1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 #include <linux/slab.h> 39 #include <linux/crc-itu-t.h> 40 #include <linux/mpage.h> 41 42 #include "udf_i.h" 43 #include "udf_sb.h" 44 45 MODULE_AUTHOR("Ben Fennema"); 46 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 47 MODULE_LICENSE("GPL"); 48 49 #define EXTENT_MERGE_SIZE 5 50 51 static umode_t udf_convert_permissions(struct fileEntry *); 52 static int udf_update_inode(struct inode *, int); 53 static void udf_fill_inode(struct inode *, struct buffer_head *); 54 static int udf_sync_inode(struct inode *inode); 55 static int udf_alloc_i_data(struct inode *inode, size_t size); 56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 57 static int8_t udf_insert_aext(struct inode *, struct extent_position, 58 struct kernel_lb_addr, uint32_t); 59 static void udf_split_extents(struct inode *, int *, int, int, 60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 61 static void udf_prealloc_extents(struct inode *, int, int, 62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 63 static void udf_merge_extents(struct inode *, 64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); 65 static void udf_update_extents(struct inode *, 66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, 67 struct extent_position *); 68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 69 70 71 void udf_evict_inode(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 int want_delete = 0; 75 76 if (!inode->i_nlink && !is_bad_inode(inode)) { 77 want_delete = 1; 78 udf_setsize(inode, 0); 79 udf_update_inode(inode, IS_SYNC(inode)); 80 } else 81 truncate_inode_pages(&inode->i_data, 0); 82 invalidate_inode_buffers(inode); 83 clear_inode(inode); 84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 85 inode->i_size != iinfo->i_lenExtents) { 86 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 87 inode->i_ino, inode->i_mode, 88 (unsigned long long)inode->i_size, 89 (unsigned long long)iinfo->i_lenExtents); 90 } 91 kfree(iinfo->i_ext.i_data); 92 iinfo->i_ext.i_data = NULL; 93 if (want_delete) { 94 udf_free_inode(inode); 95 } 96 } 97 98 static int udf_writepage(struct page *page, struct writeback_control *wbc) 99 { 100 return block_write_full_page(page, udf_get_block, wbc); 101 } 102 103 static int udf_readpage(struct file *file, struct page *page) 104 { 105 return mpage_readpage(page, udf_get_block); 106 } 107 108 static int udf_readpages(struct file *file, struct address_space *mapping, 109 struct list_head *pages, unsigned nr_pages) 110 { 111 return mpage_readpages(mapping, pages, nr_pages, udf_get_block); 112 } 113 114 static int udf_write_begin(struct file *file, struct address_space *mapping, 115 loff_t pos, unsigned len, unsigned flags, 116 struct page **pagep, void **fsdata) 117 { 118 int ret; 119 120 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 121 if (unlikely(ret)) { 122 struct inode *inode = mapping->host; 123 struct udf_inode_info *iinfo = UDF_I(inode); 124 loff_t isize = inode->i_size; 125 126 if (pos + len > isize) { 127 truncate_pagecache(inode, pos + len, isize); 128 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 129 down_write(&iinfo->i_data_sem); 130 udf_truncate_extents(inode); 131 up_write(&iinfo->i_data_sem); 132 } 133 } 134 } 135 136 return ret; 137 } 138 139 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 140 { 141 return generic_block_bmap(mapping, block, udf_get_block); 142 } 143 144 const struct address_space_operations udf_aops = { 145 .readpage = udf_readpage, 146 .readpages = udf_readpages, 147 .writepage = udf_writepage, 148 .write_begin = udf_write_begin, 149 .write_end = generic_write_end, 150 .bmap = udf_bmap, 151 }; 152 153 /* 154 * Expand file stored in ICB to a normal one-block-file 155 * 156 * This function requires i_data_sem for writing and releases it. 157 * This function requires i_mutex held 158 */ 159 int udf_expand_file_adinicb(struct inode *inode) 160 { 161 struct page *page; 162 char *kaddr; 163 struct udf_inode_info *iinfo = UDF_I(inode); 164 int err; 165 struct writeback_control udf_wbc = { 166 .sync_mode = WB_SYNC_NONE, 167 .nr_to_write = 1, 168 }; 169 170 if (!iinfo->i_lenAlloc) { 171 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 172 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 173 else 174 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 175 /* from now on we have normal address_space methods */ 176 inode->i_data.a_ops = &udf_aops; 177 up_write(&iinfo->i_data_sem); 178 mark_inode_dirty(inode); 179 return 0; 180 } 181 /* 182 * Release i_data_sem so that we can lock a page - page lock ranks 183 * above i_data_sem. i_mutex still protects us against file changes. 184 */ 185 up_write(&iinfo->i_data_sem); 186 187 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 188 if (!page) 189 return -ENOMEM; 190 191 if (!PageUptodate(page)) { 192 kaddr = kmap(page); 193 memset(kaddr + iinfo->i_lenAlloc, 0x00, 194 PAGE_CACHE_SIZE - iinfo->i_lenAlloc); 195 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, 196 iinfo->i_lenAlloc); 197 flush_dcache_page(page); 198 SetPageUptodate(page); 199 kunmap(page); 200 } 201 down_write(&iinfo->i_data_sem); 202 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, 203 iinfo->i_lenAlloc); 204 iinfo->i_lenAlloc = 0; 205 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 206 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 207 else 208 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 209 /* from now on we have normal address_space methods */ 210 inode->i_data.a_ops = &udf_aops; 211 up_write(&iinfo->i_data_sem); 212 err = inode->i_data.a_ops->writepage(page, &udf_wbc); 213 if (err) { 214 /* Restore everything back so that we don't lose data... */ 215 lock_page(page); 216 kaddr = kmap(page); 217 down_write(&iinfo->i_data_sem); 218 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr, 219 inode->i_size); 220 kunmap(page); 221 unlock_page(page); 222 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 223 inode->i_data.a_ops = &udf_adinicb_aops; 224 up_write(&iinfo->i_data_sem); 225 } 226 page_cache_release(page); 227 mark_inode_dirty(inode); 228 229 return err; 230 } 231 232 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, 233 int *err) 234 { 235 int newblock; 236 struct buffer_head *dbh = NULL; 237 struct kernel_lb_addr eloc; 238 uint8_t alloctype; 239 struct extent_position epos; 240 241 struct udf_fileident_bh sfibh, dfibh; 242 loff_t f_pos = udf_ext0_offset(inode); 243 int size = udf_ext0_offset(inode) + inode->i_size; 244 struct fileIdentDesc cfi, *sfi, *dfi; 245 struct udf_inode_info *iinfo = UDF_I(inode); 246 247 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 248 alloctype = ICBTAG_FLAG_AD_SHORT; 249 else 250 alloctype = ICBTAG_FLAG_AD_LONG; 251 252 if (!inode->i_size) { 253 iinfo->i_alloc_type = alloctype; 254 mark_inode_dirty(inode); 255 return NULL; 256 } 257 258 /* alloc block, and copy data to it */ 259 *block = udf_new_block(inode->i_sb, inode, 260 iinfo->i_location.partitionReferenceNum, 261 iinfo->i_location.logicalBlockNum, err); 262 if (!(*block)) 263 return NULL; 264 newblock = udf_get_pblock(inode->i_sb, *block, 265 iinfo->i_location.partitionReferenceNum, 266 0); 267 if (!newblock) 268 return NULL; 269 dbh = udf_tgetblk(inode->i_sb, newblock); 270 if (!dbh) 271 return NULL; 272 lock_buffer(dbh); 273 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 274 set_buffer_uptodate(dbh); 275 unlock_buffer(dbh); 276 mark_buffer_dirty_inode(dbh, inode); 277 278 sfibh.soffset = sfibh.eoffset = 279 f_pos & (inode->i_sb->s_blocksize - 1); 280 sfibh.sbh = sfibh.ebh = NULL; 281 dfibh.soffset = dfibh.eoffset = 0; 282 dfibh.sbh = dfibh.ebh = dbh; 283 while (f_pos < size) { 284 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 285 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 286 NULL, NULL, NULL); 287 if (!sfi) { 288 brelse(dbh); 289 return NULL; 290 } 291 iinfo->i_alloc_type = alloctype; 292 sfi->descTag.tagLocation = cpu_to_le32(*block); 293 dfibh.soffset = dfibh.eoffset; 294 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 295 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 296 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 297 sfi->fileIdent + 298 le16_to_cpu(sfi->lengthOfImpUse))) { 299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 300 brelse(dbh); 301 return NULL; 302 } 303 } 304 mark_buffer_dirty_inode(dbh, inode); 305 306 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, 307 iinfo->i_lenAlloc); 308 iinfo->i_lenAlloc = 0; 309 eloc.logicalBlockNum = *block; 310 eloc.partitionReferenceNum = 311 iinfo->i_location.partitionReferenceNum; 312 iinfo->i_lenExtents = inode->i_size; 313 epos.bh = NULL; 314 epos.block = iinfo->i_location; 315 epos.offset = udf_file_entry_alloc_offset(inode); 316 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 317 /* UniqueID stuff */ 318 319 brelse(epos.bh); 320 mark_inode_dirty(inode); 321 return dbh; 322 } 323 324 static int udf_get_block(struct inode *inode, sector_t block, 325 struct buffer_head *bh_result, int create) 326 { 327 int err, new; 328 sector_t phys = 0; 329 struct udf_inode_info *iinfo; 330 331 if (!create) { 332 phys = udf_block_map(inode, block); 333 if (phys) 334 map_bh(bh_result, inode->i_sb, phys); 335 return 0; 336 } 337 338 err = -EIO; 339 new = 0; 340 iinfo = UDF_I(inode); 341 342 down_write(&iinfo->i_data_sem); 343 if (block == iinfo->i_next_alloc_block + 1) { 344 iinfo->i_next_alloc_block++; 345 iinfo->i_next_alloc_goal++; 346 } 347 348 349 phys = inode_getblk(inode, block, &err, &new); 350 if (!phys) 351 goto abort; 352 353 if (new) 354 set_buffer_new(bh_result); 355 map_bh(bh_result, inode->i_sb, phys); 356 357 abort: 358 up_write(&iinfo->i_data_sem); 359 return err; 360 } 361 362 static struct buffer_head *udf_getblk(struct inode *inode, long block, 363 int create, int *err) 364 { 365 struct buffer_head *bh; 366 struct buffer_head dummy; 367 368 dummy.b_state = 0; 369 dummy.b_blocknr = -1000; 370 *err = udf_get_block(inode, block, &dummy, create); 371 if (!*err && buffer_mapped(&dummy)) { 372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 373 if (buffer_new(&dummy)) { 374 lock_buffer(bh); 375 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 376 set_buffer_uptodate(bh); 377 unlock_buffer(bh); 378 mark_buffer_dirty_inode(bh, inode); 379 } 380 return bh; 381 } 382 383 return NULL; 384 } 385 386 /* Extend the file by 'blocks' blocks, return the number of extents added */ 387 static int udf_do_extend_file(struct inode *inode, 388 struct extent_position *last_pos, 389 struct kernel_long_ad *last_ext, 390 sector_t blocks) 391 { 392 sector_t add; 393 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 394 struct super_block *sb = inode->i_sb; 395 struct kernel_lb_addr prealloc_loc = {}; 396 int prealloc_len = 0; 397 struct udf_inode_info *iinfo; 398 int err; 399 400 /* The previous extent is fake and we should not extend by anything 401 * - there's nothing to do... */ 402 if (!blocks && fake) 403 return 0; 404 405 iinfo = UDF_I(inode); 406 /* Round the last extent up to a multiple of block size */ 407 if (last_ext->extLength & (sb->s_blocksize - 1)) { 408 last_ext->extLength = 409 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 410 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 411 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 412 iinfo->i_lenExtents = 413 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 414 ~(sb->s_blocksize - 1); 415 } 416 417 /* Last extent are just preallocated blocks? */ 418 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 419 EXT_NOT_RECORDED_ALLOCATED) { 420 /* Save the extent so that we can reattach it to the end */ 421 prealloc_loc = last_ext->extLocation; 422 prealloc_len = last_ext->extLength; 423 /* Mark the extent as a hole */ 424 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 425 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 426 last_ext->extLocation.logicalBlockNum = 0; 427 last_ext->extLocation.partitionReferenceNum = 0; 428 } 429 430 /* Can we merge with the previous extent? */ 431 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 432 EXT_NOT_RECORDED_NOT_ALLOCATED) { 433 add = ((1 << 30) - sb->s_blocksize - 434 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> 435 sb->s_blocksize_bits; 436 if (add > blocks) 437 add = blocks; 438 blocks -= add; 439 last_ext->extLength += add << sb->s_blocksize_bits; 440 } 441 442 if (fake) { 443 udf_add_aext(inode, last_pos, &last_ext->extLocation, 444 last_ext->extLength, 1); 445 count++; 446 } else 447 udf_write_aext(inode, last_pos, &last_ext->extLocation, 448 last_ext->extLength, 1); 449 450 /* Managed to do everything necessary? */ 451 if (!blocks) 452 goto out; 453 454 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 455 last_ext->extLocation.logicalBlockNum = 0; 456 last_ext->extLocation.partitionReferenceNum = 0; 457 add = (1 << (30-sb->s_blocksize_bits)) - 1; 458 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 459 (add << sb->s_blocksize_bits); 460 461 /* Create enough extents to cover the whole hole */ 462 while (blocks > add) { 463 blocks -= add; 464 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 465 last_ext->extLength, 1); 466 if (err) 467 return err; 468 count++; 469 } 470 if (blocks) { 471 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 472 (blocks << sb->s_blocksize_bits); 473 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 474 last_ext->extLength, 1); 475 if (err) 476 return err; 477 count++; 478 } 479 480 out: 481 /* Do we have some preallocated blocks saved? */ 482 if (prealloc_len) { 483 err = udf_add_aext(inode, last_pos, &prealloc_loc, 484 prealloc_len, 1); 485 if (err) 486 return err; 487 last_ext->extLocation = prealloc_loc; 488 last_ext->extLength = prealloc_len; 489 count++; 490 } 491 492 /* last_pos should point to the last written extent... */ 493 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 494 last_pos->offset -= sizeof(struct short_ad); 495 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 496 last_pos->offset -= sizeof(struct long_ad); 497 else 498 return -EIO; 499 500 return count; 501 } 502 503 static int udf_extend_file(struct inode *inode, loff_t newsize) 504 { 505 506 struct extent_position epos; 507 struct kernel_lb_addr eloc; 508 uint32_t elen; 509 int8_t etype; 510 struct super_block *sb = inode->i_sb; 511 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 512 int adsize; 513 struct udf_inode_info *iinfo = UDF_I(inode); 514 struct kernel_long_ad extent; 515 int err; 516 517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 518 adsize = sizeof(struct short_ad); 519 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 520 adsize = sizeof(struct long_ad); 521 else 522 BUG(); 523 524 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 525 526 /* File has extent covering the new size (could happen when extending 527 * inside a block)? */ 528 if (etype != -1) 529 return 0; 530 if (newsize & (sb->s_blocksize - 1)) 531 offset++; 532 /* Extended file just to the boundary of the last file block? */ 533 if (offset == 0) 534 return 0; 535 536 /* Truncate is extending the file by 'offset' blocks */ 537 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 538 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 539 /* File has no extents at all or has empty last 540 * indirect extent! Create a fake extent... */ 541 extent.extLocation.logicalBlockNum = 0; 542 extent.extLocation.partitionReferenceNum = 0; 543 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 544 } else { 545 epos.offset -= adsize; 546 etype = udf_next_aext(inode, &epos, &extent.extLocation, 547 &extent.extLength, 0); 548 extent.extLength |= etype << 30; 549 } 550 err = udf_do_extend_file(inode, &epos, &extent, offset); 551 if (err < 0) 552 goto out; 553 err = 0; 554 iinfo->i_lenExtents = newsize; 555 out: 556 brelse(epos.bh); 557 return err; 558 } 559 560 static sector_t inode_getblk(struct inode *inode, sector_t block, 561 int *err, int *new) 562 { 563 static sector_t last_block; 564 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 565 struct extent_position prev_epos, cur_epos, next_epos; 566 int count = 0, startnum = 0, endnum = 0; 567 uint32_t elen = 0, tmpelen; 568 struct kernel_lb_addr eloc, tmpeloc; 569 int c = 1; 570 loff_t lbcount = 0, b_off = 0; 571 uint32_t newblocknum, newblock; 572 sector_t offset = 0; 573 int8_t etype; 574 struct udf_inode_info *iinfo = UDF_I(inode); 575 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 576 int lastblock = 0; 577 578 *err = 0; 579 *new = 0; 580 prev_epos.offset = udf_file_entry_alloc_offset(inode); 581 prev_epos.block = iinfo->i_location; 582 prev_epos.bh = NULL; 583 cur_epos = next_epos = prev_epos; 584 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 585 586 /* find the extent which contains the block we are looking for. 587 alternate between laarr[0] and laarr[1] for locations of the 588 current extent, and the previous extent */ 589 do { 590 if (prev_epos.bh != cur_epos.bh) { 591 brelse(prev_epos.bh); 592 get_bh(cur_epos.bh); 593 prev_epos.bh = cur_epos.bh; 594 } 595 if (cur_epos.bh != next_epos.bh) { 596 brelse(cur_epos.bh); 597 get_bh(next_epos.bh); 598 cur_epos.bh = next_epos.bh; 599 } 600 601 lbcount += elen; 602 603 prev_epos.block = cur_epos.block; 604 cur_epos.block = next_epos.block; 605 606 prev_epos.offset = cur_epos.offset; 607 cur_epos.offset = next_epos.offset; 608 609 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 610 if (etype == -1) 611 break; 612 613 c = !c; 614 615 laarr[c].extLength = (etype << 30) | elen; 616 laarr[c].extLocation = eloc; 617 618 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 619 pgoal = eloc.logicalBlockNum + 620 ((elen + inode->i_sb->s_blocksize - 1) >> 621 inode->i_sb->s_blocksize_bits); 622 623 count++; 624 } while (lbcount + elen <= b_off); 625 626 b_off -= lbcount; 627 offset = b_off >> inode->i_sb->s_blocksize_bits; 628 /* 629 * Move prev_epos and cur_epos into indirect extent if we are at 630 * the pointer to it 631 */ 632 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 633 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 634 635 /* if the extent is allocated and recorded, return the block 636 if the extent is not a multiple of the blocksize, round up */ 637 638 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 639 if (elen & (inode->i_sb->s_blocksize - 1)) { 640 elen = EXT_RECORDED_ALLOCATED | 641 ((elen + inode->i_sb->s_blocksize - 1) & 642 ~(inode->i_sb->s_blocksize - 1)); 643 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 644 } 645 brelse(prev_epos.bh); 646 brelse(cur_epos.bh); 647 brelse(next_epos.bh); 648 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 649 return newblock; 650 } 651 652 last_block = block; 653 /* Are we beyond EOF? */ 654 if (etype == -1) { 655 int ret; 656 657 if (count) { 658 if (c) 659 laarr[0] = laarr[1]; 660 startnum = 1; 661 } else { 662 /* Create a fake extent when there's not one */ 663 memset(&laarr[0].extLocation, 0x00, 664 sizeof(struct kernel_lb_addr)); 665 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 666 /* Will udf_do_extend_file() create real extent from 667 a fake one? */ 668 startnum = (offset > 0); 669 } 670 /* Create extents for the hole between EOF and offset */ 671 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset); 672 if (ret < 0) { 673 brelse(prev_epos.bh); 674 brelse(cur_epos.bh); 675 brelse(next_epos.bh); 676 *err = ret; 677 return 0; 678 } 679 c = 0; 680 offset = 0; 681 count += ret; 682 /* We are not covered by a preallocated extent? */ 683 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 684 EXT_NOT_RECORDED_ALLOCATED) { 685 /* Is there any real extent? - otherwise we overwrite 686 * the fake one... */ 687 if (count) 688 c = !c; 689 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 690 inode->i_sb->s_blocksize; 691 memset(&laarr[c].extLocation, 0x00, 692 sizeof(struct kernel_lb_addr)); 693 count++; 694 endnum++; 695 } 696 endnum = c + 1; 697 lastblock = 1; 698 } else { 699 endnum = startnum = ((count > 2) ? 2 : count); 700 701 /* if the current extent is in position 0, 702 swap it with the previous */ 703 if (!c && count != 1) { 704 laarr[2] = laarr[0]; 705 laarr[0] = laarr[1]; 706 laarr[1] = laarr[2]; 707 c = 1; 708 } 709 710 /* if the current block is located in an extent, 711 read the next extent */ 712 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 713 if (etype != -1) { 714 laarr[c + 1].extLength = (etype << 30) | elen; 715 laarr[c + 1].extLocation = eloc; 716 count++; 717 startnum++; 718 endnum++; 719 } else 720 lastblock = 1; 721 } 722 723 /* if the current extent is not recorded but allocated, get the 724 * block in the extent corresponding to the requested block */ 725 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 726 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 727 else { /* otherwise, allocate a new block */ 728 if (iinfo->i_next_alloc_block == block) 729 goal = iinfo->i_next_alloc_goal; 730 731 if (!goal) { 732 if (!(goal = pgoal)) /* XXX: what was intended here? */ 733 goal = iinfo->i_location.logicalBlockNum + 1; 734 } 735 736 newblocknum = udf_new_block(inode->i_sb, inode, 737 iinfo->i_location.partitionReferenceNum, 738 goal, err); 739 if (!newblocknum) { 740 brelse(prev_epos.bh); 741 *err = -ENOSPC; 742 return 0; 743 } 744 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 745 } 746 747 /* if the extent the requsted block is located in contains multiple 748 * blocks, split the extent into at most three extents. blocks prior 749 * to requested block, requested block, and blocks after requested 750 * block */ 751 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 752 753 #ifdef UDF_PREALLOCATE 754 /* We preallocate blocks only for regular files. It also makes sense 755 * for directories but there's a problem when to drop the 756 * preallocation. We might use some delayed work for that but I feel 757 * it's overengineering for a filesystem like UDF. */ 758 if (S_ISREG(inode->i_mode)) 759 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 760 #endif 761 762 /* merge any continuous blocks in laarr */ 763 udf_merge_extents(inode, laarr, &endnum); 764 765 /* write back the new extents, inserting new extents if the new number 766 * of extents is greater than the old number, and deleting extents if 767 * the new number of extents is less than the old number */ 768 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 769 770 brelse(prev_epos.bh); 771 772 newblock = udf_get_pblock(inode->i_sb, newblocknum, 773 iinfo->i_location.partitionReferenceNum, 0); 774 if (!newblock) { 775 *err = -EIO; 776 return 0; 777 } 778 *new = 1; 779 iinfo->i_next_alloc_block = block; 780 iinfo->i_next_alloc_goal = newblocknum; 781 inode->i_ctime = current_fs_time(inode->i_sb); 782 783 if (IS_SYNC(inode)) 784 udf_sync_inode(inode); 785 else 786 mark_inode_dirty(inode); 787 788 return newblock; 789 } 790 791 static void udf_split_extents(struct inode *inode, int *c, int offset, 792 int newblocknum, 793 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 794 int *endnum) 795 { 796 unsigned long blocksize = inode->i_sb->s_blocksize; 797 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 798 799 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 800 (laarr[*c].extLength >> 30) == 801 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 802 int curr = *c; 803 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 804 blocksize - 1) >> blocksize_bits; 805 int8_t etype = (laarr[curr].extLength >> 30); 806 807 if (blen == 1) 808 ; 809 else if (!offset || blen == offset + 1) { 810 laarr[curr + 2] = laarr[curr + 1]; 811 laarr[curr + 1] = laarr[curr]; 812 } else { 813 laarr[curr + 3] = laarr[curr + 1]; 814 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 815 } 816 817 if (offset) { 818 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 819 udf_free_blocks(inode->i_sb, inode, 820 &laarr[curr].extLocation, 821 0, offset); 822 laarr[curr].extLength = 823 EXT_NOT_RECORDED_NOT_ALLOCATED | 824 (offset << blocksize_bits); 825 laarr[curr].extLocation.logicalBlockNum = 0; 826 laarr[curr].extLocation. 827 partitionReferenceNum = 0; 828 } else 829 laarr[curr].extLength = (etype << 30) | 830 (offset << blocksize_bits); 831 curr++; 832 (*c)++; 833 (*endnum)++; 834 } 835 836 laarr[curr].extLocation.logicalBlockNum = newblocknum; 837 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 838 laarr[curr].extLocation.partitionReferenceNum = 839 UDF_I(inode)->i_location.partitionReferenceNum; 840 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 841 blocksize; 842 curr++; 843 844 if (blen != offset + 1) { 845 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 846 laarr[curr].extLocation.logicalBlockNum += 847 offset + 1; 848 laarr[curr].extLength = (etype << 30) | 849 ((blen - (offset + 1)) << blocksize_bits); 850 curr++; 851 (*endnum)++; 852 } 853 } 854 } 855 856 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 857 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 858 int *endnum) 859 { 860 int start, length = 0, currlength = 0, i; 861 862 if (*endnum >= (c + 1)) { 863 if (!lastblock) 864 return; 865 else 866 start = c; 867 } else { 868 if ((laarr[c + 1].extLength >> 30) == 869 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 870 start = c + 1; 871 length = currlength = 872 (((laarr[c + 1].extLength & 873 UDF_EXTENT_LENGTH_MASK) + 874 inode->i_sb->s_blocksize - 1) >> 875 inode->i_sb->s_blocksize_bits); 876 } else 877 start = c; 878 } 879 880 for (i = start + 1; i <= *endnum; i++) { 881 if (i == *endnum) { 882 if (lastblock) 883 length += UDF_DEFAULT_PREALLOC_BLOCKS; 884 } else if ((laarr[i].extLength >> 30) == 885 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 886 length += (((laarr[i].extLength & 887 UDF_EXTENT_LENGTH_MASK) + 888 inode->i_sb->s_blocksize - 1) >> 889 inode->i_sb->s_blocksize_bits); 890 } else 891 break; 892 } 893 894 if (length) { 895 int next = laarr[start].extLocation.logicalBlockNum + 896 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 897 inode->i_sb->s_blocksize - 1) >> 898 inode->i_sb->s_blocksize_bits); 899 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 900 laarr[start].extLocation.partitionReferenceNum, 901 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 902 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 903 currlength); 904 if (numalloc) { 905 if (start == (c + 1)) 906 laarr[start].extLength += 907 (numalloc << 908 inode->i_sb->s_blocksize_bits); 909 else { 910 memmove(&laarr[c + 2], &laarr[c + 1], 911 sizeof(struct long_ad) * (*endnum - (c + 1))); 912 (*endnum)++; 913 laarr[c + 1].extLocation.logicalBlockNum = next; 914 laarr[c + 1].extLocation.partitionReferenceNum = 915 laarr[c].extLocation. 916 partitionReferenceNum; 917 laarr[c + 1].extLength = 918 EXT_NOT_RECORDED_ALLOCATED | 919 (numalloc << 920 inode->i_sb->s_blocksize_bits); 921 start = c + 1; 922 } 923 924 for (i = start + 1; numalloc && i < *endnum; i++) { 925 int elen = ((laarr[i].extLength & 926 UDF_EXTENT_LENGTH_MASK) + 927 inode->i_sb->s_blocksize - 1) >> 928 inode->i_sb->s_blocksize_bits; 929 930 if (elen > numalloc) { 931 laarr[i].extLength -= 932 (numalloc << 933 inode->i_sb->s_blocksize_bits); 934 numalloc = 0; 935 } else { 936 numalloc -= elen; 937 if (*endnum > (i + 1)) 938 memmove(&laarr[i], 939 &laarr[i + 1], 940 sizeof(struct long_ad) * 941 (*endnum - (i + 1))); 942 i--; 943 (*endnum)--; 944 } 945 } 946 UDF_I(inode)->i_lenExtents += 947 numalloc << inode->i_sb->s_blocksize_bits; 948 } 949 } 950 } 951 952 static void udf_merge_extents(struct inode *inode, 953 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 954 int *endnum) 955 { 956 int i; 957 unsigned long blocksize = inode->i_sb->s_blocksize; 958 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 959 960 for (i = 0; i < (*endnum - 1); i++) { 961 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 962 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 963 964 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 965 (((li->extLength >> 30) == 966 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 967 ((lip1->extLocation.logicalBlockNum - 968 li->extLocation.logicalBlockNum) == 969 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 970 blocksize - 1) >> blocksize_bits)))) { 971 972 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 973 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 974 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 975 lip1->extLength = (lip1->extLength - 976 (li->extLength & 977 UDF_EXTENT_LENGTH_MASK) + 978 UDF_EXTENT_LENGTH_MASK) & 979 ~(blocksize - 1); 980 li->extLength = (li->extLength & 981 UDF_EXTENT_FLAG_MASK) + 982 (UDF_EXTENT_LENGTH_MASK + 1) - 983 blocksize; 984 lip1->extLocation.logicalBlockNum = 985 li->extLocation.logicalBlockNum + 986 ((li->extLength & 987 UDF_EXTENT_LENGTH_MASK) >> 988 blocksize_bits); 989 } else { 990 li->extLength = lip1->extLength + 991 (((li->extLength & 992 UDF_EXTENT_LENGTH_MASK) + 993 blocksize - 1) & ~(blocksize - 1)); 994 if (*endnum > (i + 2)) 995 memmove(&laarr[i + 1], &laarr[i + 2], 996 sizeof(struct long_ad) * 997 (*endnum - (i + 2))); 998 i--; 999 (*endnum)--; 1000 } 1001 } else if (((li->extLength >> 30) == 1002 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1003 ((lip1->extLength >> 30) == 1004 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1005 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1006 ((li->extLength & 1007 UDF_EXTENT_LENGTH_MASK) + 1008 blocksize - 1) >> blocksize_bits); 1009 li->extLocation.logicalBlockNum = 0; 1010 li->extLocation.partitionReferenceNum = 0; 1011 1012 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1013 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1014 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1015 lip1->extLength = (lip1->extLength - 1016 (li->extLength & 1017 UDF_EXTENT_LENGTH_MASK) + 1018 UDF_EXTENT_LENGTH_MASK) & 1019 ~(blocksize - 1); 1020 li->extLength = (li->extLength & 1021 UDF_EXTENT_FLAG_MASK) + 1022 (UDF_EXTENT_LENGTH_MASK + 1) - 1023 blocksize; 1024 } else { 1025 li->extLength = lip1->extLength + 1026 (((li->extLength & 1027 UDF_EXTENT_LENGTH_MASK) + 1028 blocksize - 1) & ~(blocksize - 1)); 1029 if (*endnum > (i + 2)) 1030 memmove(&laarr[i + 1], &laarr[i + 2], 1031 sizeof(struct long_ad) * 1032 (*endnum - (i + 2))); 1033 i--; 1034 (*endnum)--; 1035 } 1036 } else if ((li->extLength >> 30) == 1037 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1038 udf_free_blocks(inode->i_sb, inode, 1039 &li->extLocation, 0, 1040 ((li->extLength & 1041 UDF_EXTENT_LENGTH_MASK) + 1042 blocksize - 1) >> blocksize_bits); 1043 li->extLocation.logicalBlockNum = 0; 1044 li->extLocation.partitionReferenceNum = 0; 1045 li->extLength = (li->extLength & 1046 UDF_EXTENT_LENGTH_MASK) | 1047 EXT_NOT_RECORDED_NOT_ALLOCATED; 1048 } 1049 } 1050 } 1051 1052 static void udf_update_extents(struct inode *inode, 1053 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], 1054 int startnum, int endnum, 1055 struct extent_position *epos) 1056 { 1057 int start = 0, i; 1058 struct kernel_lb_addr tmploc; 1059 uint32_t tmplen; 1060 1061 if (startnum > endnum) { 1062 for (i = 0; i < (startnum - endnum); i++) 1063 udf_delete_aext(inode, *epos, laarr[i].extLocation, 1064 laarr[i].extLength); 1065 } else if (startnum < endnum) { 1066 for (i = 0; i < (endnum - startnum); i++) { 1067 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1068 laarr[i].extLength); 1069 udf_next_aext(inode, epos, &laarr[i].extLocation, 1070 &laarr[i].extLength, 1); 1071 start++; 1072 } 1073 } 1074 1075 for (i = start; i < endnum; i++) { 1076 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1077 udf_write_aext(inode, epos, &laarr[i].extLocation, 1078 laarr[i].extLength, 1); 1079 } 1080 } 1081 1082 struct buffer_head *udf_bread(struct inode *inode, int block, 1083 int create, int *err) 1084 { 1085 struct buffer_head *bh = NULL; 1086 1087 bh = udf_getblk(inode, block, create, err); 1088 if (!bh) 1089 return NULL; 1090 1091 if (buffer_uptodate(bh)) 1092 return bh; 1093 1094 ll_rw_block(READ, 1, &bh); 1095 1096 wait_on_buffer(bh); 1097 if (buffer_uptodate(bh)) 1098 return bh; 1099 1100 brelse(bh); 1101 *err = -EIO; 1102 return NULL; 1103 } 1104 1105 int udf_setsize(struct inode *inode, loff_t newsize) 1106 { 1107 int err; 1108 struct udf_inode_info *iinfo; 1109 int bsize = 1 << inode->i_blkbits; 1110 1111 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1112 S_ISLNK(inode->i_mode))) 1113 return -EINVAL; 1114 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1115 return -EPERM; 1116 1117 iinfo = UDF_I(inode); 1118 if (newsize > inode->i_size) { 1119 down_write(&iinfo->i_data_sem); 1120 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1121 if (bsize < 1122 (udf_file_entry_alloc_offset(inode) + newsize)) { 1123 err = udf_expand_file_adinicb(inode); 1124 if (err) 1125 return err; 1126 down_write(&iinfo->i_data_sem); 1127 } else 1128 iinfo->i_lenAlloc = newsize; 1129 } 1130 err = udf_extend_file(inode, newsize); 1131 if (err) { 1132 up_write(&iinfo->i_data_sem); 1133 return err; 1134 } 1135 truncate_setsize(inode, newsize); 1136 up_write(&iinfo->i_data_sem); 1137 } else { 1138 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1139 down_write(&iinfo->i_data_sem); 1140 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize, 1141 0x00, bsize - newsize - 1142 udf_file_entry_alloc_offset(inode)); 1143 iinfo->i_lenAlloc = newsize; 1144 truncate_setsize(inode, newsize); 1145 up_write(&iinfo->i_data_sem); 1146 goto update_time; 1147 } 1148 err = block_truncate_page(inode->i_mapping, newsize, 1149 udf_get_block); 1150 if (err) 1151 return err; 1152 down_write(&iinfo->i_data_sem); 1153 truncate_setsize(inode, newsize); 1154 udf_truncate_extents(inode); 1155 up_write(&iinfo->i_data_sem); 1156 } 1157 update_time: 1158 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 1159 if (IS_SYNC(inode)) 1160 udf_sync_inode(inode); 1161 else 1162 mark_inode_dirty(inode); 1163 return 0; 1164 } 1165 1166 static void __udf_read_inode(struct inode *inode) 1167 { 1168 struct buffer_head *bh = NULL; 1169 struct fileEntry *fe; 1170 uint16_t ident; 1171 struct udf_inode_info *iinfo = UDF_I(inode); 1172 1173 /* 1174 * Set defaults, but the inode is still incomplete! 1175 * Note: get_new_inode() sets the following on a new inode: 1176 * i_sb = sb 1177 * i_no = ino 1178 * i_flags = sb->s_flags 1179 * i_state = 0 1180 * clean_inode(): zero fills and sets 1181 * i_count = 1 1182 * i_nlink = 1 1183 * i_op = NULL; 1184 */ 1185 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); 1186 if (!bh) { 1187 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); 1188 make_bad_inode(inode); 1189 return; 1190 } 1191 1192 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1193 ident != TAG_IDENT_USE) { 1194 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", 1195 inode->i_ino, ident); 1196 brelse(bh); 1197 make_bad_inode(inode); 1198 return; 1199 } 1200 1201 fe = (struct fileEntry *)bh->b_data; 1202 1203 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1204 struct buffer_head *ibh; 1205 1206 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, 1207 &ident); 1208 if (ident == TAG_IDENT_IE && ibh) { 1209 struct buffer_head *nbh = NULL; 1210 struct kernel_lb_addr loc; 1211 struct indirectEntry *ie; 1212 1213 ie = (struct indirectEntry *)ibh->b_data; 1214 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1215 1216 if (ie->indirectICB.extLength && 1217 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, 1218 &ident))) { 1219 if (ident == TAG_IDENT_FE || 1220 ident == TAG_IDENT_EFE) { 1221 memcpy(&iinfo->i_location, 1222 &loc, 1223 sizeof(struct kernel_lb_addr)); 1224 brelse(bh); 1225 brelse(ibh); 1226 brelse(nbh); 1227 __udf_read_inode(inode); 1228 return; 1229 } 1230 brelse(nbh); 1231 } 1232 } 1233 brelse(ibh); 1234 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1235 udf_err(inode->i_sb, "unsupported strategy type: %d\n", 1236 le16_to_cpu(fe->icbTag.strategyType)); 1237 brelse(bh); 1238 make_bad_inode(inode); 1239 return; 1240 } 1241 udf_fill_inode(inode, bh); 1242 1243 brelse(bh); 1244 } 1245 1246 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) 1247 { 1248 struct fileEntry *fe; 1249 struct extendedFileEntry *efe; 1250 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1251 struct udf_inode_info *iinfo = UDF_I(inode); 1252 unsigned int link_count; 1253 1254 fe = (struct fileEntry *)bh->b_data; 1255 efe = (struct extendedFileEntry *)bh->b_data; 1256 1257 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1258 iinfo->i_strat4096 = 0; 1259 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1260 iinfo->i_strat4096 = 1; 1261 1262 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1263 ICBTAG_FLAG_AD_MASK; 1264 iinfo->i_unique = 0; 1265 iinfo->i_lenEAttr = 0; 1266 iinfo->i_lenExtents = 0; 1267 iinfo->i_lenAlloc = 0; 1268 iinfo->i_next_alloc_block = 0; 1269 iinfo->i_next_alloc_goal = 0; 1270 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1271 iinfo->i_efe = 1; 1272 iinfo->i_use = 0; 1273 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1274 sizeof(struct extendedFileEntry))) { 1275 make_bad_inode(inode); 1276 return; 1277 } 1278 memcpy(iinfo->i_ext.i_data, 1279 bh->b_data + sizeof(struct extendedFileEntry), 1280 inode->i_sb->s_blocksize - 1281 sizeof(struct extendedFileEntry)); 1282 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1283 iinfo->i_efe = 0; 1284 iinfo->i_use = 0; 1285 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1286 sizeof(struct fileEntry))) { 1287 make_bad_inode(inode); 1288 return; 1289 } 1290 memcpy(iinfo->i_ext.i_data, 1291 bh->b_data + sizeof(struct fileEntry), 1292 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1293 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1294 iinfo->i_efe = 0; 1295 iinfo->i_use = 1; 1296 iinfo->i_lenAlloc = le32_to_cpu( 1297 ((struct unallocSpaceEntry *)bh->b_data)-> 1298 lengthAllocDescs); 1299 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - 1300 sizeof(struct unallocSpaceEntry))) { 1301 make_bad_inode(inode); 1302 return; 1303 } 1304 memcpy(iinfo->i_ext.i_data, 1305 bh->b_data + sizeof(struct unallocSpaceEntry), 1306 inode->i_sb->s_blocksize - 1307 sizeof(struct unallocSpaceEntry)); 1308 return; 1309 } 1310 1311 read_lock(&sbi->s_cred_lock); 1312 inode->i_uid = le32_to_cpu(fe->uid); 1313 if (inode->i_uid == -1 || 1314 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || 1315 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1316 inode->i_uid = UDF_SB(inode->i_sb)->s_uid; 1317 1318 inode->i_gid = le32_to_cpu(fe->gid); 1319 if (inode->i_gid == -1 || 1320 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || 1321 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1322 inode->i_gid = UDF_SB(inode->i_sb)->s_gid; 1323 1324 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1325 sbi->s_fmode != UDF_INVALID_MODE) 1326 inode->i_mode = sbi->s_fmode; 1327 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1328 sbi->s_dmode != UDF_INVALID_MODE) 1329 inode->i_mode = sbi->s_dmode; 1330 else 1331 inode->i_mode = udf_convert_permissions(fe); 1332 inode->i_mode &= ~sbi->s_umask; 1333 read_unlock(&sbi->s_cred_lock); 1334 1335 link_count = le16_to_cpu(fe->fileLinkCount); 1336 if (!link_count) 1337 link_count = 1; 1338 set_nlink(inode, link_count); 1339 1340 inode->i_size = le64_to_cpu(fe->informationLength); 1341 iinfo->i_lenExtents = inode->i_size; 1342 1343 if (iinfo->i_efe == 0) { 1344 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1345 (inode->i_sb->s_blocksize_bits - 9); 1346 1347 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) 1348 inode->i_atime = sbi->s_record_time; 1349 1350 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1351 fe->modificationTime)) 1352 inode->i_mtime = sbi->s_record_time; 1353 1354 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) 1355 inode->i_ctime = sbi->s_record_time; 1356 1357 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1358 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1359 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1360 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1361 } else { 1362 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1363 (inode->i_sb->s_blocksize_bits - 9); 1364 1365 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) 1366 inode->i_atime = sbi->s_record_time; 1367 1368 if (!udf_disk_stamp_to_time(&inode->i_mtime, 1369 efe->modificationTime)) 1370 inode->i_mtime = sbi->s_record_time; 1371 1372 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) 1373 iinfo->i_crtime = sbi->s_record_time; 1374 1375 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) 1376 inode->i_ctime = sbi->s_record_time; 1377 1378 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1379 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1380 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1381 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1382 } 1383 1384 switch (fe->icbTag.fileType) { 1385 case ICBTAG_FILE_TYPE_DIRECTORY: 1386 inode->i_op = &udf_dir_inode_operations; 1387 inode->i_fop = &udf_dir_operations; 1388 inode->i_mode |= S_IFDIR; 1389 inc_nlink(inode); 1390 break; 1391 case ICBTAG_FILE_TYPE_REALTIME: 1392 case ICBTAG_FILE_TYPE_REGULAR: 1393 case ICBTAG_FILE_TYPE_UNDEF: 1394 case ICBTAG_FILE_TYPE_VAT20: 1395 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1396 inode->i_data.a_ops = &udf_adinicb_aops; 1397 else 1398 inode->i_data.a_ops = &udf_aops; 1399 inode->i_op = &udf_file_inode_operations; 1400 inode->i_fop = &udf_file_operations; 1401 inode->i_mode |= S_IFREG; 1402 break; 1403 case ICBTAG_FILE_TYPE_BLOCK: 1404 inode->i_mode |= S_IFBLK; 1405 break; 1406 case ICBTAG_FILE_TYPE_CHAR: 1407 inode->i_mode |= S_IFCHR; 1408 break; 1409 case ICBTAG_FILE_TYPE_FIFO: 1410 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1411 break; 1412 case ICBTAG_FILE_TYPE_SOCKET: 1413 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1414 break; 1415 case ICBTAG_FILE_TYPE_SYMLINK: 1416 inode->i_data.a_ops = &udf_symlink_aops; 1417 inode->i_op = &udf_symlink_inode_operations; 1418 inode->i_mode = S_IFLNK | S_IRWXUGO; 1419 break; 1420 case ICBTAG_FILE_TYPE_MAIN: 1421 udf_debug("METADATA FILE-----\n"); 1422 break; 1423 case ICBTAG_FILE_TYPE_MIRROR: 1424 udf_debug("METADATA MIRROR FILE-----\n"); 1425 break; 1426 case ICBTAG_FILE_TYPE_BITMAP: 1427 udf_debug("METADATA BITMAP FILE-----\n"); 1428 break; 1429 default: 1430 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", 1431 inode->i_ino, fe->icbTag.fileType); 1432 make_bad_inode(inode); 1433 return; 1434 } 1435 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1436 struct deviceSpec *dsea = 1437 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1438 if (dsea) { 1439 init_special_inode(inode, inode->i_mode, 1440 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1441 le32_to_cpu(dsea->minorDeviceIdent))); 1442 /* Developer ID ??? */ 1443 } else 1444 make_bad_inode(inode); 1445 } 1446 } 1447 1448 static int udf_alloc_i_data(struct inode *inode, size_t size) 1449 { 1450 struct udf_inode_info *iinfo = UDF_I(inode); 1451 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); 1452 1453 if (!iinfo->i_ext.i_data) { 1454 udf_err(inode->i_sb, "(ino %ld) no free memory\n", 1455 inode->i_ino); 1456 return -ENOMEM; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static umode_t udf_convert_permissions(struct fileEntry *fe) 1463 { 1464 umode_t mode; 1465 uint32_t permissions; 1466 uint32_t flags; 1467 1468 permissions = le32_to_cpu(fe->permissions); 1469 flags = le16_to_cpu(fe->icbTag.flags); 1470 1471 mode = ((permissions) & S_IRWXO) | 1472 ((permissions >> 2) & S_IRWXG) | 1473 ((permissions >> 4) & S_IRWXU) | 1474 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1475 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1476 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1477 1478 return mode; 1479 } 1480 1481 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1482 { 1483 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1484 } 1485 1486 static int udf_sync_inode(struct inode *inode) 1487 { 1488 return udf_update_inode(inode, 1); 1489 } 1490 1491 static int udf_update_inode(struct inode *inode, int do_sync) 1492 { 1493 struct buffer_head *bh = NULL; 1494 struct fileEntry *fe; 1495 struct extendedFileEntry *efe; 1496 uint64_t lb_recorded; 1497 uint32_t udfperms; 1498 uint16_t icbflags; 1499 uint16_t crclen; 1500 int err = 0; 1501 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1502 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1503 struct udf_inode_info *iinfo = UDF_I(inode); 1504 1505 bh = udf_tgetblk(inode->i_sb, 1506 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1507 if (!bh) { 1508 udf_debug("getblk failure\n"); 1509 return -ENOMEM; 1510 } 1511 1512 lock_buffer(bh); 1513 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1514 fe = (struct fileEntry *)bh->b_data; 1515 efe = (struct extendedFileEntry *)bh->b_data; 1516 1517 if (iinfo->i_use) { 1518 struct unallocSpaceEntry *use = 1519 (struct unallocSpaceEntry *)bh->b_data; 1520 1521 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1522 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1523 iinfo->i_ext.i_data, inode->i_sb->s_blocksize - 1524 sizeof(struct unallocSpaceEntry)); 1525 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1526 use->descTag.tagLocation = 1527 cpu_to_le32(iinfo->i_location.logicalBlockNum); 1528 crclen = sizeof(struct unallocSpaceEntry) + 1529 iinfo->i_lenAlloc - sizeof(struct tag); 1530 use->descTag.descCRCLength = cpu_to_le16(crclen); 1531 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + 1532 sizeof(struct tag), 1533 crclen)); 1534 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); 1535 1536 goto out; 1537 } 1538 1539 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1540 fe->uid = cpu_to_le32(-1); 1541 else 1542 fe->uid = cpu_to_le32(inode->i_uid); 1543 1544 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1545 fe->gid = cpu_to_le32(-1); 1546 else 1547 fe->gid = cpu_to_le32(inode->i_gid); 1548 1549 udfperms = ((inode->i_mode & S_IRWXO)) | 1550 ((inode->i_mode & S_IRWXG) << 2) | 1551 ((inode->i_mode & S_IRWXU) << 4); 1552 1553 udfperms |= (le32_to_cpu(fe->permissions) & 1554 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | 1555 FE_PERM_G_DELETE | FE_PERM_G_CHATTR | 1556 FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); 1557 fe->permissions = cpu_to_le32(udfperms); 1558 1559 if (S_ISDIR(inode->i_mode)) 1560 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1561 else 1562 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1563 1564 fe->informationLength = cpu_to_le64(inode->i_size); 1565 1566 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1567 struct regid *eid; 1568 struct deviceSpec *dsea = 1569 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1570 if (!dsea) { 1571 dsea = (struct deviceSpec *) 1572 udf_add_extendedattr(inode, 1573 sizeof(struct deviceSpec) + 1574 sizeof(struct regid), 12, 0x3); 1575 dsea->attrType = cpu_to_le32(12); 1576 dsea->attrSubtype = 1; 1577 dsea->attrLength = cpu_to_le32( 1578 sizeof(struct deviceSpec) + 1579 sizeof(struct regid)); 1580 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1581 } 1582 eid = (struct regid *)dsea->impUse; 1583 memset(eid, 0, sizeof(struct regid)); 1584 strcpy(eid->ident, UDF_ID_DEVELOPER); 1585 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1586 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1587 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1588 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1589 } 1590 1591 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1592 lb_recorded = 0; /* No extents => no blocks! */ 1593 else 1594 lb_recorded = 1595 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1596 (blocksize_bits - 9); 1597 1598 if (iinfo->i_efe == 0) { 1599 memcpy(bh->b_data + sizeof(struct fileEntry), 1600 iinfo->i_ext.i_data, 1601 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1602 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1603 1604 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1605 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1606 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1607 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1608 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1609 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1610 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1611 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1612 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1613 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1614 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1615 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1616 crclen = sizeof(struct fileEntry); 1617 } else { 1618 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1619 iinfo->i_ext.i_data, 1620 inode->i_sb->s_blocksize - 1621 sizeof(struct extendedFileEntry)); 1622 efe->objectSize = cpu_to_le64(inode->i_size); 1623 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1624 1625 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || 1626 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && 1627 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) 1628 iinfo->i_crtime = inode->i_atime; 1629 1630 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || 1631 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && 1632 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) 1633 iinfo->i_crtime = inode->i_mtime; 1634 1635 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || 1636 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && 1637 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) 1638 iinfo->i_crtime = inode->i_ctime; 1639 1640 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1641 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1642 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1643 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1644 1645 memset(&(efe->impIdent), 0, sizeof(struct regid)); 1646 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1647 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1648 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1649 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1650 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1651 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1652 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1653 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1654 crclen = sizeof(struct extendedFileEntry); 1655 } 1656 if (iinfo->i_strat4096) { 1657 fe->icbTag.strategyType = cpu_to_le16(4096); 1658 fe->icbTag.strategyParameter = cpu_to_le16(1); 1659 fe->icbTag.numEntries = cpu_to_le16(2); 1660 } else { 1661 fe->icbTag.strategyType = cpu_to_le16(4); 1662 fe->icbTag.numEntries = cpu_to_le16(1); 1663 } 1664 1665 if (S_ISDIR(inode->i_mode)) 1666 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1667 else if (S_ISREG(inode->i_mode)) 1668 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1669 else if (S_ISLNK(inode->i_mode)) 1670 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1671 else if (S_ISBLK(inode->i_mode)) 1672 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1673 else if (S_ISCHR(inode->i_mode)) 1674 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1675 else if (S_ISFIFO(inode->i_mode)) 1676 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1677 else if (S_ISSOCK(inode->i_mode)) 1678 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1679 1680 icbflags = iinfo->i_alloc_type | 1681 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1682 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1683 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1684 (le16_to_cpu(fe->icbTag.flags) & 1685 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1686 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1687 1688 fe->icbTag.flags = cpu_to_le16(icbflags); 1689 if (sbi->s_udfrev >= 0x0200) 1690 fe->descTag.descVersion = cpu_to_le16(3); 1691 else 1692 fe->descTag.descVersion = cpu_to_le16(2); 1693 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1694 fe->descTag.tagLocation = cpu_to_le32( 1695 iinfo->i_location.logicalBlockNum); 1696 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1697 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1698 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1699 crclen)); 1700 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1701 1702 out: 1703 set_buffer_uptodate(bh); 1704 unlock_buffer(bh); 1705 1706 /* write the data blocks */ 1707 mark_buffer_dirty(bh); 1708 if (do_sync) { 1709 sync_dirty_buffer(bh); 1710 if (buffer_write_io_error(bh)) { 1711 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1712 inode->i_ino); 1713 err = -EIO; 1714 } 1715 } 1716 brelse(bh); 1717 1718 return err; 1719 } 1720 1721 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) 1722 { 1723 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1724 struct inode *inode = iget_locked(sb, block); 1725 1726 if (!inode) 1727 return NULL; 1728 1729 if (inode->i_state & I_NEW) { 1730 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1731 __udf_read_inode(inode); 1732 unlock_new_inode(inode); 1733 } 1734 1735 if (is_bad_inode(inode)) 1736 goto out_iput; 1737 1738 if (ino->logicalBlockNum >= UDF_SB(sb)-> 1739 s_partmaps[ino->partitionReferenceNum].s_partition_len) { 1740 udf_debug("block=%d, partition=%d out of range\n", 1741 ino->logicalBlockNum, ino->partitionReferenceNum); 1742 make_bad_inode(inode); 1743 goto out_iput; 1744 } 1745 1746 return inode; 1747 1748 out_iput: 1749 iput(inode); 1750 return NULL; 1751 } 1752 1753 int udf_add_aext(struct inode *inode, struct extent_position *epos, 1754 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1755 { 1756 int adsize; 1757 struct short_ad *sad = NULL; 1758 struct long_ad *lad = NULL; 1759 struct allocExtDesc *aed; 1760 uint8_t *ptr; 1761 struct udf_inode_info *iinfo = UDF_I(inode); 1762 1763 if (!epos->bh) 1764 ptr = iinfo->i_ext.i_data + epos->offset - 1765 udf_file_entry_alloc_offset(inode) + 1766 iinfo->i_lenEAttr; 1767 else 1768 ptr = epos->bh->b_data + epos->offset; 1769 1770 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1771 adsize = sizeof(struct short_ad); 1772 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1773 adsize = sizeof(struct long_ad); 1774 else 1775 return -EIO; 1776 1777 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { 1778 unsigned char *sptr, *dptr; 1779 struct buffer_head *nbh; 1780 int err, loffset; 1781 struct kernel_lb_addr obloc = epos->block; 1782 1783 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, 1784 obloc.partitionReferenceNum, 1785 obloc.logicalBlockNum, &err); 1786 if (!epos->block.logicalBlockNum) 1787 return -ENOSPC; 1788 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, 1789 &epos->block, 1790 0)); 1791 if (!nbh) 1792 return -EIO; 1793 lock_buffer(nbh); 1794 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); 1795 set_buffer_uptodate(nbh); 1796 unlock_buffer(nbh); 1797 mark_buffer_dirty_inode(nbh, inode); 1798 1799 aed = (struct allocExtDesc *)(nbh->b_data); 1800 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) 1801 aed->previousAllocExtLocation = 1802 cpu_to_le32(obloc.logicalBlockNum); 1803 if (epos->offset + adsize > inode->i_sb->s_blocksize) { 1804 loffset = epos->offset; 1805 aed->lengthAllocDescs = cpu_to_le32(adsize); 1806 sptr = ptr - adsize; 1807 dptr = nbh->b_data + sizeof(struct allocExtDesc); 1808 memcpy(dptr, sptr, adsize); 1809 epos->offset = sizeof(struct allocExtDesc) + adsize; 1810 } else { 1811 loffset = epos->offset + adsize; 1812 aed->lengthAllocDescs = cpu_to_le32(0); 1813 sptr = ptr; 1814 epos->offset = sizeof(struct allocExtDesc); 1815 1816 if (epos->bh) { 1817 aed = (struct allocExtDesc *)epos->bh->b_data; 1818 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1819 } else { 1820 iinfo->i_lenAlloc += adsize; 1821 mark_inode_dirty(inode); 1822 } 1823 } 1824 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) 1825 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, 1826 epos->block.logicalBlockNum, sizeof(struct tag)); 1827 else 1828 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, 1829 epos->block.logicalBlockNum, sizeof(struct tag)); 1830 switch (iinfo->i_alloc_type) { 1831 case ICBTAG_FLAG_AD_SHORT: 1832 sad = (struct short_ad *)sptr; 1833 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1834 inode->i_sb->s_blocksize); 1835 sad->extPosition = 1836 cpu_to_le32(epos->block.logicalBlockNum); 1837 break; 1838 case ICBTAG_FLAG_AD_LONG: 1839 lad = (struct long_ad *)sptr; 1840 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | 1841 inode->i_sb->s_blocksize); 1842 lad->extLocation = cpu_to_lelb(epos->block); 1843 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1844 break; 1845 } 1846 if (epos->bh) { 1847 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1848 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1849 udf_update_tag(epos->bh->b_data, loffset); 1850 else 1851 udf_update_tag(epos->bh->b_data, 1852 sizeof(struct allocExtDesc)); 1853 mark_buffer_dirty_inode(epos->bh, inode); 1854 brelse(epos->bh); 1855 } else { 1856 mark_inode_dirty(inode); 1857 } 1858 epos->bh = nbh; 1859 } 1860 1861 udf_write_aext(inode, epos, eloc, elen, inc); 1862 1863 if (!epos->bh) { 1864 iinfo->i_lenAlloc += adsize; 1865 mark_inode_dirty(inode); 1866 } else { 1867 aed = (struct allocExtDesc *)epos->bh->b_data; 1868 le32_add_cpu(&aed->lengthAllocDescs, adsize); 1869 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1870 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 1871 udf_update_tag(epos->bh->b_data, 1872 epos->offset + (inc ? 0 : adsize)); 1873 else 1874 udf_update_tag(epos->bh->b_data, 1875 sizeof(struct allocExtDesc)); 1876 mark_buffer_dirty_inode(epos->bh, inode); 1877 } 1878 1879 return 0; 1880 } 1881 1882 void udf_write_aext(struct inode *inode, struct extent_position *epos, 1883 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1884 { 1885 int adsize; 1886 uint8_t *ptr; 1887 struct short_ad *sad; 1888 struct long_ad *lad; 1889 struct udf_inode_info *iinfo = UDF_I(inode); 1890 1891 if (!epos->bh) 1892 ptr = iinfo->i_ext.i_data + epos->offset - 1893 udf_file_entry_alloc_offset(inode) + 1894 iinfo->i_lenEAttr; 1895 else 1896 ptr = epos->bh->b_data + epos->offset; 1897 1898 switch (iinfo->i_alloc_type) { 1899 case ICBTAG_FLAG_AD_SHORT: 1900 sad = (struct short_ad *)ptr; 1901 sad->extLength = cpu_to_le32(elen); 1902 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 1903 adsize = sizeof(struct short_ad); 1904 break; 1905 case ICBTAG_FLAG_AD_LONG: 1906 lad = (struct long_ad *)ptr; 1907 lad->extLength = cpu_to_le32(elen); 1908 lad->extLocation = cpu_to_lelb(*eloc); 1909 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 1910 adsize = sizeof(struct long_ad); 1911 break; 1912 default: 1913 return; 1914 } 1915 1916 if (epos->bh) { 1917 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 1918 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 1919 struct allocExtDesc *aed = 1920 (struct allocExtDesc *)epos->bh->b_data; 1921 udf_update_tag(epos->bh->b_data, 1922 le32_to_cpu(aed->lengthAllocDescs) + 1923 sizeof(struct allocExtDesc)); 1924 } 1925 mark_buffer_dirty_inode(epos->bh, inode); 1926 } else { 1927 mark_inode_dirty(inode); 1928 } 1929 1930 if (inc) 1931 epos->offset += adsize; 1932 } 1933 1934 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 1935 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1936 { 1937 int8_t etype; 1938 1939 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 1940 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { 1941 int block; 1942 epos->block = *eloc; 1943 epos->offset = sizeof(struct allocExtDesc); 1944 brelse(epos->bh); 1945 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 1946 epos->bh = udf_tread(inode->i_sb, block); 1947 if (!epos->bh) { 1948 udf_debug("reading block %d failed!\n", block); 1949 return -1; 1950 } 1951 } 1952 1953 return etype; 1954 } 1955 1956 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 1957 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 1958 { 1959 int alen; 1960 int8_t etype; 1961 uint8_t *ptr; 1962 struct short_ad *sad; 1963 struct long_ad *lad; 1964 struct udf_inode_info *iinfo = UDF_I(inode); 1965 1966 if (!epos->bh) { 1967 if (!epos->offset) 1968 epos->offset = udf_file_entry_alloc_offset(inode); 1969 ptr = iinfo->i_ext.i_data + epos->offset - 1970 udf_file_entry_alloc_offset(inode) + 1971 iinfo->i_lenEAttr; 1972 alen = udf_file_entry_alloc_offset(inode) + 1973 iinfo->i_lenAlloc; 1974 } else { 1975 if (!epos->offset) 1976 epos->offset = sizeof(struct allocExtDesc); 1977 ptr = epos->bh->b_data + epos->offset; 1978 alen = sizeof(struct allocExtDesc) + 1979 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 1980 lengthAllocDescs); 1981 } 1982 1983 switch (iinfo->i_alloc_type) { 1984 case ICBTAG_FLAG_AD_SHORT: 1985 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 1986 if (!sad) 1987 return -1; 1988 etype = le32_to_cpu(sad->extLength) >> 30; 1989 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 1990 eloc->partitionReferenceNum = 1991 iinfo->i_location.partitionReferenceNum; 1992 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 1993 break; 1994 case ICBTAG_FLAG_AD_LONG: 1995 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 1996 if (!lad) 1997 return -1; 1998 etype = le32_to_cpu(lad->extLength) >> 30; 1999 *eloc = lelb_to_cpu(lad->extLocation); 2000 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2001 break; 2002 default: 2003 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); 2004 return -1; 2005 } 2006 2007 return etype; 2008 } 2009 2010 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2011 struct kernel_lb_addr neloc, uint32_t nelen) 2012 { 2013 struct kernel_lb_addr oeloc; 2014 uint32_t oelen; 2015 int8_t etype; 2016 2017 if (epos.bh) 2018 get_bh(epos.bh); 2019 2020 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2021 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2022 neloc = oeloc; 2023 nelen = (etype << 30) | oelen; 2024 } 2025 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2026 brelse(epos.bh); 2027 2028 return (nelen >> 30); 2029 } 2030 2031 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, 2032 struct kernel_lb_addr eloc, uint32_t elen) 2033 { 2034 struct extent_position oepos; 2035 int adsize; 2036 int8_t etype; 2037 struct allocExtDesc *aed; 2038 struct udf_inode_info *iinfo; 2039 2040 if (epos.bh) { 2041 get_bh(epos.bh); 2042 get_bh(epos.bh); 2043 } 2044 2045 iinfo = UDF_I(inode); 2046 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2047 adsize = sizeof(struct short_ad); 2048 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2049 adsize = sizeof(struct long_ad); 2050 else 2051 adsize = 0; 2052 2053 oepos = epos; 2054 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2055 return -1; 2056 2057 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2058 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2059 if (oepos.bh != epos.bh) { 2060 oepos.block = epos.block; 2061 brelse(oepos.bh); 2062 get_bh(epos.bh); 2063 oepos.bh = epos.bh; 2064 oepos.offset = epos.offset - adsize; 2065 } 2066 } 2067 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2068 elen = 0; 2069 2070 if (epos.bh != oepos.bh) { 2071 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2072 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2073 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2074 if (!oepos.bh) { 2075 iinfo->i_lenAlloc -= (adsize * 2); 2076 mark_inode_dirty(inode); 2077 } else { 2078 aed = (struct allocExtDesc *)oepos.bh->b_data; 2079 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2080 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2081 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2082 udf_update_tag(oepos.bh->b_data, 2083 oepos.offset - (2 * adsize)); 2084 else 2085 udf_update_tag(oepos.bh->b_data, 2086 sizeof(struct allocExtDesc)); 2087 mark_buffer_dirty_inode(oepos.bh, inode); 2088 } 2089 } else { 2090 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2091 if (!oepos.bh) { 2092 iinfo->i_lenAlloc -= adsize; 2093 mark_inode_dirty(inode); 2094 } else { 2095 aed = (struct allocExtDesc *)oepos.bh->b_data; 2096 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2097 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2098 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2099 udf_update_tag(oepos.bh->b_data, 2100 epos.offset - adsize); 2101 else 2102 udf_update_tag(oepos.bh->b_data, 2103 sizeof(struct allocExtDesc)); 2104 mark_buffer_dirty_inode(oepos.bh, inode); 2105 } 2106 } 2107 2108 brelse(epos.bh); 2109 brelse(oepos.bh); 2110 2111 return (elen >> 30); 2112 } 2113 2114 int8_t inode_bmap(struct inode *inode, sector_t block, 2115 struct extent_position *pos, struct kernel_lb_addr *eloc, 2116 uint32_t *elen, sector_t *offset) 2117 { 2118 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2119 loff_t lbcount = 0, bcount = 2120 (loff_t) block << blocksize_bits; 2121 int8_t etype; 2122 struct udf_inode_info *iinfo; 2123 2124 iinfo = UDF_I(inode); 2125 pos->offset = 0; 2126 pos->block = iinfo->i_location; 2127 pos->bh = NULL; 2128 *elen = 0; 2129 2130 do { 2131 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2132 if (etype == -1) { 2133 *offset = (bcount - lbcount) >> blocksize_bits; 2134 iinfo->i_lenExtents = lbcount; 2135 return -1; 2136 } 2137 lbcount += *elen; 2138 } while (lbcount <= bcount); 2139 2140 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2141 2142 return etype; 2143 } 2144 2145 long udf_block_map(struct inode *inode, sector_t block) 2146 { 2147 struct kernel_lb_addr eloc; 2148 uint32_t elen; 2149 sector_t offset; 2150 struct extent_position epos = {}; 2151 int ret; 2152 2153 down_read(&UDF_I(inode)->i_data_sem); 2154 2155 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2156 (EXT_RECORDED_ALLOCATED >> 30)) 2157 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2158 else 2159 ret = 0; 2160 2161 up_read(&UDF_I(inode)->i_data_sem); 2162 brelse(epos.bh); 2163 2164 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2165 return udf_fixed_to_variable(ret); 2166 else 2167 return ret; 2168 } 2169