct kernel_lb_addr));
609 			count++;
610 			endnum++;
611 		}
612 		endnum = c + 1;
613 		lastblock = 1;
614 	} else {
615 		endnum = startnum = ((count > 2) ? 2 : count);
616 
617 		/* if the current extent is in position 0,
618 		   swap it with the previous */
619 		if (!c && count != 1) {
620 			laarr[2] = laarr[0];
621 			laarr[0] = laarr[1];
622 			laarr[1] = laarr[2];
623 			c = 1;
624 		}
625 
626 		/* if the current block is located in an extent,
627 		   read the next extent */
628 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
629 		if (etype != -1) {
630 			laarr[c + 1].extLength = (etype << 30) | elen;
631 			laarr[c + 1].extLocation = eloc;
632 			count++;
633 			startnum++;
634 			endnum++;
635 		} else
636 			lastblock = 1;
637 	}
638 
639 	/* if the current extent is not recorded but allocated, get the
640 	 * block in the extent corresponding to the requested block */
641 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
642 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
643 	else { /* otherwise, allocate a new block */
644 		if (iinfo->i_next_alloc_block == block)
645 			goal = iinfo->i_next_alloc_goal;
646 
647 		if (!goal) {
648 			if (!(goal = pgoal)) /* XXX: what was intended here? */
649 				goal = iinfo->i_location.logicalBlockNum + 1;
650 		}
651 
652 		newblocknum = udf_new_block(inode->i_sb, inode,
653 				iinfo->i_location.partitionReferenceNum,
654 				goal, err);
655 		if (!newblocknum) {
656 			brelse(prev_epos.bh);
657 			*err = -ENOSPC;
658 			return NULL;
659 		}
660 		iinfo->i_lenExtents += inode->i_sb->s_blocksize;
661 	}
662 
663 	/* if the extent the requsted block is located in contains multiple
664 	 * blocks, split the extent into at most three extents. blocks prior
665 	 * to requested block, requested block, and blocks after requested
666 	 * block */
667 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
668 
669 #ifdef UDF_PREALLOCATE
670 	/* We preallocate blocks only for regular files. It also makes sense
671 	 * for directories but there's a problem when to drop the
672 	 * preallocation. We might use some delayed work for that but I feel
673 	 * it's overengineering for a filesystem like UDF. */
674 	if (S_ISREG(inode->i_mode))
675 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
676 #endif
677 
678 	/* merge any continuous blocks in laarr */
679 	udf_merge_extents(inode, laarr, &endnum);
680 
681 	/* write back the new extents, inserting new extents if the new number
682 	 * of extents is greater than the old number, and deleting extents if
683 	 * the new number of extents is less than the old number */
684 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
685 
686 	brelse(prev_epos.bh);
687 
688 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
689 				iinfo->i_location.partitionReferenceNum, 0);
690 	if (!newblock)
691 		return NULL;
692 	*phys = newblock;
693 	*err = 0;
694 	*new = 1;
695 	iinfo->i_next_alloc_block = block;
696 	iinfo->i_next_alloc_goal = newblocknum;
697 	inode->i_ctime = current_fs_time(inode->i_sb);
698 
699 	if (IS_SYNC(inode))
700 		udf_sync_inode(inode);
701 	else
702 		mark_inode_dirty(inode);
703 
704 	return result;
705 }
706 
707 static void udf_split_extents(struct inode *inode, int *c, int offset,
708 			      int newblocknum,
709 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
710 			      int *endnum)
711 {
712 	unsigned long blocksize = inode->i_sb->s_blocksize;
713 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
714 
715 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
716 	    (laarr[*c].extLength >> 30) ==
717 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
718 		int curr = *c;
719 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
720 			    blocksize - 1) >> blocksize_bits;
721 		int8_t etype = (laarr[curr].extLength >> 30);
722 
723 		if (blen == 1)
724 			;
725 		else if (!offset || blen == offset + 1) {
726 			laarr[curr + 2] = laarr[curr + 1];
727 			laarr[curr + 1] = laarr[curr];
728 		} else {
729 			laarr[curr + 3] = laarr[curr + 1];
730 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
731 		}
732 
733 		if (offset) {
734 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
735 				udf_free_blocks(inode->i_sb, inode,
736 						&laarr[curr].extLocation,
737 						0, offset);
738 				laarr[curr].extLength =
739 					EXT_NOT_RECORDED_NOT_ALLOCATED |
740 					(offset << blocksize_bits);
741 				laarr[curr].extLocation.logicalBlockNum = 0;
742 				laarr[curr].extLocation.
743 						partitionReferenceNum = 0;
744 			} else
745 				laarr[curr].extLength = (etype << 30) |
746 					(offset << blocksize_bits);
747 			curr++;
748 			(*c)++;
749 			(*endnum)++;
750 		}
751 
752 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
753 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
754 			laarr[curr].extLocation.partitionReferenceNum =
755 				UDF_I(inode)->i_location.partitionReferenceNum;
756 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
757 			blocksize;
758 		curr++;
759 
760 		if (blen != offset + 1) {
761 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
762 				laarr[curr].extLocation.logicalBlockNum +=
763 								offset + 1;
764 			laarr[curr].extLength = (etype << 30) |
765 				((blen - (offset + 1)) << blocksize_bits);
766 			curr++;
767 			(*endnum)++;
768 		}
769 	}
770 }
771 
772 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
773 				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
774 				 int *endnum)
775 {
776 	int start, length = 0, currlength = 0, i;
777 
778 	if (*endnum >= (c + 1)) {
779 		if (!lastblock)
780 			return;
781 		else
782 			start = c;
783 	} else {
784 		if ((laarr[c + 1].extLength >> 30) ==
785 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
786 			start = c + 1;
787 			length = currlength =
788 				(((laarr[c + 1].extLength &
789 					UDF_EXTENT_LENGTH_MASK) +
790 				inode->i_sb->s_blocksize - 1) >>
791 				inode->i_sb->s_blocksize_bits);
792 		} else
793 			start = c;
794 	}
795 
796 	for (i = start + 1; i <= *endnum; i++) {
797 		if (i == *endnum) {
798 			if (lastblock)
799 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
800 		} else if ((laarr[i].extLength >> 30) ==
801 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
802 			length += (((laarr[i].extLength &
803 						UDF_EXTENT_LENGTH_MASK) +
804 				    inode->i_sb->s_blocksize - 1) >>
805 				    inode->i_sb->s_blocksize_bits);
806 		} else
807 			break;
808 	}
809 
810 	if (length) {
811 		int next = laarr[start].extLocation.logicalBlockNum +
812 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
813 			  inode->i_sb->s_blocksize - 1) >>
814 			  inode->i_sb->s_blocksize_bits);
815 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
816 				laarr[start].extLocation.partitionReferenceNum,
817 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
818 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
819 				currlength);
820 		if (numalloc) 	{
821 			if (start == (c + 1))
822 				laarr[start].extLength +=
823 					(numalloc <<
824 					 inode->i_sb->s_blocksize_bits);
825 			else {
826 				memmove(&laarr[c + 2], &laarr[c + 1],
827 					sizeof(struct long_ad) * (*endnum - (c + 1)));
828 				(*endnum)++;
829 				laarr[c + 1].extLocation.logicalBlockNum = next;
830 				laarr[c + 1].extLocation.partitionReferenceNum =
831 					laarr[c].extLocation.
832 							partitionReferenceNum;
833 				laarr[c + 1].extLength =
834 					EXT_NOT_RECORDED_ALLOCATED |
835 					(numalloc <<
836 					 inode->i_sb->s_blocksize_bits);
837 				start = c + 1;
838 			}
839 
840 			for (i = start + 1; numalloc && i < *endnum; i++) {
841 				int elen = ((laarr[i].extLength &
842 						UDF_EXTENT_LENGTH_MASK) +
843 					    inode->i_sb->s_blocksize - 1) >>
844 					    inode->i_sb->s_blocksize_bits;
845 
846 				if (elen > numalloc) {
847 					laarr[i].extLength -=
848 						(numalloc <<
849 						 inode->i_sb->s_blocksize_bits);
850 					numalloc = 0;
851 				} else {
852 					numalloc -= elen;
853 					if (*endnum > (i + 1))
854 						memmove(&laarr[i],
855 							&laarr[i + 1],
856 							sizeof(struct long_ad) *
857 							(*endnum - (i + 1)));
858 					i--;
859 					(*endnum)--;
860 				}
861 			}
862 			UDF_I(inode)->i_lenExtents +=
863 				numalloc << inode->i_sb->s_blocksize_bits;
864 		}
865 	}
866 }
867 
868 static void udf_merge_extents(struct inode *inode,
869 			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
870 			      int *endnum)
871 {
872 	int i;
873 	unsigned long blocksize = inode->i_sb->s_blocksize;
874 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
875 
876 	for (i = 0; i < (*endnum - 1); i++) {
877 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
878 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
879 
880 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
881 			(((li->extLength >> 30) ==
882 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
883 			((lip1->extLocation.logicalBlockNum -
884 			  li->extLocation.logicalBlockNum) ==
885 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
886 			blocksize - 1) >> blocksize_bits)))) {
887 
888 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
889 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
890 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
891 				lip1->extLength = (lip1->extLength -
892 						  (li->extLength &
893 						   UDF_EXTENT_LENGTH_MASK) +
894 						   UDF_EXTENT_LENGTH_MASK) &
895 							~(blocksize - 1);
896 				li->extLength = (li->extLength &
897 						 UDF_EXTENT_FLAG_MASK) +
898 						(UDF_EXTENT_LENGTH_MASK + 1) -
899 						blocksize;
900 				lip1->extLocation.logicalBlockNum =
901 					li->extLocation.logicalBlockNum +
902 					((li->extLength &
903 						UDF_EXTENT_LENGTH_MASK) >>
904 						blocksize_bits);
905 			} else {
906 				li->extLength = lip1->extLength +
907 					(((li->extLength &
908 						UDF_EXTENT_LENGTH_MASK) +
909 					 blocksize - 1) & ~(blocksize - 1));
910 				if (*endnum > (i + 2))
911 					memmove(&laarr[i + 1], &laarr[i + 2],
912 						sizeof(struct long_ad) *
913 						(*endnum - (i + 2)));
914 				i--;
915 				(*endnum)--;
916 			}
917 		} else if (((li->extLength >> 30) ==
918 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
919 			   ((lip1->extLength >> 30) ==
920 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
921 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
922 					((li->extLength &
923 					  UDF_EXTENT_LENGTH_MASK) +
924 					 blocksize - 1) >> blocksize_bits);
925 			li->extLocation.logicalBlockNum = 0;
926 			li->extLocation.partitionReferenceNum = 0;
927 
928 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
929 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
930 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
931 				lip1->extLength = (lip1->extLength -
932 						   (li->extLength &
933 						   UDF_EXTENT_LENGTH_MASK) +
934 						   UDF_EXTENT_LENGTH_MASK) &
935 						   ~(blocksize - 1);
936 				li->extLength = (li->extLength &
937 						 UDF_EXTENT_FLAG_MASK) +
938 						(UDF_EXTENT_LENGTH_MASK + 1) -
939 						blocksize;
940 			} else {
941 				li->extLength = lip1->extLength +
942 					(((li->extLength &
943 						UDF_EXTENT_LENGTH_MASK) +
944 					  blocksize - 1) & ~(blocksize - 1));
945 				if (*endnum > (i + 2))
946 					memmove(&laarr[i + 1], &laarr[i + 2],
947 						sizeof(struct long_ad) *
948 						(*endnum - (i + 2)));
949 				i--;
950 				(*endnum)--;
951 			}
952 		} else if ((li->extLength >> 30) ==
953 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
954 			udf_free_blocks(inode->i_sb, inode,
955 					&li->extLocation, 0,
956 					((li->extLength &
957 						UDF_EXTENT_LENGTH_MASK) +
958 					 blocksize - 1) >> blocksize_bits);
959 			li->extLocation.logicalBlockNum = 0;
960 			li->extLocation.partitionReferenceNum = 0;
961 			li->extLength = (li->extLength &
962 						UDF_EXTENT_LENGTH_MASK) |
963 						EXT_NOT_RECORDED_NOT_ALLOCATED;
964 		}
965 	}
966 }
967 
968 static void udf_update_extents(struct inode *inode,
969 			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
970 			       int startnum, int endnum,
971 			       struct extent_position *epos)
972 {
973 	int start = 0, i;
974 	struct kernel_lb_addr tmploc;
975 	uint32_t tmplen;
976 
977 	if (startnum > endnum) {
978 		for (i = 0; i < (startnum - endnum); i++)
979 			udf_delete_aext(inode, *epos, laarr[i].extLocation,
980 					laarr[i].extLength);
981 	} else if (startnum < endnum) {
982 		for (i = 0; i < (endnum - startnum); i++) {
983 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
984 					laarr[i].extLength);
985 			udf_next_aext(inode, epos, &laarr[i].extLocation,
986 				      &laarr[i].extLength, 1);
987 			start++;
988 		}
989 	}
990 
991 	for (i = start; i < endnum; i++) {
992 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
993 		udf_write_aext(inode, epos, &laarr[i].extLocation,
994 			       laarr[i].extLength, 1);
995 	}
996 }
997 
998 struct buffer_head *udf_bread(struct inode *inode, int block,
999 			      int create, int *err)
1000 {
1001 	struct buffer_head *bh = NULL;
1002 
1003 	bh = udf_getblk(inode, block, create, err);
1004 	if (!bh)
1005 		return NULL;
1006 
1007 	if (buffer_uptodate(bh))
1008 		return bh;
1009 
1010 	ll_rw_block(READ, 1, &bh);
1011 
1012 	wait_on_buffer(bh);
1013 	if (buffer_uptodate(bh))
1014 		return bh;
1015 
1016 	brelse(bh);
1017 	*err = -EIO;
1018 	return NULL;
1019 }
1020 
1021 void udf_truncate(struct inode *inode)
1022 {
1023 	int offset;
1024 	int err;
1025 	struct udf_inode_info *iinfo;
1026 
1027 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1028 	      S_ISLNK(inode->i_mode)))
1029 		return;
1030 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1031 		return;
1032 
1033 	lock_kernel();
1034 	iinfo = UDF_I(inode);
1035 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1036 		if (inode->i_sb->s_blocksize <
1037 				(udf_file_entry_alloc_offset(inode) +
1038 				 inode->i_size)) {
1039 			udf_expand_file_adinicb(inode, inode->i_size, &err);
1040 			if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1041 				inode->i_size = iinfo->i_lenAlloc;
1042 				unlock_kernel();
1043 				return;
1044 			} else
1045 				udf_truncate_extents(inode);
1046 		} else {
1047 			offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1048 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1049 				0x00, inode->i_sb->s_blocksize -
1050 				offset - udf_file_entry_alloc_offset(inode));
1051 			iinfo->i_lenAlloc = inode->i_size;
1052 		}
1053 	} else {
1054 		block_truncate_page(inode->i_mapping, inode->i_size,
1055 				    udf_get_block);
1056 		udf_truncate_extents(inode);
1057 	}
1058 
1059 	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1060 	if (IS_SYNC(inode))
1061 		udf_sync_inode(inode);
1062 	else
1063 		mark_inode_dirty(inode);
1064 	unlock_kernel();
1065 }
1066 
1067 static void __udf_read_inode(struct inode *inode)
1068 {
1069 	struct buffer_head *bh = NULL;
1070 	struct fileEntry *fe;
1071 	uint16_t ident;
1072 	struct udf_inode_info *iinfo = UDF_I(inode);
1073 
1074 	/*
1075 	 * Set defaults, but the inode is still incomplete!
1076 	 * Note: get_new_inode() sets the following on a new inode:
1077 	 *      i_sb = sb
1078 	 *      i_no = ino
1079 	 *      i_flags = sb->s_flags
1080 	 *      i_state = 0
1081 	 * clean_inode(): zero fills and sets
1082 	 *      i_count = 1
1083 	 *      i_nlink = 1
1084 	 *      i_op = NULL;
1085 	 */
1086 	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1087 	if (!bh) {
1088 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1089 		       inode->i_ino);
1090 		make_bad_inode(inode);
1091 		return;
1092 	}
1093 
1094 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1095 	    ident != TAG_IDENT_USE) {
1096 		printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1097 				"failed ident=%d\n", inode->i_ino, ident);
1098 		brelse(bh);
1099 		make_bad_inode(inode);
1100 		return;
1101 	}
1102 
1103 	fe = (struct fileEntry *)bh->b_data;
1104 
1105 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1106 		struct buffer_head *ibh;
1107 
1108 		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1109 					&ident);
1110 		if (ident == TAG_IDENT_IE && ibh) {
1111 			struct buffer_head *nbh = NULL;
1112 			struct kernel_lb_addr loc;
1113 			struct indirectEntry *ie;
1114 
1115 			ie = (struct indirectEntry *)ibh->b_data;
1116 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1117 
1118 			if (ie->indirectICB.extLength &&
1119 				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1120 							&ident))) {
1121 				if (ident == TAG_IDENT_FE ||
1122 					ident == TAG_IDENT_EFE) {
1123 					memcpy(&iinfo->i_location,
1124 						&loc,
1125 						sizeof(struct kernel_lb_addr));
1126 					brelse(bh);
1127 					brelse(ibh);
1128 					brelse(nbh);
1129 					__udf_read_inode(inode);
1130 					return;
1131 				}
1132 				brelse(nbh);
1133 			}
1134 		}
1135 		brelse(ibh);
1136 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1137 		printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1138 		       le16_to_cpu(fe->icbTag.strategyType));
1139 		brelse(bh);
1140 		make_bad_inode(inode);
1141 		return;
1142 	}
1143 	udf_fill_inode(inode, bh);
1144 
1145 	brelse(bh);
1146 }
1147 
1148 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1149 {
1150 	struct fileEntry *fe;
1151 	struct extendedFileEntry *efe;
1152 	int offset;
1153 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1154 	struct udf_inode_info *iinfo = UDF_I(inode);
1155 
1156 	fe = (struct fileEntry *)bh->b_data;
1157 	efe = (struct extendedFileEntry *)bh->b_data;
1158 
1159 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1160 		iinfo->i_strat4096 = 0;
1161 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1162 		iinfo->i_strat4096 = 1;
1163 
1164 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1165 							ICBTAG_FLAG_AD_MASK;
1166 	iinfo->i_unique = 0;
1167 	iinfo->i_lenEAttr = 0;
1168 	iinfo->i_lenExtents = 0;
1169 	iinfo->i_lenAlloc = 0;
1170 	iinfo->i_next_alloc_block = 0;
1171 	iinfo->i_next_alloc_goal = 0;
1172 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1173 		iinfo->i_efe = 1;
1174 		iinfo->i_use = 0;
1175 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1176 					sizeof(struct extendedFileEntry))) {
1177 			make_bad_inode(inode);
1178 			return;
1179 		}
1180 		memcpy(iinfo->i_ext.i_data,
1181 		       bh->b_data + sizeof(struct extendedFileEntry),
1182 		       inode->i_sb->s_blocksize -
1183 					sizeof(struct extendedFileEntry));
1184 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1185 		iinfo->i_efe = 0;
1186 		iinfo->i_use = 0;
1187 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1188 						sizeof(struct fileEntry))) {
1189 			make_bad_inode(inode);
1190 			return;
1191 		}
1192 		memcpy(iinfo->i_ext.i_data,
1193 		       bh->b_data + sizeof(struct fileEntry),
1194 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1195 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1196 		iinfo->i_efe = 0;
1197 		iinfo->i_use = 1;
1198 		iinfo->i_lenAlloc = le32_to_cpu(
1199 				((struct unallocSpaceEntry *)bh->b_data)->
1200 				 lengthAllocDescs);
1201 		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1202 					sizeof(struct unallocSpaceEntry))) {
1203 			make_bad_inode(inode);
1204 			return;
1205 		}
1206 		memcpy(iinfo->i_ext.i_data,
1207 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1208 		       inode->i_sb->s_blocksize -
1209 					sizeof(struct unallocSpaceEntry));
1210 		return;
1211 	}
1212 
1213 	inode->i_uid = le32_to_cpu(fe->uid);
1214 	if (inode->i_uid == -1 ||
1215 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1216 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1217 		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1218 
1219 	inode->i_gid = le32_to_cpu(fe->gid);
1220 	if (inode->i_gid == -1 ||
1221 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1222 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1223 		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1224 
1225 	inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1226 	if (!inode->i_nlink)
1227 		inode->i_nlink = 1;
1228 
1229 	inode->i_size = le64_to_cpu(fe->informationLength);
1230 	iinfo->i_lenExtents = inode->i_size;
1231 
1232 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1233 			sbi->s_fmode != UDF_INVALID_MODE)
1234 		inode->i_mode = sbi->s_fmode;
1235 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1236 			sbi->s_dmode != UDF_INVALID_MODE)
1237 		inode->i_mode = sbi->s_dmode;
1238 	else
1239 		inode->i_mode = udf_convert_permissions(fe);
1240 	inode->i_mode &= ~sbi->s_umask;
1241 
1242 	if (iinfo->i_efe == 0) {
1243 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1244 			(inode->i_sb->s_blocksize_bits - 9);
1245 
1246 		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1247 			inode->i_atime = sbi->s_record_time;
1248 
1249 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1250 					    fe->modificationTime))
1251 			inode->i_mtime = sbi->s_record_time;
1252 
1253 		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1254 			inode->i_ctime = sbi->s_record_time;
1255 
1256 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1257 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1258 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1259 		offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1260 	} else {
1261 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1262 		    (inode->i_sb->s_blocksize_bits - 9);
1263 
1264 		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1265 			inode->i_atime = sbi->s_record_time;
1266 
1267 		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1268 					    efe->modificationTime))
1269 			inode->i_mtime = sbi->s_record_time;
1270 
1271 		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1272 			iinfo->i_crtime = sbi->s_record_time;
1273 
1274 		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1275 			inode->i_ctime = sbi->s_record_time;
1276 
1277 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1278 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1279 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1280 		offset = sizeof(struct extendedFileEntry) +
1281 							iinfo->i_lenEAttr;
1282 	}
1283 
1284 	switch (fe->icbTag.fileType) {
1285 	case ICBTAG_FILE_TYPE_DIRECTORY:
1286 		inode->i_op = &udf_dir_inode_operations;
1287 		inode->i_fop = &udf_dir_operations;
1288 		inode->i_mode |= S_IFDIR;
1289 		inc_nlink(inode);
1290 		break;
1291 	case ICBTAG_FILE_TYPE_REALTIME:
1292 	case ICBTAG_FILE_TYPE_REGULAR:
1293 	case ICBTAG_FILE_TYPE_UNDEF:
1294 	case ICBTAG_FILE_TYPE_VAT20:
1295 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1296 			inode->i_data.a_ops = &udf_adinicb_aops;
1297 		else
1298 			inode->i_data.a_ops = &udf_aops;
1299 		inode->i_op = &udf_file_inode_operations;
1300 		inode->i_fop = &udf_file_operations;
1301 		inode->i_mode |= S_IFREG;
1302 		break;
1303 	case ICBTAG_FILE_TYPE_BLOCK:
1304 		inode->i_mode |= S_IFBLK;
1305 		break;
1306 	case ICBTAG_FILE_TYPE_CHAR:
1307 		inode->i_mode |= S_IFCHR;
1308 		break;
1309 	case ICBTAG_FILE_TYPE_FIFO:
1310 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1311 		break;
1312 	case ICBTAG_FILE_TYPE_SOCKET:
1313 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1314 		break;
1315 	case ICBTAG_FILE_TYPE_SYMLINK:
1316 		inode->i_data.a_ops = &udf_symlink_aops;
1317 		inode->i_op = &page_symlink_inode_operations;
1318 		inode->i_mode = S_IFLNK | S_IRWXUGO;
1319 		break;
1320 	case ICBTAG_FILE_TYPE_MAIN:
1321 		udf_debug("METADATA FILE-----\n");
1322 		break;
1323 	case ICBTAG_FILE_TYPE_MIRROR:
1324 		udf_debug("METADATA MIRROR FILE-----\n");
1325 		break;
1326 	case ICBTAG_FILE_TYPE_BITMAP:
1327 		udf_debug("METADATA BITMAP FILE-----\n");
1328 		break;
1329 	default:
1330 		printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1331 				"file type=%d\n", inode->i_ino,
1332 				fe->icbTag.fileType);
1333 		make_bad_inode(inode);
1334 		return;
1335 	}
1336 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1337 		struct deviceSpec *dsea =
1338 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1339 		if (dsea) {
1340 			init_special_inode(inode, inode->i_mode,
1341 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1342 				      le32_to_cpu(dsea->minorDeviceIdent)));
1343 			/* Developer ID ??? */
1344 		} else
1345 			make_bad_inode(inode);
1346 	}
1347 }
1348 
1349 static int udf_alloc_i_data(struct inode *inode, size_t size)
1350 {
1351 	struct udf_inode_info *iinfo = UDF_I(inode);
1352 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1353 
1354 	if (!iinfo->i_ext.i_data) {
1355 		printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1356 				"no free memory\n", inode->i_ino);
1357 		return -ENOMEM;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static mode_t udf_convert_permissions(struct fileEntry *fe)
1364 {
1365 	mode_t mode;
1366 	uint32_t permissions;
1367 	uint32_t flags;
1368 
1369 	permissions = le32_to_cpu(fe->permissions);
1370 	flags = le16_to_cpu(fe->icbTag.flags);
1371 
1372 	mode =	((permissions) & S_IRWXO) |
1373 		((permissions >> 2) & S_IRWXG) |
1374 		((permissions >> 4) & S_IRWXU) |
1375 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1376 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1377 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1378 
1379 	return mode;
1380 }
1381 
1382 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1383 {
1384 	int ret;
1385 
1386 	lock_kernel();
1387 	ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1388 	unlock_kernel();
1389 
1390 	return ret;
1391 }
1392 
1393 int udf_sync_inode(struct inode *inode)
1394 {
1395 	return udf_update_inode(inode, 1);
1396 }
1397 
1398 static int udf_update_inode(struct inode *inode, int do_sync)
1399 {
1400 	struct buffer_head *bh = NULL;
1401 	struct fileEntry *fe;
1402 	struct extendedFileEntry *efe;
1403 	uint32_t udfperms;
1404 	uint16_t icbflags;
1405 	uint16_t crclen;
1406 	int err = 0;
1407 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1408 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1409 	struct udf_inode_info *iinfo = UDF_I(inode);
1410 
1411 	bh = udf_tgetblk(inode->i_sb,
1412 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1413 	if (!bh) {
1414 		udf_debug("getblk failure\n");
1415 		return -ENOMEM;
1416 	}
1417 
1418 	lock_buffer(bh);
1419 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1420 	fe = (struct fileEntry *)bh->b_data;
1421 	efe = (struct extendedFileEntry *)bh->b_data;
1422 
1423 	if (iinfo->i_use) {
1424 		struct unallocSpaceEntry *use =
1425 			(struct unallocSpaceEntry *)bh->b_data;
1426 
1427 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1428 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1429 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1430 					sizeof(struct unallocSpaceEntry));
1431 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1432 		use->descTag.tagLocation =
1433 				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1434 		crclen = sizeof(struct unallocSpaceEntry) +
1435 				iinfo->i_lenAlloc - sizeof(struct tag);
1436 		use->descTag.descCRCLength = cpu_to_le16(crclen);
1437 		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1438 							   sizeof(struct tag),
1439 							   crclen));
1440 		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1441 
1442 		goto out;
1443 	}
1444 
1445 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1446 		fe->uid = cpu_to_le32(-1);
1447 	else
1448 		fe->uid = cpu_to_le32(inode->i_uid);
1449 
1450 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1451 		fe->gid = cpu_to_le32(-1);
1452 	else
1453 		fe->gid = cpu_to_le32(inode->i_gid);
1454 
1455 	udfperms = ((inode->i_mode & S_IRWXO)) |
1456 		   ((inode->i_mode & S_IRWXG) << 2) |
1457 		   ((inode->i_mode & S_IRWXU) << 4);
1458 
1459 	udfperms |= (le32_to_cpu(fe->permissions) &
1460 		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1461 		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1462 		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1463 	fe->permissions = cpu_to_le32(udfperms);
1464 
1465 	if (S_ISDIR(inode->i_mode))
1466 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1467 	else
1468 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1469 
1470 	fe->informationLength = cpu_to_le64(inode->i_size);
1471 
1472 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1473 		struct regid *eid;
1474 		struct deviceSpec *dsea =
1475 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1476 		if (!dsea) {
1477 			dsea = (struct deviceSpec *)
1478 				udf_add_extendedattr(inode,
1479 						     sizeof(struct deviceSpec) +
1480 						     sizeof(struct regid), 12, 0x3);
1481 			dsea->attrType = cpu_to_le32(12);
1482 			dsea->attrSubtype = 1;
1483 			dsea->attrLength = cpu_to_le32(
1484 						sizeof(struct deviceSpec) +
1485 						sizeof(struct regid));
1486 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1487 		}
1488 		eid = (struct regid *)dsea->impUse;
1489 		memset(eid, 0, sizeof(struct regid));
1490 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1491 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1492 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1493 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1494 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1495 	}
1496 
1497 	if (iinfo->i_efe == 0) {
1498 		memcpy(bh->b_data + sizeof(struct fileEntry),
1499 		       iinfo->i_ext.i_data,
1500 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1501 		fe->logicalBlocksRecorded = cpu_to_le64(
1502 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1503 			(blocksize_bits - 9));
1504 
1505 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1506 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1507 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1508 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1509 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1510 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1511 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1512 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1513 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1514 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1515 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1516 		crclen = sizeof(struct fileEntry);
1517 	} else {
1518 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1519 		       iinfo->i_ext.i_data,
1520 		       inode->i_sb->s_blocksize -
1521 					sizeof(struct extendedFileEntry));
1522 		efe->objectSize = cpu_to_le64(inode->i_size);
1523 		efe->logicalBlocksRecorded = cpu_to_le64(
1524 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1525 			(blocksize_bits - 9));
1526 
1527 		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1528 		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1529 		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1530 			iinfo->i_crtime = inode->i_atime;
1531 
1532 		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1533 		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1534 		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1535 			iinfo->i_crtime = inode->i_mtime;
1536 
1537 		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1538 		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1539 		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1540 			iinfo->i_crtime = inode->i_ctime;
1541 
1542 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1543 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1544 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1545 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1546 
1547 		memset(&(efe->impIdent), 0, sizeof(struct regid));
1548 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1549 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1550 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1551 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1552 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1553 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1554 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1555 		crclen = sizeof(struct extendedFileEntry);
1556 	}
1557 	if (iinfo->i_strat4096) {
1558 		fe->icbTag.strategyType = cpu_to_le16(4096);
1559 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1560 		fe->icbTag.numEntries = cpu_to_le16(2);
1561 	} else {
1562 		fe->icbTag.strategyType = cpu_to_le16(4);
1563 		fe->icbTag.numEntries = cpu_to_le16(1);
1564 	}
1565 
1566 	if (S_ISDIR(inode->i_mode))
1567 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1568 	else if (S_ISREG(inode->i_mode))
1569 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1570 	else if (S_ISLNK(inode->i_mode))
1571 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1572 	else if (S_ISBLK(inode->i_mode))
1573 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1574 	else if (S_ISCHR(inode->i_mode))
1575 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1576 	else if (S_ISFIFO(inode->i_mode))
1577 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1578 	else if (S_ISSOCK(inode->i_mode))
1579 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1580 
1581 	icbflags =	iinfo->i_alloc_type |
1582 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1583 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1584 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1585 			(le16_to_cpu(fe->icbTag.flags) &
1586 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1587 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1588 
1589 	fe->icbTag.flags = cpu_to_le16(icbflags);
1590 	if (sbi->s_udfrev >= 0x0200)
1591 		fe->descTag.descVersion = cpu_to_le16(3);
1592 	else
1593 		fe->descTag.descVersion = cpu_to_le16(2);
1594 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1595 	fe->descTag.tagLocation = cpu_to_le32(
1596 					iinfo->i_location.logicalBlockNum);
1597 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1598 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1599 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1600 						  crclen));
1601 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1602 
1603 out:
1604 	set_buffer_uptodate(bh);
1605 	unlock_buffer(bh);
1606 
1607 	/* write the data blocks */
1608 	mark_buffer_dirty(bh);
1609 	if (do_sync) {
1610 		sync_dirty_buffer(bh);
1611 		if (buffer_write_io_error(bh)) {
1612 			printk(KERN_WARNING "IO error syncing udf inode "
1613 				"[%s:%08lx]\n", inode->i_sb->s_id,
1614 				inode->i_ino);
1615 			err = -EIO;
1616 		}
1617 	}
1618 	brelse(bh);
1619 
1620 	return err;
1621 }
1622 
1623 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1624 {
1625 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1626 	struct inode *inode = iget_locked(sb, block);
1627 
1628 	if (!inode)
1629 		return NULL;
1630 
1631 	if (inode->i_state & I_NEW) {
1632 		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1633 		__udf_read_inode(inode);
1634 		unlock_new_inode(inode);
1635 	}
1636 
1637 	if (is_bad_inode(inode))
1638 		goto out_iput;
1639 
1640 	if (ino->logicalBlockNum >= UDF_SB(sb)->
1641 			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1642 		udf_debug("block=%d, partition=%d out of range\n",
1643 			  ino->logicalBlockNum, ino->partitionReferenceNum);
1644 		make_bad_inode(inode);
1645 		goto out_iput;
1646 	}
1647 
1648 	return inode;
1649 
1650  out_iput:
1651 	iput(inode);
1652 	return NULL;
1653 }
1654 
1655 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1656 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1657 {
1658 	int adsize;
1659 	struct short_ad *sad = NULL;
1660 	struct long_ad *lad = NULL;
1661 	struct allocExtDesc *aed;
1662 	int8_t etype;
1663 	uint8_t *ptr;
1664 	struct udf_inode_info *iinfo = UDF_I(inode);
1665 
1666 	if (!epos->bh)
1667 		ptr = iinfo->i_ext.i_data + epos->offset -
1668 			udf_file_entry_alloc_offset(inode) +
1669 			iinfo->i_lenEAttr;
1670 	else
1671 		ptr = epos->bh->b_data + epos->offset;
1672 
1673 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1674 		adsize = sizeof(struct short_ad);
1675 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1676 		adsize = sizeof(struct long_ad);
1677 	else
1678 		return -1;
1679 
1680 	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1681 		unsigned char *sptr, *dptr;
1682 		struct buffer_head *nbh;
1683 		int err, loffset;
1684 		struct kernel_lb_addr obloc = epos->block;
1685 
1686 		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1687 						obloc.partitionReferenceNum,
1688 						obloc.logicalBlockNum, &err);
1689 		if (!epos->block.logicalBlockNum)
1690 			return -1;
1691 		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1692 								 &epos->block,
1693 								 0));
1694 		if (!nbh)
1695 			return -1;
1696 		lock_buffer(nbh);
1697 		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1698 		set_buffer_uptodate(nbh);
1699 		unlock_buffer(nbh);
1700 		mark_buffer_dirty_inode(nbh, inode);
1701 
1702 		aed = (struct allocExtDesc *)(nbh->b_data);
1703 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1704 			aed->previousAllocExtLocation =
1705 					cpu_to_le32(obloc.logicalBlockNum);
1706 		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1707 			loffset = epos->offset;
1708 			aed->lengthAllocDescs = cpu_to_le32(adsize);
1709 			sptr = ptr - adsize;
1710 			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1711 			memcpy(dptr, sptr, adsize);
1712 			epos->offset = sizeof(struct allocExtDesc) + adsize;
1713 		} else {
1714 			loffset = epos->offset + adsize;
1715 			aed->lengthAllocDescs = cpu_to_le32(0);
1716 			sptr = ptr;
1717 			epos->offset = sizeof(struct allocExtDesc);
1718 
1719 			if (epos->bh) {
1720 				aed = (struct allocExtDesc *)epos->bh->b_data;
1721 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1722 			} else {
1723 				iinfo->i_lenAlloc += adsize;
1724 				mark_inode_dirty(inode);
1725 			}
1726 		}
1727 		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1728 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1729 				    epos->block.logicalBlockNum, sizeof(struct tag));
1730 		else
1731 			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1732 				    epos->block.logicalBlockNum, sizeof(struct tag));
1733 		switch (iinfo->i_alloc_type) {
1734 		case ICBTAG_FLAG_AD_SHORT:
1735 			sad = (struct short_ad *)sptr;
1736 			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1737 						     inode->i_sb->s_blocksize);
1738 			sad->extPosition =
1739 				cpu_to_le32(epos->block.logicalBlockNum);
1740 			break;
1741 		case ICBTAG_FLAG_AD_LONG:
1742 			lad = (struct long_ad *)sptr;
1743 			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1744 						     inode->i_sb->s_blocksize);
1745 			lad->extLocation = cpu_to_lelb(epos->block);
1746 			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1747 			break;
1748 		}
1749 		if (epos->bh) {
1750 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1751 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1752 				udf_update_tag(epos->bh->b_data, loffset);
1753 			else
1754 				udf_update_tag(epos->bh->b_data,
1755 						sizeof(struct allocExtDesc));
1756 			mark_buffer_dirty_inode(epos->bh, inode);
1757 			brelse(epos->bh);
1758 		} else {
1759 			mark_inode_dirty(inode);
1760 		}
1761 		epos->bh = nbh;
1762 	}
1763 
1764 	etype = udf_write_aext(inode, epos, eloc, elen, inc);
1765 
1766 	if (!epos->bh) {
1767 		iinfo->i_lenAlloc += adsize;
1768 		mark_inode_dirty(inode);
1769 	} else {
1770 		aed = (struct allocExtDesc *)epos->bh->b_data;
1771 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1772 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1773 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1774 			udf_update_tag(epos->bh->b_data,
1775 					epos->offset + (inc ? 0 : adsize));
1776 		else
1777 			udf_update_tag(epos->bh->b_data,
1778 					sizeof(struct allocExtDesc));
1779 		mark_buffer_dirty_inode(epos->bh, inode);
1780 	}
1781 
1782 	return etype;
1783 }
1784 
1785 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1786 		      struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1787 {
1788 	int adsize;
1789 	uint8_t *ptr;
1790 	struct short_ad *sad;
1791 	struct long_ad *lad;
1792 	struct udf_inode_info *iinfo = UDF_I(inode);
1793 
1794 	if (!epos->bh)
1795 		ptr = iinfo->i_ext.i_data + epos->offset -
1796 			udf_file_entry_alloc_offset(inode) +
1797 			iinfo->i_lenEAttr;
1798 	else
1799 		ptr = epos->bh->b_data + epos->offset;
1800 
1801 	switch (iinfo->i_alloc_type) {
1802 	case ICBTAG_FLAG_AD_SHORT:
1803 		sad = (struct short_ad *)ptr;
1804 		sad->extLength = cpu_to_le32(elen);
1805 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1806 		adsize = sizeof(struct short_ad);
1807 		break;
1808 	case ICBTAG_FLAG_AD_LONG:
1809 		lad = (struct long_ad *)ptr;
1810 		lad->extLength = cpu_to_le32(elen);
1811 		lad->extLocation = cpu_to_lelb(*eloc);
1812 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
1813 		adsize = sizeof(struct long_ad);
1814 		break;
1815 	default:
1816 		return -1;
1817 	}
1818 
1819 	if (epos->bh) {
1820 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1821 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1822 			struct allocExtDesc *aed =
1823 				(struct allocExtDesc *)epos->bh->b_data;
1824 			udf_update_tag(epos->bh->b_data,
1825 				       le32_to_cpu(aed->lengthAllocDescs) +
1826 				       sizeof(struct allocExtDesc));
1827 		}
1828 		mark_buffer_dirty_inode(epos->bh, inode);
1829 	} else {
1830 		mark_inode_dirty(inode);
1831 	}
1832 
1833 	if (inc)
1834 		epos->offset += adsize;
1835 
1836 	return (elen >> 30);
1837 }
1838 
1839 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1840 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1841 {
1842 	int8_t etype;
1843 
1844 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1845 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1846 		int block;
1847 		epos->block = *eloc;
1848 		epos->offset = sizeof(struct allocExtDesc);
1849 		brelse(epos->bh);
1850 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1851 		epos->bh = udf_tread(inode->i_sb, block);
1852 		if (!epos->bh) {
1853 			udf_debug("reading block %d failed!\n", block);
1854 			return -1;
1855 		}
1856 	}
1857 
1858 	return etype;
1859 }
1860 
1861 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1862 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1863 {
1864 	int alen;
1865 	int8_t etype;
1866 	uint8_t *ptr;
1867 	struct short_ad *sad;
1868 	struct long_ad *lad;
1869 	struct udf_inode_info *iinfo = UDF_I(inode);
1870 
1871 	if (!epos->bh) {
1872 		if (!epos->offset)
1873 			epos->offset = udf_file_entry_alloc_offset(inode);
1874 		ptr = iinfo->i_ext.i_data + epos->offset -
1875 			udf_file_entry_alloc_offset(inode) +
1876 			iinfo->i_lenEAttr;
1877 		alen = udf_file_entry_alloc_offset(inode) +
1878 							iinfo->i_lenAlloc;
1879 	} else {
1880 		if (!epos->offset)
1881 			epos->offset = sizeof(struct allocExtDesc);
1882 		ptr = epos->bh->b_data + epos->offset;
1883 		alen = sizeof(struct allocExtDesc) +
1884 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1885 							lengthAllocDescs);
1886 	}
1887 
1888 	switch (iinfo->i_alloc_type) {
1889 	case ICBTAG_FLAG_AD_SHORT:
1890 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1891 		if (!sad)
1892 			return -1;
1893 		etype = le32_to_cpu(sad->extLength) >> 30;
1894 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1895 		eloc->partitionReferenceNum =
1896 				iinfo->i_location.partitionReferenceNum;
1897 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1898 		break;
1899 	case ICBTAG_FLAG_AD_LONG:
1900 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1901 		if (!lad)
1902 			return -1;
1903 		etype = le32_to_cpu(lad->extLength) >> 30;
1904 		*eloc = lelb_to_cpu(lad->extLocation);
1905 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1906 		break;
1907 	default:
1908 		udf_debug("alloc_type = %d unsupported\n",
1909 				iinfo->i_alloc_type);
1910 		return -1;
1911 	}
1912 
1913 	return etype;
1914 }
1915 
1916 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1917 			      struct kernel_lb_addr neloc, uint32_t nelen)
1918 {
1919 	struct kernel_lb_addr oeloc;
1920 	uint32_t oelen;
1921 	int8_t etype;
1922 
1923 	if (epos.bh)
1924 		get_bh(epos.bh);
1925 
1926 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1927 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
1928 		neloc = oeloc;
1929 		nelen = (etype << 30) | oelen;
1930 	}
1931 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
1932 	brelse(epos.bh);
1933 
1934 	return (nelen >> 30);
1935 }
1936 
1937 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1938 		       struct kernel_lb_addr eloc, uint32_t elen)
1939 {
1940 	struct extent_position oepos;
1941 	int adsize;
1942 	int8_t etype;
1943 	struct allocExtDesc *aed;
1944 	struct udf_inode_info *iinfo;
1945 
1946 	if (epos.bh) {
1947 		get_bh(epos.bh);
1948 		get_bh(epos.bh);
1949 	}
1950 
1951 	iinfo = UDF_I(inode);
1952 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1953 		adsize = sizeof(struct short_ad);
1954 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1955 		adsize = sizeof(struct long_ad);
1956 	else
1957 		adsize = 0;
1958 
1959 	oepos = epos;
1960 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1961 		return -1;
1962 
1963 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1964 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1965 		if (oepos.bh != epos.bh) {
1966 			oepos.block = epos.block;
1967 			brelse(oepos.bh);
1968 			get_bh(epos.bh);
1969 			oepos.bh = epos.bh;
1970 			oepos.offset = epos.offset - adsize;
1971 		}
1972 	}
1973 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1974 	elen = 0;
1975 
1976 	if (epos.bh != oepos.bh) {
1977 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1978 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1979 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1980 		if (!oepos.bh) {
1981 			iinfo->i_lenAlloc -= (adsize * 2);
1982 			mark_inode_dirty(inode);
1983 		} else {
1984 			aed = (struct allocExtDesc *)oepos.bh->b_data;
1985 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1986 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1987 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1988 				udf_update_tag(oepos.bh->b_data,
1989 						oepos.offset - (2 * adsize));
1990 			else
1991 				udf_update_tag(oepos.bh->b_data,
1992 						sizeof(struct allocExtDesc));
1993 			mark_buffer_dirty_inode(oepos.bh, inode);
1994 		}
1995 	} else {
1996 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
1997 		if (!oepos.bh) {
1998 			iinfo->i_lenAlloc -= adsize;
1999 			mark_inode_dirty(inode);
2000 		} else {
2001 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2002 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2003 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2004 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2005 				udf_update_tag(oepos.bh->b_data,
2006 						epos.offset - adsize);
2007 			else
2008 				udf_update_tag(oepos.bh->b_data,
2009 						sizeof(struct allocExtDesc));
2010 			mark_buffer_dirty_inode(oepos.bh, inode);
2011 		}
2012 	}
2013 
2014 	brelse(epos.bh);
2015 	brelse(oepos.bh);
2016 
2017 	return (elen >> 30);
2018 }
2019 
2020 int8_t inode_bmap(struct inode *inode, sector_t block,
2021 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2022 		  uint32_t *elen, sector_t *offset)
2023 {
2024 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2025 	loff_t lbcount = 0, bcount =
2026 	    (loff_t) block << blocksize_bits;
2027 	int8_t etype;
2028 	struct udf_inode_info *iinfo;
2029 
2030 	iinfo = UDF_I(inode);
2031 	pos->offset = 0;
2032 	pos->block = iinfo->i_location;
2033 	pos->bh = NULL;
2034 	*elen = 0;
2035 
2036 	do {
2037 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2038 		if (etype == -1) {
2039 			*offset = (bcount - lbcount) >> blocksize_bits;
2040 			iinfo->i_lenExtents = lbcount;
2041 			return -1;
2042 		}
2043 		lbcount += *elen;
2044 	} while (lbcount <= bcount);
2045 
2046 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2047 
2048 	return etype;
2049 }
2050 
2051 long udf_block_map(struct inode *inode, sector_t block)
2052 {
2053 	struct kernel_lb_addr eloc;
2054 	uint32_t elen;
2055 	sector_t offset;
2056 	struct extent_position epos = {};
2057 	int ret;
2058 
2059 	lock_kernel();
2060 
2061 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2062 						(EXT_RECORDED_ALLOCATED >> 30))
2063 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2064 	else
2065 		ret = 0;
2066 
2067 	unlock_kernel();
2068 	brelse(epos.bh);
2069 
2070 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2071 		return udf_fixed_to_variable(ret);
2072 	else
2073 		return ret;
2074 }
2075