1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/smp_lock.h> 35 #include <linux/module.h> 36 #include <linux/pagemap.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/quotaops.h> 40 #include <linux/slab.h> 41 #include <linux/crc-itu-t.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 MODULE_AUTHOR("Ben Fennema"); 47 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 48 MODULE_LICENSE("GPL"); 49 50 #define EXTENT_MERGE_SIZE 5 51 52 static mode_t udf_convert_permissions(struct fileEntry *); 53 static int udf_update_inode(struct inode *, int); 54 static void udf_fill_inode(struct inode *, struct buffer_head *); 55 static int udf_alloc_i_data(struct inode *inode, size_t size); 56 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, 57 sector_t *, int *); 58 static int8_t udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, int, 61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 64 static void udf_merge_extents(struct inode *, 65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 66 static void udf_update_extents(struct inode *, 67 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 68 struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 72 void udf_delete_inode(struct inode *inode) 73 { 74 if (!is_bad_inode(inode)) 75 dquot_initialize(inode); 76 77 truncate_inode_pages(&inode->i_data, 0); 78 79 if (is_bad_inode(inode)) 80 goto no_delete; 81 82 inode->i_size = 0; 83 udf_truncate(inode); 84 lock_kernel(); 85 86 udf_update_inode(inode, IS_SYNC(inode)); 87 udf_free_inode(inode); 88 89 unlock_kernel(); 90 return; 91 92 no_delete: 93 clear_inode(inode); 94 } 95 96 /* 97 * If we are going to release inode from memory, we truncate last inode extent 98 * to proper length. We could use drop_inode() but it's called under inode_lock 99 * and thus we cannot mark inode dirty there. We use clear_inode() but we have 100 * to make sure to write inode as it's not written automatically. 101 */ 102 void udf_clear_inode(struct inode *inode) 103 { 104 struct udf_inode_info *iinfo = UDF_I(inode); 105 106 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 107 inode->i_size != iinfo->i_lenExtents) { 108 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has " 109 "inode size %llu different from extent length %llu. " 110 "Filesystem need not be standards compliant.\n", 111 inode->i_sb->s_id, inode->i_ino, inode->i_mode, 112 (unsigned long long)inode->i_size, 113 (unsigned long long)iinfo->i_lenExtents); 114 } 115 116 dquot_drop(inode); 117 kfree(iinfo->i_ext.i_data); 118 iinfo->i_ext.i_data = NULL; 119 } 120 121 static int udf_writepage(struct page *page, struct writeback_control *wbc) 122 { 123 return block_write_full_page(page, udf_get_block, wbc); 124 } 125 126 static int udf_readpage(struct file *file, struct page *page) 127 { 128 return block_read_full_page(page, udf_get_block); 129 } 130 131 static int udf_write_begin(struct file *file, struct address_space *mapping, 132 loff_t pos, unsigned len, unsigned flags, 133 struct page **pagep, void **fsdata) 134 { 135 *pagep = NULL; 136 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 137 udf_get_block); 138 } 139 140 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 141 { 142 return generic_block_bmap(mapping, block, udf_get_block); 143 } 144 145 const struct address_space_operations udf_aops = { 146 .readpage = udf_readpage, 147 .writepage = udf_writepage, 148 .sync_page = block_sync_page, 149 .write_begin = udf_write_begin, 150 .write_end = generic_write_end, 151 .bmap = udf_bmap, 152 }; 153 154 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) 155 { 156 struct page *page; 157 char *kaddr; 158 struct udf_inode_info *iinfo = UDF_I(inode); 159 struct writeback_control udf_wbc = { 160 .sync_mode = WB_SYNC_NONE, 161 .nr_to_write = 1, 162 }; 163 164 /* from now on we have normal address_space methods */ 165 inode->i_data.a_ops = &udf_aops; 166 167 if (!iinfo->i_lenAlloc) { 168 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 169 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 170 else 171 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 172 mark_inode_dirty(inode); 173 return; 174 } 175 176 page = grab_cache_page(inode->i_mapping, 0); 177 BUG_ON(!PageLocked(page)); 178 179 if (!PageUptodate(page)) { 180 kaddr = kmap(page); 181 memset(kaddr + iinfo->i_lenAlloc, 0x00, 182 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 183 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 184 iinfo->i_lenAlloc); 185 flush_dcache_page(page); 186 SetPageUptodate(page); 187 kunmap(page); 188 } 189 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 190 iinfo->i_lenAlloc); 191 iinfo->i_lenAlloc = 0; 192 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 193 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 194 else 195 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 196 197 inode->i_data.a_ops->writepage(page, &udf_wbc); 198 page_cache_release(page); 199 200 mark_inode_dirty(inode); 201 } 202 203 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 204 int *err) 205 { 206 int newblock; 207 struct buffer_head *dbh = NULL; 208 struct kernel_lb_addr eloc; 209 uint8_t alloctype; 210 struct extent_position epos; 211 212 struct udf_fileident_bh sfibh, dfibh; 213 loff_t f_pos = udf_ext0_offset(inode); 214 int size = udf_ext0_offset(inode) + inode->i_size; 215 struct fileIdentDesc cfi, *sfi, *dfi; 216 struct udf_inode_info *iinfo = UDF_I(inode); 217 218 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 219 alloctype = ICBTAG_FLAG_AD_SHORT; 220 else 221 alloctype = ICBTAG_FLAG_AD_LONG; 222 223 if (!inode->i_size) { 224 iinfo->i_alloc_type = alloctype; 225 mark_inode_dirty(inode); 226 return NULL; 227 } 228 229 /* alloc block, and copy data to it */ 230 *block = udf_new_block(inode->i_sb, inode, 231 iinfo->i_location.partitionReferenceNum, 232 iinfo->i_location.logicalBlockNum, err); 233 if (!(*block)) 234 return NULL; 235 newblock = udf_get_pblock(inode->i_sb, *block, 236 iinfo->i_location.partitionReferenceNum, 237 0); 238 if (!newblock) 239 return NULL; 240 dbh = udf_tgetblk(inode->i_sb, newblock); 241 if (!dbh) 242 return NULL; 243 lock_buffer(dbh); 244 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 245 set_buffer_uptodate(dbh); 246 unlock_buffer(dbh); 247 mark_buffer_dirty_inode(dbh, inode); 248 249 sfibh.soffset = sfibh.eoffset = 250 f_pos & (inode->i_sb->s_blocksize - 1); 251 sfibh.sbh = sfibh.ebh = NULL; 252 dfibh.soffset = dfibh.eoffset = 0; 253 dfibh.sbh = dfibh.ebh = dbh; 254 while (f_pos < size) { 255 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 256 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 257 NULL, NULL, NULL); 258 if (!sfi) { 259 brelse(dbh); 260 return NULL; 261 } 262 iinfo->i_alloc_type = alloctype; 263 sfi->descTag.tagLocation = cpu_to_le32(*block); 264 dfibh.soffset = dfibh.eoffset; 265 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 266 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 267 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 268 sfi->fileIdent + 269 le16_to_cpu(sfi->lengthOfImpUse))) { 270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 271 brelse(dbh); 272 return NULL; 273 } 274 } 275 mark_buffer_dirty_inode(dbh, inode); 276 277 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 278 iinfo->i_lenAlloc); 279 iinfo->i_lenAlloc = 0; 280 eloc.logicalBlockNum = *block; 281 eloc.partitionReferenceNum = 282 iinfo->i_location.partitionReferenceNum; 283 iinfo->i_lenExtents = inode->i_size; 284 epos.bh = NULL; 285 epos.block = iinfo->i_location; 286 epos.offset = udf_file_entry_alloc_offset(inode); 287 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 288 /* UniqueID stuff */ 289 290 brelse(epos.bh); 291 mark_inode_dirty(inode); 292 return dbh; 293 } 294 295 static int udf_get_block(struct inode *inode, sector_t block, 296 struct buffer_head *bh_result, int create) 297 { 298 int err, new; 299 struct buffer_head *bh; 300 sector_t phys = 0; 301 struct udf_inode_info *iinfo; 302 303 if (!create) { 304 phys = udf_block_map(inode, block); 305 if (phys) 306 map_bh(bh_result, inode->i_sb, phys); 307 return 0; 308 } 309 310 err = -EIO; 311 new = 0; 312 bh = NULL; 313 314 lock_kernel(); 315 316 iinfo = UDF_I(inode); 317 if (block == iinfo->i_next_alloc_block + 1) { 318 iinfo->i_next_alloc_block++; 319 iinfo->i_next_alloc_goal++; 320 } 321 322 err = 0; 323 324 bh = inode_getblk(inode, block, &err, &phys, &new); 325 BUG_ON(bh); 326 if (err) 327 goto abort; 328 BUG_ON(!phys); 329 330 if (new) 331 set_buffer_new(bh_result); 332 map_bh(bh_result, inode->i_sb, phys); 333 334 abort: 335 unlock_kernel(); 336 return err; 337 } 338 339 static struct buffer_head *udf_getblk(struct inode *inode, long block, 340 int create, int *err) 341 { 342 struct buffer_head *bh; 343 struct buffer_head dummy; 344 345 dummy.b_state = 0; 346 dummy.b_blocknr = -1000; 347 *err = udf_get_block(inode, block, &dummy, create); 348 if (!*err && buffer_mapped(&dummy)) { 349 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 350 if (buffer_new(&dummy)) { 351 lock_buffer(bh); 352 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 353 set_buffer_uptodate(bh); 354 unlock_buffer(bh); 355 mark_buffer_dirty_inode(bh, inode); 356 } 357 return bh; 358 } 359 360 return NULL; 361 } 362 363 /* Extend the file by 'blocks' blocks, return the number of extents added */ 364 int udf_extend_file(struct inode *inode, struct extent_position *last_pos, 365 struct kernel_long_ad *last_ext, sector_t blocks) 366 { 367 sector_t add; 368 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 369 struct super_block *sb = inode->i_sb; 370 struct kernel_lb_addr prealloc_loc = {}; 371 int prealloc_len = 0; 372 struct udf_inode_info *iinfo; 373 374 /* The previous extent is fake and we should not extend by anything 375 * - there's nothing to do... */ 376 if (!blocks && fake) 377 return 0; 378 379 iinfo = UDF_I(inode); 380 /* Round the last extent up to a multiple of block size */ 381 if (last_ext->extLength & (sb->s_blocksize - 1)) { 382 last_ext->extLength = 383 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 384 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 385 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 386 iinfo->i_lenExtents = 387 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 388 ~(sb->s_blocksize - 1); 389 } 390 391 /* Last extent are just preallocated blocks? */ 392 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 393 EXT_NOT_RECORDED_ALLOCATED) { 394 /* Save the extent so that we can reattach it to the end */ 395 prealloc_loc = last_ext->extLocation; 396 prealloc_len = last_ext->extLength; 397 /* Mark the extent as a hole */ 398 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 399 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 400 last_ext->extLocation.logicalBlockNum = 0; 401 last_ext->extLocation.partitionReferenceNum = 0; 402 } 403 404 /* Can we merge with the previous extent? */ 405 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 406 EXT_NOT_RECORDED_NOT_ALLOCATED) { 407 add = ((1 << 30) - sb->s_blocksize - 408 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 409 sb->s_blocksize_bits; 410 if (add > blocks) 411 add = blocks; 412 blocks -= add; 413 last_ext->extLength += add << sb->s_blocksize_bits; 414 } 415 416 if (fake) { 417 udf_add_aext(inode, last_pos, &last_ext->extLocation, 418 last_ext->extLength, 1); 419 count++; 420 } else 421 udf_write_aext(inode, last_pos, &last_ext->extLocation, 422 last_ext->extLength, 1); 423 424 /* Managed to do everything necessary? */ 425 if (!blocks) 426 goto out; 427 428 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 429 last_ext->extLocation.logicalBlockNum = 0; 430 last_ext->extLocation.partitionReferenceNum = 0; 431 add = (1 << (30-sb->s_blocksize_bits)) - 1; 432 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 433 (add << sb->s_blocksize_bits); 434 435 /* Create enough extents to cover the whole hole */ 436 while (blocks > add) { 437 blocks -= add; 438 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 439 last_ext->extLength, 1) == -1) 440 return -1; 441 count++; 442 } 443 if (blocks) { 444 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 445 (blocks << sb->s_blocksize_bits); 446 if (udf_add_aext(inode, last_pos, &last_ext->extLocation, 447 last_ext->extLength, 1) == -1) 448 return -1; 449 count++; 450 } 451 452 out: 453 /* Do we have some preallocated blocks saved? */ 454 if (prealloc_len) { 455 if (udf_add_aext(inode, last_pos, &prealloc_loc, 456 prealloc_len, 1) == -1) 457 return -1; 458 last_ext->extLocation = prealloc_loc; 459 last_ext->extLength = prealloc_len; 460 count++; 461 } 462 463 /* last_pos should point to the last written extent... */ 464 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 465 last_pos->offset -= sizeof(struct short_ad); 466 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 467 last_pos->offset -= sizeof(struct long_ad); 468 else 469 return -1; 470 471 return count; 472 } 473 474 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, 475 int *err, sector_t *phys, int *new) 476 { 477 static sector_t last_block; 478 struct buffer_head *result = NULL; 479 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 480 struct extent_position prev_epos, cur_epos, next_epos; 481 int count = 0, startnum = 0, endnum = 0; 482 uint32_t elen = 0, tmpelen; 483 struct kernel_lb_addr eloc, tmpeloc; 484 int c = 1; 485 loff_t lbcount = 0, b_off = 0; 486 uint32_t newblocknum, newblock; 487 sector_t offset = 0; 488 int8_t etype; 489 struct udf_inode_info *iinfo = UDF_I(inode); 490 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 491 int lastblock = 0; 492 493 prev_epos.offset = udf_file_entry_alloc_offset(inode); 494 prev_epos.block = iinfo->i_location; 495 prev_epos.bh = NULL; 496 cur_epos = next_epos = prev_epos; 497 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 498 499 /* find the extent which contains the block we are looking for. 500 alternate between laarr[0] and laarr[1] for locations of the 501 current extent, and the previous extent */ 502 do { 503 if (prev_epos.bh != cur_epos.bh) { 504 brelse(prev_epos.bh); 505 get_bh(cur_epos.bh); 506 prev_epos.bh = cur_epos.bh; 507 } 508 if (cur_epos.bh != next_epos.bh) { 509 brelse(cur_epos.bh); 510 get_bh(next_epos.bh); 511 cur_epos.bh = next_epos.bh; 512 } 513 514 lbcount += elen; 515 516 prev_epos.block = cur_epos.block; 517 cur_epos.block = next_epos.block; 518 519 prev_epos.offset = cur_epos.offset; 520 cur_epos.offset = next_epos.offset; 521 522 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 523 if (etype == -1) 524 break; 525 526 c = !c; 527 528 laarr[c].extLength = (etype << 30) | elen; 529 laarr[c].extLocation = eloc; 530 531 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 532 pgoal = eloc.logicalBlockNum + 533 ((elen + inode->i_sb->s_blocksize - 1) >> 534 inode->i_sb->s_blocksize_bits); 535 536 count++; 537 } while (lbcount + elen <= b_off); 538 539 b_off -= lbcount; 540 offset = b_off >> inode->i_sb->s_blocksize_bits; 541 /* 542 * Move prev_epos and cur_epos into indirect extent if we are at 543 * the pointer to it 544 */ 545 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 546 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 547 548 /* if the extent is allocated and recorded, return the block 549 if the extent is not a multiple of the blocksize, round up */ 550 551 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 552 if (elen & (inode->i_sb->s_blocksize - 1)) { 553 elen = EXT_RECORDED_ALLOCATED | 554 ((elen + inode->i_sb->s_blocksize - 1) & 555 ~(inode->i_sb->s_blocksize - 1)); 556 etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 557 } 558 brelse(prev_epos.bh); 559 brelse(cur_epos.bh); 560 brelse(next_epos.bh); 561 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 562 *phys = newblock; 563 return NULL; 564 } 565 566 last_block = block; 567 /* Are we beyond EOF? */ 568 if (etype == -1) { 569 int ret; 570 571 if (count) { 572 if (c) 573 laarr[0] = laarr[1]; 574 startnum = 1; 575 } else { 576 /* Create a fake extent when there's not one */ 577 memset(&laarr[0].extLocation, 0x00, 578 sizeof(struct kernel_lb_addr)); 579 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 580 /* Will udf_extend_file() create real extent from 581 a fake one? */ 582 startnum = (offset > 0); 583 } 584 /* Create extents for the hole between EOF and offset */ 585 ret = udf_extend_file(inode, &prev_epos, laarr, offset); 586 if (ret == -1) { 587 brelse(prev_epos.bh); 588 brelse(cur_epos.bh); 589 brelse(next_epos.bh); 590 /* We don't really know the error here so we just make 591 * something up */ 592 *err = -ENOSPC; 593 return NULL; 594 } 595 c = 0; 596 offset = 0; 597 count += ret; 598 /* We are not covered by a preallocated extent? */ 599 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 600 EXT_NOT_RECORDED_ALLOCATED) { 601 /* Is there any real extent? - otherwise we overwrite 602 * the fake one... */ 603 if (count) 604 c = !c; 605 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 606 inode->i_sb->s_blocksize; 607 memset(&laarr[c].extLocation, 0x00, 608 sizeof(struct kernel_lb_addr)); 609 count++; 610 endnum++; 611 } 612 endnum = c + 1; 613 lastblock = 1; 614 } else { 615 endnum = startnum = ((count > 2) ? 2 : count); 616 617 /* if the current extent is in position 0, 618 swap it with the previous */ 619 if (!c && count != 1) { 620 laarr[2] = laarr[0]; 621 laarr[0] = laarr[1]; 622 laarr[1] = laarr[2]; 623 c = 1; 624 } 625 626 /* if the current block is located in an extent, 627 read the next extent */ 628 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 629 if (etype != -1) { 630 laarr[c + 1].extLength = (etype << 30) | elen; 631 laarr[c + 1].extLocation = eloc; 632 count++; 633 startnum++; 634 endnum++; 635 } else 636 lastblock = 1; 637 } 638 639 /* if the current extent is not recorded but allocated, get the 640 * block in the extent corresponding to the requested block */ 641 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 642 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 643 else { /* otherwise, allocate a new block */ 644 if (iinfo->i_next_alloc_block == block) 645 goal = iinfo->i_next_alloc_goal; 646 647 if (!goal) { 648 if (!(goal = pgoal)) /* XXX: what was intended here? */ 649 goal = iinfo->i_location.logicalBlockNum + 1; 650 } 651 652 newblocknum = udf_new_block(inode->i_sb, inode, 653 iinfo->i_location.partitionReferenceNum, 654 goal, err); 655 if (!newblocknum) { 656 brelse(prev_epos.bh); 657 *err = -ENOSPC; 658 return NULL; 659 } 660 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 661 } 662 663 /* if the extent the requsted block is located in contains multiple 664 * blocks, split the extent into at most three extents. blocks prior 665 * to requested block, requested block, and blocks after requested 666 * block */ 667 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 668 669 #ifdef UDF_PREALLOCATE 670 /* We preallocate blocks only for regular files. It also makes sense 671 * for directories but there's a problem when to drop the 672 * preallocation. We might use some delayed work for that but I feel 673 * it's overengineering for a filesystem like UDF. */ 674 if (S_ISREG(inode->i_mode)) 675 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 676 #endif 677 678 /* merge any continuous blocks in laarr */ 679 udf_merge_extents(inode, laarr, &endnum); 680 681 /* write back the new extents, inserting new extents if the new number 682 * of extents is greater than the old number, and deleting extents if 683 * the new number of extents is less than the old number */ 684 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 685 686 brelse(prev_epos.bh); 687 688 newblock = udf_get_pblock(inode->i_sb, newblocknum, 689 iinfo->i_location.partitionReferenceNum, 0); 690 if (!newblock) 691 return NULL; 692 *phys = newblock; 693 *err = 0; 694 *new = 1; 695 iinfo->i_next_alloc_block = block; 696 iinfo->i_next_alloc_goal = newblocknum; 697 inode->i_ctime = current_fs_time(inode->i_sb); 698 699 if (IS_SYNC(inode)) 700 udf_sync_inode(inode); 701 else 702 mark_inode_dirty(inode); 703 704 return result; 705 } 706 707 static void udf_split_extents(struct inode *inode, int *c, int offset, 708 int newblocknum, 709 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 710 int *endnum) 711 { 712 unsigned long blocksize = inode->i_sb->s_blocksize; 713 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 714 715 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 716 (laarr[*c].extLength >> 30) == 717 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 718 int curr = *c; 719 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 720 blocksize - 1) >> blocksize_bits; 721 int8_t etype = (laarr[curr].extLength >> 30); 722 723 if (blen == 1) 724 ; 725 else if (!offset || blen == offset + 1) { 726 laarr[curr + 2] = laarr[curr + 1]; 727 laarr[curr + 1] = laarr[curr]; 728 } else { 729 laarr[curr + 3] = laarr[curr + 1]; 730 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 731 } 732 733 if (offset) { 734 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 735 udf_free_blocks(inode->i_sb, inode, 736 &laarr[curr].extLocation, 737 0, offset); 738 laarr[curr].extLength = 739 EXT_NOT_RECORDED_NOT_ALLOCATED | 740 (offset << blocksize_bits); 741 laarr[curr].extLocation.logicalBlockNum = 0; 742 laarr[curr].extLocation. 743 partitionReferenceNum = 0; 744 } else 745 laarr[curr].extLength = (etype << 30) | 746 (offset << blocksize_bits); 747 curr++; 748 (*c)++; 749 (*endnum)++; 750 } 751 752 laarr[curr].extLocation.logicalBlockNum = newblocknum; 753 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 754 laarr[curr].extLocation.partitionReferenceNum = 755 UDF_I(inode)->i_location.partitionReferenceNum; 756 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 757 blocksize; 758 curr++; 759 760 if (blen != offset + 1) { 761 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 762 laarr[curr].extLocation.logicalBlockNum += 763 offset + 1; 764 laarr[curr].extLength = (etype << 30) | 765 ((blen - (offset + 1)) << blocksize_bits); 766 curr++; 767 (*endnum)++; 768 } 769 } 770 } 771 772 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 773 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 774 int *endnum) 775 { 776 int start, length = 0, currlength = 0, i; 777 778 if (*endnum >= (c + 1)) { 779 if (!lastblock) 780 return; 781 else 782 start = c; 783 } else { 784 if ((laarr[c + 1].extLength >> 30) == 785 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 786 start = c + 1; 787 length = currlength = 788 (((laarr[c + 1].extLength & 789 UDF_EXTENT_LENGTH_MASK) + 790 inode->i_sb->s_blocksize - 1) >> 791 inode->i_sb->s_blocksize_bits); 792 } else 793 start = c; 794 } 795 796 for (i = start + 1; i <= *endnum; i++) { 797 if (i == *endnum) { 798 if (lastblock) 799 length += UDF_DEFAULT_PREALLOC_BLOCKS; 800 } else if ((laarr[i].extLength >> 30) == 801 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 802 length += (((laarr[i].extLength & 803 UDF_EXTENT_LENGTH_MASK) + 804 inode->i_sb->s_blocksize - 1) >> 805 inode->i_sb->s_blocksize_bits); 806 } else 807 break; 808 } 809 810 if (length) { 811 int next = laarr[start].extLocation.logicalBlockNum + 812 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 813 inode->i_sb->s_blocksize - 1) >> 814 inode->i_sb->s_blocksize_bits); 815 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 816 laarr[start].extLocation.partitionReferenceNum, 817 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 818 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 819 currlength); 820 if (numalloc) { 821 if (start == (c + 1)) 822 laarr[start].extLength += 823 (numalloc << 824 inode->i_sb->s_blocksize_bits); 825 else { 826 memmove(&laarr[c + 2], &laarr[c + 1], 827 sizeof(struct long_ad) * (*endnum - (c + 1))); 828 (*endnum)++; 829 laarr[c + 1].extLocation.logicalBlockNum = next; 830 laarr[c + 1].extLocation.partitionReferenceNum = 831 laarr[c].extLocation. 832 partitionReferenceNum; 833 laarr[c + 1].extLength = 834 EXT_NOT_RECORDED_ALLOCATED | 835 (numalloc << 836 inode->i_sb->s_blocksize_bits); 837 start = c + 1; 838 } 839 840 for (i = start + 1; numalloc && i < *endnum; i++) { 841 int elen = ((laarr[i].extLength & 842 UDF_EXTENT_LENGTH_MASK) + 843 inode->i_sb->s_blocksize - 1) >> 844 inode->i_sb->s_blocksize_bits; 845 846 if (elen > numalloc) { 847 laarr[i].extLength -= 848 (numalloc << 849 inode->i_sb->s_blocksize_bits); 850 numalloc = 0; 851 } else { 852 numalloc -= elen; 853 if (*endnum > (i + 1)) 854 memmove(&laarr[i], 855 &laarr[i + 1], 856 sizeof(struct long_ad) * 857 (*endnum - (i + 1))); 858 i--; 859 (*endnum)--; 860 } 861 } 862 UDF_I(inode)->i_lenExtents += 863 numalloc << inode->i_sb->s_blocksize_bits; 864 } 865 } 866 } 867 868 static void udf_merge_extents(struct inode *inode, 869 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 870 int *endnum) 871 { 872 int i; 873 unsigned long blocksize = inode->i_sb->s_blocksize; 874 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 875 876 for (i = 0; i < (*endnum - 1); i++) { 877 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 878 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 879 880 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 881 (((li->extLength >> 30) == 882 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 883 ((lip1->extLocation.logicalBlockNum - 884 li->extLocation.logicalBlockNum) == 885 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 886 blocksize - 1) >> blocksize_bits)))) { 887 888 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 889 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 890 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 891 lip1->extLength = (lip1->extLength - 892 (li->extLength & 893 UDF_EXTENT_LENGTH_MASK) + 894 UDF_EXTENT_LENGTH_MASK) & 895 ~(blocksize - 1); 896 li->extLength = (li->extLength & 897 UDF_EXTENT_FLAG_MASK) + 898 (UDF_EXTENT_LENGTH_MASK + 1) - 899 blocksize; 900 lip1->extLocation.logicalBlockNum = 901 li->extLocation.logicalBlockNum + 902 ((li->extLength & 903 UDF_EXTENT_LENGTH_MASK) >> 904 blocksize_bits); 905 } else { 906 li->extLength = lip1->extLength + 907 (((li->extLength & 908 UDF_EXTENT_LENGTH_MASK) + 909 blocksize - 1) & ~(blocksize - 1)); 910 if (*endnum > (i + 2)) 911 memmove(&laarr[i + 1], &laarr[i + 2], 912 sizeof(struct long_ad) * 913 (*endnum - (i + 2))); 914 i--; 915 (*endnum)--; 916 } 917 } else if (((li->extLength >> 30) == 918 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 919 ((lip1->extLength >> 30) == 920 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 921 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 922 ((li->extLength & 923 UDF_EXTENT_LENGTH_MASK) + 924 blocksize - 1) >> blocksize_bits); 925 li->extLocation.logicalBlockNum = 0; 926 li->extLocation.partitionReferenceNum = 0; 927 928 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 929 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 930 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 931 lip1->extLength = (lip1->extLength - 932 (li->extLength & 933 UDF_EXTENT_LENGTH_MASK) + 934 UDF_EXTENT_LENGTH_MASK) & 935 ~(blocksize - 1); 936 li->extLength = (li->extLength & 937 UDF_EXTENT_FLAG_MASK) + 938 (UDF_EXTENT_LENGTH_MASK + 1) - 939 blocksize; 940 } else { 941 li->extLength = lip1->extLength + 942 (((li->extLength & 943 UDF_EXTENT_LENGTH_MASK) + 944 blocksize - 1) & ~(blocksize - 1)); 945 if (*endnum > (i + 2)) 946 memmove(&laarr[i + 1], &laarr[i + 2], 947 sizeof(struct long_ad) * 948 (*endnum - (i + 2))); 949 i--; 950 (*endnum)--; 951 } 952 } else if ((li->extLength >> 30) == 953 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 954 udf_free_blocks(inode->i_sb, inode, 955 &li->extLocation, 0, 956 ((li->extLength & 957 UDF_EXTENT_LENGTH_MASK) + 958 blocksize - 1) >> blocksize_bits); 959 li->extLocation.logicalBlockNum = 0; 960 li->extLocation.partitionReferenceNum = 0; 961 li->extLength = (li->extLength & 962 UDF_EXTENT_LENGTH_MASK) | 963 EXT_NOT_RECORDED_NOT_ALLOCATED; 964 } 965 } 966 } 967 968 static void udf_update_extents(struct inode *inode, 969 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 970 int startnum, int endnum, 971 struct extent_position *epos) 972 { 973 int start = 0, i; 974 struct kernel_lb_addr tmploc; 975 uint32_t tmplen; 976 977 if (startnum > endnum) { 978 for (i = 0; i < (startnum - endnum); i++) 979 udf_delete_aext(inode, *epos, laarr[i].extLocation, 980 laarr[i].extLength); 981 } else if (startnum < endnum) { 982 for (i = 0; i < (endnum - startnum); i++) { 983 udf_insert_aext(inode, *epos, laarr[i].extLocation, 984 laarr[i].extLength); 985 udf_next_aext(inode, epos, &laarr[i].extLocation, 986 &laarr[i].extLength, 1); 987 start++; 988 } 989 } 990 991 for (i = start; i < endnum; i++) { 992 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 993 udf_write_aext(inode, epos, &laarr[i].extLocation, 994 laarr[i].extLength, 1); 995 } 996 } 997 998 struct buffer_head *udf_bread(struct inode *inode, int block, 999 int create, int *err) 1000 { 1001 struct buffer_head *bh = NULL; 1002 1003 bh = udf_getblk(inode, block, create, err); 1004 if (!bh) 1005 return NULL; 1006 1007 if (buffer_uptodate(bh)) 1008 return bh; 1009 1010 ll_rw_block(READ, 1, &bh); 1011 1012 wait_on_buffer(bh); 1013 if (buffer_uptodate(bh)) 1014 return bh; 1015 1016 brelse(bh); 1017 *err = -EIO; 1018 return NULL; 1019 } 1020 1021 void udf_truncate(struct inode *inode) 1022 { 1023 int offset; 1024 int err; 1025 struct udf_inode_info *iinfo; 1026 1027 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1028 S_ISLNK(inode->i_mode))) 1029 return; 1030 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1031 return; 1032 1033 lock_kernel(); 1034 iinfo = UDF_I(inode); 1035 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1036 if (inode->i_sb->s_blocksize < 1037 (udf_file_entry_alloc_offset(inode) + 1038 inode->i_size)) { 1039 udf_expand_file_adinicb(inode, inode->i_size, &err); 1040 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1041 inode->i_size = iinfo->i_lenAlloc; 1042 unlock_kernel(); 1043 return; 1044 } else 1045 udf_truncate_extents(inode); 1046 } else { 1047 offset = inode->i_size & (inode->i_sb->s_blocksize - 1); 1048 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 1049 0x00, inode->i_sb->s_blocksize - 1050 offset - udf_file_entry_alloc_offset(inode)); 1051 iinfo->i_lenAlloc = inode->i_size; 1052 } 1053 } else { 1054 block_truncate_page(inode->i_mapping, inode->i_size, 1055 udf_get_block); 1056 udf_truncate_extents(inode); 1057 } 1058 1059 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1060 if (IS_SYNC(inode)) 1061 udf_sync_inode(inode); 1062 else 1063 mark_inode_dirty(inode); 1064 unlock_kernel(); 1065 } 1066 1067 static void __udf_read_inode(struct inode *inode) 1068 { 1069 struct buffer_head *bh = NULL; 1070 struct fileEntry *fe; 1071 uint16_t ident; 1072 struct udf_inode_info *iinfo = UDF_I(inode); 1073 1074 /* 1075 * Set defaults, but the inode is still incomplete! 1076 * Note: get_new_inode() sets the following on a new inode: 1077 * i_sb = sb 1078 * i_no = ino 1079 * i_flags = sb->s_flags 1080 * i_state = 0 1081 * clean_inode(): zero fills and sets 1082 * i_count = 1 1083 * i_nlink = 1 1084 * i_op = NULL; 1085 */ 1086 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1087 if (!bh) { 1088 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", 1089 inode->i_ino); 1090 make_bad_inode(inode); 1091 return; 1092 } 1093 1094 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1095 ident != TAG_IDENT_USE) { 1096 printk(KERN_ERR "udf: udf_read_inode(ino %ld) " 1097 "failed ident=%d\n", inode->i_ino, ident); 1098 brelse(bh); 1099 make_bad_inode(inode); 1100 return; 1101 } 1102 1103 fe = (struct fileEntry *)bh->b_data; 1104 1105 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1106 struct buffer_head *ibh; 1107 1108 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1109 &ident); 1110 if (ident == TAG_IDENT_IE && ibh) { 1111 struct buffer_head *nbh = NULL; 1112 struct kernel_lb_addr loc; 1113 struct indirectEntry *ie; 1114 1115 ie = (struct indirectEntry *)ibh->b_data; 1116 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1117 1118 if (ie->indirectICB.extLength && 1119 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1120 &ident))) { 1121 if (ident == TAG_IDENT_FE || 1122 ident == TAG_IDENT_EFE) { 1123 memcpy(&iinfo->i_location, 1124 &loc, 1125 sizeof(struct kernel_lb_addr)); 1126 brelse(bh); 1127 brelse(ibh); 1128 brelse(nbh); 1129 __udf_read_inode(inode); 1130 return; 1131 } 1132 brelse(nbh); 1133 } 1134 } 1135 brelse(ibh); 1136 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1137 printk(KERN_ERR "udf: unsupported strategy type: %d\n", 1138 le16_to_cpu(fe->icbTag.strategyType)); 1139 brelse(bh); 1140 make_bad_inode(inode); 1141 return; 1142 } 1143 udf_fill_inode(inode, bh); 1144 1145 brelse(bh); 1146 } 1147 1148 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1149 { 1150 struct fileEntry *fe; 1151 struct extendedFileEntry *efe; 1152 int offset; 1153 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1154 struct udf_inode_info *iinfo = UDF_I(inode); 1155 1156 fe = (struct fileEntry *)bh->b_data; 1157 efe = (struct extendedFileEntry *)bh->b_data; 1158 1159 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1160 iinfo->i_strat4096 = 0; 1161 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1162 iinfo->i_strat4096 = 1; 1163 1164 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1165 ICBTAG_FLAG_AD_MASK; 1166 iinfo->i_unique = 0; 1167 iinfo->i_lenEAttr = 0; 1168 iinfo->i_lenExtents = 0; 1169 iinfo->i_lenAlloc = 0; 1170 iinfo->i_next_alloc_block = 0; 1171 iinfo->i_next_alloc_goal = 0; 1172 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1173 iinfo->i_efe = 1; 1174 iinfo->i_use = 0; 1175 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1176 sizeof(struct extendedFileEntry))) { 1177 make_bad_inode(inode); 1178 return; 1179 } 1180 memcpy(iinfo->i_ext.i_data, 1181 bh->b_data + sizeof(struct extendedFileEntry), 1182 inode->i_sb->s_blocksize - 1183 sizeof(struct extendedFileEntry)); 1184 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1185 iinfo->i_efe = 0; 1186 iinfo->i_use = 0; 1187 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1188 sizeof(struct fileEntry))) { 1189 make_bad_inode(inode); 1190 return; 1191 } 1192 memcpy(iinfo->i_ext.i_data, 1193 bh->b_data + sizeof(struct fileEntry), 1194 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1195 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1196 iinfo->i_efe = 0; 1197 iinfo->i_use = 1; 1198 iinfo->i_lenAlloc = le32_to_cpu( 1199 ((struct unallocSpaceEntry *)bh->b_data)-> 1200 lengthAllocDescs); 1201 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1202 sizeof(struct unallocSpaceEntry))) { 1203 make_bad_inode(inode); 1204 return; 1205 } 1206 memcpy(iinfo->i_ext.i_data, 1207 bh->b_data + sizeof(struct unallocSpaceEntry), 1208 inode->i_sb->s_blocksize - 1209 sizeof(struct unallocSpaceEntry)); 1210 return; 1211 } 1212 1213 inode->i_uid = le32_to_cpu(fe->uid); 1214 if (inode->i_uid == -1 || 1215 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1216 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1217 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1218 1219 inode->i_gid = le32_to_cpu(fe->gid); 1220 if (inode->i_gid == -1 || 1221 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1222 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1223 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1224 1225 inode->i_nlink = le16_to_cpu(fe->fileLinkCount); 1226 if (!inode->i_nlink) 1227 inode->i_nlink = 1; 1228 1229 inode->i_size = le64_to_cpu(fe->informationLength); 1230 iinfo->i_lenExtents = inode->i_size; 1231 1232 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1233 sbi->s_fmode != UDF_INVALID_MODE) 1234 inode->i_mode = sbi->s_fmode; 1235 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1236 sbi->s_dmode != UDF_INVALID_MODE) 1237 inode->i_mode = sbi->s_dmode; 1238 else 1239 inode->i_mode = udf_convert_permissions(fe); 1240 inode->i_mode &= ~sbi->s_umask; 1241 1242 if (iinfo->i_efe == 0) { 1243 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1244 (inode->i_sb->s_blocksize_bits - 9); 1245 1246 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1247 inode->i_atime = sbi->s_record_time; 1248 1249 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1250 fe->modificationTime)) 1251 inode->i_mtime = sbi->s_record_time; 1252 1253 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1254 inode->i_ctime = sbi->s_record_time; 1255 1256 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1257 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1258 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1259 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; 1260 } else { 1261 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1262 (inode->i_sb->s_blocksize_bits - 9); 1263 1264 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1265 inode->i_atime = sbi->s_record_time; 1266 1267 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1268 efe->modificationTime)) 1269 inode->i_mtime = sbi->s_record_time; 1270 1271 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1272 iinfo->i_crtime = sbi->s_record_time; 1273 1274 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1275 inode->i_ctime = sbi->s_record_time; 1276 1277 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1278 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1279 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1280 offset = sizeof(struct extendedFileEntry) + 1281 iinfo->i_lenEAttr; 1282 } 1283 1284 switch (fe->icbTag.fileType) { 1285 case ICBTAG_FILE_TYPE_DIRECTORY: 1286 inode->i_op = &udf_dir_inode_operations; 1287 inode->i_fop = &udf_dir_operations; 1288 inode->i_mode |= S_IFDIR; 1289 inc_nlink(inode); 1290 break; 1291 case ICBTAG_FILE_TYPE_REALTIME: 1292 case ICBTAG_FILE_TYPE_REGULAR: 1293 case ICBTAG_FILE_TYPE_UNDEF: 1294 case ICBTAG_FILE_TYPE_VAT20: 1295 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1296 inode->i_data.a_ops = &udf_adinicb_aops; 1297 else 1298 inode->i_data.a_ops = &udf_aops; 1299 inode->i_op = &udf_file_inode_operations; 1300 inode->i_fop = &udf_file_operations; 1301 inode->i_mode |= S_IFREG; 1302 break; 1303 case ICBTAG_FILE_TYPE_BLOCK: 1304 inode->i_mode |= S_IFBLK; 1305 break; 1306 case ICBTAG_FILE_TYPE_CHAR: 1307 inode->i_mode |= S_IFCHR; 1308 break; 1309 case ICBTAG_FILE_TYPE_FIFO: 1310 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1311 break; 1312 case ICBTAG_FILE_TYPE_SOCKET: 1313 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1314 break; 1315 case ICBTAG_FILE_TYPE_SYMLINK: 1316 inode->i_data.a_ops = &udf_symlink_aops; 1317 inode->i_op = &page_symlink_inode_operations; 1318 inode->i_mode = S_IFLNK | S_IRWXUGO; 1319 break; 1320 case ICBTAG_FILE_TYPE_MAIN: 1321 udf_debug("METADATA FILE-----\n"); 1322 break; 1323 case ICBTAG_FILE_TYPE_MIRROR: 1324 udf_debug("METADATA MIRROR FILE-----\n"); 1325 break; 1326 case ICBTAG_FILE_TYPE_BITMAP: 1327 udf_debug("METADATA BITMAP FILE-----\n"); 1328 break; 1329 default: 1330 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " 1331 "file type=%d\n", inode->i_ino, 1332 fe->icbTag.fileType); 1333 make_bad_inode(inode); 1334 return; 1335 } 1336 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1337 struct deviceSpec *dsea = 1338 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1339 if (dsea) { 1340 init_special_inode(inode, inode->i_mode, 1341 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1342 le32_to_cpu(dsea->minorDeviceIdent))); 1343 /* Developer ID ??? */ 1344 } else 1345 make_bad_inode(inode); 1346 } 1347 } 1348 1349 static int udf_alloc_i_data(struct inode *inode, size_t size) 1350 { 1351 struct udf_inode_info *iinfo = UDF_I(inode); 1352 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1353 1354 if (!iinfo->i_ext.i_data) { 1355 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " 1356 "no free memory\n", inode->i_ino); 1357 return -ENOMEM; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static mode_t udf_convert_permissions(struct fileEntry *fe) 1364 { 1365 mode_t mode; 1366 uint32_t permissions; 1367 uint32_t flags; 1368 1369 permissions = le32_to_cpu(fe->permissions); 1370 flags = le16_to_cpu(fe->icbTag.flags); 1371 1372 mode = ((permissions) & S_IRWXO) | 1373 ((permissions >> 2) & S_IRWXG) | 1374 ((permissions >> 4) & S_IRWXU) | 1375 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1376 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1377 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1378 1379 return mode; 1380 } 1381 1382 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1383 { 1384 int ret; 1385 1386 lock_kernel(); 1387 ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1388 unlock_kernel(); 1389 1390 return ret; 1391 } 1392 1393 int udf_sync_inode(struct inode *inode) 1394 { 1395 return udf_update_inode(inode, 1); 1396 } 1397 1398 static int udf_update_inode(struct inode *inode, int do_sync) 1399 { 1400 struct buffer_head *bh = NULL; 1401 struct fileEntry *fe; 1402 struct extendedFileEntry *efe; 1403 uint32_t udfperms; 1404 uint16_t icbflags; 1405 uint16_t crclen; 1406 int err = 0; 1407 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1408 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1409 struct udf_inode_info *iinfo = UDF_I(inode); 1410 1411 bh = udf_tgetblk(inode->i_sb, 1412 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1413 if (!bh) { 1414 udf_debug("getblk failure\n"); 1415 return -ENOMEM; 1416 } 1417 1418 lock_buffer(bh); 1419 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1420 fe = (struct fileEntry *)bh->b_data; 1421 efe = (struct extendedFileEntry *)bh->b_data; 1422 1423 if (iinfo->i_use) { 1424 struct unallocSpaceEntry *use = 1425 (struct unallocSpaceEntry *)bh->b_data; 1426 1427 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1428 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1429 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1430 sizeof(struct unallocSpaceEntry)); 1431 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1432 use->descTag.tagLocation = 1433 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1434 crclen = sizeof(struct unallocSpaceEntry) + 1435 iinfo->i_lenAlloc - sizeof(struct tag); 1436 use->descTag.descCRCLength = cpu_to_le16(crclen); 1437 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1438 sizeof(struct tag), 1439 crclen)); 1440 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1441 1442 goto out; 1443 } 1444 1445 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1446 fe->uid = cpu_to_le32(-1); 1447 else 1448 fe->uid = cpu_to_le32(inode->i_uid); 1449 1450 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1451 fe->gid = cpu_to_le32(-1); 1452 else 1453 fe->gid = cpu_to_le32(inode->i_gid); 1454 1455 udfperms = ((inode->i_mode & S_IRWXO)) | 1456 ((inode->i_mode & S_IRWXG) << 2) | 1457 ((inode->i_mode & S_IRWXU) << 4); 1458 1459 udfperms |= (le32_to_cpu(fe->permissions) & 1460 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1461 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1462 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1463 fe->permissions = cpu_to_le32(udfperms); 1464 1465 if (S_ISDIR(inode->i_mode)) 1466 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1467 else 1468 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1469 1470 fe->informationLength = cpu_to_le64(inode->i_size); 1471 1472 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1473 struct regid *eid; 1474 struct deviceSpec *dsea = 1475 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1476 if (!dsea) { 1477 dsea = (struct deviceSpec *) 1478 udf_add_extendedattr(inode, 1479 sizeof(struct deviceSpec) + 1480 sizeof(struct regid), 12, 0x3); 1481 dsea->attrType = cpu_to_le32(12); 1482 dsea->attrSubtype = 1; 1483 dsea->attrLength = cpu_to_le32( 1484 sizeof(struct deviceSpec) + 1485 sizeof(struct regid)); 1486 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1487 } 1488 eid = (struct regid *)dsea->impUse; 1489 memset(eid, 0, sizeof(struct regid)); 1490 strcpy(eid->ident, UDF_ID_DEVELOPER); 1491 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1492 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1493 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1494 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1495 } 1496 1497 if (iinfo->i_efe == 0) { 1498 memcpy(bh->b_data + sizeof(struct fileEntry), 1499 iinfo->i_ext.i_data, 1500 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1501 fe->logicalBlocksRecorded = cpu_to_le64( 1502 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1503 (blocksize_bits - 9)); 1504 1505 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1506 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1507 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1508 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1509 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1510 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1511 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1512 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1513 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1514 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1515 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1516 crclen = sizeof(struct fileEntry); 1517 } else { 1518 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1519 iinfo->i_ext.i_data, 1520 inode->i_sb->s_blocksize - 1521 sizeof(struct extendedFileEntry)); 1522 efe->objectSize = cpu_to_le64(inode->i_size); 1523 efe->logicalBlocksRecorded = cpu_to_le64( 1524 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1525 (blocksize_bits - 9)); 1526 1527 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1528 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1529 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1530 iinfo->i_crtime = inode->i_atime; 1531 1532 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1533 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1534 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1535 iinfo->i_crtime = inode->i_mtime; 1536 1537 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1538 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1539 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1540 iinfo->i_crtime = inode->i_ctime; 1541 1542 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1543 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1544 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1545 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1546 1547 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1548 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1549 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1550 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1551 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1552 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1553 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1554 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1555 crclen = sizeof(struct extendedFileEntry); 1556 } 1557 if (iinfo->i_strat4096) { 1558 fe->icbTag.strategyType = cpu_to_le16(4096); 1559 fe->icbTag.strategyParameter = cpu_to_le16(1); 1560 fe->icbTag.numEntries = cpu_to_le16(2); 1561 } else { 1562 fe->icbTag.strategyType = cpu_to_le16(4); 1563 fe->icbTag.numEntries = cpu_to_le16(1); 1564 } 1565 1566 if (S_ISDIR(inode->i_mode)) 1567 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1568 else if (S_ISREG(inode->i_mode)) 1569 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1570 else if (S_ISLNK(inode->i_mode)) 1571 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1572 else if (S_ISBLK(inode->i_mode)) 1573 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1574 else if (S_ISCHR(inode->i_mode)) 1575 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1576 else if (S_ISFIFO(inode->i_mode)) 1577 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1578 else if (S_ISSOCK(inode->i_mode)) 1579 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1580 1581 icbflags = iinfo->i_alloc_type | 1582 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1583 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1584 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1585 (le16_to_cpu(fe->icbTag.flags) & 1586 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1587 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1588 1589 fe->icbTag.flags = cpu_to_le16(icbflags); 1590 if (sbi->s_udfrev >= 0x0200) 1591 fe->descTag.descVersion = cpu_to_le16(3); 1592 else 1593 fe->descTag.descVersion = cpu_to_le16(2); 1594 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1595 fe->descTag.tagLocation = cpu_to_le32( 1596 iinfo->i_location.logicalBlockNum); 1597 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1598 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1599 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1600 crclen)); 1601 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1602 1603 out: 1604 set_buffer_uptodate(bh); 1605 unlock_buffer(bh); 1606 1607 /* write the data blocks */ 1608 mark_buffer_dirty(bh); 1609 if (do_sync) { 1610 sync_dirty_buffer(bh); 1611 if (buffer_write_io_error(bh)) { 1612 printk(KERN_WARNING "IO error syncing udf inode " 1613 "[%s:%08lx]\n", inode->i_sb->s_id, 1614 inode->i_ino); 1615 err = -EIO; 1616 } 1617 } 1618 brelse(bh); 1619 1620 return err; 1621 } 1622 1623 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1624 { 1625 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1626 struct inode *inode = iget_locked(sb, block); 1627 1628 if (!inode) 1629 return NULL; 1630 1631 if (inode->i_state & I_NEW) { 1632 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1633 __udf_read_inode(inode); 1634 unlock_new_inode(inode); 1635 } 1636 1637 if (is_bad_inode(inode)) 1638 goto out_iput; 1639 1640 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1641 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1642 udf_debug("block=%d, partition=%d out of range\n", 1643 ino->logicalBlockNum, ino->partitionReferenceNum); 1644 make_bad_inode(inode); 1645 goto out_iput; 1646 } 1647 1648 return inode; 1649 1650 out_iput: 1651 iput(inode); 1652 return NULL; 1653 } 1654 1655 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, 1656 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1657 { 1658 int adsize; 1659 struct short_ad *sad = NULL; 1660 struct long_ad *lad = NULL; 1661 struct allocExtDesc *aed; 1662 int8_t etype; 1663 uint8_t *ptr; 1664 struct udf_inode_info *iinfo = UDF_I(inode); 1665 1666 if (!epos->bh) 1667 ptr = iinfo->i_ext.i_data + epos->offset - 1668 udf_file_entry_alloc_offset(inode) + 1669 iinfo->i_lenEAttr; 1670 else 1671 ptr = epos->bh->b_data + epos->offset; 1672 1673 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1674 adsize = sizeof(struct short_ad); 1675 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1676 adsize = sizeof(struct long_ad); 1677 else 1678 return -1; 1679 1680 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1681 unsigned char *sptr, *dptr; 1682 struct buffer_head *nbh; 1683 int err, loffset; 1684 struct kernel_lb_addr obloc = epos->block; 1685 1686 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1687 obloc.partitionReferenceNum, 1688 obloc.logicalBlockNum, &err); 1689 if (!epos->block.logicalBlockNum) 1690 return -1; 1691 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1692 &epos->block, 1693 0)); 1694 if (!nbh) 1695 return -1; 1696 lock_buffer(nbh); 1697 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1698 set_buffer_uptodate(nbh); 1699 unlock_buffer(nbh); 1700 mark_buffer_dirty_inode(nbh, inode); 1701 1702 aed = (struct allocExtDesc *)(nbh->b_data); 1703 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1704 aed->previousAllocExtLocation = 1705 cpu_to_le32(obloc.logicalBlockNum); 1706 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1707 loffset = epos->offset; 1708 aed->lengthAllocDescs = cpu_to_le32(adsize); 1709 sptr = ptr - adsize; 1710 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1711 memcpy(dptr, sptr, adsize); 1712 epos->offset = sizeof(struct allocExtDesc) + adsize; 1713 } else { 1714 loffset = epos->offset + adsize; 1715 aed->lengthAllocDescs = cpu_to_le32(0); 1716 sptr = ptr; 1717 epos->offset = sizeof(struct allocExtDesc); 1718 1719 if (epos->bh) { 1720 aed = (struct allocExtDesc *)epos->bh->b_data; 1721 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1722 } else { 1723 iinfo->i_lenAlloc += adsize; 1724 mark_inode_dirty(inode); 1725 } 1726 } 1727 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1728 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1729 epos->block.logicalBlockNum, sizeof(struct tag)); 1730 else 1731 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1732 epos->block.logicalBlockNum, sizeof(struct tag)); 1733 switch (iinfo->i_alloc_type) { 1734 case ICBTAG_FLAG_AD_SHORT: 1735 sad = (struct short_ad *)sptr; 1736 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1737 inode->i_sb->s_blocksize); 1738 sad->extPosition = 1739 cpu_to_le32(epos->block.logicalBlockNum); 1740 break; 1741 case ICBTAG_FLAG_AD_LONG: 1742 lad = (struct long_ad *)sptr; 1743 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1744 inode->i_sb->s_blocksize); 1745 lad->extLocation = cpu_to_lelb(epos->block); 1746 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1747 break; 1748 } 1749 if (epos->bh) { 1750 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1751 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1752 udf_update_tag(epos->bh->b_data, loffset); 1753 else 1754 udf_update_tag(epos->bh->b_data, 1755 sizeof(struct allocExtDesc)); 1756 mark_buffer_dirty_inode(epos->bh, inode); 1757 brelse(epos->bh); 1758 } else { 1759 mark_inode_dirty(inode); 1760 } 1761 epos->bh = nbh; 1762 } 1763 1764 etype = udf_write_aext(inode, epos, eloc, elen, inc); 1765 1766 if (!epos->bh) { 1767 iinfo->i_lenAlloc += adsize; 1768 mark_inode_dirty(inode); 1769 } else { 1770 aed = (struct allocExtDesc *)epos->bh->b_data; 1771 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1772 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1773 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1774 udf_update_tag(epos->bh->b_data, 1775 epos->offset + (inc ? 0 : adsize)); 1776 else 1777 udf_update_tag(epos->bh->b_data, 1778 sizeof(struct allocExtDesc)); 1779 mark_buffer_dirty_inode(epos->bh, inode); 1780 } 1781 1782 return etype; 1783 } 1784 1785 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, 1786 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1787 { 1788 int adsize; 1789 uint8_t *ptr; 1790 struct short_ad *sad; 1791 struct long_ad *lad; 1792 struct udf_inode_info *iinfo = UDF_I(inode); 1793 1794 if (!epos->bh) 1795 ptr = iinfo->i_ext.i_data + epos->offset - 1796 udf_file_entry_alloc_offset(inode) + 1797 iinfo->i_lenEAttr; 1798 else 1799 ptr = epos->bh->b_data + epos->offset; 1800 1801 switch (iinfo->i_alloc_type) { 1802 case ICBTAG_FLAG_AD_SHORT: 1803 sad = (struct short_ad *)ptr; 1804 sad->extLength = cpu_to_le32(elen); 1805 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1806 adsize = sizeof(struct short_ad); 1807 break; 1808 case ICBTAG_FLAG_AD_LONG: 1809 lad = (struct long_ad *)ptr; 1810 lad->extLength = cpu_to_le32(elen); 1811 lad->extLocation = cpu_to_lelb(*eloc); 1812 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1813 adsize = sizeof(struct long_ad); 1814 break; 1815 default: 1816 return -1; 1817 } 1818 1819 if (epos->bh) { 1820 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1821 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1822 struct allocExtDesc *aed = 1823 (struct allocExtDesc *)epos->bh->b_data; 1824 udf_update_tag(epos->bh->b_data, 1825 le32_to_cpu(aed->lengthAllocDescs) + 1826 sizeof(struct allocExtDesc)); 1827 } 1828 mark_buffer_dirty_inode(epos->bh, inode); 1829 } else { 1830 mark_inode_dirty(inode); 1831 } 1832 1833 if (inc) 1834 epos->offset += adsize; 1835 1836 return (elen >> 30); 1837 } 1838 1839 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1840 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1841 { 1842 int8_t etype; 1843 1844 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1845 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1846 int block; 1847 epos->block = *eloc; 1848 epos->offset = sizeof(struct allocExtDesc); 1849 brelse(epos->bh); 1850 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1851 epos->bh = udf_tread(inode->i_sb, block); 1852 if (!epos->bh) { 1853 udf_debug("reading block %d failed!\n", block); 1854 return -1; 1855 } 1856 } 1857 1858 return etype; 1859 } 1860 1861 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1862 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1863 { 1864 int alen; 1865 int8_t etype; 1866 uint8_t *ptr; 1867 struct short_ad *sad; 1868 struct long_ad *lad; 1869 struct udf_inode_info *iinfo = UDF_I(inode); 1870 1871 if (!epos->bh) { 1872 if (!epos->offset) 1873 epos->offset = udf_file_entry_alloc_offset(inode); 1874 ptr = iinfo->i_ext.i_data + epos->offset - 1875 udf_file_entry_alloc_offset(inode) + 1876 iinfo->i_lenEAttr; 1877 alen = udf_file_entry_alloc_offset(inode) + 1878 iinfo->i_lenAlloc; 1879 } else { 1880 if (!epos->offset) 1881 epos->offset = sizeof(struct allocExtDesc); 1882 ptr = epos->bh->b_data + epos->offset; 1883 alen = sizeof(struct allocExtDesc) + 1884 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1885 lengthAllocDescs); 1886 } 1887 1888 switch (iinfo->i_alloc_type) { 1889 case ICBTAG_FLAG_AD_SHORT: 1890 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1891 if (!sad) 1892 return -1; 1893 etype = le32_to_cpu(sad->extLength) >> 30; 1894 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1895 eloc->partitionReferenceNum = 1896 iinfo->i_location.partitionReferenceNum; 1897 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1898 break; 1899 case ICBTAG_FLAG_AD_LONG: 1900 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1901 if (!lad) 1902 return -1; 1903 etype = le32_to_cpu(lad->extLength) >> 30; 1904 *eloc = lelb_to_cpu(lad->extLocation); 1905 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 1906 break; 1907 default: 1908 udf_debug("alloc_type = %d unsupported\n", 1909 iinfo->i_alloc_type); 1910 return -1; 1911 } 1912 1913 return etype; 1914 } 1915 1916 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 1917 struct kernel_lb_addr neloc, uint32_t nelen) 1918 { 1919 struct kernel_lb_addr oeloc; 1920 uint32_t oelen; 1921 int8_t etype; 1922 1923 if (epos.bh) 1924 get_bh(epos.bh); 1925 1926 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 1927 udf_write_aext(inode, &epos, &neloc, nelen, 1); 1928 neloc = oeloc; 1929 nelen = (etype << 30) | oelen; 1930 } 1931 udf_add_aext(inode, &epos, &neloc, nelen, 1); 1932 brelse(epos.bh); 1933 1934 return (nelen >> 30); 1935 } 1936 1937 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 1938 struct kernel_lb_addr eloc, uint32_t elen) 1939 { 1940 struct extent_position oepos; 1941 int adsize; 1942 int8_t etype; 1943 struct allocExtDesc *aed; 1944 struct udf_inode_info *iinfo; 1945 1946 if (epos.bh) { 1947 get_bh(epos.bh); 1948 get_bh(epos.bh); 1949 } 1950 1951 iinfo = UDF_I(inode); 1952 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1953 adsize = sizeof(struct short_ad); 1954 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1955 adsize = sizeof(struct long_ad); 1956 else 1957 adsize = 0; 1958 1959 oepos = epos; 1960 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 1961 return -1; 1962 1963 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 1964 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 1965 if (oepos.bh != epos.bh) { 1966 oepos.block = epos.block; 1967 brelse(oepos.bh); 1968 get_bh(epos.bh); 1969 oepos.bh = epos.bh; 1970 oepos.offset = epos.offset - adsize; 1971 } 1972 } 1973 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 1974 elen = 0; 1975 1976 if (epos.bh != oepos.bh) { 1977 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 1978 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1979 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1980 if (!oepos.bh) { 1981 iinfo->i_lenAlloc -= (adsize * 2); 1982 mark_inode_dirty(inode); 1983 } else { 1984 aed = (struct allocExtDesc *)oepos.bh->b_data; 1985 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 1986 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1987 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1988 udf_update_tag(oepos.bh->b_data, 1989 oepos.offset - (2 * adsize)); 1990 else 1991 udf_update_tag(oepos.bh->b_data, 1992 sizeof(struct allocExtDesc)); 1993 mark_buffer_dirty_inode(oepos.bh, inode); 1994 } 1995 } else { 1996 udf_write_aext(inode, &oepos, &eloc, elen, 1); 1997 if (!oepos.bh) { 1998 iinfo->i_lenAlloc -= adsize; 1999 mark_inode_dirty(inode); 2000 } else { 2001 aed = (struct allocExtDesc *)oepos.bh->b_data; 2002 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2003 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2004 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2005 udf_update_tag(oepos.bh->b_data, 2006 epos.offset - adsize); 2007 else 2008 udf_update_tag(oepos.bh->b_data, 2009 sizeof(struct allocExtDesc)); 2010 mark_buffer_dirty_inode(oepos.bh, inode); 2011 } 2012 } 2013 2014 brelse(epos.bh); 2015 brelse(oepos.bh); 2016 2017 return (elen >> 30); 2018 } 2019 2020 int8_t inode_bmap(struct inode *inode, sector_t block, 2021 struct extent_position *pos, struct kernel_lb_addr *eloc, 2022 uint32_t *elen, sector_t *offset) 2023 { 2024 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2025 loff_t lbcount = 0, bcount = 2026 (loff_t) block << blocksize_bits; 2027 int8_t etype; 2028 struct udf_inode_info *iinfo; 2029 2030 iinfo = UDF_I(inode); 2031 pos->offset = 0; 2032 pos->block = iinfo->i_location; 2033 pos->bh = NULL; 2034 *elen = 0; 2035 2036 do { 2037 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2038 if (etype == -1) { 2039 *offset = (bcount - lbcount) >> blocksize_bits; 2040 iinfo->i_lenExtents = lbcount; 2041 return -1; 2042 } 2043 lbcount += *elen; 2044 } while (lbcount <= bcount); 2045 2046 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2047 2048 return etype; 2049 } 2050 2051 long udf_block_map(struct inode *inode, sector_t block) 2052 { 2053 struct kernel_lb_addr eloc; 2054 uint32_t elen; 2055 sector_t offset; 2056 struct extent_position epos = {}; 2057 int ret; 2058 2059 lock_kernel(); 2060 2061 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2062 (EXT_RECORDED_ALLOCATED >> 30)) 2063 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2064 else 2065 ret = 0; 2066 2067 unlock_kernel(); 2068 brelse(epos.bh); 2069 2070 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2071 return udf_fixed_to_variable(ret); 2072 else 2073 return ret; 2074 } 2075