xref: /linux/fs/udf/inode.c (revision 163b099146b85d1b05bd2eaa045acbeee25c29e4)
1  /*
2   * inode.c
3   *
4   * PURPOSE
5   *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6   *
7   * COPYRIGHT
8   *  This file is distributed under the terms of the GNU General Public
9   *  License (GPL). Copies of the GPL can be obtained from:
10   *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11   *  Each contributing author retains all rights to their own work.
12   *
13   *  (C) 1998 Dave Boynton
14   *  (C) 1998-2004 Ben Fennema
15   *  (C) 1999-2000 Stelias Computing Inc
16   *
17   * HISTORY
18   *
19   *  10/04/98 dgb  Added rudimentary directory functions
20   *  10/07/98      Fully working udf_block_map! It works!
21   *  11/25/98      bmap altered to better support extents
22   *  12/06/98 blf  partition support in udf_iget, udf_block_map
23   *                and udf_read_inode
24   *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25   *                block boundaries (which is not actually allowed)
26   *  12/20/98      added support for strategy 4096
27   *  03/07/99      rewrote udf_block_map (again)
28   *                New funcs, inode_bmap, udf_next_aext
29   *  04/19/99      Support for writing device EA's for major/minor #
30   */
31  
32  #include "udfdecl.h"
33  #include <linux/mm.h>
34  #include <linux/module.h>
35  #include <linux/pagemap.h>
36  #include <linux/writeback.h>
37  #include <linux/slab.h>
38  #include <linux/crc-itu-t.h>
39  #include <linux/mpage.h>
40  #include <linux/uio.h>
41  #include <linux/bio.h>
42  
43  #include "udf_i.h"
44  #include "udf_sb.h"
45  
46  #define EXTENT_MERGE_SIZE 5
47  
48  #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49  			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50  			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51  
52  #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53  			 FE_PERM_O_DELETE)
54  
55  static umode_t udf_convert_permissions(struct fileEntry *);
56  static int udf_update_inode(struct inode *, int);
57  static int udf_sync_inode(struct inode *inode);
58  static int udf_alloc_i_data(struct inode *inode, size_t size);
59  static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60  static int8_t udf_insert_aext(struct inode *, struct extent_position,
61  			      struct kernel_lb_addr, uint32_t);
62  static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63  			      struct kernel_long_ad *, int *);
64  static void udf_prealloc_extents(struct inode *, int, int,
65  				 struct kernel_long_ad *, int *);
66  static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67  static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68  			       int, struct extent_position *);
69  static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70  
71  static void __udf_clear_extent_cache(struct inode *inode)
72  {
73  	struct udf_inode_info *iinfo = UDF_I(inode);
74  
75  	if (iinfo->cached_extent.lstart != -1) {
76  		brelse(iinfo->cached_extent.epos.bh);
77  		iinfo->cached_extent.lstart = -1;
78  	}
79  }
80  
81  /* Invalidate extent cache */
82  static void udf_clear_extent_cache(struct inode *inode)
83  {
84  	struct udf_inode_info *iinfo = UDF_I(inode);
85  
86  	spin_lock(&iinfo->i_extent_cache_lock);
87  	__udf_clear_extent_cache(inode);
88  	spin_unlock(&iinfo->i_extent_cache_lock);
89  }
90  
91  /* Return contents of extent cache */
92  static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93  				 loff_t *lbcount, struct extent_position *pos)
94  {
95  	struct udf_inode_info *iinfo = UDF_I(inode);
96  	int ret = 0;
97  
98  	spin_lock(&iinfo->i_extent_cache_lock);
99  	if ((iinfo->cached_extent.lstart <= bcount) &&
100  	    (iinfo->cached_extent.lstart != -1)) {
101  		/* Cache hit */
102  		*lbcount = iinfo->cached_extent.lstart;
103  		memcpy(pos, &iinfo->cached_extent.epos,
104  		       sizeof(struct extent_position));
105  		if (pos->bh)
106  			get_bh(pos->bh);
107  		ret = 1;
108  	}
109  	spin_unlock(&iinfo->i_extent_cache_lock);
110  	return ret;
111  }
112  
113  /* Add extent to extent cache */
114  static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115  				    struct extent_position *pos)
116  {
117  	struct udf_inode_info *iinfo = UDF_I(inode);
118  
119  	spin_lock(&iinfo->i_extent_cache_lock);
120  	/* Invalidate previously cached extent */
121  	__udf_clear_extent_cache(inode);
122  	if (pos->bh)
123  		get_bh(pos->bh);
124  	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125  	iinfo->cached_extent.lstart = estart;
126  	switch (iinfo->i_alloc_type) {
127  	case ICBTAG_FLAG_AD_SHORT:
128  		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129  		break;
130  	case ICBTAG_FLAG_AD_LONG:
131  		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132  		break;
133  	}
134  	spin_unlock(&iinfo->i_extent_cache_lock);
135  }
136  
137  void udf_evict_inode(struct inode *inode)
138  {
139  	struct udf_inode_info *iinfo = UDF_I(inode);
140  	int want_delete = 0;
141  
142  	if (!is_bad_inode(inode)) {
143  		if (!inode->i_nlink) {
144  			want_delete = 1;
145  			udf_setsize(inode, 0);
146  			udf_update_inode(inode, IS_SYNC(inode));
147  		}
148  		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149  		    inode->i_size != iinfo->i_lenExtents) {
150  			udf_warn(inode->i_sb,
151  				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152  				 inode->i_ino, inode->i_mode,
153  				 (unsigned long long)inode->i_size,
154  				 (unsigned long long)iinfo->i_lenExtents);
155  		}
156  	}
157  	truncate_inode_pages_final(&inode->i_data);
158  	invalidate_inode_buffers(inode);
159  	clear_inode(inode);
160  	kfree(iinfo->i_data);
161  	iinfo->i_data = NULL;
162  	udf_clear_extent_cache(inode);
163  	if (want_delete) {
164  		udf_free_inode(inode);
165  	}
166  }
167  
168  static void udf_write_failed(struct address_space *mapping, loff_t to)
169  {
170  	struct inode *inode = mapping->host;
171  	struct udf_inode_info *iinfo = UDF_I(inode);
172  	loff_t isize = inode->i_size;
173  
174  	if (to > isize) {
175  		truncate_pagecache(inode, isize);
176  		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177  			down_write(&iinfo->i_data_sem);
178  			udf_clear_extent_cache(inode);
179  			udf_truncate_extents(inode);
180  			up_write(&iinfo->i_data_sem);
181  		}
182  	}
183  }
184  
185  static int udf_writepage(struct page *page, struct writeback_control *wbc)
186  {
187  	return block_write_full_page(page, udf_get_block, wbc);
188  }
189  
190  static int udf_writepages(struct address_space *mapping,
191  			struct writeback_control *wbc)
192  {
193  	return mpage_writepages(mapping, wbc, udf_get_block);
194  }
195  
196  static int udf_readpage(struct file *file, struct page *page)
197  {
198  	return mpage_readpage(page, udf_get_block);
199  }
200  
201  static void udf_readahead(struct readahead_control *rac)
202  {
203  	mpage_readahead(rac, udf_get_block);
204  }
205  
206  static int udf_write_begin(struct file *file, struct address_space *mapping,
207  			loff_t pos, unsigned len, unsigned flags,
208  			struct page **pagep, void **fsdata)
209  {
210  	int ret;
211  
212  	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213  	if (unlikely(ret))
214  		udf_write_failed(mapping, pos + len);
215  	return ret;
216  }
217  
218  static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219  {
220  	struct file *file = iocb->ki_filp;
221  	struct address_space *mapping = file->f_mapping;
222  	struct inode *inode = mapping->host;
223  	size_t count = iov_iter_count(iter);
224  	ssize_t ret;
225  
226  	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227  	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228  		udf_write_failed(mapping, iocb->ki_pos + count);
229  	return ret;
230  }
231  
232  static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233  {
234  	return generic_block_bmap(mapping, block, udf_get_block);
235  }
236  
237  const struct address_space_operations udf_aops = {
238  	.readpage	= udf_readpage,
239  	.readahead	= udf_readahead,
240  	.writepage	= udf_writepage,
241  	.writepages	= udf_writepages,
242  	.write_begin	= udf_write_begin,
243  	.write_end	= generic_write_end,
244  	.direct_IO	= udf_direct_IO,
245  	.bmap		= udf_bmap,
246  };
247  
248  /*
249   * Expand file stored in ICB to a normal one-block-file
250   *
251   * This function requires i_data_sem for writing and releases it.
252   * This function requires i_mutex held
253   */
254  int udf_expand_file_adinicb(struct inode *inode)
255  {
256  	struct page *page;
257  	char *kaddr;
258  	struct udf_inode_info *iinfo = UDF_I(inode);
259  	int err;
260  	struct writeback_control udf_wbc = {
261  		.sync_mode = WB_SYNC_NONE,
262  		.nr_to_write = 1,
263  	};
264  
265  	WARN_ON_ONCE(!inode_is_locked(inode));
266  	if (!iinfo->i_lenAlloc) {
267  		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268  			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269  		else
270  			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271  		/* from now on we have normal address_space methods */
272  		inode->i_data.a_ops = &udf_aops;
273  		up_write(&iinfo->i_data_sem);
274  		mark_inode_dirty(inode);
275  		return 0;
276  	}
277  	/*
278  	 * Release i_data_sem so that we can lock a page - page lock ranks
279  	 * above i_data_sem. i_mutex still protects us against file changes.
280  	 */
281  	up_write(&iinfo->i_data_sem);
282  
283  	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284  	if (!page)
285  		return -ENOMEM;
286  
287  	if (!PageUptodate(page)) {
288  		kaddr = kmap_atomic(page);
289  		memset(kaddr + iinfo->i_lenAlloc, 0x00,
290  		       PAGE_SIZE - iinfo->i_lenAlloc);
291  		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
292  			iinfo->i_lenAlloc);
293  		flush_dcache_page(page);
294  		SetPageUptodate(page);
295  		kunmap_atomic(kaddr);
296  	}
297  	down_write(&iinfo->i_data_sem);
298  	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
299  	       iinfo->i_lenAlloc);
300  	iinfo->i_lenAlloc = 0;
301  	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302  		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303  	else
304  		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305  	/* from now on we have normal address_space methods */
306  	inode->i_data.a_ops = &udf_aops;
307  	up_write(&iinfo->i_data_sem);
308  	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309  	if (err) {
310  		/* Restore everything back so that we don't lose data... */
311  		lock_page(page);
312  		down_write(&iinfo->i_data_sem);
313  		kaddr = kmap_atomic(page);
314  		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
315  		kunmap_atomic(kaddr);
316  		unlock_page(page);
317  		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
318  		inode->i_data.a_ops = &udf_adinicb_aops;
319  		up_write(&iinfo->i_data_sem);
320  	}
321  	put_page(page);
322  	mark_inode_dirty(inode);
323  
324  	return err;
325  }
326  
327  struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
328  					    udf_pblk_t *block, int *err)
329  {
330  	udf_pblk_t newblock;
331  	struct buffer_head *dbh = NULL;
332  	struct kernel_lb_addr eloc;
333  	uint8_t alloctype;
334  	struct extent_position epos;
335  
336  	struct udf_fileident_bh sfibh, dfibh;
337  	loff_t f_pos = udf_ext0_offset(inode);
338  	int size = udf_ext0_offset(inode) + inode->i_size;
339  	struct fileIdentDesc cfi, *sfi, *dfi;
340  	struct udf_inode_info *iinfo = UDF_I(inode);
341  
342  	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
343  		alloctype = ICBTAG_FLAG_AD_SHORT;
344  	else
345  		alloctype = ICBTAG_FLAG_AD_LONG;
346  
347  	if (!inode->i_size) {
348  		iinfo->i_alloc_type = alloctype;
349  		mark_inode_dirty(inode);
350  		return NULL;
351  	}
352  
353  	/* alloc block, and copy data to it */
354  	*block = udf_new_block(inode->i_sb, inode,
355  			       iinfo->i_location.partitionReferenceNum,
356  			       iinfo->i_location.logicalBlockNum, err);
357  	if (!(*block))
358  		return NULL;
359  	newblock = udf_get_pblock(inode->i_sb, *block,
360  				  iinfo->i_location.partitionReferenceNum,
361  				0);
362  	if (!newblock)
363  		return NULL;
364  	dbh = udf_tgetblk(inode->i_sb, newblock);
365  	if (!dbh)
366  		return NULL;
367  	lock_buffer(dbh);
368  	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
369  	set_buffer_uptodate(dbh);
370  	unlock_buffer(dbh);
371  	mark_buffer_dirty_inode(dbh, inode);
372  
373  	sfibh.soffset = sfibh.eoffset =
374  			f_pos & (inode->i_sb->s_blocksize - 1);
375  	sfibh.sbh = sfibh.ebh = NULL;
376  	dfibh.soffset = dfibh.eoffset = 0;
377  	dfibh.sbh = dfibh.ebh = dbh;
378  	while (f_pos < size) {
379  		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
380  		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
381  					 NULL, NULL, NULL);
382  		if (!sfi) {
383  			brelse(dbh);
384  			return NULL;
385  		}
386  		iinfo->i_alloc_type = alloctype;
387  		sfi->descTag.tagLocation = cpu_to_le32(*block);
388  		dfibh.soffset = dfibh.eoffset;
389  		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
390  		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
391  		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
392  				 sfi->fileIdent +
393  					le16_to_cpu(sfi->lengthOfImpUse))) {
394  			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395  			brelse(dbh);
396  			return NULL;
397  		}
398  	}
399  	mark_buffer_dirty_inode(dbh, inode);
400  
401  	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402  	iinfo->i_lenAlloc = 0;
403  	eloc.logicalBlockNum = *block;
404  	eloc.partitionReferenceNum =
405  				iinfo->i_location.partitionReferenceNum;
406  	iinfo->i_lenExtents = inode->i_size;
407  	epos.bh = NULL;
408  	epos.block = iinfo->i_location;
409  	epos.offset = udf_file_entry_alloc_offset(inode);
410  	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411  	/* UniqueID stuff */
412  
413  	brelse(epos.bh);
414  	mark_inode_dirty(inode);
415  	return dbh;
416  }
417  
418  static int udf_get_block(struct inode *inode, sector_t block,
419  			 struct buffer_head *bh_result, int create)
420  {
421  	int err, new;
422  	sector_t phys = 0;
423  	struct udf_inode_info *iinfo;
424  
425  	if (!create) {
426  		phys = udf_block_map(inode, block);
427  		if (phys)
428  			map_bh(bh_result, inode->i_sb, phys);
429  		return 0;
430  	}
431  
432  	err = -EIO;
433  	new = 0;
434  	iinfo = UDF_I(inode);
435  
436  	down_write(&iinfo->i_data_sem);
437  	if (block == iinfo->i_next_alloc_block + 1) {
438  		iinfo->i_next_alloc_block++;
439  		iinfo->i_next_alloc_goal++;
440  	}
441  
442  	udf_clear_extent_cache(inode);
443  	phys = inode_getblk(inode, block, &err, &new);
444  	if (!phys)
445  		goto abort;
446  
447  	if (new)
448  		set_buffer_new(bh_result);
449  	map_bh(bh_result, inode->i_sb, phys);
450  
451  abort:
452  	up_write(&iinfo->i_data_sem);
453  	return err;
454  }
455  
456  static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457  				      int create, int *err)
458  {
459  	struct buffer_head *bh;
460  	struct buffer_head dummy;
461  
462  	dummy.b_state = 0;
463  	dummy.b_blocknr = -1000;
464  	*err = udf_get_block(inode, block, &dummy, create);
465  	if (!*err && buffer_mapped(&dummy)) {
466  		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467  		if (buffer_new(&dummy)) {
468  			lock_buffer(bh);
469  			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470  			set_buffer_uptodate(bh);
471  			unlock_buffer(bh);
472  			mark_buffer_dirty_inode(bh, inode);
473  		}
474  		return bh;
475  	}
476  
477  	return NULL;
478  }
479  
480  /* Extend the file with new blocks totaling 'new_block_bytes',
481   * return the number of extents added
482   */
483  static int udf_do_extend_file(struct inode *inode,
484  			      struct extent_position *last_pos,
485  			      struct kernel_long_ad *last_ext,
486  			      loff_t new_block_bytes)
487  {
488  	uint32_t add;
489  	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490  	struct super_block *sb = inode->i_sb;
491  	struct kernel_lb_addr prealloc_loc = {};
492  	uint32_t prealloc_len = 0;
493  	struct udf_inode_info *iinfo;
494  	int err;
495  
496  	/* The previous extent is fake and we should not extend by anything
497  	 * - there's nothing to do... */
498  	if (!new_block_bytes && fake)
499  		return 0;
500  
501  	iinfo = UDF_I(inode);
502  	/* Round the last extent up to a multiple of block size */
503  	if (last_ext->extLength & (sb->s_blocksize - 1)) {
504  		last_ext->extLength =
505  			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506  			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507  			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508  		iinfo->i_lenExtents =
509  			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
510  			~(sb->s_blocksize - 1);
511  	}
512  
513  	/* Last extent are just preallocated blocks? */
514  	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515  						EXT_NOT_RECORDED_ALLOCATED) {
516  		/* Save the extent so that we can reattach it to the end */
517  		prealloc_loc = last_ext->extLocation;
518  		prealloc_len = last_ext->extLength;
519  		/* Mark the extent as a hole */
520  		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521  			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522  		last_ext->extLocation.logicalBlockNum = 0;
523  		last_ext->extLocation.partitionReferenceNum = 0;
524  	}
525  
526  	/* Can we merge with the previous extent? */
527  	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528  					EXT_NOT_RECORDED_NOT_ALLOCATED) {
529  		add = (1 << 30) - sb->s_blocksize -
530  			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531  		if (add > new_block_bytes)
532  			add = new_block_bytes;
533  		new_block_bytes -= add;
534  		last_ext->extLength += add;
535  	}
536  
537  	if (fake) {
538  		udf_add_aext(inode, last_pos, &last_ext->extLocation,
539  			     last_ext->extLength, 1);
540  		count++;
541  	} else {
542  		struct kernel_lb_addr tmploc;
543  		uint32_t tmplen;
544  
545  		udf_write_aext(inode, last_pos, &last_ext->extLocation,
546  				last_ext->extLength, 1);
547  
548  		/*
549  		 * We've rewritten the last extent. If we are going to add
550  		 * more extents, we may need to enter possible following
551  		 * empty indirect extent.
552  		 */
553  		if (new_block_bytes || prealloc_len)
554  			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
555  	}
556  
557  	/* Managed to do everything necessary? */
558  	if (!new_block_bytes)
559  		goto out;
560  
561  	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
562  	last_ext->extLocation.logicalBlockNum = 0;
563  	last_ext->extLocation.partitionReferenceNum = 0;
564  	add = (1 << 30) - sb->s_blocksize;
565  	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
566  
567  	/* Create enough extents to cover the whole hole */
568  	while (new_block_bytes > add) {
569  		new_block_bytes -= add;
570  		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
571  				   last_ext->extLength, 1);
572  		if (err)
573  			return err;
574  		count++;
575  	}
576  	if (new_block_bytes) {
577  		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
578  			new_block_bytes;
579  		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
580  				   last_ext->extLength, 1);
581  		if (err)
582  			return err;
583  		count++;
584  	}
585  
586  out:
587  	/* Do we have some preallocated blocks saved? */
588  	if (prealloc_len) {
589  		err = udf_add_aext(inode, last_pos, &prealloc_loc,
590  				   prealloc_len, 1);
591  		if (err)
592  			return err;
593  		last_ext->extLocation = prealloc_loc;
594  		last_ext->extLength = prealloc_len;
595  		count++;
596  	}
597  
598  	/* last_pos should point to the last written extent... */
599  	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
600  		last_pos->offset -= sizeof(struct short_ad);
601  	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
602  		last_pos->offset -= sizeof(struct long_ad);
603  	else
604  		return -EIO;
605  
606  	return count;
607  }
608  
609  /* Extend the final block of the file to final_block_len bytes */
610  static void udf_do_extend_final_block(struct inode *inode,
611  				      struct extent_position *last_pos,
612  				      struct kernel_long_ad *last_ext,
613  				      uint32_t final_block_len)
614  {
615  	struct super_block *sb = inode->i_sb;
616  	uint32_t added_bytes;
617  
618  	added_bytes = final_block_len -
619  		      (last_ext->extLength & (sb->s_blocksize - 1));
620  	last_ext->extLength += added_bytes;
621  	UDF_I(inode)->i_lenExtents += added_bytes;
622  
623  	udf_write_aext(inode, last_pos, &last_ext->extLocation,
624  			last_ext->extLength, 1);
625  }
626  
627  static int udf_extend_file(struct inode *inode, loff_t newsize)
628  {
629  
630  	struct extent_position epos;
631  	struct kernel_lb_addr eloc;
632  	uint32_t elen;
633  	int8_t etype;
634  	struct super_block *sb = inode->i_sb;
635  	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
636  	unsigned long partial_final_block;
637  	int adsize;
638  	struct udf_inode_info *iinfo = UDF_I(inode);
639  	struct kernel_long_ad extent;
640  	int err = 0;
641  	int within_final_block;
642  
643  	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
644  		adsize = sizeof(struct short_ad);
645  	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
646  		adsize = sizeof(struct long_ad);
647  	else
648  		BUG();
649  
650  	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
651  	within_final_block = (etype != -1);
652  
653  	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654  	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655  		/* File has no extents at all or has empty last
656  		 * indirect extent! Create a fake extent... */
657  		extent.extLocation.logicalBlockNum = 0;
658  		extent.extLocation.partitionReferenceNum = 0;
659  		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660  	} else {
661  		epos.offset -= adsize;
662  		etype = udf_next_aext(inode, &epos, &extent.extLocation,
663  				      &extent.extLength, 0);
664  		extent.extLength |= etype << 30;
665  	}
666  
667  	partial_final_block = newsize & (sb->s_blocksize - 1);
668  
669  	/* File has extent covering the new size (could happen when extending
670  	 * inside a block)?
671  	 */
672  	if (within_final_block) {
673  		/* Extending file within the last file block */
674  		udf_do_extend_final_block(inode, &epos, &extent,
675  					  partial_final_block);
676  	} else {
677  		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
678  			     partial_final_block;
679  		err = udf_do_extend_file(inode, &epos, &extent, add);
680  	}
681  
682  	if (err < 0)
683  		goto out;
684  	err = 0;
685  	iinfo->i_lenExtents = newsize;
686  out:
687  	brelse(epos.bh);
688  	return err;
689  }
690  
691  static sector_t inode_getblk(struct inode *inode, sector_t block,
692  			     int *err, int *new)
693  {
694  	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
695  	struct extent_position prev_epos, cur_epos, next_epos;
696  	int count = 0, startnum = 0, endnum = 0;
697  	uint32_t elen = 0, tmpelen;
698  	struct kernel_lb_addr eloc, tmpeloc;
699  	int c = 1;
700  	loff_t lbcount = 0, b_off = 0;
701  	udf_pblk_t newblocknum, newblock;
702  	sector_t offset = 0;
703  	int8_t etype;
704  	struct udf_inode_info *iinfo = UDF_I(inode);
705  	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
706  	int lastblock = 0;
707  	bool isBeyondEOF;
708  
709  	*err = 0;
710  	*new = 0;
711  	prev_epos.offset = udf_file_entry_alloc_offset(inode);
712  	prev_epos.block = iinfo->i_location;
713  	prev_epos.bh = NULL;
714  	cur_epos = next_epos = prev_epos;
715  	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
716  
717  	/* find the extent which contains the block we are looking for.
718  	   alternate between laarr[0] and laarr[1] for locations of the
719  	   current extent, and the previous extent */
720  	do {
721  		if (prev_epos.bh != cur_epos.bh) {
722  			brelse(prev_epos.bh);
723  			get_bh(cur_epos.bh);
724  			prev_epos.bh = cur_epos.bh;
725  		}
726  		if (cur_epos.bh != next_epos.bh) {
727  			brelse(cur_epos.bh);
728  			get_bh(next_epos.bh);
729  			cur_epos.bh = next_epos.bh;
730  		}
731  
732  		lbcount += elen;
733  
734  		prev_epos.block = cur_epos.block;
735  		cur_epos.block = next_epos.block;
736  
737  		prev_epos.offset = cur_epos.offset;
738  		cur_epos.offset = next_epos.offset;
739  
740  		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
741  		if (etype == -1)
742  			break;
743  
744  		c = !c;
745  
746  		laarr[c].extLength = (etype << 30) | elen;
747  		laarr[c].extLocation = eloc;
748  
749  		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
750  			pgoal = eloc.logicalBlockNum +
751  				((elen + inode->i_sb->s_blocksize - 1) >>
752  				 inode->i_sb->s_blocksize_bits);
753  
754  		count++;
755  	} while (lbcount + elen <= b_off);
756  
757  	b_off -= lbcount;
758  	offset = b_off >> inode->i_sb->s_blocksize_bits;
759  	/*
760  	 * Move prev_epos and cur_epos into indirect extent if we are at
761  	 * the pointer to it
762  	 */
763  	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
764  	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
765  
766  	/* if the extent is allocated and recorded, return the block
767  	   if the extent is not a multiple of the blocksize, round up */
768  
769  	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
770  		if (elen & (inode->i_sb->s_blocksize - 1)) {
771  			elen = EXT_RECORDED_ALLOCATED |
772  				((elen + inode->i_sb->s_blocksize - 1) &
773  				 ~(inode->i_sb->s_blocksize - 1));
774  			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
775  		}
776  		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
777  		goto out_free;
778  	}
779  
780  	/* Are we beyond EOF? */
781  	if (etype == -1) {
782  		int ret;
783  		loff_t hole_len;
784  		isBeyondEOF = true;
785  		if (count) {
786  			if (c)
787  				laarr[0] = laarr[1];
788  			startnum = 1;
789  		} else {
790  			/* Create a fake extent when there's not one */
791  			memset(&laarr[0].extLocation, 0x00,
792  				sizeof(struct kernel_lb_addr));
793  			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
794  			/* Will udf_do_extend_file() create real extent from
795  			   a fake one? */
796  			startnum = (offset > 0);
797  		}
798  		/* Create extents for the hole between EOF and offset */
799  		hole_len = (loff_t)offset << inode->i_blkbits;
800  		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
801  		if (ret < 0) {
802  			*err = ret;
803  			newblock = 0;
804  			goto out_free;
805  		}
806  		c = 0;
807  		offset = 0;
808  		count += ret;
809  		/* We are not covered by a preallocated extent? */
810  		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
811  						EXT_NOT_RECORDED_ALLOCATED) {
812  			/* Is there any real extent? - otherwise we overwrite
813  			 * the fake one... */
814  			if (count)
815  				c = !c;
816  			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
817  				inode->i_sb->s_blocksize;
818  			memset(&laarr[c].extLocation, 0x00,
819  				sizeof(struct kernel_lb_addr));
820  			count++;
821  		}
822  		endnum = c + 1;
823  		lastblock = 1;
824  	} else {
825  		isBeyondEOF = false;
826  		endnum = startnum = ((count > 2) ? 2 : count);
827  
828  		/* if the current extent is in position 0,
829  		   swap it with the previous */
830  		if (!c && count != 1) {
831  			laarr[2] = laarr[0];
832  			laarr[0] = laarr[1];
833  			laarr[1] = laarr[2];
834  			c = 1;
835  		}
836  
837  		/* if the current block is located in an extent,
838  		   read the next extent */
839  		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
840  		if (etype != -1) {
841  			laarr[c + 1].extLength = (etype << 30) | elen;
842  			laarr[c + 1].extLocation = eloc;
843  			count++;
844  			startnum++;
845  			endnum++;
846  		} else
847  			lastblock = 1;
848  	}
849  
850  	/* if the current extent is not recorded but allocated, get the
851  	 * block in the extent corresponding to the requested block */
852  	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853  		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
854  	else { /* otherwise, allocate a new block */
855  		if (iinfo->i_next_alloc_block == block)
856  			goal = iinfo->i_next_alloc_goal;
857  
858  		if (!goal) {
859  			if (!(goal = pgoal)) /* XXX: what was intended here? */
860  				goal = iinfo->i_location.logicalBlockNum + 1;
861  		}
862  
863  		newblocknum = udf_new_block(inode->i_sb, inode,
864  				iinfo->i_location.partitionReferenceNum,
865  				goal, err);
866  		if (!newblocknum) {
867  			*err = -ENOSPC;
868  			newblock = 0;
869  			goto out_free;
870  		}
871  		if (isBeyondEOF)
872  			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
873  	}
874  
875  	/* if the extent the requsted block is located in contains multiple
876  	 * blocks, split the extent into at most three extents. blocks prior
877  	 * to requested block, requested block, and blocks after requested
878  	 * block */
879  	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
880  
881  	/* We preallocate blocks only for regular files. It also makes sense
882  	 * for directories but there's a problem when to drop the
883  	 * preallocation. We might use some delayed work for that but I feel
884  	 * it's overengineering for a filesystem like UDF. */
885  	if (S_ISREG(inode->i_mode))
886  		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
887  
888  	/* merge any continuous blocks in laarr */
889  	udf_merge_extents(inode, laarr, &endnum);
890  
891  	/* write back the new extents, inserting new extents if the new number
892  	 * of extents is greater than the old number, and deleting extents if
893  	 * the new number of extents is less than the old number */
894  	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
895  
896  	newblock = udf_get_pblock(inode->i_sb, newblocknum,
897  				iinfo->i_location.partitionReferenceNum, 0);
898  	if (!newblock) {
899  		*err = -EIO;
900  		goto out_free;
901  	}
902  	*new = 1;
903  	iinfo->i_next_alloc_block = block;
904  	iinfo->i_next_alloc_goal = newblocknum;
905  	inode->i_ctime = current_time(inode);
906  
907  	if (IS_SYNC(inode))
908  		udf_sync_inode(inode);
909  	else
910  		mark_inode_dirty(inode);
911  out_free:
912  	brelse(prev_epos.bh);
913  	brelse(cur_epos.bh);
914  	brelse(next_epos.bh);
915  	return newblock;
916  }
917  
918  static void udf_split_extents(struct inode *inode, int *c, int offset,
919  			       udf_pblk_t newblocknum,
920  			       struct kernel_long_ad *laarr, int *endnum)
921  {
922  	unsigned long blocksize = inode->i_sb->s_blocksize;
923  	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
924  
925  	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
926  	    (laarr[*c].extLength >> 30) ==
927  				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
928  		int curr = *c;
929  		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
930  			    blocksize - 1) >> blocksize_bits;
931  		int8_t etype = (laarr[curr].extLength >> 30);
932  
933  		if (blen == 1)
934  			;
935  		else if (!offset || blen == offset + 1) {
936  			laarr[curr + 2] = laarr[curr + 1];
937  			laarr[curr + 1] = laarr[curr];
938  		} else {
939  			laarr[curr + 3] = laarr[curr + 1];
940  			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
941  		}
942  
943  		if (offset) {
944  			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
945  				udf_free_blocks(inode->i_sb, inode,
946  						&laarr[curr].extLocation,
947  						0, offset);
948  				laarr[curr].extLength =
949  					EXT_NOT_RECORDED_NOT_ALLOCATED |
950  					(offset << blocksize_bits);
951  				laarr[curr].extLocation.logicalBlockNum = 0;
952  				laarr[curr].extLocation.
953  						partitionReferenceNum = 0;
954  			} else
955  				laarr[curr].extLength = (etype << 30) |
956  					(offset << blocksize_bits);
957  			curr++;
958  			(*c)++;
959  			(*endnum)++;
960  		}
961  
962  		laarr[curr].extLocation.logicalBlockNum = newblocknum;
963  		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
964  			laarr[curr].extLocation.partitionReferenceNum =
965  				UDF_I(inode)->i_location.partitionReferenceNum;
966  		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
967  			blocksize;
968  		curr++;
969  
970  		if (blen != offset + 1) {
971  			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
972  				laarr[curr].extLocation.logicalBlockNum +=
973  								offset + 1;
974  			laarr[curr].extLength = (etype << 30) |
975  				((blen - (offset + 1)) << blocksize_bits);
976  			curr++;
977  			(*endnum)++;
978  		}
979  	}
980  }
981  
982  static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
983  				 struct kernel_long_ad *laarr,
984  				 int *endnum)
985  {
986  	int start, length = 0, currlength = 0, i;
987  
988  	if (*endnum >= (c + 1)) {
989  		if (!lastblock)
990  			return;
991  		else
992  			start = c;
993  	} else {
994  		if ((laarr[c + 1].extLength >> 30) ==
995  					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
996  			start = c + 1;
997  			length = currlength =
998  				(((laarr[c + 1].extLength &
999  					UDF_EXTENT_LENGTH_MASK) +
1000  				inode->i_sb->s_blocksize - 1) >>
1001  				inode->i_sb->s_blocksize_bits);
1002  		} else
1003  			start = c;
1004  	}
1005  
1006  	for (i = start + 1; i <= *endnum; i++) {
1007  		if (i == *endnum) {
1008  			if (lastblock)
1009  				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1010  		} else if ((laarr[i].extLength >> 30) ==
1011  				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1012  			length += (((laarr[i].extLength &
1013  						UDF_EXTENT_LENGTH_MASK) +
1014  				    inode->i_sb->s_blocksize - 1) >>
1015  				    inode->i_sb->s_blocksize_bits);
1016  		} else
1017  			break;
1018  	}
1019  
1020  	if (length) {
1021  		int next = laarr[start].extLocation.logicalBlockNum +
1022  			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1023  			  inode->i_sb->s_blocksize - 1) >>
1024  			  inode->i_sb->s_blocksize_bits);
1025  		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1026  				laarr[start].extLocation.partitionReferenceNum,
1027  				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1028  				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1029  				currlength);
1030  		if (numalloc) 	{
1031  			if (start == (c + 1))
1032  				laarr[start].extLength +=
1033  					(numalloc <<
1034  					 inode->i_sb->s_blocksize_bits);
1035  			else {
1036  				memmove(&laarr[c + 2], &laarr[c + 1],
1037  					sizeof(struct long_ad) * (*endnum - (c + 1)));
1038  				(*endnum)++;
1039  				laarr[c + 1].extLocation.logicalBlockNum = next;
1040  				laarr[c + 1].extLocation.partitionReferenceNum =
1041  					laarr[c].extLocation.
1042  							partitionReferenceNum;
1043  				laarr[c + 1].extLength =
1044  					EXT_NOT_RECORDED_ALLOCATED |
1045  					(numalloc <<
1046  					 inode->i_sb->s_blocksize_bits);
1047  				start = c + 1;
1048  			}
1049  
1050  			for (i = start + 1; numalloc && i < *endnum; i++) {
1051  				int elen = ((laarr[i].extLength &
1052  						UDF_EXTENT_LENGTH_MASK) +
1053  					    inode->i_sb->s_blocksize - 1) >>
1054  					    inode->i_sb->s_blocksize_bits;
1055  
1056  				if (elen > numalloc) {
1057  					laarr[i].extLength -=
1058  						(numalloc <<
1059  						 inode->i_sb->s_blocksize_bits);
1060  					numalloc = 0;
1061  				} else {
1062  					numalloc -= elen;
1063  					if (*endnum > (i + 1))
1064  						memmove(&laarr[i],
1065  							&laarr[i + 1],
1066  							sizeof(struct long_ad) *
1067  							(*endnum - (i + 1)));
1068  					i--;
1069  					(*endnum)--;
1070  				}
1071  			}
1072  			UDF_I(inode)->i_lenExtents +=
1073  				numalloc << inode->i_sb->s_blocksize_bits;
1074  		}
1075  	}
1076  }
1077  
1078  static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1079  			      int *endnum)
1080  {
1081  	int i;
1082  	unsigned long blocksize = inode->i_sb->s_blocksize;
1083  	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1084  
1085  	for (i = 0; i < (*endnum - 1); i++) {
1086  		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1087  		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1088  
1089  		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1090  			(((li->extLength >> 30) ==
1091  				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1092  			((lip1->extLocation.logicalBlockNum -
1093  			  li->extLocation.logicalBlockNum) ==
1094  			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095  			blocksize - 1) >> blocksize_bits)))) {
1096  
1097  			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1098  				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1099  				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1100  				lip1->extLength = (lip1->extLength -
1101  						  (li->extLength &
1102  						   UDF_EXTENT_LENGTH_MASK) +
1103  						   UDF_EXTENT_LENGTH_MASK) &
1104  							~(blocksize - 1);
1105  				li->extLength = (li->extLength &
1106  						 UDF_EXTENT_FLAG_MASK) +
1107  						(UDF_EXTENT_LENGTH_MASK + 1) -
1108  						blocksize;
1109  				lip1->extLocation.logicalBlockNum =
1110  					li->extLocation.logicalBlockNum +
1111  					((li->extLength &
1112  						UDF_EXTENT_LENGTH_MASK) >>
1113  						blocksize_bits);
1114  			} else {
1115  				li->extLength = lip1->extLength +
1116  					(((li->extLength &
1117  						UDF_EXTENT_LENGTH_MASK) +
1118  					 blocksize - 1) & ~(blocksize - 1));
1119  				if (*endnum > (i + 2))
1120  					memmove(&laarr[i + 1], &laarr[i + 2],
1121  						sizeof(struct long_ad) *
1122  						(*endnum - (i + 2)));
1123  				i--;
1124  				(*endnum)--;
1125  			}
1126  		} else if (((li->extLength >> 30) ==
1127  				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1128  			   ((lip1->extLength >> 30) ==
1129  				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1130  			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1131  					((li->extLength &
1132  					  UDF_EXTENT_LENGTH_MASK) +
1133  					 blocksize - 1) >> blocksize_bits);
1134  			li->extLocation.logicalBlockNum = 0;
1135  			li->extLocation.partitionReferenceNum = 0;
1136  
1137  			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1138  			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1139  			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1140  				lip1->extLength = (lip1->extLength -
1141  						   (li->extLength &
1142  						   UDF_EXTENT_LENGTH_MASK) +
1143  						   UDF_EXTENT_LENGTH_MASK) &
1144  						   ~(blocksize - 1);
1145  				li->extLength = (li->extLength &
1146  						 UDF_EXTENT_FLAG_MASK) +
1147  						(UDF_EXTENT_LENGTH_MASK + 1) -
1148  						blocksize;
1149  			} else {
1150  				li->extLength = lip1->extLength +
1151  					(((li->extLength &
1152  						UDF_EXTENT_LENGTH_MASK) +
1153  					  blocksize - 1) & ~(blocksize - 1));
1154  				if (*endnum > (i + 2))
1155  					memmove(&laarr[i + 1], &laarr[i + 2],
1156  						sizeof(struct long_ad) *
1157  						(*endnum - (i + 2)));
1158  				i--;
1159  				(*endnum)--;
1160  			}
1161  		} else if ((li->extLength >> 30) ==
1162  					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1163  			udf_free_blocks(inode->i_sb, inode,
1164  					&li->extLocation, 0,
1165  					((li->extLength &
1166  						UDF_EXTENT_LENGTH_MASK) +
1167  					 blocksize - 1) >> blocksize_bits);
1168  			li->extLocation.logicalBlockNum = 0;
1169  			li->extLocation.partitionReferenceNum = 0;
1170  			li->extLength = (li->extLength &
1171  						UDF_EXTENT_LENGTH_MASK) |
1172  						EXT_NOT_RECORDED_NOT_ALLOCATED;
1173  		}
1174  	}
1175  }
1176  
1177  static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1178  			       int startnum, int endnum,
1179  			       struct extent_position *epos)
1180  {
1181  	int start = 0, i;
1182  	struct kernel_lb_addr tmploc;
1183  	uint32_t tmplen;
1184  
1185  	if (startnum > endnum) {
1186  		for (i = 0; i < (startnum - endnum); i++)
1187  			udf_delete_aext(inode, *epos);
1188  	} else if (startnum < endnum) {
1189  		for (i = 0; i < (endnum - startnum); i++) {
1190  			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1191  					laarr[i].extLength);
1192  			udf_next_aext(inode, epos, &laarr[i].extLocation,
1193  				      &laarr[i].extLength, 1);
1194  			start++;
1195  		}
1196  	}
1197  
1198  	for (i = start; i < endnum; i++) {
1199  		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1200  		udf_write_aext(inode, epos, &laarr[i].extLocation,
1201  			       laarr[i].extLength, 1);
1202  	}
1203  }
1204  
1205  struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1206  			      int create, int *err)
1207  {
1208  	struct buffer_head *bh = NULL;
1209  
1210  	bh = udf_getblk(inode, block, create, err);
1211  	if (!bh)
1212  		return NULL;
1213  
1214  	if (buffer_uptodate(bh))
1215  		return bh;
1216  
1217  	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1218  
1219  	wait_on_buffer(bh);
1220  	if (buffer_uptodate(bh))
1221  		return bh;
1222  
1223  	brelse(bh);
1224  	*err = -EIO;
1225  	return NULL;
1226  }
1227  
1228  int udf_setsize(struct inode *inode, loff_t newsize)
1229  {
1230  	int err;
1231  	struct udf_inode_info *iinfo;
1232  	unsigned int bsize = i_blocksize(inode);
1233  
1234  	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1235  	      S_ISLNK(inode->i_mode)))
1236  		return -EINVAL;
1237  	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1238  		return -EPERM;
1239  
1240  	iinfo = UDF_I(inode);
1241  	if (newsize > inode->i_size) {
1242  		down_write(&iinfo->i_data_sem);
1243  		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244  			if (bsize <
1245  			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1246  				err = udf_expand_file_adinicb(inode);
1247  				if (err)
1248  					return err;
1249  				down_write(&iinfo->i_data_sem);
1250  			} else {
1251  				iinfo->i_lenAlloc = newsize;
1252  				goto set_size;
1253  			}
1254  		}
1255  		err = udf_extend_file(inode, newsize);
1256  		if (err) {
1257  			up_write(&iinfo->i_data_sem);
1258  			return err;
1259  		}
1260  set_size:
1261  		up_write(&iinfo->i_data_sem);
1262  		truncate_setsize(inode, newsize);
1263  	} else {
1264  		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1265  			down_write(&iinfo->i_data_sem);
1266  			udf_clear_extent_cache(inode);
1267  			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1268  			       0x00, bsize - newsize -
1269  			       udf_file_entry_alloc_offset(inode));
1270  			iinfo->i_lenAlloc = newsize;
1271  			truncate_setsize(inode, newsize);
1272  			up_write(&iinfo->i_data_sem);
1273  			goto update_time;
1274  		}
1275  		err = block_truncate_page(inode->i_mapping, newsize,
1276  					  udf_get_block);
1277  		if (err)
1278  			return err;
1279  		truncate_setsize(inode, newsize);
1280  		down_write(&iinfo->i_data_sem);
1281  		udf_clear_extent_cache(inode);
1282  		err = udf_truncate_extents(inode);
1283  		up_write(&iinfo->i_data_sem);
1284  		if (err)
1285  			return err;
1286  	}
1287  update_time:
1288  	inode->i_mtime = inode->i_ctime = current_time(inode);
1289  	if (IS_SYNC(inode))
1290  		udf_sync_inode(inode);
1291  	else
1292  		mark_inode_dirty(inode);
1293  	return 0;
1294  }
1295  
1296  /*
1297   * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1298   * arbitrary - just that we hopefully don't limit any real use of rewritten
1299   * inode on write-once media but avoid looping for too long on corrupted media.
1300   */
1301  #define UDF_MAX_ICB_NESTING 1024
1302  
1303  static int udf_read_inode(struct inode *inode, bool hidden_inode)
1304  {
1305  	struct buffer_head *bh = NULL;
1306  	struct fileEntry *fe;
1307  	struct extendedFileEntry *efe;
1308  	uint16_t ident;
1309  	struct udf_inode_info *iinfo = UDF_I(inode);
1310  	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1311  	struct kernel_lb_addr *iloc = &iinfo->i_location;
1312  	unsigned int link_count;
1313  	unsigned int indirections = 0;
1314  	int bs = inode->i_sb->s_blocksize;
1315  	int ret = -EIO;
1316  	uint32_t uid, gid;
1317  
1318  reread:
1319  	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1320  		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1321  			  iloc->partitionReferenceNum, sbi->s_partitions);
1322  		return -EIO;
1323  	}
1324  
1325  	if (iloc->logicalBlockNum >=
1326  	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1327  		udf_debug("block=%u, partition=%u out of range\n",
1328  			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1329  		return -EIO;
1330  	}
1331  
1332  	/*
1333  	 * Set defaults, but the inode is still incomplete!
1334  	 * Note: get_new_inode() sets the following on a new inode:
1335  	 *      i_sb = sb
1336  	 *      i_no = ino
1337  	 *      i_flags = sb->s_flags
1338  	 *      i_state = 0
1339  	 * clean_inode(): zero fills and sets
1340  	 *      i_count = 1
1341  	 *      i_nlink = 1
1342  	 *      i_op = NULL;
1343  	 */
1344  	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1345  	if (!bh) {
1346  		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1347  		return -EIO;
1348  	}
1349  
1350  	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1351  	    ident != TAG_IDENT_USE) {
1352  		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1353  			inode->i_ino, ident);
1354  		goto out;
1355  	}
1356  
1357  	fe = (struct fileEntry *)bh->b_data;
1358  	efe = (struct extendedFileEntry *)bh->b_data;
1359  
1360  	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1361  		struct buffer_head *ibh;
1362  
1363  		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1364  		if (ident == TAG_IDENT_IE && ibh) {
1365  			struct kernel_lb_addr loc;
1366  			struct indirectEntry *ie;
1367  
1368  			ie = (struct indirectEntry *)ibh->b_data;
1369  			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1370  
1371  			if (ie->indirectICB.extLength) {
1372  				brelse(ibh);
1373  				memcpy(&iinfo->i_location, &loc,
1374  				       sizeof(struct kernel_lb_addr));
1375  				if (++indirections > UDF_MAX_ICB_NESTING) {
1376  					udf_err(inode->i_sb,
1377  						"too many ICBs in ICB hierarchy"
1378  						" (max %d supported)\n",
1379  						UDF_MAX_ICB_NESTING);
1380  					goto out;
1381  				}
1382  				brelse(bh);
1383  				goto reread;
1384  			}
1385  		}
1386  		brelse(ibh);
1387  	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1388  		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1389  			le16_to_cpu(fe->icbTag.strategyType));
1390  		goto out;
1391  	}
1392  	if (fe->icbTag.strategyType == cpu_to_le16(4))
1393  		iinfo->i_strat4096 = 0;
1394  	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1395  		iinfo->i_strat4096 = 1;
1396  
1397  	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1398  							ICBTAG_FLAG_AD_MASK;
1399  	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1400  	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1401  	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1402  		ret = -EIO;
1403  		goto out;
1404  	}
1405  	iinfo->i_unique = 0;
1406  	iinfo->i_lenEAttr = 0;
1407  	iinfo->i_lenExtents = 0;
1408  	iinfo->i_lenAlloc = 0;
1409  	iinfo->i_next_alloc_block = 0;
1410  	iinfo->i_next_alloc_goal = 0;
1411  	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1412  		iinfo->i_efe = 1;
1413  		iinfo->i_use = 0;
1414  		ret = udf_alloc_i_data(inode, bs -
1415  					sizeof(struct extendedFileEntry));
1416  		if (ret)
1417  			goto out;
1418  		memcpy(iinfo->i_data,
1419  		       bh->b_data + sizeof(struct extendedFileEntry),
1420  		       bs - sizeof(struct extendedFileEntry));
1421  	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1422  		iinfo->i_efe = 0;
1423  		iinfo->i_use = 0;
1424  		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1425  		if (ret)
1426  			goto out;
1427  		memcpy(iinfo->i_data,
1428  		       bh->b_data + sizeof(struct fileEntry),
1429  		       bs - sizeof(struct fileEntry));
1430  	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1431  		iinfo->i_efe = 0;
1432  		iinfo->i_use = 1;
1433  		iinfo->i_lenAlloc = le32_to_cpu(
1434  				((struct unallocSpaceEntry *)bh->b_data)->
1435  				 lengthAllocDescs);
1436  		ret = udf_alloc_i_data(inode, bs -
1437  					sizeof(struct unallocSpaceEntry));
1438  		if (ret)
1439  			goto out;
1440  		memcpy(iinfo->i_data,
1441  		       bh->b_data + sizeof(struct unallocSpaceEntry),
1442  		       bs - sizeof(struct unallocSpaceEntry));
1443  		return 0;
1444  	}
1445  
1446  	ret = -EIO;
1447  	read_lock(&sbi->s_cred_lock);
1448  	uid = le32_to_cpu(fe->uid);
1449  	if (uid == UDF_INVALID_ID ||
1450  	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1451  		inode->i_uid = sbi->s_uid;
1452  	else
1453  		i_uid_write(inode, uid);
1454  
1455  	gid = le32_to_cpu(fe->gid);
1456  	if (gid == UDF_INVALID_ID ||
1457  	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1458  		inode->i_gid = sbi->s_gid;
1459  	else
1460  		i_gid_write(inode, gid);
1461  
1462  	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1463  			sbi->s_fmode != UDF_INVALID_MODE)
1464  		inode->i_mode = sbi->s_fmode;
1465  	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1466  			sbi->s_dmode != UDF_INVALID_MODE)
1467  		inode->i_mode = sbi->s_dmode;
1468  	else
1469  		inode->i_mode = udf_convert_permissions(fe);
1470  	inode->i_mode &= ~sbi->s_umask;
1471  	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1472  
1473  	read_unlock(&sbi->s_cred_lock);
1474  
1475  	link_count = le16_to_cpu(fe->fileLinkCount);
1476  	if (!link_count) {
1477  		if (!hidden_inode) {
1478  			ret = -ESTALE;
1479  			goto out;
1480  		}
1481  		link_count = 1;
1482  	}
1483  	set_nlink(inode, link_count);
1484  
1485  	inode->i_size = le64_to_cpu(fe->informationLength);
1486  	iinfo->i_lenExtents = inode->i_size;
1487  
1488  	if (iinfo->i_efe == 0) {
1489  		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1490  			(inode->i_sb->s_blocksize_bits - 9);
1491  
1492  		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1493  		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1494  		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1495  
1496  		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1497  		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1498  		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1499  		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1500  		iinfo->i_streamdir = 0;
1501  		iinfo->i_lenStreams = 0;
1502  	} else {
1503  		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1504  		    (inode->i_sb->s_blocksize_bits - 9);
1505  
1506  		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1507  		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1508  		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1509  		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1510  
1511  		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1512  		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1513  		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1514  		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1515  
1516  		/* Named streams */
1517  		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1518  		iinfo->i_locStreamdir =
1519  			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1520  		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1521  		if (iinfo->i_lenStreams >= inode->i_size)
1522  			iinfo->i_lenStreams -= inode->i_size;
1523  		else
1524  			iinfo->i_lenStreams = 0;
1525  	}
1526  	inode->i_generation = iinfo->i_unique;
1527  
1528  	/*
1529  	 * Sanity check length of allocation descriptors and extended attrs to
1530  	 * avoid integer overflows
1531  	 */
1532  	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1533  		goto out;
1534  	/* Now do exact checks */
1535  	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1536  		goto out;
1537  	/* Sanity checks for files in ICB so that we don't get confused later */
1538  	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1539  		/*
1540  		 * For file in ICB data is stored in allocation descriptor
1541  		 * so sizes should match
1542  		 */
1543  		if (iinfo->i_lenAlloc != inode->i_size)
1544  			goto out;
1545  		/* File in ICB has to fit in there... */
1546  		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1547  			goto out;
1548  	}
1549  
1550  	switch (fe->icbTag.fileType) {
1551  	case ICBTAG_FILE_TYPE_DIRECTORY:
1552  		inode->i_op = &udf_dir_inode_operations;
1553  		inode->i_fop = &udf_dir_operations;
1554  		inode->i_mode |= S_IFDIR;
1555  		inc_nlink(inode);
1556  		break;
1557  	case ICBTAG_FILE_TYPE_REALTIME:
1558  	case ICBTAG_FILE_TYPE_REGULAR:
1559  	case ICBTAG_FILE_TYPE_UNDEF:
1560  	case ICBTAG_FILE_TYPE_VAT20:
1561  		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1562  			inode->i_data.a_ops = &udf_adinicb_aops;
1563  		else
1564  			inode->i_data.a_ops = &udf_aops;
1565  		inode->i_op = &udf_file_inode_operations;
1566  		inode->i_fop = &udf_file_operations;
1567  		inode->i_mode |= S_IFREG;
1568  		break;
1569  	case ICBTAG_FILE_TYPE_BLOCK:
1570  		inode->i_mode |= S_IFBLK;
1571  		break;
1572  	case ICBTAG_FILE_TYPE_CHAR:
1573  		inode->i_mode |= S_IFCHR;
1574  		break;
1575  	case ICBTAG_FILE_TYPE_FIFO:
1576  		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1577  		break;
1578  	case ICBTAG_FILE_TYPE_SOCKET:
1579  		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1580  		break;
1581  	case ICBTAG_FILE_TYPE_SYMLINK:
1582  		inode->i_data.a_ops = &udf_symlink_aops;
1583  		inode->i_op = &udf_symlink_inode_operations;
1584  		inode_nohighmem(inode);
1585  		inode->i_mode = S_IFLNK | 0777;
1586  		break;
1587  	case ICBTAG_FILE_TYPE_MAIN:
1588  		udf_debug("METADATA FILE-----\n");
1589  		break;
1590  	case ICBTAG_FILE_TYPE_MIRROR:
1591  		udf_debug("METADATA MIRROR FILE-----\n");
1592  		break;
1593  	case ICBTAG_FILE_TYPE_BITMAP:
1594  		udf_debug("METADATA BITMAP FILE-----\n");
1595  		break;
1596  	default:
1597  		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1598  			inode->i_ino, fe->icbTag.fileType);
1599  		goto out;
1600  	}
1601  	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1602  		struct deviceSpec *dsea =
1603  			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1604  		if (dsea) {
1605  			init_special_inode(inode, inode->i_mode,
1606  				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1607  				      le32_to_cpu(dsea->minorDeviceIdent)));
1608  			/* Developer ID ??? */
1609  		} else
1610  			goto out;
1611  	}
1612  	ret = 0;
1613  out:
1614  	brelse(bh);
1615  	return ret;
1616  }
1617  
1618  static int udf_alloc_i_data(struct inode *inode, size_t size)
1619  {
1620  	struct udf_inode_info *iinfo = UDF_I(inode);
1621  	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1622  	if (!iinfo->i_data)
1623  		return -ENOMEM;
1624  	return 0;
1625  }
1626  
1627  static umode_t udf_convert_permissions(struct fileEntry *fe)
1628  {
1629  	umode_t mode;
1630  	uint32_t permissions;
1631  	uint32_t flags;
1632  
1633  	permissions = le32_to_cpu(fe->permissions);
1634  	flags = le16_to_cpu(fe->icbTag.flags);
1635  
1636  	mode =	((permissions) & 0007) |
1637  		((permissions >> 2) & 0070) |
1638  		((permissions >> 4) & 0700) |
1639  		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1640  		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1641  		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1642  
1643  	return mode;
1644  }
1645  
1646  void udf_update_extra_perms(struct inode *inode, umode_t mode)
1647  {
1648  	struct udf_inode_info *iinfo = UDF_I(inode);
1649  
1650  	/*
1651  	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1652  	 * In Unix, delete permission tracks write
1653  	 */
1654  	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1655  	if (mode & 0200)
1656  		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1657  	if (mode & 0020)
1658  		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1659  	if (mode & 0002)
1660  		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1661  }
1662  
1663  int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1664  {
1665  	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1666  }
1667  
1668  static int udf_sync_inode(struct inode *inode)
1669  {
1670  	return udf_update_inode(inode, 1);
1671  }
1672  
1673  static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1674  {
1675  	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1676  	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1677  	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1678  		iinfo->i_crtime = time;
1679  }
1680  
1681  static int udf_update_inode(struct inode *inode, int do_sync)
1682  {
1683  	struct buffer_head *bh = NULL;
1684  	struct fileEntry *fe;
1685  	struct extendedFileEntry *efe;
1686  	uint64_t lb_recorded;
1687  	uint32_t udfperms;
1688  	uint16_t icbflags;
1689  	uint16_t crclen;
1690  	int err = 0;
1691  	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1692  	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1693  	struct udf_inode_info *iinfo = UDF_I(inode);
1694  
1695  	bh = udf_tgetblk(inode->i_sb,
1696  			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1697  	if (!bh) {
1698  		udf_debug("getblk failure\n");
1699  		return -EIO;
1700  	}
1701  
1702  	lock_buffer(bh);
1703  	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1704  	fe = (struct fileEntry *)bh->b_data;
1705  	efe = (struct extendedFileEntry *)bh->b_data;
1706  
1707  	if (iinfo->i_use) {
1708  		struct unallocSpaceEntry *use =
1709  			(struct unallocSpaceEntry *)bh->b_data;
1710  
1711  		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1712  		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1713  		       iinfo->i_data, inode->i_sb->s_blocksize -
1714  					sizeof(struct unallocSpaceEntry));
1715  		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1716  		crclen = sizeof(struct unallocSpaceEntry);
1717  
1718  		goto finish;
1719  	}
1720  
1721  	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1722  		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1723  	else
1724  		fe->uid = cpu_to_le32(i_uid_read(inode));
1725  
1726  	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1727  		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1728  	else
1729  		fe->gid = cpu_to_le32(i_gid_read(inode));
1730  
1731  	udfperms = ((inode->i_mode & 0007)) |
1732  		   ((inode->i_mode & 0070) << 2) |
1733  		   ((inode->i_mode & 0700) << 4);
1734  
1735  	udfperms |= iinfo->i_extraPerms;
1736  	fe->permissions = cpu_to_le32(udfperms);
1737  
1738  	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1739  		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1740  	else
1741  		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1742  
1743  	fe->informationLength = cpu_to_le64(inode->i_size);
1744  
1745  	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1746  		struct regid *eid;
1747  		struct deviceSpec *dsea =
1748  			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1749  		if (!dsea) {
1750  			dsea = (struct deviceSpec *)
1751  				udf_add_extendedattr(inode,
1752  						     sizeof(struct deviceSpec) +
1753  						     sizeof(struct regid), 12, 0x3);
1754  			dsea->attrType = cpu_to_le32(12);
1755  			dsea->attrSubtype = 1;
1756  			dsea->attrLength = cpu_to_le32(
1757  						sizeof(struct deviceSpec) +
1758  						sizeof(struct regid));
1759  			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1760  		}
1761  		eid = (struct regid *)dsea->impUse;
1762  		memset(eid, 0, sizeof(*eid));
1763  		strcpy(eid->ident, UDF_ID_DEVELOPER);
1764  		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1765  		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1766  		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1767  		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1768  	}
1769  
1770  	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1771  		lb_recorded = 0; /* No extents => no blocks! */
1772  	else
1773  		lb_recorded =
1774  			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1775  			(blocksize_bits - 9);
1776  
1777  	if (iinfo->i_efe == 0) {
1778  		memcpy(bh->b_data + sizeof(struct fileEntry),
1779  		       iinfo->i_data,
1780  		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1781  		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1782  
1783  		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1784  		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1785  		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1786  		memset(&(fe->impIdent), 0, sizeof(struct regid));
1787  		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1788  		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789  		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790  		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1791  		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1792  		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1793  		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1794  		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1795  		crclen = sizeof(struct fileEntry);
1796  	} else {
1797  		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1798  		       iinfo->i_data,
1799  		       inode->i_sb->s_blocksize -
1800  					sizeof(struct extendedFileEntry));
1801  		efe->objectSize =
1802  			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1803  		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1804  
1805  		if (iinfo->i_streamdir) {
1806  			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1807  
1808  			icb_lad->extLocation =
1809  				cpu_to_lelb(iinfo->i_locStreamdir);
1810  			icb_lad->extLength =
1811  				cpu_to_le32(inode->i_sb->s_blocksize);
1812  		}
1813  
1814  		udf_adjust_time(iinfo, inode->i_atime);
1815  		udf_adjust_time(iinfo, inode->i_mtime);
1816  		udf_adjust_time(iinfo, inode->i_ctime);
1817  
1818  		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1819  		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1820  		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1821  		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1822  
1823  		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1824  		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1825  		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1826  		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1827  		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1828  		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1829  		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1830  		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1831  		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1832  		crclen = sizeof(struct extendedFileEntry);
1833  	}
1834  
1835  finish:
1836  	if (iinfo->i_strat4096) {
1837  		fe->icbTag.strategyType = cpu_to_le16(4096);
1838  		fe->icbTag.strategyParameter = cpu_to_le16(1);
1839  		fe->icbTag.numEntries = cpu_to_le16(2);
1840  	} else {
1841  		fe->icbTag.strategyType = cpu_to_le16(4);
1842  		fe->icbTag.numEntries = cpu_to_le16(1);
1843  	}
1844  
1845  	if (iinfo->i_use)
1846  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1847  	else if (S_ISDIR(inode->i_mode))
1848  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1849  	else if (S_ISREG(inode->i_mode))
1850  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1851  	else if (S_ISLNK(inode->i_mode))
1852  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1853  	else if (S_ISBLK(inode->i_mode))
1854  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1855  	else if (S_ISCHR(inode->i_mode))
1856  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1857  	else if (S_ISFIFO(inode->i_mode))
1858  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1859  	else if (S_ISSOCK(inode->i_mode))
1860  		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1861  
1862  	icbflags =	iinfo->i_alloc_type |
1863  			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1864  			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1865  			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1866  			(le16_to_cpu(fe->icbTag.flags) &
1867  				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1868  				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1869  
1870  	fe->icbTag.flags = cpu_to_le16(icbflags);
1871  	if (sbi->s_udfrev >= 0x0200)
1872  		fe->descTag.descVersion = cpu_to_le16(3);
1873  	else
1874  		fe->descTag.descVersion = cpu_to_le16(2);
1875  	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1876  	fe->descTag.tagLocation = cpu_to_le32(
1877  					iinfo->i_location.logicalBlockNum);
1878  	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1879  	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1880  	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1881  						  crclen));
1882  	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1883  
1884  	set_buffer_uptodate(bh);
1885  	unlock_buffer(bh);
1886  
1887  	/* write the data blocks */
1888  	mark_buffer_dirty(bh);
1889  	if (do_sync) {
1890  		sync_dirty_buffer(bh);
1891  		if (buffer_write_io_error(bh)) {
1892  			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1893  				 inode->i_ino);
1894  			err = -EIO;
1895  		}
1896  	}
1897  	brelse(bh);
1898  
1899  	return err;
1900  }
1901  
1902  struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1903  			 bool hidden_inode)
1904  {
1905  	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1906  	struct inode *inode = iget_locked(sb, block);
1907  	int err;
1908  
1909  	if (!inode)
1910  		return ERR_PTR(-ENOMEM);
1911  
1912  	if (!(inode->i_state & I_NEW))
1913  		return inode;
1914  
1915  	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1916  	err = udf_read_inode(inode, hidden_inode);
1917  	if (err < 0) {
1918  		iget_failed(inode);
1919  		return ERR_PTR(err);
1920  	}
1921  	unlock_new_inode(inode);
1922  
1923  	return inode;
1924  }
1925  
1926  int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1927  			    struct extent_position *epos)
1928  {
1929  	struct super_block *sb = inode->i_sb;
1930  	struct buffer_head *bh;
1931  	struct allocExtDesc *aed;
1932  	struct extent_position nepos;
1933  	struct kernel_lb_addr neloc;
1934  	int ver, adsize;
1935  
1936  	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1937  		adsize = sizeof(struct short_ad);
1938  	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1939  		adsize = sizeof(struct long_ad);
1940  	else
1941  		return -EIO;
1942  
1943  	neloc.logicalBlockNum = block;
1944  	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1945  
1946  	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1947  	if (!bh)
1948  		return -EIO;
1949  	lock_buffer(bh);
1950  	memset(bh->b_data, 0x00, sb->s_blocksize);
1951  	set_buffer_uptodate(bh);
1952  	unlock_buffer(bh);
1953  	mark_buffer_dirty_inode(bh, inode);
1954  
1955  	aed = (struct allocExtDesc *)(bh->b_data);
1956  	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1957  		aed->previousAllocExtLocation =
1958  				cpu_to_le32(epos->block.logicalBlockNum);
1959  	}
1960  	aed->lengthAllocDescs = cpu_to_le32(0);
1961  	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1962  		ver = 3;
1963  	else
1964  		ver = 2;
1965  	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1966  		    sizeof(struct tag));
1967  
1968  	nepos.block = neloc;
1969  	nepos.offset = sizeof(struct allocExtDesc);
1970  	nepos.bh = bh;
1971  
1972  	/*
1973  	 * Do we have to copy current last extent to make space for indirect
1974  	 * one?
1975  	 */
1976  	if (epos->offset + adsize > sb->s_blocksize) {
1977  		struct kernel_lb_addr cp_loc;
1978  		uint32_t cp_len;
1979  		int cp_type;
1980  
1981  		epos->offset -= adsize;
1982  		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1983  		cp_len |= ((uint32_t)cp_type) << 30;
1984  
1985  		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1986  		udf_write_aext(inode, epos, &nepos.block,
1987  			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1988  	} else {
1989  		__udf_add_aext(inode, epos, &nepos.block,
1990  			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1991  	}
1992  
1993  	brelse(epos->bh);
1994  	*epos = nepos;
1995  
1996  	return 0;
1997  }
1998  
1999  /*
2000   * Append extent at the given position - should be the first free one in inode
2001   * / indirect extent. This function assumes there is enough space in the inode
2002   * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2003   */
2004  int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2005  		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2006  {
2007  	struct udf_inode_info *iinfo = UDF_I(inode);
2008  	struct allocExtDesc *aed;
2009  	int adsize;
2010  
2011  	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2012  		adsize = sizeof(struct short_ad);
2013  	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2014  		adsize = sizeof(struct long_ad);
2015  	else
2016  		return -EIO;
2017  
2018  	if (!epos->bh) {
2019  		WARN_ON(iinfo->i_lenAlloc !=
2020  			epos->offset - udf_file_entry_alloc_offset(inode));
2021  	} else {
2022  		aed = (struct allocExtDesc *)epos->bh->b_data;
2023  		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2024  			epos->offset - sizeof(struct allocExtDesc));
2025  		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2026  	}
2027  
2028  	udf_write_aext(inode, epos, eloc, elen, inc);
2029  
2030  	if (!epos->bh) {
2031  		iinfo->i_lenAlloc += adsize;
2032  		mark_inode_dirty(inode);
2033  	} else {
2034  		aed = (struct allocExtDesc *)epos->bh->b_data;
2035  		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2036  		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2037  				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2038  			udf_update_tag(epos->bh->b_data,
2039  					epos->offset + (inc ? 0 : adsize));
2040  		else
2041  			udf_update_tag(epos->bh->b_data,
2042  					sizeof(struct allocExtDesc));
2043  		mark_buffer_dirty_inode(epos->bh, inode);
2044  	}
2045  
2046  	return 0;
2047  }
2048  
2049  /*
2050   * Append extent at given position - should be the first free one in inode
2051   * / indirect extent. Takes care of allocating and linking indirect blocks.
2052   */
2053  int udf_add_aext(struct inode *inode, struct extent_position *epos,
2054  		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2055  {
2056  	int adsize;
2057  	struct super_block *sb = inode->i_sb;
2058  
2059  	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2060  		adsize = sizeof(struct short_ad);
2061  	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2062  		adsize = sizeof(struct long_ad);
2063  	else
2064  		return -EIO;
2065  
2066  	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2067  		int err;
2068  		udf_pblk_t new_block;
2069  
2070  		new_block = udf_new_block(sb, NULL,
2071  					  epos->block.partitionReferenceNum,
2072  					  epos->block.logicalBlockNum, &err);
2073  		if (!new_block)
2074  			return -ENOSPC;
2075  
2076  		err = udf_setup_indirect_aext(inode, new_block, epos);
2077  		if (err)
2078  			return err;
2079  	}
2080  
2081  	return __udf_add_aext(inode, epos, eloc, elen, inc);
2082  }
2083  
2084  void udf_write_aext(struct inode *inode, struct extent_position *epos,
2085  		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2086  {
2087  	int adsize;
2088  	uint8_t *ptr;
2089  	struct short_ad *sad;
2090  	struct long_ad *lad;
2091  	struct udf_inode_info *iinfo = UDF_I(inode);
2092  
2093  	if (!epos->bh)
2094  		ptr = iinfo->i_data + epos->offset -
2095  			udf_file_entry_alloc_offset(inode) +
2096  			iinfo->i_lenEAttr;
2097  	else
2098  		ptr = epos->bh->b_data + epos->offset;
2099  
2100  	switch (iinfo->i_alloc_type) {
2101  	case ICBTAG_FLAG_AD_SHORT:
2102  		sad = (struct short_ad *)ptr;
2103  		sad->extLength = cpu_to_le32(elen);
2104  		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2105  		adsize = sizeof(struct short_ad);
2106  		break;
2107  	case ICBTAG_FLAG_AD_LONG:
2108  		lad = (struct long_ad *)ptr;
2109  		lad->extLength = cpu_to_le32(elen);
2110  		lad->extLocation = cpu_to_lelb(*eloc);
2111  		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2112  		adsize = sizeof(struct long_ad);
2113  		break;
2114  	default:
2115  		return;
2116  	}
2117  
2118  	if (epos->bh) {
2119  		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2120  		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2121  			struct allocExtDesc *aed =
2122  				(struct allocExtDesc *)epos->bh->b_data;
2123  			udf_update_tag(epos->bh->b_data,
2124  				       le32_to_cpu(aed->lengthAllocDescs) +
2125  				       sizeof(struct allocExtDesc));
2126  		}
2127  		mark_buffer_dirty_inode(epos->bh, inode);
2128  	} else {
2129  		mark_inode_dirty(inode);
2130  	}
2131  
2132  	if (inc)
2133  		epos->offset += adsize;
2134  }
2135  
2136  /*
2137   * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2138   * someone does some weird stuff.
2139   */
2140  #define UDF_MAX_INDIR_EXTS 16
2141  
2142  int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2143  		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2144  {
2145  	int8_t etype;
2146  	unsigned int indirections = 0;
2147  
2148  	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2149  	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2150  		udf_pblk_t block;
2151  
2152  		if (++indirections > UDF_MAX_INDIR_EXTS) {
2153  			udf_err(inode->i_sb,
2154  				"too many indirect extents in inode %lu\n",
2155  				inode->i_ino);
2156  			return -1;
2157  		}
2158  
2159  		epos->block = *eloc;
2160  		epos->offset = sizeof(struct allocExtDesc);
2161  		brelse(epos->bh);
2162  		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2163  		epos->bh = udf_tread(inode->i_sb, block);
2164  		if (!epos->bh) {
2165  			udf_debug("reading block %u failed!\n", block);
2166  			return -1;
2167  		}
2168  	}
2169  
2170  	return etype;
2171  }
2172  
2173  int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2174  			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2175  {
2176  	int alen;
2177  	int8_t etype;
2178  	uint8_t *ptr;
2179  	struct short_ad *sad;
2180  	struct long_ad *lad;
2181  	struct udf_inode_info *iinfo = UDF_I(inode);
2182  
2183  	if (!epos->bh) {
2184  		if (!epos->offset)
2185  			epos->offset = udf_file_entry_alloc_offset(inode);
2186  		ptr = iinfo->i_data + epos->offset -
2187  			udf_file_entry_alloc_offset(inode) +
2188  			iinfo->i_lenEAttr;
2189  		alen = udf_file_entry_alloc_offset(inode) +
2190  							iinfo->i_lenAlloc;
2191  	} else {
2192  		if (!epos->offset)
2193  			epos->offset = sizeof(struct allocExtDesc);
2194  		ptr = epos->bh->b_data + epos->offset;
2195  		alen = sizeof(struct allocExtDesc) +
2196  			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2197  							lengthAllocDescs);
2198  	}
2199  
2200  	switch (iinfo->i_alloc_type) {
2201  	case ICBTAG_FLAG_AD_SHORT:
2202  		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2203  		if (!sad)
2204  			return -1;
2205  		etype = le32_to_cpu(sad->extLength) >> 30;
2206  		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2207  		eloc->partitionReferenceNum =
2208  				iinfo->i_location.partitionReferenceNum;
2209  		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2210  		break;
2211  	case ICBTAG_FLAG_AD_LONG:
2212  		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2213  		if (!lad)
2214  			return -1;
2215  		etype = le32_to_cpu(lad->extLength) >> 30;
2216  		*eloc = lelb_to_cpu(lad->extLocation);
2217  		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2218  		break;
2219  	default:
2220  		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2221  		return -1;
2222  	}
2223  
2224  	return etype;
2225  }
2226  
2227  static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2228  			      struct kernel_lb_addr neloc, uint32_t nelen)
2229  {
2230  	struct kernel_lb_addr oeloc;
2231  	uint32_t oelen;
2232  	int8_t etype;
2233  
2234  	if (epos.bh)
2235  		get_bh(epos.bh);
2236  
2237  	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2238  		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2239  		neloc = oeloc;
2240  		nelen = (etype << 30) | oelen;
2241  	}
2242  	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2243  	brelse(epos.bh);
2244  
2245  	return (nelen >> 30);
2246  }
2247  
2248  int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2249  {
2250  	struct extent_position oepos;
2251  	int adsize;
2252  	int8_t etype;
2253  	struct allocExtDesc *aed;
2254  	struct udf_inode_info *iinfo;
2255  	struct kernel_lb_addr eloc;
2256  	uint32_t elen;
2257  
2258  	if (epos.bh) {
2259  		get_bh(epos.bh);
2260  		get_bh(epos.bh);
2261  	}
2262  
2263  	iinfo = UDF_I(inode);
2264  	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2265  		adsize = sizeof(struct short_ad);
2266  	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2267  		adsize = sizeof(struct long_ad);
2268  	else
2269  		adsize = 0;
2270  
2271  	oepos = epos;
2272  	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2273  		return -1;
2274  
2275  	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2276  		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2277  		if (oepos.bh != epos.bh) {
2278  			oepos.block = epos.block;
2279  			brelse(oepos.bh);
2280  			get_bh(epos.bh);
2281  			oepos.bh = epos.bh;
2282  			oepos.offset = epos.offset - adsize;
2283  		}
2284  	}
2285  	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2286  	elen = 0;
2287  
2288  	if (epos.bh != oepos.bh) {
2289  		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2290  		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2291  		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2292  		if (!oepos.bh) {
2293  			iinfo->i_lenAlloc -= (adsize * 2);
2294  			mark_inode_dirty(inode);
2295  		} else {
2296  			aed = (struct allocExtDesc *)oepos.bh->b_data;
2297  			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2298  			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2299  			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2300  				udf_update_tag(oepos.bh->b_data,
2301  						oepos.offset - (2 * adsize));
2302  			else
2303  				udf_update_tag(oepos.bh->b_data,
2304  						sizeof(struct allocExtDesc));
2305  			mark_buffer_dirty_inode(oepos.bh, inode);
2306  		}
2307  	} else {
2308  		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2309  		if (!oepos.bh) {
2310  			iinfo->i_lenAlloc -= adsize;
2311  			mark_inode_dirty(inode);
2312  		} else {
2313  			aed = (struct allocExtDesc *)oepos.bh->b_data;
2314  			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2315  			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2316  			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2317  				udf_update_tag(oepos.bh->b_data,
2318  						epos.offset - adsize);
2319  			else
2320  				udf_update_tag(oepos.bh->b_data,
2321  						sizeof(struct allocExtDesc));
2322  			mark_buffer_dirty_inode(oepos.bh, inode);
2323  		}
2324  	}
2325  
2326  	brelse(epos.bh);
2327  	brelse(oepos.bh);
2328  
2329  	return (elen >> 30);
2330  }
2331  
2332  int8_t inode_bmap(struct inode *inode, sector_t block,
2333  		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2334  		  uint32_t *elen, sector_t *offset)
2335  {
2336  	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2337  	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2338  	int8_t etype;
2339  	struct udf_inode_info *iinfo;
2340  
2341  	iinfo = UDF_I(inode);
2342  	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2343  		pos->offset = 0;
2344  		pos->block = iinfo->i_location;
2345  		pos->bh = NULL;
2346  	}
2347  	*elen = 0;
2348  	do {
2349  		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2350  		if (etype == -1) {
2351  			*offset = (bcount - lbcount) >> blocksize_bits;
2352  			iinfo->i_lenExtents = lbcount;
2353  			return -1;
2354  		}
2355  		lbcount += *elen;
2356  	} while (lbcount <= bcount);
2357  	/* update extent cache */
2358  	udf_update_extent_cache(inode, lbcount - *elen, pos);
2359  	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2360  
2361  	return etype;
2362  }
2363  
2364  udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2365  {
2366  	struct kernel_lb_addr eloc;
2367  	uint32_t elen;
2368  	sector_t offset;
2369  	struct extent_position epos = {};
2370  	udf_pblk_t ret;
2371  
2372  	down_read(&UDF_I(inode)->i_data_sem);
2373  
2374  	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2375  						(EXT_RECORDED_ALLOCATED >> 30))
2376  		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2377  	else
2378  		ret = 0;
2379  
2380  	up_read(&UDF_I(inode)->i_data_sem);
2381  	brelse(epos.bh);
2382  
2383  	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2384  		return udf_fixed_to_variable(ret);
2385  	else
2386  		return ret;
2387  }
2388