1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 static umode_t udf_convert_permissions(struct fileEntry *); 56 static int udf_update_inode(struct inode *, int); 57 static int udf_sync_inode(struct inode *inode); 58 static int udf_alloc_i_data(struct inode *inode, size_t size); 59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60 static int8_t udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64 static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135 } 136 137 void udf_evict_inode(struct inode *inode) 138 { 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepages(struct address_space *mapping, 186 struct writeback_control *wbc) 187 { 188 return mpage_writepages(mapping, wbc, udf_get_block); 189 } 190 191 static int udf_read_folio(struct file *file, struct folio *folio) 192 { 193 return mpage_read_folio(folio, udf_get_block); 194 } 195 196 static void udf_readahead(struct readahead_control *rac) 197 { 198 mpage_readahead(rac, udf_get_block); 199 } 200 201 static int udf_write_begin(struct file *file, struct address_space *mapping, 202 loff_t pos, unsigned len, 203 struct page **pagep, void **fsdata) 204 { 205 int ret; 206 207 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block); 208 if (unlikely(ret)) 209 udf_write_failed(mapping, pos + len); 210 return ret; 211 } 212 213 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 214 { 215 struct file *file = iocb->ki_filp; 216 struct address_space *mapping = file->f_mapping; 217 struct inode *inode = mapping->host; 218 size_t count = iov_iter_count(iter); 219 ssize_t ret; 220 221 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 222 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 223 udf_write_failed(mapping, iocb->ki_pos + count); 224 return ret; 225 } 226 227 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 228 { 229 return generic_block_bmap(mapping, block, udf_get_block); 230 } 231 232 const struct address_space_operations udf_aops = { 233 .dirty_folio = block_dirty_folio, 234 .invalidate_folio = block_invalidate_folio, 235 .read_folio = udf_read_folio, 236 .readahead = udf_readahead, 237 .writepages = udf_writepages, 238 .write_begin = udf_write_begin, 239 .write_end = generic_write_end, 240 .direct_IO = udf_direct_IO, 241 .bmap = udf_bmap, 242 .migrate_folio = buffer_migrate_folio, 243 }; 244 245 /* 246 * Expand file stored in ICB to a normal one-block-file 247 * 248 * This function requires i_data_sem for writing and releases it. 249 * This function requires i_mutex held 250 */ 251 int udf_expand_file_adinicb(struct inode *inode) 252 { 253 struct page *page; 254 char *kaddr; 255 struct udf_inode_info *iinfo = UDF_I(inode); 256 int err; 257 258 WARN_ON_ONCE(!inode_is_locked(inode)); 259 if (!iinfo->i_lenAlloc) { 260 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 262 else 263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 264 /* from now on we have normal address_space methods */ 265 inode->i_data.a_ops = &udf_aops; 266 up_write(&iinfo->i_data_sem); 267 mark_inode_dirty(inode); 268 return 0; 269 } 270 /* 271 * Release i_data_sem so that we can lock a page - page lock ranks 272 * above i_data_sem. i_mutex still protects us against file changes. 273 */ 274 up_write(&iinfo->i_data_sem); 275 276 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 277 if (!page) 278 return -ENOMEM; 279 280 if (!PageUptodate(page)) { 281 kaddr = kmap_atomic(page); 282 memset(kaddr + iinfo->i_lenAlloc, 0x00, 283 PAGE_SIZE - iinfo->i_lenAlloc); 284 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 285 iinfo->i_lenAlloc); 286 flush_dcache_page(page); 287 SetPageUptodate(page); 288 kunmap_atomic(kaddr); 289 } 290 down_write(&iinfo->i_data_sem); 291 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 292 iinfo->i_lenAlloc); 293 iinfo->i_lenAlloc = 0; 294 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 296 else 297 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 298 /* from now on we have normal address_space methods */ 299 inode->i_data.a_ops = &udf_aops; 300 set_page_dirty(page); 301 unlock_page(page); 302 up_write(&iinfo->i_data_sem); 303 err = filemap_fdatawrite(inode->i_mapping); 304 if (err) { 305 /* Restore everything back so that we don't lose data... */ 306 lock_page(page); 307 down_write(&iinfo->i_data_sem); 308 kaddr = kmap_atomic(page); 309 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 310 kunmap_atomic(kaddr); 311 unlock_page(page); 312 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 313 inode->i_data.a_ops = &udf_adinicb_aops; 314 iinfo->i_lenAlloc = inode->i_size; 315 up_write(&iinfo->i_data_sem); 316 } 317 put_page(page); 318 mark_inode_dirty(inode); 319 320 return err; 321 } 322 323 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 324 udf_pblk_t *block, int *err) 325 { 326 udf_pblk_t newblock; 327 struct buffer_head *dbh = NULL; 328 struct kernel_lb_addr eloc; 329 uint8_t alloctype; 330 struct extent_position epos; 331 332 struct udf_fileident_bh sfibh, dfibh; 333 loff_t f_pos = udf_ext0_offset(inode); 334 int size = udf_ext0_offset(inode) + inode->i_size; 335 struct fileIdentDesc cfi, *sfi, *dfi; 336 struct udf_inode_info *iinfo = UDF_I(inode); 337 338 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 339 alloctype = ICBTAG_FLAG_AD_SHORT; 340 else 341 alloctype = ICBTAG_FLAG_AD_LONG; 342 343 if (!inode->i_size) { 344 iinfo->i_alloc_type = alloctype; 345 mark_inode_dirty(inode); 346 return NULL; 347 } 348 349 /* alloc block, and copy data to it */ 350 *block = udf_new_block(inode->i_sb, inode, 351 iinfo->i_location.partitionReferenceNum, 352 iinfo->i_location.logicalBlockNum, err); 353 if (!(*block)) 354 return NULL; 355 newblock = udf_get_pblock(inode->i_sb, *block, 356 iinfo->i_location.partitionReferenceNum, 357 0); 358 if (!newblock) 359 return NULL; 360 dbh = udf_tgetblk(inode->i_sb, newblock); 361 if (!dbh) 362 return NULL; 363 lock_buffer(dbh); 364 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 365 set_buffer_uptodate(dbh); 366 unlock_buffer(dbh); 367 mark_buffer_dirty_inode(dbh, inode); 368 369 sfibh.soffset = sfibh.eoffset = 370 f_pos & (inode->i_sb->s_blocksize - 1); 371 sfibh.sbh = sfibh.ebh = NULL; 372 dfibh.soffset = dfibh.eoffset = 0; 373 dfibh.sbh = dfibh.ebh = dbh; 374 while (f_pos < size) { 375 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 376 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 377 NULL, NULL, NULL); 378 if (!sfi) { 379 brelse(dbh); 380 return NULL; 381 } 382 iinfo->i_alloc_type = alloctype; 383 sfi->descTag.tagLocation = cpu_to_le32(*block); 384 dfibh.soffset = dfibh.eoffset; 385 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 386 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 387 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 388 udf_get_fi_ident(sfi))) { 389 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 390 brelse(dbh); 391 return NULL; 392 } 393 } 394 mark_buffer_dirty_inode(dbh, inode); 395 396 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 397 iinfo->i_lenAlloc = 0; 398 eloc.logicalBlockNum = *block; 399 eloc.partitionReferenceNum = 400 iinfo->i_location.partitionReferenceNum; 401 iinfo->i_lenExtents = inode->i_size; 402 epos.bh = NULL; 403 epos.block = iinfo->i_location; 404 epos.offset = udf_file_entry_alloc_offset(inode); 405 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 406 /* UniqueID stuff */ 407 408 brelse(epos.bh); 409 mark_inode_dirty(inode); 410 return dbh; 411 } 412 413 static int udf_get_block(struct inode *inode, sector_t block, 414 struct buffer_head *bh_result, int create) 415 { 416 int err, new; 417 sector_t phys = 0; 418 struct udf_inode_info *iinfo; 419 420 if (!create) { 421 phys = udf_block_map(inode, block); 422 if (phys) 423 map_bh(bh_result, inode->i_sb, phys); 424 return 0; 425 } 426 427 err = -EIO; 428 new = 0; 429 iinfo = UDF_I(inode); 430 431 down_write(&iinfo->i_data_sem); 432 if (block == iinfo->i_next_alloc_block + 1) { 433 iinfo->i_next_alloc_block++; 434 iinfo->i_next_alloc_goal++; 435 } 436 437 /* 438 * Block beyond EOF and prealloc extents? Just discard preallocation 439 * as it is not useful and complicates things. 440 */ 441 if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents) 442 udf_discard_prealloc(inode); 443 udf_clear_extent_cache(inode); 444 phys = inode_getblk(inode, block, &err, &new); 445 if (!phys) 446 goto abort; 447 448 if (new) 449 set_buffer_new(bh_result); 450 map_bh(bh_result, inode->i_sb, phys); 451 452 abort: 453 up_write(&iinfo->i_data_sem); 454 return err; 455 } 456 457 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 458 int create, int *err) 459 { 460 struct buffer_head *bh; 461 struct buffer_head dummy; 462 463 dummy.b_state = 0; 464 dummy.b_blocknr = -1000; 465 *err = udf_get_block(inode, block, &dummy, create); 466 if (!*err && buffer_mapped(&dummy)) { 467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 468 if (buffer_new(&dummy)) { 469 lock_buffer(bh); 470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 471 set_buffer_uptodate(bh); 472 unlock_buffer(bh); 473 mark_buffer_dirty_inode(bh, inode); 474 } 475 return bh; 476 } 477 478 return NULL; 479 } 480 481 /* Extend the file with new blocks totaling 'new_block_bytes', 482 * return the number of extents added 483 */ 484 static int udf_do_extend_file(struct inode *inode, 485 struct extent_position *last_pos, 486 struct kernel_long_ad *last_ext, 487 loff_t new_block_bytes) 488 { 489 uint32_t add; 490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 491 struct super_block *sb = inode->i_sb; 492 struct udf_inode_info *iinfo; 493 int err; 494 495 /* The previous extent is fake and we should not extend by anything 496 * - there's nothing to do... */ 497 if (!new_block_bytes && fake) 498 return 0; 499 500 iinfo = UDF_I(inode); 501 /* Round the last extent up to a multiple of block size */ 502 if (last_ext->extLength & (sb->s_blocksize - 1)) { 503 last_ext->extLength = 504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 507 iinfo->i_lenExtents = 508 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 509 ~(sb->s_blocksize - 1); 510 } 511 512 /* Can we merge with the previous extent? */ 513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 514 EXT_NOT_RECORDED_NOT_ALLOCATED) { 515 add = (1 << 30) - sb->s_blocksize - 516 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 517 if (add > new_block_bytes) 518 add = new_block_bytes; 519 new_block_bytes -= add; 520 last_ext->extLength += add; 521 } 522 523 if (fake) { 524 udf_add_aext(inode, last_pos, &last_ext->extLocation, 525 last_ext->extLength, 1); 526 count++; 527 } else { 528 struct kernel_lb_addr tmploc; 529 uint32_t tmplen; 530 531 udf_write_aext(inode, last_pos, &last_ext->extLocation, 532 last_ext->extLength, 1); 533 534 /* 535 * We've rewritten the last extent. If we are going to add 536 * more extents, we may need to enter possible following 537 * empty indirect extent. 538 */ 539 if (new_block_bytes) 540 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 541 } 542 543 /* Managed to do everything necessary? */ 544 if (!new_block_bytes) 545 goto out; 546 547 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 548 last_ext->extLocation.logicalBlockNum = 0; 549 last_ext->extLocation.partitionReferenceNum = 0; 550 add = (1 << 30) - sb->s_blocksize; 551 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 552 553 /* Create enough extents to cover the whole hole */ 554 while (new_block_bytes > add) { 555 new_block_bytes -= add; 556 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 557 last_ext->extLength, 1); 558 if (err) 559 return err; 560 count++; 561 } 562 if (new_block_bytes) { 563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 564 new_block_bytes; 565 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 566 last_ext->extLength, 1); 567 if (err) 568 return err; 569 count++; 570 } 571 572 out: 573 /* last_pos should point to the last written extent... */ 574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 575 last_pos->offset -= sizeof(struct short_ad); 576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 577 last_pos->offset -= sizeof(struct long_ad); 578 else 579 return -EIO; 580 581 return count; 582 } 583 584 /* Extend the final block of the file to final_block_len bytes */ 585 static void udf_do_extend_final_block(struct inode *inode, 586 struct extent_position *last_pos, 587 struct kernel_long_ad *last_ext, 588 uint32_t new_elen) 589 { 590 uint32_t added_bytes; 591 592 /* 593 * Extent already large enough? It may be already rounded up to block 594 * size... 595 */ 596 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 597 return; 598 added_bytes = (last_ext->extLength & UDF_EXTENT_LENGTH_MASK) - new_elen; 599 last_ext->extLength += added_bytes; 600 UDF_I(inode)->i_lenExtents += added_bytes; 601 602 udf_write_aext(inode, last_pos, &last_ext->extLocation, 603 last_ext->extLength, 1); 604 } 605 606 static int udf_extend_file(struct inode *inode, loff_t newsize) 607 { 608 609 struct extent_position epos; 610 struct kernel_lb_addr eloc; 611 uint32_t elen; 612 int8_t etype; 613 struct super_block *sb = inode->i_sb; 614 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 615 loff_t new_elen; 616 int adsize; 617 struct udf_inode_info *iinfo = UDF_I(inode); 618 struct kernel_long_ad extent; 619 int err = 0; 620 bool within_last_ext; 621 622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 623 adsize = sizeof(struct short_ad); 624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 625 adsize = sizeof(struct long_ad); 626 else 627 BUG(); 628 629 /* 630 * When creating hole in file, just don't bother with preserving 631 * preallocation. It likely won't be very useful anyway. 632 */ 633 udf_discard_prealloc(inode); 634 635 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 636 within_last_ext = (etype != -1); 637 /* We don't expect extents past EOF... */ 638 WARN_ON_ONCE(within_last_ext && 639 elen > ((loff_t)offset + 1) << inode->i_blkbits); 640 641 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 642 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 643 /* File has no extents at all or has empty last 644 * indirect extent! Create a fake extent... */ 645 extent.extLocation.logicalBlockNum = 0; 646 extent.extLocation.partitionReferenceNum = 0; 647 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 648 } else { 649 epos.offset -= adsize; 650 etype = udf_next_aext(inode, &epos, &extent.extLocation, 651 &extent.extLength, 0); 652 extent.extLength |= etype << 30; 653 } 654 655 new_elen = ((loff_t)offset << inode->i_blkbits) | 656 (newsize & (sb->s_blocksize - 1)); 657 658 /* File has extent covering the new size (could happen when extending 659 * inside a block)? 660 */ 661 if (within_last_ext) { 662 /* Extending file within the last file block */ 663 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 664 } else { 665 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 666 } 667 668 if (err < 0) 669 goto out; 670 err = 0; 671 iinfo->i_lenExtents = newsize; 672 out: 673 brelse(epos.bh); 674 return err; 675 } 676 677 static sector_t inode_getblk(struct inode *inode, sector_t block, 678 int *err, int *new) 679 { 680 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 681 struct extent_position prev_epos, cur_epos, next_epos; 682 int count = 0, startnum = 0, endnum = 0; 683 uint32_t elen = 0, tmpelen; 684 struct kernel_lb_addr eloc, tmpeloc; 685 int c = 1; 686 loff_t lbcount = 0, b_off = 0; 687 udf_pblk_t newblocknum, newblock; 688 sector_t offset = 0; 689 int8_t etype; 690 struct udf_inode_info *iinfo = UDF_I(inode); 691 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 692 int lastblock = 0; 693 bool isBeyondEOF; 694 695 *err = 0; 696 *new = 0; 697 prev_epos.offset = udf_file_entry_alloc_offset(inode); 698 prev_epos.block = iinfo->i_location; 699 prev_epos.bh = NULL; 700 cur_epos = next_epos = prev_epos; 701 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 702 703 /* find the extent which contains the block we are looking for. 704 alternate between laarr[0] and laarr[1] for locations of the 705 current extent, and the previous extent */ 706 do { 707 if (prev_epos.bh != cur_epos.bh) { 708 brelse(prev_epos.bh); 709 get_bh(cur_epos.bh); 710 prev_epos.bh = cur_epos.bh; 711 } 712 if (cur_epos.bh != next_epos.bh) { 713 brelse(cur_epos.bh); 714 get_bh(next_epos.bh); 715 cur_epos.bh = next_epos.bh; 716 } 717 718 lbcount += elen; 719 720 prev_epos.block = cur_epos.block; 721 cur_epos.block = next_epos.block; 722 723 prev_epos.offset = cur_epos.offset; 724 cur_epos.offset = next_epos.offset; 725 726 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 727 if (etype == -1) 728 break; 729 730 c = !c; 731 732 laarr[c].extLength = (etype << 30) | elen; 733 laarr[c].extLocation = eloc; 734 735 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 736 pgoal = eloc.logicalBlockNum + 737 ((elen + inode->i_sb->s_blocksize - 1) >> 738 inode->i_sb->s_blocksize_bits); 739 740 count++; 741 } while (lbcount + elen <= b_off); 742 743 b_off -= lbcount; 744 offset = b_off >> inode->i_sb->s_blocksize_bits; 745 /* 746 * Move prev_epos and cur_epos into indirect extent if we are at 747 * the pointer to it 748 */ 749 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 750 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 751 752 /* if the extent is allocated and recorded, return the block 753 if the extent is not a multiple of the blocksize, round up */ 754 755 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 756 if (elen & (inode->i_sb->s_blocksize - 1)) { 757 elen = EXT_RECORDED_ALLOCATED | 758 ((elen + inode->i_sb->s_blocksize - 1) & 759 ~(inode->i_sb->s_blocksize - 1)); 760 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 761 } 762 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 763 goto out_free; 764 } 765 766 /* Are we beyond EOF and preallocated extent? */ 767 if (etype == -1) { 768 int ret; 769 loff_t hole_len; 770 771 isBeyondEOF = true; 772 if (count) { 773 if (c) 774 laarr[0] = laarr[1]; 775 startnum = 1; 776 } else { 777 /* Create a fake extent when there's not one */ 778 memset(&laarr[0].extLocation, 0x00, 779 sizeof(struct kernel_lb_addr)); 780 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 781 /* Will udf_do_extend_file() create real extent from 782 a fake one? */ 783 startnum = (offset > 0); 784 } 785 /* Create extents for the hole between EOF and offset */ 786 hole_len = (loff_t)offset << inode->i_blkbits; 787 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 788 if (ret < 0) { 789 *err = ret; 790 newblock = 0; 791 goto out_free; 792 } 793 c = 0; 794 offset = 0; 795 count += ret; 796 /* We are not covered by a preallocated extent? */ 797 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 798 EXT_NOT_RECORDED_ALLOCATED) { 799 /* Is there any real extent? - otherwise we overwrite 800 * the fake one... */ 801 if (count) 802 c = !c; 803 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 804 inode->i_sb->s_blocksize; 805 memset(&laarr[c].extLocation, 0x00, 806 sizeof(struct kernel_lb_addr)); 807 count++; 808 } 809 endnum = c + 1; 810 lastblock = 1; 811 } else { 812 isBeyondEOF = false; 813 endnum = startnum = ((count > 2) ? 2 : count); 814 815 /* if the current extent is in position 0, 816 swap it with the previous */ 817 if (!c && count != 1) { 818 laarr[2] = laarr[0]; 819 laarr[0] = laarr[1]; 820 laarr[1] = laarr[2]; 821 c = 1; 822 } 823 824 /* if the current block is located in an extent, 825 read the next extent */ 826 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 827 if (etype != -1) { 828 laarr[c + 1].extLength = (etype << 30) | elen; 829 laarr[c + 1].extLocation = eloc; 830 count++; 831 startnum++; 832 endnum++; 833 } else 834 lastblock = 1; 835 } 836 837 /* if the current extent is not recorded but allocated, get the 838 * block in the extent corresponding to the requested block */ 839 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 840 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 841 else { /* otherwise, allocate a new block */ 842 if (iinfo->i_next_alloc_block == block) 843 goal = iinfo->i_next_alloc_goal; 844 845 if (!goal) { 846 if (!(goal = pgoal)) /* XXX: what was intended here? */ 847 goal = iinfo->i_location.logicalBlockNum + 1; 848 } 849 850 newblocknum = udf_new_block(inode->i_sb, inode, 851 iinfo->i_location.partitionReferenceNum, 852 goal, err); 853 if (!newblocknum) { 854 *err = -ENOSPC; 855 newblock = 0; 856 goto out_free; 857 } 858 if (isBeyondEOF) 859 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 860 } 861 862 /* if the extent the requsted block is located in contains multiple 863 * blocks, split the extent into at most three extents. blocks prior 864 * to requested block, requested block, and blocks after requested 865 * block */ 866 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 867 868 /* We preallocate blocks only for regular files. It also makes sense 869 * for directories but there's a problem when to drop the 870 * preallocation. We might use some delayed work for that but I feel 871 * it's overengineering for a filesystem like UDF. */ 872 if (S_ISREG(inode->i_mode)) 873 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 874 875 /* merge any continuous blocks in laarr */ 876 udf_merge_extents(inode, laarr, &endnum); 877 878 /* write back the new extents, inserting new extents if the new number 879 * of extents is greater than the old number, and deleting extents if 880 * the new number of extents is less than the old number */ 881 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 882 883 newblock = udf_get_pblock(inode->i_sb, newblocknum, 884 iinfo->i_location.partitionReferenceNum, 0); 885 if (!newblock) { 886 *err = -EIO; 887 goto out_free; 888 } 889 *new = 1; 890 iinfo->i_next_alloc_block = block; 891 iinfo->i_next_alloc_goal = newblocknum; 892 inode->i_ctime = current_time(inode); 893 894 if (IS_SYNC(inode)) 895 udf_sync_inode(inode); 896 else 897 mark_inode_dirty(inode); 898 out_free: 899 brelse(prev_epos.bh); 900 brelse(cur_epos.bh); 901 brelse(next_epos.bh); 902 return newblock; 903 } 904 905 static void udf_split_extents(struct inode *inode, int *c, int offset, 906 udf_pblk_t newblocknum, 907 struct kernel_long_ad *laarr, int *endnum) 908 { 909 unsigned long blocksize = inode->i_sb->s_blocksize; 910 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 911 912 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 913 (laarr[*c].extLength >> 30) == 914 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 915 int curr = *c; 916 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 917 blocksize - 1) >> blocksize_bits; 918 int8_t etype = (laarr[curr].extLength >> 30); 919 920 if (blen == 1) 921 ; 922 else if (!offset || blen == offset + 1) { 923 laarr[curr + 2] = laarr[curr + 1]; 924 laarr[curr + 1] = laarr[curr]; 925 } else { 926 laarr[curr + 3] = laarr[curr + 1]; 927 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 928 } 929 930 if (offset) { 931 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 932 udf_free_blocks(inode->i_sb, inode, 933 &laarr[curr].extLocation, 934 0, offset); 935 laarr[curr].extLength = 936 EXT_NOT_RECORDED_NOT_ALLOCATED | 937 (offset << blocksize_bits); 938 laarr[curr].extLocation.logicalBlockNum = 0; 939 laarr[curr].extLocation. 940 partitionReferenceNum = 0; 941 } else 942 laarr[curr].extLength = (etype << 30) | 943 (offset << blocksize_bits); 944 curr++; 945 (*c)++; 946 (*endnum)++; 947 } 948 949 laarr[curr].extLocation.logicalBlockNum = newblocknum; 950 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 951 laarr[curr].extLocation.partitionReferenceNum = 952 UDF_I(inode)->i_location.partitionReferenceNum; 953 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 954 blocksize; 955 curr++; 956 957 if (blen != offset + 1) { 958 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 959 laarr[curr].extLocation.logicalBlockNum += 960 offset + 1; 961 laarr[curr].extLength = (etype << 30) | 962 ((blen - (offset + 1)) << blocksize_bits); 963 curr++; 964 (*endnum)++; 965 } 966 } 967 } 968 969 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 970 struct kernel_long_ad *laarr, 971 int *endnum) 972 { 973 int start, length = 0, currlength = 0, i; 974 975 if (*endnum >= (c + 1)) { 976 if (!lastblock) 977 return; 978 else 979 start = c; 980 } else { 981 if ((laarr[c + 1].extLength >> 30) == 982 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 983 start = c + 1; 984 length = currlength = 985 (((laarr[c + 1].extLength & 986 UDF_EXTENT_LENGTH_MASK) + 987 inode->i_sb->s_blocksize - 1) >> 988 inode->i_sb->s_blocksize_bits); 989 } else 990 start = c; 991 } 992 993 for (i = start + 1; i <= *endnum; i++) { 994 if (i == *endnum) { 995 if (lastblock) 996 length += UDF_DEFAULT_PREALLOC_BLOCKS; 997 } else if ((laarr[i].extLength >> 30) == 998 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 999 length += (((laarr[i].extLength & 1000 UDF_EXTENT_LENGTH_MASK) + 1001 inode->i_sb->s_blocksize - 1) >> 1002 inode->i_sb->s_blocksize_bits); 1003 } else 1004 break; 1005 } 1006 1007 if (length) { 1008 int next = laarr[start].extLocation.logicalBlockNum + 1009 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1010 inode->i_sb->s_blocksize - 1) >> 1011 inode->i_sb->s_blocksize_bits); 1012 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1013 laarr[start].extLocation.partitionReferenceNum, 1014 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1015 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1016 currlength); 1017 if (numalloc) { 1018 if (start == (c + 1)) 1019 laarr[start].extLength += 1020 (numalloc << 1021 inode->i_sb->s_blocksize_bits); 1022 else { 1023 memmove(&laarr[c + 2], &laarr[c + 1], 1024 sizeof(struct long_ad) * (*endnum - (c + 1))); 1025 (*endnum)++; 1026 laarr[c + 1].extLocation.logicalBlockNum = next; 1027 laarr[c + 1].extLocation.partitionReferenceNum = 1028 laarr[c].extLocation. 1029 partitionReferenceNum; 1030 laarr[c + 1].extLength = 1031 EXT_NOT_RECORDED_ALLOCATED | 1032 (numalloc << 1033 inode->i_sb->s_blocksize_bits); 1034 start = c + 1; 1035 } 1036 1037 for (i = start + 1; numalloc && i < *endnum; i++) { 1038 int elen = ((laarr[i].extLength & 1039 UDF_EXTENT_LENGTH_MASK) + 1040 inode->i_sb->s_blocksize - 1) >> 1041 inode->i_sb->s_blocksize_bits; 1042 1043 if (elen > numalloc) { 1044 laarr[i].extLength -= 1045 (numalloc << 1046 inode->i_sb->s_blocksize_bits); 1047 numalloc = 0; 1048 } else { 1049 numalloc -= elen; 1050 if (*endnum > (i + 1)) 1051 memmove(&laarr[i], 1052 &laarr[i + 1], 1053 sizeof(struct long_ad) * 1054 (*endnum - (i + 1))); 1055 i--; 1056 (*endnum)--; 1057 } 1058 } 1059 UDF_I(inode)->i_lenExtents += 1060 numalloc << inode->i_sb->s_blocksize_bits; 1061 } 1062 } 1063 } 1064 1065 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1066 int *endnum) 1067 { 1068 int i; 1069 unsigned long blocksize = inode->i_sb->s_blocksize; 1070 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1071 1072 for (i = 0; i < (*endnum - 1); i++) { 1073 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1074 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1075 1076 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1077 (((li->extLength >> 30) == 1078 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1079 ((lip1->extLocation.logicalBlockNum - 1080 li->extLocation.logicalBlockNum) == 1081 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1082 blocksize - 1) >> blocksize_bits)))) { 1083 1084 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1085 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1086 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1087 lip1->extLength = (lip1->extLength - 1088 (li->extLength & 1089 UDF_EXTENT_LENGTH_MASK) + 1090 UDF_EXTENT_LENGTH_MASK) & 1091 ~(blocksize - 1); 1092 li->extLength = (li->extLength & 1093 UDF_EXTENT_FLAG_MASK) + 1094 (UDF_EXTENT_LENGTH_MASK + 1) - 1095 blocksize; 1096 lip1->extLocation.logicalBlockNum = 1097 li->extLocation.logicalBlockNum + 1098 ((li->extLength & 1099 UDF_EXTENT_LENGTH_MASK) >> 1100 blocksize_bits); 1101 } else { 1102 li->extLength = lip1->extLength + 1103 (((li->extLength & 1104 UDF_EXTENT_LENGTH_MASK) + 1105 blocksize - 1) & ~(blocksize - 1)); 1106 if (*endnum > (i + 2)) 1107 memmove(&laarr[i + 1], &laarr[i + 2], 1108 sizeof(struct long_ad) * 1109 (*endnum - (i + 2))); 1110 i--; 1111 (*endnum)--; 1112 } 1113 } else if (((li->extLength >> 30) == 1114 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1115 ((lip1->extLength >> 30) == 1116 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1117 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1118 ((li->extLength & 1119 UDF_EXTENT_LENGTH_MASK) + 1120 blocksize - 1) >> blocksize_bits); 1121 li->extLocation.logicalBlockNum = 0; 1122 li->extLocation.partitionReferenceNum = 0; 1123 1124 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1125 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1126 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1127 lip1->extLength = (lip1->extLength - 1128 (li->extLength & 1129 UDF_EXTENT_LENGTH_MASK) + 1130 UDF_EXTENT_LENGTH_MASK) & 1131 ~(blocksize - 1); 1132 li->extLength = (li->extLength & 1133 UDF_EXTENT_FLAG_MASK) + 1134 (UDF_EXTENT_LENGTH_MASK + 1) - 1135 blocksize; 1136 } else { 1137 li->extLength = lip1->extLength + 1138 (((li->extLength & 1139 UDF_EXTENT_LENGTH_MASK) + 1140 blocksize - 1) & ~(blocksize - 1)); 1141 if (*endnum > (i + 2)) 1142 memmove(&laarr[i + 1], &laarr[i + 2], 1143 sizeof(struct long_ad) * 1144 (*endnum - (i + 2))); 1145 i--; 1146 (*endnum)--; 1147 } 1148 } else if ((li->extLength >> 30) == 1149 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1150 udf_free_blocks(inode->i_sb, inode, 1151 &li->extLocation, 0, 1152 ((li->extLength & 1153 UDF_EXTENT_LENGTH_MASK) + 1154 blocksize - 1) >> blocksize_bits); 1155 li->extLocation.logicalBlockNum = 0; 1156 li->extLocation.partitionReferenceNum = 0; 1157 li->extLength = (li->extLength & 1158 UDF_EXTENT_LENGTH_MASK) | 1159 EXT_NOT_RECORDED_NOT_ALLOCATED; 1160 } 1161 } 1162 } 1163 1164 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1165 int startnum, int endnum, 1166 struct extent_position *epos) 1167 { 1168 int start = 0, i; 1169 struct kernel_lb_addr tmploc; 1170 uint32_t tmplen; 1171 1172 if (startnum > endnum) { 1173 for (i = 0; i < (startnum - endnum); i++) 1174 udf_delete_aext(inode, *epos); 1175 } else if (startnum < endnum) { 1176 for (i = 0; i < (endnum - startnum); i++) { 1177 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1178 laarr[i].extLength); 1179 udf_next_aext(inode, epos, &laarr[i].extLocation, 1180 &laarr[i].extLength, 1); 1181 start++; 1182 } 1183 } 1184 1185 for (i = start; i < endnum; i++) { 1186 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1187 udf_write_aext(inode, epos, &laarr[i].extLocation, 1188 laarr[i].extLength, 1); 1189 } 1190 } 1191 1192 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1193 int create, int *err) 1194 { 1195 struct buffer_head *bh = NULL; 1196 1197 bh = udf_getblk(inode, block, create, err); 1198 if (!bh) 1199 return NULL; 1200 1201 if (bh_read(bh, 0) >= 0) 1202 return bh; 1203 1204 brelse(bh); 1205 *err = -EIO; 1206 return NULL; 1207 } 1208 1209 int udf_setsize(struct inode *inode, loff_t newsize) 1210 { 1211 int err; 1212 struct udf_inode_info *iinfo; 1213 unsigned int bsize = i_blocksize(inode); 1214 1215 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1216 S_ISLNK(inode->i_mode))) 1217 return -EINVAL; 1218 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1219 return -EPERM; 1220 1221 iinfo = UDF_I(inode); 1222 if (newsize > inode->i_size) { 1223 down_write(&iinfo->i_data_sem); 1224 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1225 if (bsize < 1226 (udf_file_entry_alloc_offset(inode) + newsize)) { 1227 err = udf_expand_file_adinicb(inode); 1228 if (err) 1229 return err; 1230 down_write(&iinfo->i_data_sem); 1231 } else { 1232 iinfo->i_lenAlloc = newsize; 1233 goto set_size; 1234 } 1235 } 1236 err = udf_extend_file(inode, newsize); 1237 if (err) { 1238 up_write(&iinfo->i_data_sem); 1239 return err; 1240 } 1241 set_size: 1242 up_write(&iinfo->i_data_sem); 1243 truncate_setsize(inode, newsize); 1244 } else { 1245 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1246 down_write(&iinfo->i_data_sem); 1247 udf_clear_extent_cache(inode); 1248 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1249 0x00, bsize - newsize - 1250 udf_file_entry_alloc_offset(inode)); 1251 iinfo->i_lenAlloc = newsize; 1252 truncate_setsize(inode, newsize); 1253 up_write(&iinfo->i_data_sem); 1254 goto update_time; 1255 } 1256 err = block_truncate_page(inode->i_mapping, newsize, 1257 udf_get_block); 1258 if (err) 1259 return err; 1260 truncate_setsize(inode, newsize); 1261 down_write(&iinfo->i_data_sem); 1262 udf_clear_extent_cache(inode); 1263 err = udf_truncate_extents(inode); 1264 up_write(&iinfo->i_data_sem); 1265 if (err) 1266 return err; 1267 } 1268 update_time: 1269 inode->i_mtime = inode->i_ctime = current_time(inode); 1270 if (IS_SYNC(inode)) 1271 udf_sync_inode(inode); 1272 else 1273 mark_inode_dirty(inode); 1274 return 0; 1275 } 1276 1277 /* 1278 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1279 * arbitrary - just that we hopefully don't limit any real use of rewritten 1280 * inode on write-once media but avoid looping for too long on corrupted media. 1281 */ 1282 #define UDF_MAX_ICB_NESTING 1024 1283 1284 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1285 { 1286 struct buffer_head *bh = NULL; 1287 struct fileEntry *fe; 1288 struct extendedFileEntry *efe; 1289 uint16_t ident; 1290 struct udf_inode_info *iinfo = UDF_I(inode); 1291 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1292 struct kernel_lb_addr *iloc = &iinfo->i_location; 1293 unsigned int link_count; 1294 unsigned int indirections = 0; 1295 int bs = inode->i_sb->s_blocksize; 1296 int ret = -EIO; 1297 uint32_t uid, gid; 1298 1299 reread: 1300 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1301 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1302 iloc->partitionReferenceNum, sbi->s_partitions); 1303 return -EIO; 1304 } 1305 1306 if (iloc->logicalBlockNum >= 1307 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1308 udf_debug("block=%u, partition=%u out of range\n", 1309 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1310 return -EIO; 1311 } 1312 1313 /* 1314 * Set defaults, but the inode is still incomplete! 1315 * Note: get_new_inode() sets the following on a new inode: 1316 * i_sb = sb 1317 * i_no = ino 1318 * i_flags = sb->s_flags 1319 * i_state = 0 1320 * clean_inode(): zero fills and sets 1321 * i_count = 1 1322 * i_nlink = 1 1323 * i_op = NULL; 1324 */ 1325 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1326 if (!bh) { 1327 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1328 return -EIO; 1329 } 1330 1331 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1332 ident != TAG_IDENT_USE) { 1333 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1334 inode->i_ino, ident); 1335 goto out; 1336 } 1337 1338 fe = (struct fileEntry *)bh->b_data; 1339 efe = (struct extendedFileEntry *)bh->b_data; 1340 1341 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1342 struct buffer_head *ibh; 1343 1344 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1345 if (ident == TAG_IDENT_IE && ibh) { 1346 struct kernel_lb_addr loc; 1347 struct indirectEntry *ie; 1348 1349 ie = (struct indirectEntry *)ibh->b_data; 1350 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1351 1352 if (ie->indirectICB.extLength) { 1353 brelse(ibh); 1354 memcpy(&iinfo->i_location, &loc, 1355 sizeof(struct kernel_lb_addr)); 1356 if (++indirections > UDF_MAX_ICB_NESTING) { 1357 udf_err(inode->i_sb, 1358 "too many ICBs in ICB hierarchy" 1359 " (max %d supported)\n", 1360 UDF_MAX_ICB_NESTING); 1361 goto out; 1362 } 1363 brelse(bh); 1364 goto reread; 1365 } 1366 } 1367 brelse(ibh); 1368 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1369 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1370 le16_to_cpu(fe->icbTag.strategyType)); 1371 goto out; 1372 } 1373 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1374 iinfo->i_strat4096 = 0; 1375 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1376 iinfo->i_strat4096 = 1; 1377 1378 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1379 ICBTAG_FLAG_AD_MASK; 1380 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1381 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1382 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1383 ret = -EIO; 1384 goto out; 1385 } 1386 iinfo->i_unique = 0; 1387 iinfo->i_lenEAttr = 0; 1388 iinfo->i_lenExtents = 0; 1389 iinfo->i_lenAlloc = 0; 1390 iinfo->i_next_alloc_block = 0; 1391 iinfo->i_next_alloc_goal = 0; 1392 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1393 iinfo->i_efe = 1; 1394 iinfo->i_use = 0; 1395 ret = udf_alloc_i_data(inode, bs - 1396 sizeof(struct extendedFileEntry)); 1397 if (ret) 1398 goto out; 1399 memcpy(iinfo->i_data, 1400 bh->b_data + sizeof(struct extendedFileEntry), 1401 bs - sizeof(struct extendedFileEntry)); 1402 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1403 iinfo->i_efe = 0; 1404 iinfo->i_use = 0; 1405 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1406 if (ret) 1407 goto out; 1408 memcpy(iinfo->i_data, 1409 bh->b_data + sizeof(struct fileEntry), 1410 bs - sizeof(struct fileEntry)); 1411 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1412 iinfo->i_efe = 0; 1413 iinfo->i_use = 1; 1414 iinfo->i_lenAlloc = le32_to_cpu( 1415 ((struct unallocSpaceEntry *)bh->b_data)-> 1416 lengthAllocDescs); 1417 ret = udf_alloc_i_data(inode, bs - 1418 sizeof(struct unallocSpaceEntry)); 1419 if (ret) 1420 goto out; 1421 memcpy(iinfo->i_data, 1422 bh->b_data + sizeof(struct unallocSpaceEntry), 1423 bs - sizeof(struct unallocSpaceEntry)); 1424 return 0; 1425 } 1426 1427 ret = -EIO; 1428 read_lock(&sbi->s_cred_lock); 1429 uid = le32_to_cpu(fe->uid); 1430 if (uid == UDF_INVALID_ID || 1431 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1432 inode->i_uid = sbi->s_uid; 1433 else 1434 i_uid_write(inode, uid); 1435 1436 gid = le32_to_cpu(fe->gid); 1437 if (gid == UDF_INVALID_ID || 1438 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1439 inode->i_gid = sbi->s_gid; 1440 else 1441 i_gid_write(inode, gid); 1442 1443 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1444 sbi->s_fmode != UDF_INVALID_MODE) 1445 inode->i_mode = sbi->s_fmode; 1446 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1447 sbi->s_dmode != UDF_INVALID_MODE) 1448 inode->i_mode = sbi->s_dmode; 1449 else 1450 inode->i_mode = udf_convert_permissions(fe); 1451 inode->i_mode &= ~sbi->s_umask; 1452 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1453 1454 read_unlock(&sbi->s_cred_lock); 1455 1456 link_count = le16_to_cpu(fe->fileLinkCount); 1457 if (!link_count) { 1458 if (!hidden_inode) { 1459 ret = -ESTALE; 1460 goto out; 1461 } 1462 link_count = 1; 1463 } 1464 set_nlink(inode, link_count); 1465 1466 inode->i_size = le64_to_cpu(fe->informationLength); 1467 iinfo->i_lenExtents = inode->i_size; 1468 1469 if (iinfo->i_efe == 0) { 1470 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1471 (inode->i_sb->s_blocksize_bits - 9); 1472 1473 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1474 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1475 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1476 1477 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1478 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1479 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1480 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1481 iinfo->i_streamdir = 0; 1482 iinfo->i_lenStreams = 0; 1483 } else { 1484 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1485 (inode->i_sb->s_blocksize_bits - 9); 1486 1487 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1488 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1489 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1490 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1491 1492 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1493 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1494 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1495 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1496 1497 /* Named streams */ 1498 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1499 iinfo->i_locStreamdir = 1500 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1501 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1502 if (iinfo->i_lenStreams >= inode->i_size) 1503 iinfo->i_lenStreams -= inode->i_size; 1504 else 1505 iinfo->i_lenStreams = 0; 1506 } 1507 inode->i_generation = iinfo->i_unique; 1508 1509 /* 1510 * Sanity check length of allocation descriptors and extended attrs to 1511 * avoid integer overflows 1512 */ 1513 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1514 goto out; 1515 /* Now do exact checks */ 1516 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1517 goto out; 1518 /* Sanity checks for files in ICB so that we don't get confused later */ 1519 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1520 /* 1521 * For file in ICB data is stored in allocation descriptor 1522 * so sizes should match 1523 */ 1524 if (iinfo->i_lenAlloc != inode->i_size) 1525 goto out; 1526 /* File in ICB has to fit in there... */ 1527 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1528 goto out; 1529 } 1530 1531 switch (fe->icbTag.fileType) { 1532 case ICBTAG_FILE_TYPE_DIRECTORY: 1533 inode->i_op = &udf_dir_inode_operations; 1534 inode->i_fop = &udf_dir_operations; 1535 inode->i_mode |= S_IFDIR; 1536 inc_nlink(inode); 1537 break; 1538 case ICBTAG_FILE_TYPE_REALTIME: 1539 case ICBTAG_FILE_TYPE_REGULAR: 1540 case ICBTAG_FILE_TYPE_UNDEF: 1541 case ICBTAG_FILE_TYPE_VAT20: 1542 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1543 inode->i_data.a_ops = &udf_adinicb_aops; 1544 else 1545 inode->i_data.a_ops = &udf_aops; 1546 inode->i_op = &udf_file_inode_operations; 1547 inode->i_fop = &udf_file_operations; 1548 inode->i_mode |= S_IFREG; 1549 break; 1550 case ICBTAG_FILE_TYPE_BLOCK: 1551 inode->i_mode |= S_IFBLK; 1552 break; 1553 case ICBTAG_FILE_TYPE_CHAR: 1554 inode->i_mode |= S_IFCHR; 1555 break; 1556 case ICBTAG_FILE_TYPE_FIFO: 1557 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1558 break; 1559 case ICBTAG_FILE_TYPE_SOCKET: 1560 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1561 break; 1562 case ICBTAG_FILE_TYPE_SYMLINK: 1563 inode->i_data.a_ops = &udf_symlink_aops; 1564 inode->i_op = &udf_symlink_inode_operations; 1565 inode_nohighmem(inode); 1566 inode->i_mode = S_IFLNK | 0777; 1567 break; 1568 case ICBTAG_FILE_TYPE_MAIN: 1569 udf_debug("METADATA FILE-----\n"); 1570 break; 1571 case ICBTAG_FILE_TYPE_MIRROR: 1572 udf_debug("METADATA MIRROR FILE-----\n"); 1573 break; 1574 case ICBTAG_FILE_TYPE_BITMAP: 1575 udf_debug("METADATA BITMAP FILE-----\n"); 1576 break; 1577 default: 1578 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1579 inode->i_ino, fe->icbTag.fileType); 1580 goto out; 1581 } 1582 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1583 struct deviceSpec *dsea = 1584 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1585 if (dsea) { 1586 init_special_inode(inode, inode->i_mode, 1587 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1588 le32_to_cpu(dsea->minorDeviceIdent))); 1589 /* Developer ID ??? */ 1590 } else 1591 goto out; 1592 } 1593 ret = 0; 1594 out: 1595 brelse(bh); 1596 return ret; 1597 } 1598 1599 static int udf_alloc_i_data(struct inode *inode, size_t size) 1600 { 1601 struct udf_inode_info *iinfo = UDF_I(inode); 1602 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1603 if (!iinfo->i_data) 1604 return -ENOMEM; 1605 return 0; 1606 } 1607 1608 static umode_t udf_convert_permissions(struct fileEntry *fe) 1609 { 1610 umode_t mode; 1611 uint32_t permissions; 1612 uint32_t flags; 1613 1614 permissions = le32_to_cpu(fe->permissions); 1615 flags = le16_to_cpu(fe->icbTag.flags); 1616 1617 mode = ((permissions) & 0007) | 1618 ((permissions >> 2) & 0070) | 1619 ((permissions >> 4) & 0700) | 1620 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1621 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1622 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1623 1624 return mode; 1625 } 1626 1627 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1628 { 1629 struct udf_inode_info *iinfo = UDF_I(inode); 1630 1631 /* 1632 * UDF 2.01 sec. 3.3.3.3 Note 2: 1633 * In Unix, delete permission tracks write 1634 */ 1635 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1636 if (mode & 0200) 1637 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1638 if (mode & 0020) 1639 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1640 if (mode & 0002) 1641 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1642 } 1643 1644 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1645 { 1646 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1647 } 1648 1649 static int udf_sync_inode(struct inode *inode) 1650 { 1651 return udf_update_inode(inode, 1); 1652 } 1653 1654 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1655 { 1656 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1657 (iinfo->i_crtime.tv_sec == time.tv_sec && 1658 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1659 iinfo->i_crtime = time; 1660 } 1661 1662 static int udf_update_inode(struct inode *inode, int do_sync) 1663 { 1664 struct buffer_head *bh = NULL; 1665 struct fileEntry *fe; 1666 struct extendedFileEntry *efe; 1667 uint64_t lb_recorded; 1668 uint32_t udfperms; 1669 uint16_t icbflags; 1670 uint16_t crclen; 1671 int err = 0; 1672 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1673 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1674 struct udf_inode_info *iinfo = UDF_I(inode); 1675 1676 bh = udf_tgetblk(inode->i_sb, 1677 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1678 if (!bh) { 1679 udf_debug("getblk failure\n"); 1680 return -EIO; 1681 } 1682 1683 lock_buffer(bh); 1684 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1685 fe = (struct fileEntry *)bh->b_data; 1686 efe = (struct extendedFileEntry *)bh->b_data; 1687 1688 if (iinfo->i_use) { 1689 struct unallocSpaceEntry *use = 1690 (struct unallocSpaceEntry *)bh->b_data; 1691 1692 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1693 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1694 iinfo->i_data, inode->i_sb->s_blocksize - 1695 sizeof(struct unallocSpaceEntry)); 1696 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1697 crclen = sizeof(struct unallocSpaceEntry); 1698 1699 goto finish; 1700 } 1701 1702 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1703 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1704 else 1705 fe->uid = cpu_to_le32(i_uid_read(inode)); 1706 1707 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1708 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1709 else 1710 fe->gid = cpu_to_le32(i_gid_read(inode)); 1711 1712 udfperms = ((inode->i_mode & 0007)) | 1713 ((inode->i_mode & 0070) << 2) | 1714 ((inode->i_mode & 0700) << 4); 1715 1716 udfperms |= iinfo->i_extraPerms; 1717 fe->permissions = cpu_to_le32(udfperms); 1718 1719 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1720 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1721 else 1722 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1723 1724 fe->informationLength = cpu_to_le64(inode->i_size); 1725 1726 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1727 struct regid *eid; 1728 struct deviceSpec *dsea = 1729 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1730 if (!dsea) { 1731 dsea = (struct deviceSpec *) 1732 udf_add_extendedattr(inode, 1733 sizeof(struct deviceSpec) + 1734 sizeof(struct regid), 12, 0x3); 1735 dsea->attrType = cpu_to_le32(12); 1736 dsea->attrSubtype = 1; 1737 dsea->attrLength = cpu_to_le32( 1738 sizeof(struct deviceSpec) + 1739 sizeof(struct regid)); 1740 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1741 } 1742 eid = (struct regid *)dsea->impUse; 1743 memset(eid, 0, sizeof(*eid)); 1744 strcpy(eid->ident, UDF_ID_DEVELOPER); 1745 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1746 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1747 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1748 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1749 } 1750 1751 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1752 lb_recorded = 0; /* No extents => no blocks! */ 1753 else 1754 lb_recorded = 1755 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1756 (blocksize_bits - 9); 1757 1758 if (iinfo->i_efe == 0) { 1759 memcpy(bh->b_data + sizeof(struct fileEntry), 1760 iinfo->i_data, 1761 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1762 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1763 1764 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1765 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1766 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1767 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1768 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1769 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1770 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1771 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1772 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1773 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1774 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1775 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1776 crclen = sizeof(struct fileEntry); 1777 } else { 1778 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1779 iinfo->i_data, 1780 inode->i_sb->s_blocksize - 1781 sizeof(struct extendedFileEntry)); 1782 efe->objectSize = 1783 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1784 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1785 1786 if (iinfo->i_streamdir) { 1787 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1788 1789 icb_lad->extLocation = 1790 cpu_to_lelb(iinfo->i_locStreamdir); 1791 icb_lad->extLength = 1792 cpu_to_le32(inode->i_sb->s_blocksize); 1793 } 1794 1795 udf_adjust_time(iinfo, inode->i_atime); 1796 udf_adjust_time(iinfo, inode->i_mtime); 1797 udf_adjust_time(iinfo, inode->i_ctime); 1798 1799 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1800 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1801 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1802 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1803 1804 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1805 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1806 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1807 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1808 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1809 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1810 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1811 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1812 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1813 crclen = sizeof(struct extendedFileEntry); 1814 } 1815 1816 finish: 1817 if (iinfo->i_strat4096) { 1818 fe->icbTag.strategyType = cpu_to_le16(4096); 1819 fe->icbTag.strategyParameter = cpu_to_le16(1); 1820 fe->icbTag.numEntries = cpu_to_le16(2); 1821 } else { 1822 fe->icbTag.strategyType = cpu_to_le16(4); 1823 fe->icbTag.numEntries = cpu_to_le16(1); 1824 } 1825 1826 if (iinfo->i_use) 1827 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1828 else if (S_ISDIR(inode->i_mode)) 1829 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1830 else if (S_ISREG(inode->i_mode)) 1831 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1832 else if (S_ISLNK(inode->i_mode)) 1833 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1834 else if (S_ISBLK(inode->i_mode)) 1835 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1836 else if (S_ISCHR(inode->i_mode)) 1837 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1838 else if (S_ISFIFO(inode->i_mode)) 1839 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1840 else if (S_ISSOCK(inode->i_mode)) 1841 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1842 1843 icbflags = iinfo->i_alloc_type | 1844 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1845 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1846 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1847 (le16_to_cpu(fe->icbTag.flags) & 1848 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1849 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1850 1851 fe->icbTag.flags = cpu_to_le16(icbflags); 1852 if (sbi->s_udfrev >= 0x0200) 1853 fe->descTag.descVersion = cpu_to_le16(3); 1854 else 1855 fe->descTag.descVersion = cpu_to_le16(2); 1856 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1857 fe->descTag.tagLocation = cpu_to_le32( 1858 iinfo->i_location.logicalBlockNum); 1859 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1860 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1861 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1862 crclen)); 1863 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1864 1865 set_buffer_uptodate(bh); 1866 unlock_buffer(bh); 1867 1868 /* write the data blocks */ 1869 mark_buffer_dirty(bh); 1870 if (do_sync) { 1871 sync_dirty_buffer(bh); 1872 if (buffer_write_io_error(bh)) { 1873 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1874 inode->i_ino); 1875 err = -EIO; 1876 } 1877 } 1878 brelse(bh); 1879 1880 return err; 1881 } 1882 1883 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1884 bool hidden_inode) 1885 { 1886 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1887 struct inode *inode = iget_locked(sb, block); 1888 int err; 1889 1890 if (!inode) 1891 return ERR_PTR(-ENOMEM); 1892 1893 if (!(inode->i_state & I_NEW)) 1894 return inode; 1895 1896 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1897 err = udf_read_inode(inode, hidden_inode); 1898 if (err < 0) { 1899 iget_failed(inode); 1900 return ERR_PTR(err); 1901 } 1902 unlock_new_inode(inode); 1903 1904 return inode; 1905 } 1906 1907 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1908 struct extent_position *epos) 1909 { 1910 struct super_block *sb = inode->i_sb; 1911 struct buffer_head *bh; 1912 struct allocExtDesc *aed; 1913 struct extent_position nepos; 1914 struct kernel_lb_addr neloc; 1915 int ver, adsize; 1916 1917 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1918 adsize = sizeof(struct short_ad); 1919 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1920 adsize = sizeof(struct long_ad); 1921 else 1922 return -EIO; 1923 1924 neloc.logicalBlockNum = block; 1925 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1926 1927 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1928 if (!bh) 1929 return -EIO; 1930 lock_buffer(bh); 1931 memset(bh->b_data, 0x00, sb->s_blocksize); 1932 set_buffer_uptodate(bh); 1933 unlock_buffer(bh); 1934 mark_buffer_dirty_inode(bh, inode); 1935 1936 aed = (struct allocExtDesc *)(bh->b_data); 1937 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1938 aed->previousAllocExtLocation = 1939 cpu_to_le32(epos->block.logicalBlockNum); 1940 } 1941 aed->lengthAllocDescs = cpu_to_le32(0); 1942 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1943 ver = 3; 1944 else 1945 ver = 2; 1946 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1947 sizeof(struct tag)); 1948 1949 nepos.block = neloc; 1950 nepos.offset = sizeof(struct allocExtDesc); 1951 nepos.bh = bh; 1952 1953 /* 1954 * Do we have to copy current last extent to make space for indirect 1955 * one? 1956 */ 1957 if (epos->offset + adsize > sb->s_blocksize) { 1958 struct kernel_lb_addr cp_loc; 1959 uint32_t cp_len; 1960 int cp_type; 1961 1962 epos->offset -= adsize; 1963 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1964 cp_len |= ((uint32_t)cp_type) << 30; 1965 1966 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1967 udf_write_aext(inode, epos, &nepos.block, 1968 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1969 } else { 1970 __udf_add_aext(inode, epos, &nepos.block, 1971 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1972 } 1973 1974 brelse(epos->bh); 1975 *epos = nepos; 1976 1977 return 0; 1978 } 1979 1980 /* 1981 * Append extent at the given position - should be the first free one in inode 1982 * / indirect extent. This function assumes there is enough space in the inode 1983 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1984 */ 1985 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1986 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1987 { 1988 struct udf_inode_info *iinfo = UDF_I(inode); 1989 struct allocExtDesc *aed; 1990 int adsize; 1991 1992 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1993 adsize = sizeof(struct short_ad); 1994 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1995 adsize = sizeof(struct long_ad); 1996 else 1997 return -EIO; 1998 1999 if (!epos->bh) { 2000 WARN_ON(iinfo->i_lenAlloc != 2001 epos->offset - udf_file_entry_alloc_offset(inode)); 2002 } else { 2003 aed = (struct allocExtDesc *)epos->bh->b_data; 2004 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2005 epos->offset - sizeof(struct allocExtDesc)); 2006 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2007 } 2008 2009 udf_write_aext(inode, epos, eloc, elen, inc); 2010 2011 if (!epos->bh) { 2012 iinfo->i_lenAlloc += adsize; 2013 mark_inode_dirty(inode); 2014 } else { 2015 aed = (struct allocExtDesc *)epos->bh->b_data; 2016 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2017 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2018 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2019 udf_update_tag(epos->bh->b_data, 2020 epos->offset + (inc ? 0 : adsize)); 2021 else 2022 udf_update_tag(epos->bh->b_data, 2023 sizeof(struct allocExtDesc)); 2024 mark_buffer_dirty_inode(epos->bh, inode); 2025 } 2026 2027 return 0; 2028 } 2029 2030 /* 2031 * Append extent at given position - should be the first free one in inode 2032 * / indirect extent. Takes care of allocating and linking indirect blocks. 2033 */ 2034 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2035 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2036 { 2037 int adsize; 2038 struct super_block *sb = inode->i_sb; 2039 2040 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2041 adsize = sizeof(struct short_ad); 2042 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2043 adsize = sizeof(struct long_ad); 2044 else 2045 return -EIO; 2046 2047 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2048 int err; 2049 udf_pblk_t new_block; 2050 2051 new_block = udf_new_block(sb, NULL, 2052 epos->block.partitionReferenceNum, 2053 epos->block.logicalBlockNum, &err); 2054 if (!new_block) 2055 return -ENOSPC; 2056 2057 err = udf_setup_indirect_aext(inode, new_block, epos); 2058 if (err) 2059 return err; 2060 } 2061 2062 return __udf_add_aext(inode, epos, eloc, elen, inc); 2063 } 2064 2065 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2066 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2067 { 2068 int adsize; 2069 uint8_t *ptr; 2070 struct short_ad *sad; 2071 struct long_ad *lad; 2072 struct udf_inode_info *iinfo = UDF_I(inode); 2073 2074 if (!epos->bh) 2075 ptr = iinfo->i_data + epos->offset - 2076 udf_file_entry_alloc_offset(inode) + 2077 iinfo->i_lenEAttr; 2078 else 2079 ptr = epos->bh->b_data + epos->offset; 2080 2081 switch (iinfo->i_alloc_type) { 2082 case ICBTAG_FLAG_AD_SHORT: 2083 sad = (struct short_ad *)ptr; 2084 sad->extLength = cpu_to_le32(elen); 2085 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2086 adsize = sizeof(struct short_ad); 2087 break; 2088 case ICBTAG_FLAG_AD_LONG: 2089 lad = (struct long_ad *)ptr; 2090 lad->extLength = cpu_to_le32(elen); 2091 lad->extLocation = cpu_to_lelb(*eloc); 2092 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2093 adsize = sizeof(struct long_ad); 2094 break; 2095 default: 2096 return; 2097 } 2098 2099 if (epos->bh) { 2100 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2101 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2102 struct allocExtDesc *aed = 2103 (struct allocExtDesc *)epos->bh->b_data; 2104 udf_update_tag(epos->bh->b_data, 2105 le32_to_cpu(aed->lengthAllocDescs) + 2106 sizeof(struct allocExtDesc)); 2107 } 2108 mark_buffer_dirty_inode(epos->bh, inode); 2109 } else { 2110 mark_inode_dirty(inode); 2111 } 2112 2113 if (inc) 2114 epos->offset += adsize; 2115 } 2116 2117 /* 2118 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2119 * someone does some weird stuff. 2120 */ 2121 #define UDF_MAX_INDIR_EXTS 16 2122 2123 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2124 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2125 { 2126 int8_t etype; 2127 unsigned int indirections = 0; 2128 2129 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2130 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2131 udf_pblk_t block; 2132 2133 if (++indirections > UDF_MAX_INDIR_EXTS) { 2134 udf_err(inode->i_sb, 2135 "too many indirect extents in inode %lu\n", 2136 inode->i_ino); 2137 return -1; 2138 } 2139 2140 epos->block = *eloc; 2141 epos->offset = sizeof(struct allocExtDesc); 2142 brelse(epos->bh); 2143 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2144 epos->bh = udf_tread(inode->i_sb, block); 2145 if (!epos->bh) { 2146 udf_debug("reading block %u failed!\n", block); 2147 return -1; 2148 } 2149 } 2150 2151 return etype; 2152 } 2153 2154 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2155 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2156 { 2157 int alen; 2158 int8_t etype; 2159 uint8_t *ptr; 2160 struct short_ad *sad; 2161 struct long_ad *lad; 2162 struct udf_inode_info *iinfo = UDF_I(inode); 2163 2164 if (!epos->bh) { 2165 if (!epos->offset) 2166 epos->offset = udf_file_entry_alloc_offset(inode); 2167 ptr = iinfo->i_data + epos->offset - 2168 udf_file_entry_alloc_offset(inode) + 2169 iinfo->i_lenEAttr; 2170 alen = udf_file_entry_alloc_offset(inode) + 2171 iinfo->i_lenAlloc; 2172 } else { 2173 if (!epos->offset) 2174 epos->offset = sizeof(struct allocExtDesc); 2175 ptr = epos->bh->b_data + epos->offset; 2176 alen = sizeof(struct allocExtDesc) + 2177 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2178 lengthAllocDescs); 2179 } 2180 2181 switch (iinfo->i_alloc_type) { 2182 case ICBTAG_FLAG_AD_SHORT: 2183 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2184 if (!sad) 2185 return -1; 2186 etype = le32_to_cpu(sad->extLength) >> 30; 2187 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2188 eloc->partitionReferenceNum = 2189 iinfo->i_location.partitionReferenceNum; 2190 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2191 break; 2192 case ICBTAG_FLAG_AD_LONG: 2193 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2194 if (!lad) 2195 return -1; 2196 etype = le32_to_cpu(lad->extLength) >> 30; 2197 *eloc = lelb_to_cpu(lad->extLocation); 2198 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2199 break; 2200 default: 2201 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2202 return -1; 2203 } 2204 2205 return etype; 2206 } 2207 2208 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2209 struct kernel_lb_addr neloc, uint32_t nelen) 2210 { 2211 struct kernel_lb_addr oeloc; 2212 uint32_t oelen; 2213 int8_t etype; 2214 2215 if (epos.bh) 2216 get_bh(epos.bh); 2217 2218 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2219 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2220 neloc = oeloc; 2221 nelen = (etype << 30) | oelen; 2222 } 2223 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2224 brelse(epos.bh); 2225 2226 return (nelen >> 30); 2227 } 2228 2229 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2230 { 2231 struct extent_position oepos; 2232 int adsize; 2233 int8_t etype; 2234 struct allocExtDesc *aed; 2235 struct udf_inode_info *iinfo; 2236 struct kernel_lb_addr eloc; 2237 uint32_t elen; 2238 2239 if (epos.bh) { 2240 get_bh(epos.bh); 2241 get_bh(epos.bh); 2242 } 2243 2244 iinfo = UDF_I(inode); 2245 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2246 adsize = sizeof(struct short_ad); 2247 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2248 adsize = sizeof(struct long_ad); 2249 else 2250 adsize = 0; 2251 2252 oepos = epos; 2253 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2254 return -1; 2255 2256 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2257 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2258 if (oepos.bh != epos.bh) { 2259 oepos.block = epos.block; 2260 brelse(oepos.bh); 2261 get_bh(epos.bh); 2262 oepos.bh = epos.bh; 2263 oepos.offset = epos.offset - adsize; 2264 } 2265 } 2266 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2267 elen = 0; 2268 2269 if (epos.bh != oepos.bh) { 2270 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2271 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2272 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2273 if (!oepos.bh) { 2274 iinfo->i_lenAlloc -= (adsize * 2); 2275 mark_inode_dirty(inode); 2276 } else { 2277 aed = (struct allocExtDesc *)oepos.bh->b_data; 2278 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2279 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2280 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2281 udf_update_tag(oepos.bh->b_data, 2282 oepos.offset - (2 * adsize)); 2283 else 2284 udf_update_tag(oepos.bh->b_data, 2285 sizeof(struct allocExtDesc)); 2286 mark_buffer_dirty_inode(oepos.bh, inode); 2287 } 2288 } else { 2289 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2290 if (!oepos.bh) { 2291 iinfo->i_lenAlloc -= adsize; 2292 mark_inode_dirty(inode); 2293 } else { 2294 aed = (struct allocExtDesc *)oepos.bh->b_data; 2295 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2296 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2297 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2298 udf_update_tag(oepos.bh->b_data, 2299 epos.offset - adsize); 2300 else 2301 udf_update_tag(oepos.bh->b_data, 2302 sizeof(struct allocExtDesc)); 2303 mark_buffer_dirty_inode(oepos.bh, inode); 2304 } 2305 } 2306 2307 brelse(epos.bh); 2308 brelse(oepos.bh); 2309 2310 return (elen >> 30); 2311 } 2312 2313 int8_t inode_bmap(struct inode *inode, sector_t block, 2314 struct extent_position *pos, struct kernel_lb_addr *eloc, 2315 uint32_t *elen, sector_t *offset) 2316 { 2317 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2318 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2319 int8_t etype; 2320 struct udf_inode_info *iinfo; 2321 2322 iinfo = UDF_I(inode); 2323 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2324 pos->offset = 0; 2325 pos->block = iinfo->i_location; 2326 pos->bh = NULL; 2327 } 2328 *elen = 0; 2329 do { 2330 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2331 if (etype == -1) { 2332 *offset = (bcount - lbcount) >> blocksize_bits; 2333 iinfo->i_lenExtents = lbcount; 2334 return -1; 2335 } 2336 lbcount += *elen; 2337 } while (lbcount <= bcount); 2338 /* update extent cache */ 2339 udf_update_extent_cache(inode, lbcount - *elen, pos); 2340 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2341 2342 return etype; 2343 } 2344 2345 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2346 { 2347 struct kernel_lb_addr eloc; 2348 uint32_t elen; 2349 sector_t offset; 2350 struct extent_position epos = {}; 2351 udf_pblk_t ret; 2352 2353 down_read(&UDF_I(inode)->i_data_sem); 2354 2355 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2356 (EXT_RECORDED_ALLOCATED >> 30)) 2357 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2358 else 2359 ret = 0; 2360 2361 up_read(&UDF_I(inode)->i_data_sem); 2362 brelse(epos.bh); 2363 2364 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2365 return udf_fixed_to_variable(ret); 2366 else 2367 return ret; 2368 } 2369