1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_read_folio(struct folio *folio) 212 { 213 struct inode *inode = folio->mapping->host; 214 struct udf_inode_info *iinfo = UDF_I(inode); 215 loff_t isize = i_size_read(inode); 216 217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize); 218 folio_mark_uptodate(folio); 219 } 220 221 static int udf_read_folio(struct file *file, struct folio *folio) 222 { 223 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 224 225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 226 udf_adinicb_read_folio(folio); 227 folio_unlock(folio); 228 return 0; 229 } 230 return mpage_read_folio(folio, udf_get_block); 231 } 232 233 static void udf_readahead(struct readahead_control *rac) 234 { 235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 236 237 /* 238 * No readahead needed for in-ICB files and udf_get_block() would get 239 * confused for such file anyway. 240 */ 241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 242 return; 243 244 mpage_readahead(rac, udf_get_block); 245 } 246 247 static int udf_write_begin(struct file *file, struct address_space *mapping, 248 loff_t pos, unsigned len, 249 struct page **pagep, void **fsdata) 250 { 251 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 252 struct folio *folio; 253 int ret; 254 255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 256 ret = block_write_begin(mapping, pos, len, pagep, 257 udf_get_block); 258 if (unlikely(ret)) 259 udf_write_failed(mapping, pos + len); 260 return ret; 261 } 262 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 263 return -EIO; 264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN, 265 mapping_gfp_mask(mapping)); 266 if (IS_ERR(folio)) 267 return PTR_ERR(folio); 268 *pagep = &folio->page; 269 if (!folio_test_uptodate(folio)) 270 udf_adinicb_read_folio(folio); 271 return 0; 272 } 273 274 static int udf_write_end(struct file *file, struct address_space *mapping, 275 loff_t pos, unsigned len, unsigned copied, 276 struct page *page, void *fsdata) 277 { 278 struct inode *inode = file_inode(file); 279 struct folio *folio; 280 loff_t last_pos; 281 282 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 283 return generic_write_end(file, mapping, pos, len, copied, page, 284 fsdata); 285 folio = page_folio(page); 286 last_pos = pos + copied; 287 if (last_pos > inode->i_size) 288 i_size_write(inode, last_pos); 289 folio_mark_dirty(folio); 290 folio_unlock(folio); 291 folio_put(folio); 292 293 return copied; 294 } 295 296 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 297 { 298 struct file *file = iocb->ki_filp; 299 struct address_space *mapping = file->f_mapping; 300 struct inode *inode = mapping->host; 301 size_t count = iov_iter_count(iter); 302 ssize_t ret; 303 304 /* Fallback to buffered IO for in-ICB files */ 305 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 306 return 0; 307 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 308 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 309 udf_write_failed(mapping, iocb->ki_pos + count); 310 return ret; 311 } 312 313 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 314 { 315 struct udf_inode_info *iinfo = UDF_I(mapping->host); 316 317 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 318 return -EINVAL; 319 return generic_block_bmap(mapping, block, udf_get_block); 320 } 321 322 const struct address_space_operations udf_aops = { 323 .dirty_folio = block_dirty_folio, 324 .invalidate_folio = block_invalidate_folio, 325 .read_folio = udf_read_folio, 326 .readahead = udf_readahead, 327 .writepages = udf_writepages, 328 .write_begin = udf_write_begin, 329 .write_end = udf_write_end, 330 .direct_IO = udf_direct_IO, 331 .bmap = udf_bmap, 332 .migrate_folio = buffer_migrate_folio, 333 }; 334 335 /* 336 * Expand file stored in ICB to a normal one-block-file 337 * 338 * This function requires i_mutex held 339 */ 340 int udf_expand_file_adinicb(struct inode *inode) 341 { 342 struct folio *folio; 343 struct udf_inode_info *iinfo = UDF_I(inode); 344 int err; 345 346 WARN_ON_ONCE(!inode_is_locked(inode)); 347 if (!iinfo->i_lenAlloc) { 348 down_write(&iinfo->i_data_sem); 349 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 351 else 352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 353 up_write(&iinfo->i_data_sem); 354 mark_inode_dirty(inode); 355 return 0; 356 } 357 358 folio = __filemap_get_folio(inode->i_mapping, 0, 359 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 360 if (IS_ERR(folio)) 361 return PTR_ERR(folio); 362 363 if (!folio_test_uptodate(folio)) 364 udf_adinicb_read_folio(folio); 365 down_write(&iinfo->i_data_sem); 366 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 367 iinfo->i_lenAlloc); 368 iinfo->i_lenAlloc = 0; 369 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 371 else 372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 373 folio_mark_dirty(folio); 374 folio_unlock(folio); 375 up_write(&iinfo->i_data_sem); 376 err = filemap_fdatawrite(inode->i_mapping); 377 if (err) { 378 /* Restore everything back so that we don't lose data... */ 379 folio_lock(folio); 380 down_write(&iinfo->i_data_sem); 381 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 382 folio, 0, inode->i_size); 383 folio_unlock(folio); 384 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 385 iinfo->i_lenAlloc = inode->i_size; 386 up_write(&iinfo->i_data_sem); 387 } 388 folio_put(folio); 389 mark_inode_dirty(inode); 390 391 return err; 392 } 393 394 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 395 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 396 397 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 398 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 399 400 struct udf_map_rq { 401 sector_t lblk; 402 udf_pblk_t pblk; 403 int iflags; /* UDF_MAP_ flags determining behavior */ 404 int oflags; /* UDF_BLK_ flags reporting results */ 405 }; 406 407 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 408 { 409 int err; 410 struct udf_inode_info *iinfo = UDF_I(inode); 411 412 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 413 return -EFSCORRUPTED; 414 415 map->oflags = 0; 416 if (!(map->iflags & UDF_MAP_CREATE)) { 417 struct kernel_lb_addr eloc; 418 uint32_t elen; 419 sector_t offset; 420 struct extent_position epos = {}; 421 422 down_read(&iinfo->i_data_sem); 423 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 424 == (EXT_RECORDED_ALLOCATED >> 30)) { 425 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 426 offset); 427 map->oflags |= UDF_BLK_MAPPED; 428 } 429 up_read(&iinfo->i_data_sem); 430 brelse(epos.bh); 431 432 return 0; 433 } 434 435 down_write(&iinfo->i_data_sem); 436 /* 437 * Block beyond EOF and prealloc extents? Just discard preallocation 438 * as it is not useful and complicates things. 439 */ 440 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 441 udf_discard_prealloc(inode); 442 udf_clear_extent_cache(inode); 443 err = inode_getblk(inode, map); 444 up_write(&iinfo->i_data_sem); 445 return err; 446 } 447 448 static int __udf_get_block(struct inode *inode, sector_t block, 449 struct buffer_head *bh_result, int flags) 450 { 451 int err; 452 struct udf_map_rq map = { 453 .lblk = block, 454 .iflags = flags, 455 }; 456 457 err = udf_map_block(inode, &map); 458 if (err < 0) 459 return err; 460 if (map.oflags & UDF_BLK_MAPPED) { 461 map_bh(bh_result, inode->i_sb, map.pblk); 462 if (map.oflags & UDF_BLK_NEW) 463 set_buffer_new(bh_result); 464 } 465 return 0; 466 } 467 468 int udf_get_block(struct inode *inode, sector_t block, 469 struct buffer_head *bh_result, int create) 470 { 471 int flags = create ? UDF_MAP_CREATE : 0; 472 473 /* 474 * We preallocate blocks only for regular files. It also makes sense 475 * for directories but there's a problem when to drop the 476 * preallocation. We might use some delayed work for that but I feel 477 * it's overengineering for a filesystem like UDF. 478 */ 479 if (!S_ISREG(inode->i_mode)) 480 flags |= UDF_MAP_NOPREALLOC; 481 return __udf_get_block(inode, block, bh_result, flags); 482 } 483 484 /* 485 * We shouldn't be allocating blocks on page writeback since we allocate them 486 * on page fault. We can spot dirty buffers without allocated blocks though 487 * when truncate expands file. These however don't have valid data so we can 488 * safely ignore them. So never allocate blocks from page writeback. 489 */ 490 static int udf_get_block_wb(struct inode *inode, sector_t block, 491 struct buffer_head *bh_result, int create) 492 { 493 return __udf_get_block(inode, block, bh_result, 0); 494 } 495 496 /* Extend the file with new blocks totaling 'new_block_bytes', 497 * return the number of extents added 498 */ 499 static int udf_do_extend_file(struct inode *inode, 500 struct extent_position *last_pos, 501 struct kernel_long_ad *last_ext, 502 loff_t new_block_bytes) 503 { 504 uint32_t add; 505 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 506 struct super_block *sb = inode->i_sb; 507 struct udf_inode_info *iinfo; 508 int err; 509 510 /* The previous extent is fake and we should not extend by anything 511 * - there's nothing to do... */ 512 if (!new_block_bytes && fake) 513 return 0; 514 515 iinfo = UDF_I(inode); 516 /* Round the last extent up to a multiple of block size */ 517 if (last_ext->extLength & (sb->s_blocksize - 1)) { 518 last_ext->extLength = 519 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 520 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 521 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 522 iinfo->i_lenExtents = 523 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 524 ~(sb->s_blocksize - 1); 525 } 526 527 add = 0; 528 /* Can we merge with the previous extent? */ 529 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 530 EXT_NOT_RECORDED_NOT_ALLOCATED) { 531 add = (1 << 30) - sb->s_blocksize - 532 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 533 if (add > new_block_bytes) 534 add = new_block_bytes; 535 new_block_bytes -= add; 536 last_ext->extLength += add; 537 } 538 539 if (fake) { 540 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 541 last_ext->extLength, 1); 542 if (err < 0) 543 goto out_err; 544 count++; 545 } else { 546 struct kernel_lb_addr tmploc; 547 uint32_t tmplen; 548 549 udf_write_aext(inode, last_pos, &last_ext->extLocation, 550 last_ext->extLength, 1); 551 552 /* 553 * We've rewritten the last extent. If we are going to add 554 * more extents, we may need to enter possible following 555 * empty indirect extent. 556 */ 557 if (new_block_bytes) 558 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 559 } 560 iinfo->i_lenExtents += add; 561 562 /* Managed to do everything necessary? */ 563 if (!new_block_bytes) 564 goto out; 565 566 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 567 last_ext->extLocation.logicalBlockNum = 0; 568 last_ext->extLocation.partitionReferenceNum = 0; 569 add = (1 << 30) - sb->s_blocksize; 570 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 571 572 /* Create enough extents to cover the whole hole */ 573 while (new_block_bytes > add) { 574 new_block_bytes -= add; 575 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 576 last_ext->extLength, 1); 577 if (err) 578 goto out_err; 579 iinfo->i_lenExtents += add; 580 count++; 581 } 582 if (new_block_bytes) { 583 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 584 new_block_bytes; 585 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 586 last_ext->extLength, 1); 587 if (err) 588 goto out_err; 589 iinfo->i_lenExtents += new_block_bytes; 590 count++; 591 } 592 593 out: 594 /* last_pos should point to the last written extent... */ 595 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 596 last_pos->offset -= sizeof(struct short_ad); 597 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 598 last_pos->offset -= sizeof(struct long_ad); 599 else 600 return -EIO; 601 602 return count; 603 out_err: 604 /* Remove extents we've created so far */ 605 udf_clear_extent_cache(inode); 606 udf_truncate_extents(inode); 607 return err; 608 } 609 610 /* Extend the final block of the file to final_block_len bytes */ 611 static void udf_do_extend_final_block(struct inode *inode, 612 struct extent_position *last_pos, 613 struct kernel_long_ad *last_ext, 614 uint32_t new_elen) 615 { 616 uint32_t added_bytes; 617 618 /* 619 * Extent already large enough? It may be already rounded up to block 620 * size... 621 */ 622 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 623 return; 624 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 625 last_ext->extLength += added_bytes; 626 UDF_I(inode)->i_lenExtents += added_bytes; 627 628 udf_write_aext(inode, last_pos, &last_ext->extLocation, 629 last_ext->extLength, 1); 630 } 631 632 static int udf_extend_file(struct inode *inode, loff_t newsize) 633 { 634 635 struct extent_position epos; 636 struct kernel_lb_addr eloc; 637 uint32_t elen; 638 int8_t etype; 639 struct super_block *sb = inode->i_sb; 640 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 641 loff_t new_elen; 642 int adsize; 643 struct udf_inode_info *iinfo = UDF_I(inode); 644 struct kernel_long_ad extent; 645 int err = 0; 646 bool within_last_ext; 647 648 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 649 adsize = sizeof(struct short_ad); 650 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 651 adsize = sizeof(struct long_ad); 652 else 653 BUG(); 654 655 down_write(&iinfo->i_data_sem); 656 /* 657 * When creating hole in file, just don't bother with preserving 658 * preallocation. It likely won't be very useful anyway. 659 */ 660 udf_discard_prealloc(inode); 661 662 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 663 within_last_ext = (etype != -1); 664 /* We don't expect extents past EOF... */ 665 WARN_ON_ONCE(within_last_ext && 666 elen > ((loff_t)offset + 1) << inode->i_blkbits); 667 668 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 669 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 670 /* File has no extents at all or has empty last 671 * indirect extent! Create a fake extent... */ 672 extent.extLocation.logicalBlockNum = 0; 673 extent.extLocation.partitionReferenceNum = 0; 674 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 675 } else { 676 epos.offset -= adsize; 677 etype = udf_next_aext(inode, &epos, &extent.extLocation, 678 &extent.extLength, 0); 679 extent.extLength |= etype << 30; 680 } 681 682 new_elen = ((loff_t)offset << inode->i_blkbits) | 683 (newsize & (sb->s_blocksize - 1)); 684 685 /* File has extent covering the new size (could happen when extending 686 * inside a block)? 687 */ 688 if (within_last_ext) { 689 /* Extending file within the last file block */ 690 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 691 } else { 692 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 693 } 694 695 if (err < 0) 696 goto out; 697 err = 0; 698 out: 699 brelse(epos.bh); 700 up_write(&iinfo->i_data_sem); 701 return err; 702 } 703 704 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 705 { 706 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 707 struct extent_position prev_epos, cur_epos, next_epos; 708 int count = 0, startnum = 0, endnum = 0; 709 uint32_t elen = 0, tmpelen; 710 struct kernel_lb_addr eloc, tmpeloc; 711 int c = 1; 712 loff_t lbcount = 0, b_off = 0; 713 udf_pblk_t newblocknum; 714 sector_t offset = 0; 715 int8_t etype; 716 struct udf_inode_info *iinfo = UDF_I(inode); 717 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 718 int lastblock = 0; 719 bool isBeyondEOF; 720 int ret = 0; 721 722 prev_epos.offset = udf_file_entry_alloc_offset(inode); 723 prev_epos.block = iinfo->i_location; 724 prev_epos.bh = NULL; 725 cur_epos = next_epos = prev_epos; 726 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 727 728 /* find the extent which contains the block we are looking for. 729 alternate between laarr[0] and laarr[1] for locations of the 730 current extent, and the previous extent */ 731 do { 732 if (prev_epos.bh != cur_epos.bh) { 733 brelse(prev_epos.bh); 734 get_bh(cur_epos.bh); 735 prev_epos.bh = cur_epos.bh; 736 } 737 if (cur_epos.bh != next_epos.bh) { 738 brelse(cur_epos.bh); 739 get_bh(next_epos.bh); 740 cur_epos.bh = next_epos.bh; 741 } 742 743 lbcount += elen; 744 745 prev_epos.block = cur_epos.block; 746 cur_epos.block = next_epos.block; 747 748 prev_epos.offset = cur_epos.offset; 749 cur_epos.offset = next_epos.offset; 750 751 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 752 if (etype == -1) 753 break; 754 755 c = !c; 756 757 laarr[c].extLength = (etype << 30) | elen; 758 laarr[c].extLocation = eloc; 759 760 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 761 pgoal = eloc.logicalBlockNum + 762 ((elen + inode->i_sb->s_blocksize - 1) >> 763 inode->i_sb->s_blocksize_bits); 764 765 count++; 766 } while (lbcount + elen <= b_off); 767 768 b_off -= lbcount; 769 offset = b_off >> inode->i_sb->s_blocksize_bits; 770 /* 771 * Move prev_epos and cur_epos into indirect extent if we are at 772 * the pointer to it 773 */ 774 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 775 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 776 777 /* if the extent is allocated and recorded, return the block 778 if the extent is not a multiple of the blocksize, round up */ 779 780 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 781 if (elen & (inode->i_sb->s_blocksize - 1)) { 782 elen = EXT_RECORDED_ALLOCATED | 783 ((elen + inode->i_sb->s_blocksize - 1) & 784 ~(inode->i_sb->s_blocksize - 1)); 785 iinfo->i_lenExtents = 786 ALIGN(iinfo->i_lenExtents, 787 inode->i_sb->s_blocksize); 788 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 789 } 790 map->oflags = UDF_BLK_MAPPED; 791 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 792 goto out_free; 793 } 794 795 /* Are we beyond EOF and preallocated extent? */ 796 if (etype == -1) { 797 loff_t hole_len; 798 799 isBeyondEOF = true; 800 if (count) { 801 if (c) 802 laarr[0] = laarr[1]; 803 startnum = 1; 804 } else { 805 /* Create a fake extent when there's not one */ 806 memset(&laarr[0].extLocation, 0x00, 807 sizeof(struct kernel_lb_addr)); 808 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 809 /* Will udf_do_extend_file() create real extent from 810 a fake one? */ 811 startnum = (offset > 0); 812 } 813 /* Create extents for the hole between EOF and offset */ 814 hole_len = (loff_t)offset << inode->i_blkbits; 815 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 816 if (ret < 0) 817 goto out_free; 818 c = 0; 819 offset = 0; 820 count += ret; 821 /* 822 * Is there any real extent? - otherwise we overwrite the fake 823 * one... 824 */ 825 if (count) 826 c = !c; 827 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 828 inode->i_sb->s_blocksize; 829 memset(&laarr[c].extLocation, 0x00, 830 sizeof(struct kernel_lb_addr)); 831 count++; 832 endnum = c + 1; 833 lastblock = 1; 834 } else { 835 isBeyondEOF = false; 836 endnum = startnum = ((count > 2) ? 2 : count); 837 838 /* if the current extent is in position 0, 839 swap it with the previous */ 840 if (!c && count != 1) { 841 laarr[2] = laarr[0]; 842 laarr[0] = laarr[1]; 843 laarr[1] = laarr[2]; 844 c = 1; 845 } 846 847 /* if the current block is located in an extent, 848 read the next extent */ 849 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 850 if (etype != -1) { 851 laarr[c + 1].extLength = (etype << 30) | elen; 852 laarr[c + 1].extLocation = eloc; 853 count++; 854 startnum++; 855 endnum++; 856 } else 857 lastblock = 1; 858 } 859 860 /* if the current extent is not recorded but allocated, get the 861 * block in the extent corresponding to the requested block */ 862 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 863 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 864 else { /* otherwise, allocate a new block */ 865 if (iinfo->i_next_alloc_block == map->lblk) 866 goal = iinfo->i_next_alloc_goal; 867 868 if (!goal) { 869 if (!(goal = pgoal)) /* XXX: what was intended here? */ 870 goal = iinfo->i_location.logicalBlockNum + 1; 871 } 872 873 newblocknum = udf_new_block(inode->i_sb, inode, 874 iinfo->i_location.partitionReferenceNum, 875 goal, &ret); 876 if (!newblocknum) 877 goto out_free; 878 if (isBeyondEOF) 879 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 880 } 881 882 /* if the extent the requsted block is located in contains multiple 883 * blocks, split the extent into at most three extents. blocks prior 884 * to requested block, requested block, and blocks after requested 885 * block */ 886 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 887 888 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 889 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 890 891 /* merge any continuous blocks in laarr */ 892 udf_merge_extents(inode, laarr, &endnum); 893 894 /* write back the new extents, inserting new extents if the new number 895 * of extents is greater than the old number, and deleting extents if 896 * the new number of extents is less than the old number */ 897 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 898 if (ret < 0) 899 goto out_free; 900 901 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 902 iinfo->i_location.partitionReferenceNum, 0); 903 if (!map->pblk) { 904 ret = -EFSCORRUPTED; 905 goto out_free; 906 } 907 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 908 iinfo->i_next_alloc_block = map->lblk + 1; 909 iinfo->i_next_alloc_goal = newblocknum + 1; 910 inode_set_ctime_current(inode); 911 912 if (IS_SYNC(inode)) 913 udf_sync_inode(inode); 914 else 915 mark_inode_dirty(inode); 916 ret = 0; 917 out_free: 918 brelse(prev_epos.bh); 919 brelse(cur_epos.bh); 920 brelse(next_epos.bh); 921 return ret; 922 } 923 924 static void udf_split_extents(struct inode *inode, int *c, int offset, 925 udf_pblk_t newblocknum, 926 struct kernel_long_ad *laarr, int *endnum) 927 { 928 unsigned long blocksize = inode->i_sb->s_blocksize; 929 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 930 931 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 932 (laarr[*c].extLength >> 30) == 933 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 934 int curr = *c; 935 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 936 blocksize - 1) >> blocksize_bits; 937 int8_t etype = (laarr[curr].extLength >> 30); 938 939 if (blen == 1) 940 ; 941 else if (!offset || blen == offset + 1) { 942 laarr[curr + 2] = laarr[curr + 1]; 943 laarr[curr + 1] = laarr[curr]; 944 } else { 945 laarr[curr + 3] = laarr[curr + 1]; 946 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 947 } 948 949 if (offset) { 950 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 951 udf_free_blocks(inode->i_sb, inode, 952 &laarr[curr].extLocation, 953 0, offset); 954 laarr[curr].extLength = 955 EXT_NOT_RECORDED_NOT_ALLOCATED | 956 (offset << blocksize_bits); 957 laarr[curr].extLocation.logicalBlockNum = 0; 958 laarr[curr].extLocation. 959 partitionReferenceNum = 0; 960 } else 961 laarr[curr].extLength = (etype << 30) | 962 (offset << blocksize_bits); 963 curr++; 964 (*c)++; 965 (*endnum)++; 966 } 967 968 laarr[curr].extLocation.logicalBlockNum = newblocknum; 969 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 970 laarr[curr].extLocation.partitionReferenceNum = 971 UDF_I(inode)->i_location.partitionReferenceNum; 972 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 973 blocksize; 974 curr++; 975 976 if (blen != offset + 1) { 977 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 978 laarr[curr].extLocation.logicalBlockNum += 979 offset + 1; 980 laarr[curr].extLength = (etype << 30) | 981 ((blen - (offset + 1)) << blocksize_bits); 982 curr++; 983 (*endnum)++; 984 } 985 } 986 } 987 988 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 989 struct kernel_long_ad *laarr, 990 int *endnum) 991 { 992 int start, length = 0, currlength = 0, i; 993 994 if (*endnum >= (c + 1)) { 995 if (!lastblock) 996 return; 997 else 998 start = c; 999 } else { 1000 if ((laarr[c + 1].extLength >> 30) == 1001 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1002 start = c + 1; 1003 length = currlength = 1004 (((laarr[c + 1].extLength & 1005 UDF_EXTENT_LENGTH_MASK) + 1006 inode->i_sb->s_blocksize - 1) >> 1007 inode->i_sb->s_blocksize_bits); 1008 } else 1009 start = c; 1010 } 1011 1012 for (i = start + 1; i <= *endnum; i++) { 1013 if (i == *endnum) { 1014 if (lastblock) 1015 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1016 } else if ((laarr[i].extLength >> 30) == 1017 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1018 length += (((laarr[i].extLength & 1019 UDF_EXTENT_LENGTH_MASK) + 1020 inode->i_sb->s_blocksize - 1) >> 1021 inode->i_sb->s_blocksize_bits); 1022 } else 1023 break; 1024 } 1025 1026 if (length) { 1027 int next = laarr[start].extLocation.logicalBlockNum + 1028 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1029 inode->i_sb->s_blocksize - 1) >> 1030 inode->i_sb->s_blocksize_bits); 1031 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1032 laarr[start].extLocation.partitionReferenceNum, 1033 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1034 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1035 currlength); 1036 if (numalloc) { 1037 if (start == (c + 1)) 1038 laarr[start].extLength += 1039 (numalloc << 1040 inode->i_sb->s_blocksize_bits); 1041 else { 1042 memmove(&laarr[c + 2], &laarr[c + 1], 1043 sizeof(struct long_ad) * (*endnum - (c + 1))); 1044 (*endnum)++; 1045 laarr[c + 1].extLocation.logicalBlockNum = next; 1046 laarr[c + 1].extLocation.partitionReferenceNum = 1047 laarr[c].extLocation. 1048 partitionReferenceNum; 1049 laarr[c + 1].extLength = 1050 EXT_NOT_RECORDED_ALLOCATED | 1051 (numalloc << 1052 inode->i_sb->s_blocksize_bits); 1053 start = c + 1; 1054 } 1055 1056 for (i = start + 1; numalloc && i < *endnum; i++) { 1057 int elen = ((laarr[i].extLength & 1058 UDF_EXTENT_LENGTH_MASK) + 1059 inode->i_sb->s_blocksize - 1) >> 1060 inode->i_sb->s_blocksize_bits; 1061 1062 if (elen > numalloc) { 1063 laarr[i].extLength -= 1064 (numalloc << 1065 inode->i_sb->s_blocksize_bits); 1066 numalloc = 0; 1067 } else { 1068 numalloc -= elen; 1069 if (*endnum > (i + 1)) 1070 memmove(&laarr[i], 1071 &laarr[i + 1], 1072 sizeof(struct long_ad) * 1073 (*endnum - (i + 1))); 1074 i--; 1075 (*endnum)--; 1076 } 1077 } 1078 UDF_I(inode)->i_lenExtents += 1079 numalloc << inode->i_sb->s_blocksize_bits; 1080 } 1081 } 1082 } 1083 1084 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1085 int *endnum) 1086 { 1087 int i; 1088 unsigned long blocksize = inode->i_sb->s_blocksize; 1089 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1090 1091 for (i = 0; i < (*endnum - 1); i++) { 1092 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1093 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1094 1095 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1096 (((li->extLength >> 30) == 1097 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1098 ((lip1->extLocation.logicalBlockNum - 1099 li->extLocation.logicalBlockNum) == 1100 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1101 blocksize - 1) >> blocksize_bits)))) { 1102 1103 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1104 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1105 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1106 li->extLength = lip1->extLength + 1107 (((li->extLength & 1108 UDF_EXTENT_LENGTH_MASK) + 1109 blocksize - 1) & ~(blocksize - 1)); 1110 if (*endnum > (i + 2)) 1111 memmove(&laarr[i + 1], &laarr[i + 2], 1112 sizeof(struct long_ad) * 1113 (*endnum - (i + 2))); 1114 i--; 1115 (*endnum)--; 1116 } 1117 } else if (((li->extLength >> 30) == 1118 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1119 ((lip1->extLength >> 30) == 1120 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1121 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1122 ((li->extLength & 1123 UDF_EXTENT_LENGTH_MASK) + 1124 blocksize - 1) >> blocksize_bits); 1125 li->extLocation.logicalBlockNum = 0; 1126 li->extLocation.partitionReferenceNum = 0; 1127 1128 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1129 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1131 lip1->extLength = (lip1->extLength - 1132 (li->extLength & 1133 UDF_EXTENT_LENGTH_MASK) + 1134 UDF_EXTENT_LENGTH_MASK) & 1135 ~(blocksize - 1); 1136 li->extLength = (li->extLength & 1137 UDF_EXTENT_FLAG_MASK) + 1138 (UDF_EXTENT_LENGTH_MASK + 1) - 1139 blocksize; 1140 } else { 1141 li->extLength = lip1->extLength + 1142 (((li->extLength & 1143 UDF_EXTENT_LENGTH_MASK) + 1144 blocksize - 1) & ~(blocksize - 1)); 1145 if (*endnum > (i + 2)) 1146 memmove(&laarr[i + 1], &laarr[i + 2], 1147 sizeof(struct long_ad) * 1148 (*endnum - (i + 2))); 1149 i--; 1150 (*endnum)--; 1151 } 1152 } else if ((li->extLength >> 30) == 1153 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1154 udf_free_blocks(inode->i_sb, inode, 1155 &li->extLocation, 0, 1156 ((li->extLength & 1157 UDF_EXTENT_LENGTH_MASK) + 1158 blocksize - 1) >> blocksize_bits); 1159 li->extLocation.logicalBlockNum = 0; 1160 li->extLocation.partitionReferenceNum = 0; 1161 li->extLength = (li->extLength & 1162 UDF_EXTENT_LENGTH_MASK) | 1163 EXT_NOT_RECORDED_NOT_ALLOCATED; 1164 } 1165 } 1166 } 1167 1168 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1169 int startnum, int endnum, 1170 struct extent_position *epos) 1171 { 1172 int start = 0, i; 1173 struct kernel_lb_addr tmploc; 1174 uint32_t tmplen; 1175 int err; 1176 1177 if (startnum > endnum) { 1178 for (i = 0; i < (startnum - endnum); i++) 1179 udf_delete_aext(inode, *epos); 1180 } else if (startnum < endnum) { 1181 for (i = 0; i < (endnum - startnum); i++) { 1182 err = udf_insert_aext(inode, *epos, 1183 laarr[i].extLocation, 1184 laarr[i].extLength); 1185 /* 1186 * If we fail here, we are likely corrupting the extent 1187 * list and leaking blocks. At least stop early to 1188 * limit the damage. 1189 */ 1190 if (err < 0) 1191 return err; 1192 udf_next_aext(inode, epos, &laarr[i].extLocation, 1193 &laarr[i].extLength, 1); 1194 start++; 1195 } 1196 } 1197 1198 for (i = start; i < endnum; i++) { 1199 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1200 udf_write_aext(inode, epos, &laarr[i].extLocation, 1201 laarr[i].extLength, 1); 1202 } 1203 return 0; 1204 } 1205 1206 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1207 int create, int *err) 1208 { 1209 struct buffer_head *bh = NULL; 1210 struct udf_map_rq map = { 1211 .lblk = block, 1212 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1213 }; 1214 1215 *err = udf_map_block(inode, &map); 1216 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1217 return NULL; 1218 1219 bh = sb_getblk(inode->i_sb, map.pblk); 1220 if (!bh) { 1221 *err = -ENOMEM; 1222 return NULL; 1223 } 1224 if (map.oflags & UDF_BLK_NEW) { 1225 lock_buffer(bh); 1226 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1227 set_buffer_uptodate(bh); 1228 unlock_buffer(bh); 1229 mark_buffer_dirty_inode(bh, inode); 1230 return bh; 1231 } 1232 1233 if (bh_read(bh, 0) >= 0) 1234 return bh; 1235 1236 brelse(bh); 1237 *err = -EIO; 1238 return NULL; 1239 } 1240 1241 int udf_setsize(struct inode *inode, loff_t newsize) 1242 { 1243 int err = 0; 1244 struct udf_inode_info *iinfo; 1245 unsigned int bsize = i_blocksize(inode); 1246 1247 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1248 S_ISLNK(inode->i_mode))) 1249 return -EINVAL; 1250 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1251 return -EPERM; 1252 1253 filemap_invalidate_lock(inode->i_mapping); 1254 iinfo = UDF_I(inode); 1255 if (newsize > inode->i_size) { 1256 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1257 if (bsize >= 1258 (udf_file_entry_alloc_offset(inode) + newsize)) { 1259 down_write(&iinfo->i_data_sem); 1260 iinfo->i_lenAlloc = newsize; 1261 up_write(&iinfo->i_data_sem); 1262 goto set_size; 1263 } 1264 err = udf_expand_file_adinicb(inode); 1265 if (err) 1266 goto out_unlock; 1267 } 1268 err = udf_extend_file(inode, newsize); 1269 if (err) 1270 goto out_unlock; 1271 set_size: 1272 truncate_setsize(inode, newsize); 1273 } else { 1274 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1275 down_write(&iinfo->i_data_sem); 1276 udf_clear_extent_cache(inode); 1277 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1278 0x00, bsize - newsize - 1279 udf_file_entry_alloc_offset(inode)); 1280 iinfo->i_lenAlloc = newsize; 1281 truncate_setsize(inode, newsize); 1282 up_write(&iinfo->i_data_sem); 1283 goto update_time; 1284 } 1285 err = block_truncate_page(inode->i_mapping, newsize, 1286 udf_get_block); 1287 if (err) 1288 goto out_unlock; 1289 truncate_setsize(inode, newsize); 1290 down_write(&iinfo->i_data_sem); 1291 udf_clear_extent_cache(inode); 1292 err = udf_truncate_extents(inode); 1293 up_write(&iinfo->i_data_sem); 1294 if (err) 1295 goto out_unlock; 1296 } 1297 update_time: 1298 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1299 if (IS_SYNC(inode)) 1300 udf_sync_inode(inode); 1301 else 1302 mark_inode_dirty(inode); 1303 out_unlock: 1304 filemap_invalidate_unlock(inode->i_mapping); 1305 return err; 1306 } 1307 1308 /* 1309 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1310 * arbitrary - just that we hopefully don't limit any real use of rewritten 1311 * inode on write-once media but avoid looping for too long on corrupted media. 1312 */ 1313 #define UDF_MAX_ICB_NESTING 1024 1314 1315 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1316 { 1317 struct buffer_head *bh = NULL; 1318 struct fileEntry *fe; 1319 struct extendedFileEntry *efe; 1320 uint16_t ident; 1321 struct udf_inode_info *iinfo = UDF_I(inode); 1322 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1323 struct kernel_lb_addr *iloc = &iinfo->i_location; 1324 unsigned int link_count; 1325 unsigned int indirections = 0; 1326 int bs = inode->i_sb->s_blocksize; 1327 int ret = -EIO; 1328 uint32_t uid, gid; 1329 struct timespec64 ts; 1330 1331 reread: 1332 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1333 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1334 iloc->partitionReferenceNum, sbi->s_partitions); 1335 return -EIO; 1336 } 1337 1338 if (iloc->logicalBlockNum >= 1339 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1340 udf_debug("block=%u, partition=%u out of range\n", 1341 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1342 return -EIO; 1343 } 1344 1345 /* 1346 * Set defaults, but the inode is still incomplete! 1347 * Note: get_new_inode() sets the following on a new inode: 1348 * i_sb = sb 1349 * i_no = ino 1350 * i_flags = sb->s_flags 1351 * i_state = 0 1352 * clean_inode(): zero fills and sets 1353 * i_count = 1 1354 * i_nlink = 1 1355 * i_op = NULL; 1356 */ 1357 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1358 if (!bh) { 1359 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1360 return -EIO; 1361 } 1362 1363 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1364 ident != TAG_IDENT_USE) { 1365 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1366 inode->i_ino, ident); 1367 goto out; 1368 } 1369 1370 fe = (struct fileEntry *)bh->b_data; 1371 efe = (struct extendedFileEntry *)bh->b_data; 1372 1373 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1374 struct buffer_head *ibh; 1375 1376 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1377 if (ident == TAG_IDENT_IE && ibh) { 1378 struct kernel_lb_addr loc; 1379 struct indirectEntry *ie; 1380 1381 ie = (struct indirectEntry *)ibh->b_data; 1382 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1383 1384 if (ie->indirectICB.extLength) { 1385 brelse(ibh); 1386 memcpy(&iinfo->i_location, &loc, 1387 sizeof(struct kernel_lb_addr)); 1388 if (++indirections > UDF_MAX_ICB_NESTING) { 1389 udf_err(inode->i_sb, 1390 "too many ICBs in ICB hierarchy" 1391 " (max %d supported)\n", 1392 UDF_MAX_ICB_NESTING); 1393 goto out; 1394 } 1395 brelse(bh); 1396 goto reread; 1397 } 1398 } 1399 brelse(ibh); 1400 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1401 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1402 le16_to_cpu(fe->icbTag.strategyType)); 1403 goto out; 1404 } 1405 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1406 iinfo->i_strat4096 = 0; 1407 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1408 iinfo->i_strat4096 = 1; 1409 1410 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1411 ICBTAG_FLAG_AD_MASK; 1412 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1413 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1414 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1415 ret = -EIO; 1416 goto out; 1417 } 1418 iinfo->i_hidden = hidden_inode; 1419 iinfo->i_unique = 0; 1420 iinfo->i_lenEAttr = 0; 1421 iinfo->i_lenExtents = 0; 1422 iinfo->i_lenAlloc = 0; 1423 iinfo->i_next_alloc_block = 0; 1424 iinfo->i_next_alloc_goal = 0; 1425 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1426 iinfo->i_efe = 1; 1427 iinfo->i_use = 0; 1428 ret = udf_alloc_i_data(inode, bs - 1429 sizeof(struct extendedFileEntry)); 1430 if (ret) 1431 goto out; 1432 memcpy(iinfo->i_data, 1433 bh->b_data + sizeof(struct extendedFileEntry), 1434 bs - sizeof(struct extendedFileEntry)); 1435 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1436 iinfo->i_efe = 0; 1437 iinfo->i_use = 0; 1438 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1439 if (ret) 1440 goto out; 1441 memcpy(iinfo->i_data, 1442 bh->b_data + sizeof(struct fileEntry), 1443 bs - sizeof(struct fileEntry)); 1444 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1445 iinfo->i_efe = 0; 1446 iinfo->i_use = 1; 1447 iinfo->i_lenAlloc = le32_to_cpu( 1448 ((struct unallocSpaceEntry *)bh->b_data)-> 1449 lengthAllocDescs); 1450 ret = udf_alloc_i_data(inode, bs - 1451 sizeof(struct unallocSpaceEntry)); 1452 if (ret) 1453 goto out; 1454 memcpy(iinfo->i_data, 1455 bh->b_data + sizeof(struct unallocSpaceEntry), 1456 bs - sizeof(struct unallocSpaceEntry)); 1457 return 0; 1458 } 1459 1460 ret = -EIO; 1461 read_lock(&sbi->s_cred_lock); 1462 uid = le32_to_cpu(fe->uid); 1463 if (uid == UDF_INVALID_ID || 1464 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1465 inode->i_uid = sbi->s_uid; 1466 else 1467 i_uid_write(inode, uid); 1468 1469 gid = le32_to_cpu(fe->gid); 1470 if (gid == UDF_INVALID_ID || 1471 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1472 inode->i_gid = sbi->s_gid; 1473 else 1474 i_gid_write(inode, gid); 1475 1476 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1477 sbi->s_fmode != UDF_INVALID_MODE) 1478 inode->i_mode = sbi->s_fmode; 1479 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1480 sbi->s_dmode != UDF_INVALID_MODE) 1481 inode->i_mode = sbi->s_dmode; 1482 else 1483 inode->i_mode = udf_convert_permissions(fe); 1484 inode->i_mode &= ~sbi->s_umask; 1485 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1486 1487 read_unlock(&sbi->s_cred_lock); 1488 1489 link_count = le16_to_cpu(fe->fileLinkCount); 1490 if (!link_count) { 1491 if (!hidden_inode) { 1492 ret = -ESTALE; 1493 goto out; 1494 } 1495 link_count = 1; 1496 } 1497 set_nlink(inode, link_count); 1498 1499 inode->i_size = le64_to_cpu(fe->informationLength); 1500 iinfo->i_lenExtents = inode->i_size; 1501 1502 if (iinfo->i_efe == 0) { 1503 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1504 (inode->i_sb->s_blocksize_bits - 9); 1505 1506 udf_disk_stamp_to_time(&ts, fe->accessTime); 1507 inode_set_atime_to_ts(inode, ts); 1508 udf_disk_stamp_to_time(&ts, fe->modificationTime); 1509 inode_set_mtime_to_ts(inode, ts); 1510 udf_disk_stamp_to_time(&ts, fe->attrTime); 1511 inode_set_ctime_to_ts(inode, ts); 1512 1513 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1514 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1515 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1516 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1517 iinfo->i_streamdir = 0; 1518 iinfo->i_lenStreams = 0; 1519 } else { 1520 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1521 (inode->i_sb->s_blocksize_bits - 9); 1522 1523 udf_disk_stamp_to_time(&ts, efe->accessTime); 1524 inode_set_atime_to_ts(inode, ts); 1525 udf_disk_stamp_to_time(&ts, efe->modificationTime); 1526 inode_set_mtime_to_ts(inode, ts); 1527 udf_disk_stamp_to_time(&ts, efe->attrTime); 1528 inode_set_ctime_to_ts(inode, ts); 1529 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1530 1531 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1532 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1533 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1534 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1535 1536 /* Named streams */ 1537 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1538 iinfo->i_locStreamdir = 1539 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1540 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1541 if (iinfo->i_lenStreams >= inode->i_size) 1542 iinfo->i_lenStreams -= inode->i_size; 1543 else 1544 iinfo->i_lenStreams = 0; 1545 } 1546 inode->i_generation = iinfo->i_unique; 1547 1548 /* 1549 * Sanity check length of allocation descriptors and extended attrs to 1550 * avoid integer overflows 1551 */ 1552 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1553 goto out; 1554 /* Now do exact checks */ 1555 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1556 goto out; 1557 /* Sanity checks for files in ICB so that we don't get confused later */ 1558 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1559 /* 1560 * For file in ICB data is stored in allocation descriptor 1561 * so sizes should match 1562 */ 1563 if (iinfo->i_lenAlloc != inode->i_size) 1564 goto out; 1565 /* File in ICB has to fit in there... */ 1566 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1567 goto out; 1568 } 1569 1570 switch (fe->icbTag.fileType) { 1571 case ICBTAG_FILE_TYPE_DIRECTORY: 1572 inode->i_op = &udf_dir_inode_operations; 1573 inode->i_fop = &udf_dir_operations; 1574 inode->i_mode |= S_IFDIR; 1575 inc_nlink(inode); 1576 break; 1577 case ICBTAG_FILE_TYPE_REALTIME: 1578 case ICBTAG_FILE_TYPE_REGULAR: 1579 case ICBTAG_FILE_TYPE_UNDEF: 1580 case ICBTAG_FILE_TYPE_VAT20: 1581 inode->i_data.a_ops = &udf_aops; 1582 inode->i_op = &udf_file_inode_operations; 1583 inode->i_fop = &udf_file_operations; 1584 inode->i_mode |= S_IFREG; 1585 break; 1586 case ICBTAG_FILE_TYPE_BLOCK: 1587 inode->i_mode |= S_IFBLK; 1588 break; 1589 case ICBTAG_FILE_TYPE_CHAR: 1590 inode->i_mode |= S_IFCHR; 1591 break; 1592 case ICBTAG_FILE_TYPE_FIFO: 1593 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1594 break; 1595 case ICBTAG_FILE_TYPE_SOCKET: 1596 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1597 break; 1598 case ICBTAG_FILE_TYPE_SYMLINK: 1599 inode->i_data.a_ops = &udf_symlink_aops; 1600 inode->i_op = &udf_symlink_inode_operations; 1601 inode_nohighmem(inode); 1602 inode->i_mode = S_IFLNK | 0777; 1603 break; 1604 case ICBTAG_FILE_TYPE_MAIN: 1605 udf_debug("METADATA FILE-----\n"); 1606 break; 1607 case ICBTAG_FILE_TYPE_MIRROR: 1608 udf_debug("METADATA MIRROR FILE-----\n"); 1609 break; 1610 case ICBTAG_FILE_TYPE_BITMAP: 1611 udf_debug("METADATA BITMAP FILE-----\n"); 1612 break; 1613 default: 1614 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1615 inode->i_ino, fe->icbTag.fileType); 1616 goto out; 1617 } 1618 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1619 struct deviceSpec *dsea = 1620 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1621 if (dsea) { 1622 init_special_inode(inode, inode->i_mode, 1623 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1624 le32_to_cpu(dsea->minorDeviceIdent))); 1625 /* Developer ID ??? */ 1626 } else 1627 goto out; 1628 } 1629 ret = 0; 1630 out: 1631 brelse(bh); 1632 return ret; 1633 } 1634 1635 static int udf_alloc_i_data(struct inode *inode, size_t size) 1636 { 1637 struct udf_inode_info *iinfo = UDF_I(inode); 1638 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1639 if (!iinfo->i_data) 1640 return -ENOMEM; 1641 return 0; 1642 } 1643 1644 static umode_t udf_convert_permissions(struct fileEntry *fe) 1645 { 1646 umode_t mode; 1647 uint32_t permissions; 1648 uint32_t flags; 1649 1650 permissions = le32_to_cpu(fe->permissions); 1651 flags = le16_to_cpu(fe->icbTag.flags); 1652 1653 mode = ((permissions) & 0007) | 1654 ((permissions >> 2) & 0070) | 1655 ((permissions >> 4) & 0700) | 1656 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1657 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1658 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1659 1660 return mode; 1661 } 1662 1663 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1664 { 1665 struct udf_inode_info *iinfo = UDF_I(inode); 1666 1667 /* 1668 * UDF 2.01 sec. 3.3.3.3 Note 2: 1669 * In Unix, delete permission tracks write 1670 */ 1671 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1672 if (mode & 0200) 1673 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1674 if (mode & 0020) 1675 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1676 if (mode & 0002) 1677 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1678 } 1679 1680 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1681 { 1682 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1683 } 1684 1685 static int udf_sync_inode(struct inode *inode) 1686 { 1687 return udf_update_inode(inode, 1); 1688 } 1689 1690 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1691 { 1692 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1693 (iinfo->i_crtime.tv_sec == time.tv_sec && 1694 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1695 iinfo->i_crtime = time; 1696 } 1697 1698 static int udf_update_inode(struct inode *inode, int do_sync) 1699 { 1700 struct buffer_head *bh = NULL; 1701 struct fileEntry *fe; 1702 struct extendedFileEntry *efe; 1703 uint64_t lb_recorded; 1704 uint32_t udfperms; 1705 uint16_t icbflags; 1706 uint16_t crclen; 1707 int err = 0; 1708 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1709 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1710 struct udf_inode_info *iinfo = UDF_I(inode); 1711 1712 bh = sb_getblk(inode->i_sb, 1713 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1714 if (!bh) { 1715 udf_debug("getblk failure\n"); 1716 return -EIO; 1717 } 1718 1719 lock_buffer(bh); 1720 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1721 fe = (struct fileEntry *)bh->b_data; 1722 efe = (struct extendedFileEntry *)bh->b_data; 1723 1724 if (iinfo->i_use) { 1725 struct unallocSpaceEntry *use = 1726 (struct unallocSpaceEntry *)bh->b_data; 1727 1728 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1729 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1730 iinfo->i_data, inode->i_sb->s_blocksize - 1731 sizeof(struct unallocSpaceEntry)); 1732 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1733 crclen = sizeof(struct unallocSpaceEntry); 1734 1735 goto finish; 1736 } 1737 1738 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1739 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1740 else 1741 fe->uid = cpu_to_le32(i_uid_read(inode)); 1742 1743 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1744 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1745 else 1746 fe->gid = cpu_to_le32(i_gid_read(inode)); 1747 1748 udfperms = ((inode->i_mode & 0007)) | 1749 ((inode->i_mode & 0070) << 2) | 1750 ((inode->i_mode & 0700) << 4); 1751 1752 udfperms |= iinfo->i_extraPerms; 1753 fe->permissions = cpu_to_le32(udfperms); 1754 1755 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1756 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1757 else { 1758 if (iinfo->i_hidden) 1759 fe->fileLinkCount = cpu_to_le16(0); 1760 else 1761 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1762 } 1763 1764 fe->informationLength = cpu_to_le64(inode->i_size); 1765 1766 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1767 struct regid *eid; 1768 struct deviceSpec *dsea = 1769 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1770 if (!dsea) { 1771 dsea = (struct deviceSpec *) 1772 udf_add_extendedattr(inode, 1773 sizeof(struct deviceSpec) + 1774 sizeof(struct regid), 12, 0x3); 1775 dsea->attrType = cpu_to_le32(12); 1776 dsea->attrSubtype = 1; 1777 dsea->attrLength = cpu_to_le32( 1778 sizeof(struct deviceSpec) + 1779 sizeof(struct regid)); 1780 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1781 } 1782 eid = (struct regid *)dsea->impUse; 1783 memset(eid, 0, sizeof(*eid)); 1784 strcpy(eid->ident, UDF_ID_DEVELOPER); 1785 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1786 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1787 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1788 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1789 } 1790 1791 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1792 lb_recorded = 0; /* No extents => no blocks! */ 1793 else 1794 lb_recorded = 1795 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1796 (blocksize_bits - 9); 1797 1798 if (iinfo->i_efe == 0) { 1799 memcpy(bh->b_data + sizeof(struct fileEntry), 1800 iinfo->i_data, 1801 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1802 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1803 1804 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode)); 1805 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode)); 1806 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1807 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1808 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1809 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1810 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1811 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1812 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1813 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1814 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1815 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1816 crclen = sizeof(struct fileEntry); 1817 } else { 1818 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1819 iinfo->i_data, 1820 inode->i_sb->s_blocksize - 1821 sizeof(struct extendedFileEntry)); 1822 efe->objectSize = 1823 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1824 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1825 1826 if (iinfo->i_streamdir) { 1827 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1828 1829 icb_lad->extLocation = 1830 cpu_to_lelb(iinfo->i_locStreamdir); 1831 icb_lad->extLength = 1832 cpu_to_le32(inode->i_sb->s_blocksize); 1833 } 1834 1835 udf_adjust_time(iinfo, inode_get_atime(inode)); 1836 udf_adjust_time(iinfo, inode_get_mtime(inode)); 1837 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1838 1839 udf_time_to_disk_stamp(&efe->accessTime, 1840 inode_get_atime(inode)); 1841 udf_time_to_disk_stamp(&efe->modificationTime, 1842 inode_get_mtime(inode)); 1843 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1844 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1845 1846 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1847 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1848 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1849 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1850 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1851 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1852 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1853 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1854 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1855 crclen = sizeof(struct extendedFileEntry); 1856 } 1857 1858 finish: 1859 if (iinfo->i_strat4096) { 1860 fe->icbTag.strategyType = cpu_to_le16(4096); 1861 fe->icbTag.strategyParameter = cpu_to_le16(1); 1862 fe->icbTag.numEntries = cpu_to_le16(2); 1863 } else { 1864 fe->icbTag.strategyType = cpu_to_le16(4); 1865 fe->icbTag.numEntries = cpu_to_le16(1); 1866 } 1867 1868 if (iinfo->i_use) 1869 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1870 else if (S_ISDIR(inode->i_mode)) 1871 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1872 else if (S_ISREG(inode->i_mode)) 1873 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1874 else if (S_ISLNK(inode->i_mode)) 1875 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1876 else if (S_ISBLK(inode->i_mode)) 1877 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1878 else if (S_ISCHR(inode->i_mode)) 1879 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1880 else if (S_ISFIFO(inode->i_mode)) 1881 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1882 else if (S_ISSOCK(inode->i_mode)) 1883 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1884 1885 icbflags = iinfo->i_alloc_type | 1886 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1887 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1888 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1889 (le16_to_cpu(fe->icbTag.flags) & 1890 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1891 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1892 1893 fe->icbTag.flags = cpu_to_le16(icbflags); 1894 if (sbi->s_udfrev >= 0x0200) 1895 fe->descTag.descVersion = cpu_to_le16(3); 1896 else 1897 fe->descTag.descVersion = cpu_to_le16(2); 1898 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1899 fe->descTag.tagLocation = cpu_to_le32( 1900 iinfo->i_location.logicalBlockNum); 1901 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1902 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1903 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1904 crclen)); 1905 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1906 1907 set_buffer_uptodate(bh); 1908 unlock_buffer(bh); 1909 1910 /* write the data blocks */ 1911 mark_buffer_dirty(bh); 1912 if (do_sync) { 1913 sync_dirty_buffer(bh); 1914 if (buffer_write_io_error(bh)) { 1915 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1916 inode->i_ino); 1917 err = -EIO; 1918 } 1919 } 1920 brelse(bh); 1921 1922 return err; 1923 } 1924 1925 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1926 bool hidden_inode) 1927 { 1928 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1929 struct inode *inode = iget_locked(sb, block); 1930 int err; 1931 1932 if (!inode) 1933 return ERR_PTR(-ENOMEM); 1934 1935 if (!(inode->i_state & I_NEW)) { 1936 if (UDF_I(inode)->i_hidden != hidden_inode) { 1937 iput(inode); 1938 return ERR_PTR(-EFSCORRUPTED); 1939 } 1940 return inode; 1941 } 1942 1943 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1944 err = udf_read_inode(inode, hidden_inode); 1945 if (err < 0) { 1946 iget_failed(inode); 1947 return ERR_PTR(err); 1948 } 1949 unlock_new_inode(inode); 1950 1951 return inode; 1952 } 1953 1954 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1955 struct extent_position *epos) 1956 { 1957 struct super_block *sb = inode->i_sb; 1958 struct buffer_head *bh; 1959 struct allocExtDesc *aed; 1960 struct extent_position nepos; 1961 struct kernel_lb_addr neloc; 1962 int ver, adsize; 1963 1964 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1965 adsize = sizeof(struct short_ad); 1966 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1967 adsize = sizeof(struct long_ad); 1968 else 1969 return -EIO; 1970 1971 neloc.logicalBlockNum = block; 1972 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1973 1974 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1975 if (!bh) 1976 return -EIO; 1977 lock_buffer(bh); 1978 memset(bh->b_data, 0x00, sb->s_blocksize); 1979 set_buffer_uptodate(bh); 1980 unlock_buffer(bh); 1981 mark_buffer_dirty_inode(bh, inode); 1982 1983 aed = (struct allocExtDesc *)(bh->b_data); 1984 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1985 aed->previousAllocExtLocation = 1986 cpu_to_le32(epos->block.logicalBlockNum); 1987 } 1988 aed->lengthAllocDescs = cpu_to_le32(0); 1989 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1990 ver = 3; 1991 else 1992 ver = 2; 1993 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1994 sizeof(struct tag)); 1995 1996 nepos.block = neloc; 1997 nepos.offset = sizeof(struct allocExtDesc); 1998 nepos.bh = bh; 1999 2000 /* 2001 * Do we have to copy current last extent to make space for indirect 2002 * one? 2003 */ 2004 if (epos->offset + adsize > sb->s_blocksize) { 2005 struct kernel_lb_addr cp_loc; 2006 uint32_t cp_len; 2007 int cp_type; 2008 2009 epos->offset -= adsize; 2010 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2011 cp_len |= ((uint32_t)cp_type) << 30; 2012 2013 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2014 udf_write_aext(inode, epos, &nepos.block, 2015 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2016 } else { 2017 __udf_add_aext(inode, epos, &nepos.block, 2018 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2019 } 2020 2021 brelse(epos->bh); 2022 *epos = nepos; 2023 2024 return 0; 2025 } 2026 2027 /* 2028 * Append extent at the given position - should be the first free one in inode 2029 * / indirect extent. This function assumes there is enough space in the inode 2030 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2031 */ 2032 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2033 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2034 { 2035 struct udf_inode_info *iinfo = UDF_I(inode); 2036 struct allocExtDesc *aed; 2037 int adsize; 2038 2039 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2040 adsize = sizeof(struct short_ad); 2041 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2042 adsize = sizeof(struct long_ad); 2043 else 2044 return -EIO; 2045 2046 if (!epos->bh) { 2047 WARN_ON(iinfo->i_lenAlloc != 2048 epos->offset - udf_file_entry_alloc_offset(inode)); 2049 } else { 2050 aed = (struct allocExtDesc *)epos->bh->b_data; 2051 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2052 epos->offset - sizeof(struct allocExtDesc)); 2053 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2054 } 2055 2056 udf_write_aext(inode, epos, eloc, elen, inc); 2057 2058 if (!epos->bh) { 2059 iinfo->i_lenAlloc += adsize; 2060 mark_inode_dirty(inode); 2061 } else { 2062 aed = (struct allocExtDesc *)epos->bh->b_data; 2063 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2064 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2065 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2066 udf_update_tag(epos->bh->b_data, 2067 epos->offset + (inc ? 0 : adsize)); 2068 else 2069 udf_update_tag(epos->bh->b_data, 2070 sizeof(struct allocExtDesc)); 2071 mark_buffer_dirty_inode(epos->bh, inode); 2072 } 2073 2074 return 0; 2075 } 2076 2077 /* 2078 * Append extent at given position - should be the first free one in inode 2079 * / indirect extent. Takes care of allocating and linking indirect blocks. 2080 */ 2081 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2082 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2083 { 2084 int adsize; 2085 struct super_block *sb = inode->i_sb; 2086 2087 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2088 adsize = sizeof(struct short_ad); 2089 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2090 adsize = sizeof(struct long_ad); 2091 else 2092 return -EIO; 2093 2094 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2095 int err; 2096 udf_pblk_t new_block; 2097 2098 new_block = udf_new_block(sb, NULL, 2099 epos->block.partitionReferenceNum, 2100 epos->block.logicalBlockNum, &err); 2101 if (!new_block) 2102 return -ENOSPC; 2103 2104 err = udf_setup_indirect_aext(inode, new_block, epos); 2105 if (err) 2106 return err; 2107 } 2108 2109 return __udf_add_aext(inode, epos, eloc, elen, inc); 2110 } 2111 2112 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2113 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2114 { 2115 int adsize; 2116 uint8_t *ptr; 2117 struct short_ad *sad; 2118 struct long_ad *lad; 2119 struct udf_inode_info *iinfo = UDF_I(inode); 2120 2121 if (!epos->bh) 2122 ptr = iinfo->i_data + epos->offset - 2123 udf_file_entry_alloc_offset(inode) + 2124 iinfo->i_lenEAttr; 2125 else 2126 ptr = epos->bh->b_data + epos->offset; 2127 2128 switch (iinfo->i_alloc_type) { 2129 case ICBTAG_FLAG_AD_SHORT: 2130 sad = (struct short_ad *)ptr; 2131 sad->extLength = cpu_to_le32(elen); 2132 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2133 adsize = sizeof(struct short_ad); 2134 break; 2135 case ICBTAG_FLAG_AD_LONG: 2136 lad = (struct long_ad *)ptr; 2137 lad->extLength = cpu_to_le32(elen); 2138 lad->extLocation = cpu_to_lelb(*eloc); 2139 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2140 adsize = sizeof(struct long_ad); 2141 break; 2142 default: 2143 return; 2144 } 2145 2146 if (epos->bh) { 2147 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2148 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2149 struct allocExtDesc *aed = 2150 (struct allocExtDesc *)epos->bh->b_data; 2151 udf_update_tag(epos->bh->b_data, 2152 le32_to_cpu(aed->lengthAllocDescs) + 2153 sizeof(struct allocExtDesc)); 2154 } 2155 mark_buffer_dirty_inode(epos->bh, inode); 2156 } else { 2157 mark_inode_dirty(inode); 2158 } 2159 2160 if (inc) 2161 epos->offset += adsize; 2162 } 2163 2164 /* 2165 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2166 * someone does some weird stuff. 2167 */ 2168 #define UDF_MAX_INDIR_EXTS 16 2169 2170 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2171 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2172 { 2173 int8_t etype; 2174 unsigned int indirections = 0; 2175 2176 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2177 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2178 udf_pblk_t block; 2179 2180 if (++indirections > UDF_MAX_INDIR_EXTS) { 2181 udf_err(inode->i_sb, 2182 "too many indirect extents in inode %lu\n", 2183 inode->i_ino); 2184 return -1; 2185 } 2186 2187 epos->block = *eloc; 2188 epos->offset = sizeof(struct allocExtDesc); 2189 brelse(epos->bh); 2190 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2191 epos->bh = sb_bread(inode->i_sb, block); 2192 if (!epos->bh) { 2193 udf_debug("reading block %u failed!\n", block); 2194 return -1; 2195 } 2196 } 2197 2198 return etype; 2199 } 2200 2201 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2202 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2203 { 2204 int alen; 2205 int8_t etype; 2206 uint8_t *ptr; 2207 struct short_ad *sad; 2208 struct long_ad *lad; 2209 struct udf_inode_info *iinfo = UDF_I(inode); 2210 2211 if (!epos->bh) { 2212 if (!epos->offset) 2213 epos->offset = udf_file_entry_alloc_offset(inode); 2214 ptr = iinfo->i_data + epos->offset - 2215 udf_file_entry_alloc_offset(inode) + 2216 iinfo->i_lenEAttr; 2217 alen = udf_file_entry_alloc_offset(inode) + 2218 iinfo->i_lenAlloc; 2219 } else { 2220 if (!epos->offset) 2221 epos->offset = sizeof(struct allocExtDesc); 2222 ptr = epos->bh->b_data + epos->offset; 2223 alen = sizeof(struct allocExtDesc) + 2224 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2225 lengthAllocDescs); 2226 } 2227 2228 switch (iinfo->i_alloc_type) { 2229 case ICBTAG_FLAG_AD_SHORT: 2230 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2231 if (!sad) 2232 return -1; 2233 etype = le32_to_cpu(sad->extLength) >> 30; 2234 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2235 eloc->partitionReferenceNum = 2236 iinfo->i_location.partitionReferenceNum; 2237 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2238 break; 2239 case ICBTAG_FLAG_AD_LONG: 2240 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2241 if (!lad) 2242 return -1; 2243 etype = le32_to_cpu(lad->extLength) >> 30; 2244 *eloc = lelb_to_cpu(lad->extLocation); 2245 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2246 break; 2247 default: 2248 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2249 return -1; 2250 } 2251 2252 return etype; 2253 } 2254 2255 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2256 struct kernel_lb_addr neloc, uint32_t nelen) 2257 { 2258 struct kernel_lb_addr oeloc; 2259 uint32_t oelen; 2260 int8_t etype; 2261 int err; 2262 2263 if (epos.bh) 2264 get_bh(epos.bh); 2265 2266 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2267 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2268 neloc = oeloc; 2269 nelen = (etype << 30) | oelen; 2270 } 2271 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2272 brelse(epos.bh); 2273 2274 return err; 2275 } 2276 2277 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2278 { 2279 struct extent_position oepos; 2280 int adsize; 2281 int8_t etype; 2282 struct allocExtDesc *aed; 2283 struct udf_inode_info *iinfo; 2284 struct kernel_lb_addr eloc; 2285 uint32_t elen; 2286 2287 if (epos.bh) { 2288 get_bh(epos.bh); 2289 get_bh(epos.bh); 2290 } 2291 2292 iinfo = UDF_I(inode); 2293 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2294 adsize = sizeof(struct short_ad); 2295 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2296 adsize = sizeof(struct long_ad); 2297 else 2298 adsize = 0; 2299 2300 oepos = epos; 2301 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2302 return -1; 2303 2304 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2305 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2306 if (oepos.bh != epos.bh) { 2307 oepos.block = epos.block; 2308 brelse(oepos.bh); 2309 get_bh(epos.bh); 2310 oepos.bh = epos.bh; 2311 oepos.offset = epos.offset - adsize; 2312 } 2313 } 2314 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2315 elen = 0; 2316 2317 if (epos.bh != oepos.bh) { 2318 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2319 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2320 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2321 if (!oepos.bh) { 2322 iinfo->i_lenAlloc -= (adsize * 2); 2323 mark_inode_dirty(inode); 2324 } else { 2325 aed = (struct allocExtDesc *)oepos.bh->b_data; 2326 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2327 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2328 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2329 udf_update_tag(oepos.bh->b_data, 2330 oepos.offset - (2 * adsize)); 2331 else 2332 udf_update_tag(oepos.bh->b_data, 2333 sizeof(struct allocExtDesc)); 2334 mark_buffer_dirty_inode(oepos.bh, inode); 2335 } 2336 } else { 2337 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2338 if (!oepos.bh) { 2339 iinfo->i_lenAlloc -= adsize; 2340 mark_inode_dirty(inode); 2341 } else { 2342 aed = (struct allocExtDesc *)oepos.bh->b_data; 2343 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2344 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2345 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2346 udf_update_tag(oepos.bh->b_data, 2347 epos.offset - adsize); 2348 else 2349 udf_update_tag(oepos.bh->b_data, 2350 sizeof(struct allocExtDesc)); 2351 mark_buffer_dirty_inode(oepos.bh, inode); 2352 } 2353 } 2354 2355 brelse(epos.bh); 2356 brelse(oepos.bh); 2357 2358 return (elen >> 30); 2359 } 2360 2361 int8_t inode_bmap(struct inode *inode, sector_t block, 2362 struct extent_position *pos, struct kernel_lb_addr *eloc, 2363 uint32_t *elen, sector_t *offset) 2364 { 2365 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2366 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2367 int8_t etype; 2368 struct udf_inode_info *iinfo; 2369 2370 iinfo = UDF_I(inode); 2371 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2372 pos->offset = 0; 2373 pos->block = iinfo->i_location; 2374 pos->bh = NULL; 2375 } 2376 *elen = 0; 2377 do { 2378 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2379 if (etype == -1) { 2380 *offset = (bcount - lbcount) >> blocksize_bits; 2381 iinfo->i_lenExtents = lbcount; 2382 return -1; 2383 } 2384 lbcount += *elen; 2385 } while (lbcount <= bcount); 2386 /* update extent cache */ 2387 udf_update_extent_cache(inode, lbcount - *elen, pos); 2388 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2389 2390 return etype; 2391 } 2392