xref: /linux/fs/udf/inode.c (revision 0889d07f3e4b171c453b2aaf2b257f9074cdf624)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!inode->i_nlink && !is_bad_inode(inode)) {
143 		want_delete = 1;
144 		udf_setsize(inode, 0);
145 		udf_update_inode(inode, IS_SYNC(inode));
146 	}
147 	truncate_inode_pages_final(&inode->i_data);
148 	invalidate_inode_buffers(inode);
149 	clear_inode(inode);
150 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
151 	    inode->i_size != iinfo->i_lenExtents) {
152 		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
153 			 inode->i_ino, inode->i_mode,
154 			 (unsigned long long)inode->i_size,
155 			 (unsigned long long)iinfo->i_lenExtents);
156 	}
157 	kfree(iinfo->i_ext.i_data);
158 	iinfo->i_ext.i_data = NULL;
159 	udf_clear_extent_cache(inode);
160 	if (want_delete) {
161 		udf_free_inode(inode);
162 	}
163 }
164 
165 static void udf_write_failed(struct address_space *mapping, loff_t to)
166 {
167 	struct inode *inode = mapping->host;
168 	struct udf_inode_info *iinfo = UDF_I(inode);
169 	loff_t isize = inode->i_size;
170 
171 	if (to > isize) {
172 		truncate_pagecache(inode, isize);
173 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
174 			down_write(&iinfo->i_data_sem);
175 			udf_clear_extent_cache(inode);
176 			udf_truncate_extents(inode);
177 			up_write(&iinfo->i_data_sem);
178 		}
179 	}
180 }
181 
182 static int udf_writepage(struct page *page, struct writeback_control *wbc)
183 {
184 	return block_write_full_page(page, udf_get_block, wbc);
185 }
186 
187 static int udf_writepages(struct address_space *mapping,
188 			struct writeback_control *wbc)
189 {
190 	return mpage_writepages(mapping, wbc, udf_get_block);
191 }
192 
193 static int udf_readpage(struct file *file, struct page *page)
194 {
195 	return mpage_readpage(page, udf_get_block);
196 }
197 
198 static int udf_readpages(struct file *file, struct address_space *mapping,
199 			struct list_head *pages, unsigned nr_pages)
200 {
201 	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
202 }
203 
204 static int udf_write_begin(struct file *file, struct address_space *mapping,
205 			loff_t pos, unsigned len, unsigned flags,
206 			struct page **pagep, void **fsdata)
207 {
208 	int ret;
209 
210 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
211 	if (unlikely(ret))
212 		udf_write_failed(mapping, pos + len);
213 	return ret;
214 }
215 
216 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
217 {
218 	struct file *file = iocb->ki_filp;
219 	struct address_space *mapping = file->f_mapping;
220 	struct inode *inode = mapping->host;
221 	size_t count = iov_iter_count(iter);
222 	ssize_t ret;
223 
224 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
225 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
226 		udf_write_failed(mapping, iocb->ki_pos + count);
227 	return ret;
228 }
229 
230 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
231 {
232 	return generic_block_bmap(mapping, block, udf_get_block);
233 }
234 
235 const struct address_space_operations udf_aops = {
236 	.readpage	= udf_readpage,
237 	.readpages	= udf_readpages,
238 	.writepage	= udf_writepage,
239 	.writepages	= udf_writepages,
240 	.write_begin	= udf_write_begin,
241 	.write_end	= generic_write_end,
242 	.direct_IO	= udf_direct_IO,
243 	.bmap		= udf_bmap,
244 };
245 
246 /*
247  * Expand file stored in ICB to a normal one-block-file
248  *
249  * This function requires i_data_sem for writing and releases it.
250  * This function requires i_mutex held
251  */
252 int udf_expand_file_adinicb(struct inode *inode)
253 {
254 	struct page *page;
255 	char *kaddr;
256 	struct udf_inode_info *iinfo = UDF_I(inode);
257 	int err;
258 	struct writeback_control udf_wbc = {
259 		.sync_mode = WB_SYNC_NONE,
260 		.nr_to_write = 1,
261 	};
262 
263 	WARN_ON_ONCE(!inode_is_locked(inode));
264 	if (!iinfo->i_lenAlloc) {
265 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267 		else
268 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269 		/* from now on we have normal address_space methods */
270 		inode->i_data.a_ops = &udf_aops;
271 		up_write(&iinfo->i_data_sem);
272 		mark_inode_dirty(inode);
273 		return 0;
274 	}
275 	/*
276 	 * Release i_data_sem so that we can lock a page - page lock ranks
277 	 * above i_data_sem. i_mutex still protects us against file changes.
278 	 */
279 	up_write(&iinfo->i_data_sem);
280 
281 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282 	if (!page)
283 		return -ENOMEM;
284 
285 	if (!PageUptodate(page)) {
286 		kaddr = kmap_atomic(page);
287 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
288 		       PAGE_SIZE - iinfo->i_lenAlloc);
289 		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
290 			iinfo->i_lenAlloc);
291 		flush_dcache_page(page);
292 		SetPageUptodate(page);
293 		kunmap_atomic(kaddr);
294 	}
295 	down_write(&iinfo->i_data_sem);
296 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
297 	       iinfo->i_lenAlloc);
298 	iinfo->i_lenAlloc = 0;
299 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301 	else
302 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303 	/* from now on we have normal address_space methods */
304 	inode->i_data.a_ops = &udf_aops;
305 	up_write(&iinfo->i_data_sem);
306 	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
307 	if (err) {
308 		/* Restore everything back so that we don't lose data... */
309 		lock_page(page);
310 		down_write(&iinfo->i_data_sem);
311 		kaddr = kmap_atomic(page);
312 		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
313 		       inode->i_size);
314 		kunmap_atomic(kaddr);
315 		unlock_page(page);
316 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
317 		inode->i_data.a_ops = &udf_adinicb_aops;
318 		up_write(&iinfo->i_data_sem);
319 	}
320 	put_page(page);
321 	mark_inode_dirty(inode);
322 
323 	return err;
324 }
325 
326 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
327 					    udf_pblk_t *block, int *err)
328 {
329 	udf_pblk_t newblock;
330 	struct buffer_head *dbh = NULL;
331 	struct kernel_lb_addr eloc;
332 	uint8_t alloctype;
333 	struct extent_position epos;
334 
335 	struct udf_fileident_bh sfibh, dfibh;
336 	loff_t f_pos = udf_ext0_offset(inode);
337 	int size = udf_ext0_offset(inode) + inode->i_size;
338 	struct fileIdentDesc cfi, *sfi, *dfi;
339 	struct udf_inode_info *iinfo = UDF_I(inode);
340 
341 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
342 		alloctype = ICBTAG_FLAG_AD_SHORT;
343 	else
344 		alloctype = ICBTAG_FLAG_AD_LONG;
345 
346 	if (!inode->i_size) {
347 		iinfo->i_alloc_type = alloctype;
348 		mark_inode_dirty(inode);
349 		return NULL;
350 	}
351 
352 	/* alloc block, and copy data to it */
353 	*block = udf_new_block(inode->i_sb, inode,
354 			       iinfo->i_location.partitionReferenceNum,
355 			       iinfo->i_location.logicalBlockNum, err);
356 	if (!(*block))
357 		return NULL;
358 	newblock = udf_get_pblock(inode->i_sb, *block,
359 				  iinfo->i_location.partitionReferenceNum,
360 				0);
361 	if (!newblock)
362 		return NULL;
363 	dbh = udf_tgetblk(inode->i_sb, newblock);
364 	if (!dbh)
365 		return NULL;
366 	lock_buffer(dbh);
367 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
368 	set_buffer_uptodate(dbh);
369 	unlock_buffer(dbh);
370 	mark_buffer_dirty_inode(dbh, inode);
371 
372 	sfibh.soffset = sfibh.eoffset =
373 			f_pos & (inode->i_sb->s_blocksize - 1);
374 	sfibh.sbh = sfibh.ebh = NULL;
375 	dfibh.soffset = dfibh.eoffset = 0;
376 	dfibh.sbh = dfibh.ebh = dbh;
377 	while (f_pos < size) {
378 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
379 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
380 					 NULL, NULL, NULL);
381 		if (!sfi) {
382 			brelse(dbh);
383 			return NULL;
384 		}
385 		iinfo->i_alloc_type = alloctype;
386 		sfi->descTag.tagLocation = cpu_to_le32(*block);
387 		dfibh.soffset = dfibh.eoffset;
388 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
389 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
390 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
391 				 sfi->fileIdent +
392 					le16_to_cpu(sfi->lengthOfImpUse))) {
393 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 			brelse(dbh);
395 			return NULL;
396 		}
397 	}
398 	mark_buffer_dirty_inode(dbh, inode);
399 
400 	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
401 		iinfo->i_lenAlloc);
402 	iinfo->i_lenAlloc = 0;
403 	eloc.logicalBlockNum = *block;
404 	eloc.partitionReferenceNum =
405 				iinfo->i_location.partitionReferenceNum;
406 	iinfo->i_lenExtents = inode->i_size;
407 	epos.bh = NULL;
408 	epos.block = iinfo->i_location;
409 	epos.offset = udf_file_entry_alloc_offset(inode);
410 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 	/* UniqueID stuff */
412 
413 	brelse(epos.bh);
414 	mark_inode_dirty(inode);
415 	return dbh;
416 }
417 
418 static int udf_get_block(struct inode *inode, sector_t block,
419 			 struct buffer_head *bh_result, int create)
420 {
421 	int err, new;
422 	sector_t phys = 0;
423 	struct udf_inode_info *iinfo;
424 
425 	if (!create) {
426 		phys = udf_block_map(inode, block);
427 		if (phys)
428 			map_bh(bh_result, inode->i_sb, phys);
429 		return 0;
430 	}
431 
432 	err = -EIO;
433 	new = 0;
434 	iinfo = UDF_I(inode);
435 
436 	down_write(&iinfo->i_data_sem);
437 	if (block == iinfo->i_next_alloc_block + 1) {
438 		iinfo->i_next_alloc_block++;
439 		iinfo->i_next_alloc_goal++;
440 	}
441 
442 	udf_clear_extent_cache(inode);
443 	phys = inode_getblk(inode, block, &err, &new);
444 	if (!phys)
445 		goto abort;
446 
447 	if (new)
448 		set_buffer_new(bh_result);
449 	map_bh(bh_result, inode->i_sb, phys);
450 
451 abort:
452 	up_write(&iinfo->i_data_sem);
453 	return err;
454 }
455 
456 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
457 				      int create, int *err)
458 {
459 	struct buffer_head *bh;
460 	struct buffer_head dummy;
461 
462 	dummy.b_state = 0;
463 	dummy.b_blocknr = -1000;
464 	*err = udf_get_block(inode, block, &dummy, create);
465 	if (!*err && buffer_mapped(&dummy)) {
466 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
467 		if (buffer_new(&dummy)) {
468 			lock_buffer(bh);
469 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
470 			set_buffer_uptodate(bh);
471 			unlock_buffer(bh);
472 			mark_buffer_dirty_inode(bh, inode);
473 		}
474 		return bh;
475 	}
476 
477 	return NULL;
478 }
479 
480 /* Extend the file with new blocks totaling 'new_block_bytes',
481  * return the number of extents added
482  */
483 static int udf_do_extend_file(struct inode *inode,
484 			      struct extent_position *last_pos,
485 			      struct kernel_long_ad *last_ext,
486 			      loff_t new_block_bytes)
487 {
488 	uint32_t add;
489 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 	struct super_block *sb = inode->i_sb;
491 	struct kernel_lb_addr prealloc_loc = {};
492 	uint32_t prealloc_len = 0;
493 	struct udf_inode_info *iinfo;
494 	int err;
495 
496 	/* The previous extent is fake and we should not extend by anything
497 	 * - there's nothing to do... */
498 	if (!new_block_bytes && fake)
499 		return 0;
500 
501 	iinfo = UDF_I(inode);
502 	/* Round the last extent up to a multiple of block size */
503 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 		last_ext->extLength =
505 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 		iinfo->i_lenExtents =
509 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 			~(sb->s_blocksize - 1);
511 	}
512 
513 	/* Last extent are just preallocated blocks? */
514 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 						EXT_NOT_RECORDED_ALLOCATED) {
516 		/* Save the extent so that we can reattach it to the end */
517 		prealloc_loc = last_ext->extLocation;
518 		prealloc_len = last_ext->extLength;
519 		/* Mark the extent as a hole */
520 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 		last_ext->extLocation.logicalBlockNum = 0;
523 		last_ext->extLocation.partitionReferenceNum = 0;
524 	}
525 
526 	/* Can we merge with the previous extent? */
527 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 		add = (1 << 30) - sb->s_blocksize -
530 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
531 		if (add > new_block_bytes)
532 			add = new_block_bytes;
533 		new_block_bytes -= add;
534 		last_ext->extLength += add;
535 	}
536 
537 	if (fake) {
538 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
539 			     last_ext->extLength, 1);
540 		count++;
541 	} else {
542 		struct kernel_lb_addr tmploc;
543 		uint32_t tmplen;
544 
545 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 				last_ext->extLength, 1);
547 		/*
548 		 * We've rewritten the last extent but there may be empty
549 		 * indirect extent after it - enter it.
550 		 */
551 		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
552 	}
553 
554 	/* Managed to do everything necessary? */
555 	if (!new_block_bytes)
556 		goto out;
557 
558 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
559 	last_ext->extLocation.logicalBlockNum = 0;
560 	last_ext->extLocation.partitionReferenceNum = 0;
561 	add = (1 << 30) - sb->s_blocksize;
562 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
563 
564 	/* Create enough extents to cover the whole hole */
565 	while (new_block_bytes > add) {
566 		new_block_bytes -= add;
567 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
568 				   last_ext->extLength, 1);
569 		if (err)
570 			return err;
571 		count++;
572 	}
573 	if (new_block_bytes) {
574 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
575 			new_block_bytes;
576 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
577 				   last_ext->extLength, 1);
578 		if (err)
579 			return err;
580 		count++;
581 	}
582 
583 out:
584 	/* Do we have some preallocated blocks saved? */
585 	if (prealloc_len) {
586 		err = udf_add_aext(inode, last_pos, &prealloc_loc,
587 				   prealloc_len, 1);
588 		if (err)
589 			return err;
590 		last_ext->extLocation = prealloc_loc;
591 		last_ext->extLength = prealloc_len;
592 		count++;
593 	}
594 
595 	/* last_pos should point to the last written extent... */
596 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
597 		last_pos->offset -= sizeof(struct short_ad);
598 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
599 		last_pos->offset -= sizeof(struct long_ad);
600 	else
601 		return -EIO;
602 
603 	return count;
604 }
605 
606 /* Extend the final block of the file to final_block_len bytes */
607 static void udf_do_extend_final_block(struct inode *inode,
608 				      struct extent_position *last_pos,
609 				      struct kernel_long_ad *last_ext,
610 				      uint32_t final_block_len)
611 {
612 	struct super_block *sb = inode->i_sb;
613 	uint32_t added_bytes;
614 
615 	added_bytes = final_block_len -
616 		      (last_ext->extLength & (sb->s_blocksize - 1));
617 	last_ext->extLength += added_bytes;
618 	UDF_I(inode)->i_lenExtents += added_bytes;
619 
620 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
621 			last_ext->extLength, 1);
622 }
623 
624 static int udf_extend_file(struct inode *inode, loff_t newsize)
625 {
626 
627 	struct extent_position epos;
628 	struct kernel_lb_addr eloc;
629 	uint32_t elen;
630 	int8_t etype;
631 	struct super_block *sb = inode->i_sb;
632 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
633 	unsigned long partial_final_block;
634 	int adsize;
635 	struct udf_inode_info *iinfo = UDF_I(inode);
636 	struct kernel_long_ad extent;
637 	int err = 0;
638 	int within_final_block;
639 
640 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
641 		adsize = sizeof(struct short_ad);
642 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
643 		adsize = sizeof(struct long_ad);
644 	else
645 		BUG();
646 
647 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
648 	within_final_block = (etype != -1);
649 
650 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
651 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
652 		/* File has no extents at all or has empty last
653 		 * indirect extent! Create a fake extent... */
654 		extent.extLocation.logicalBlockNum = 0;
655 		extent.extLocation.partitionReferenceNum = 0;
656 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
657 	} else {
658 		epos.offset -= adsize;
659 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
660 				      &extent.extLength, 0);
661 		extent.extLength |= etype << 30;
662 	}
663 
664 	partial_final_block = newsize & (sb->s_blocksize - 1);
665 
666 	/* File has extent covering the new size (could happen when extending
667 	 * inside a block)?
668 	 */
669 	if (within_final_block) {
670 		/* Extending file within the last file block */
671 		udf_do_extend_final_block(inode, &epos, &extent,
672 					  partial_final_block);
673 	} else {
674 		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
675 			     partial_final_block;
676 		err = udf_do_extend_file(inode, &epos, &extent, add);
677 	}
678 
679 	if (err < 0)
680 		goto out;
681 	err = 0;
682 	iinfo->i_lenExtents = newsize;
683 out:
684 	brelse(epos.bh);
685 	return err;
686 }
687 
688 static sector_t inode_getblk(struct inode *inode, sector_t block,
689 			     int *err, int *new)
690 {
691 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
692 	struct extent_position prev_epos, cur_epos, next_epos;
693 	int count = 0, startnum = 0, endnum = 0;
694 	uint32_t elen = 0, tmpelen;
695 	struct kernel_lb_addr eloc, tmpeloc;
696 	int c = 1;
697 	loff_t lbcount = 0, b_off = 0;
698 	udf_pblk_t newblocknum, newblock;
699 	sector_t offset = 0;
700 	int8_t etype;
701 	struct udf_inode_info *iinfo = UDF_I(inode);
702 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
703 	int lastblock = 0;
704 	bool isBeyondEOF;
705 
706 	*err = 0;
707 	*new = 0;
708 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
709 	prev_epos.block = iinfo->i_location;
710 	prev_epos.bh = NULL;
711 	cur_epos = next_epos = prev_epos;
712 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
713 
714 	/* find the extent which contains the block we are looking for.
715 	   alternate between laarr[0] and laarr[1] for locations of the
716 	   current extent, and the previous extent */
717 	do {
718 		if (prev_epos.bh != cur_epos.bh) {
719 			brelse(prev_epos.bh);
720 			get_bh(cur_epos.bh);
721 			prev_epos.bh = cur_epos.bh;
722 		}
723 		if (cur_epos.bh != next_epos.bh) {
724 			brelse(cur_epos.bh);
725 			get_bh(next_epos.bh);
726 			cur_epos.bh = next_epos.bh;
727 		}
728 
729 		lbcount += elen;
730 
731 		prev_epos.block = cur_epos.block;
732 		cur_epos.block = next_epos.block;
733 
734 		prev_epos.offset = cur_epos.offset;
735 		cur_epos.offset = next_epos.offset;
736 
737 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
738 		if (etype == -1)
739 			break;
740 
741 		c = !c;
742 
743 		laarr[c].extLength = (etype << 30) | elen;
744 		laarr[c].extLocation = eloc;
745 
746 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747 			pgoal = eloc.logicalBlockNum +
748 				((elen + inode->i_sb->s_blocksize - 1) >>
749 				 inode->i_sb->s_blocksize_bits);
750 
751 		count++;
752 	} while (lbcount + elen <= b_off);
753 
754 	b_off -= lbcount;
755 	offset = b_off >> inode->i_sb->s_blocksize_bits;
756 	/*
757 	 * Move prev_epos and cur_epos into indirect extent if we are at
758 	 * the pointer to it
759 	 */
760 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
761 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
762 
763 	/* if the extent is allocated and recorded, return the block
764 	   if the extent is not a multiple of the blocksize, round up */
765 
766 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
767 		if (elen & (inode->i_sb->s_blocksize - 1)) {
768 			elen = EXT_RECORDED_ALLOCATED |
769 				((elen + inode->i_sb->s_blocksize - 1) &
770 				 ~(inode->i_sb->s_blocksize - 1));
771 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
772 		}
773 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774 		goto out_free;
775 	}
776 
777 	/* Are we beyond EOF? */
778 	if (etype == -1) {
779 		int ret;
780 		loff_t hole_len;
781 		isBeyondEOF = true;
782 		if (count) {
783 			if (c)
784 				laarr[0] = laarr[1];
785 			startnum = 1;
786 		} else {
787 			/* Create a fake extent when there's not one */
788 			memset(&laarr[0].extLocation, 0x00,
789 				sizeof(struct kernel_lb_addr));
790 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
791 			/* Will udf_do_extend_file() create real extent from
792 			   a fake one? */
793 			startnum = (offset > 0);
794 		}
795 		/* Create extents for the hole between EOF and offset */
796 		hole_len = (loff_t)offset << inode->i_blkbits;
797 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
798 		if (ret < 0) {
799 			*err = ret;
800 			newblock = 0;
801 			goto out_free;
802 		}
803 		c = 0;
804 		offset = 0;
805 		count += ret;
806 		/* We are not covered by a preallocated extent? */
807 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
808 						EXT_NOT_RECORDED_ALLOCATED) {
809 			/* Is there any real extent? - otherwise we overwrite
810 			 * the fake one... */
811 			if (count)
812 				c = !c;
813 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
814 				inode->i_sb->s_blocksize;
815 			memset(&laarr[c].extLocation, 0x00,
816 				sizeof(struct kernel_lb_addr));
817 			count++;
818 		}
819 		endnum = c + 1;
820 		lastblock = 1;
821 	} else {
822 		isBeyondEOF = false;
823 		endnum = startnum = ((count > 2) ? 2 : count);
824 
825 		/* if the current extent is in position 0,
826 		   swap it with the previous */
827 		if (!c && count != 1) {
828 			laarr[2] = laarr[0];
829 			laarr[0] = laarr[1];
830 			laarr[1] = laarr[2];
831 			c = 1;
832 		}
833 
834 		/* if the current block is located in an extent,
835 		   read the next extent */
836 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
837 		if (etype != -1) {
838 			laarr[c + 1].extLength = (etype << 30) | elen;
839 			laarr[c + 1].extLocation = eloc;
840 			count++;
841 			startnum++;
842 			endnum++;
843 		} else
844 			lastblock = 1;
845 	}
846 
847 	/* if the current extent is not recorded but allocated, get the
848 	 * block in the extent corresponding to the requested block */
849 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
850 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
851 	else { /* otherwise, allocate a new block */
852 		if (iinfo->i_next_alloc_block == block)
853 			goal = iinfo->i_next_alloc_goal;
854 
855 		if (!goal) {
856 			if (!(goal = pgoal)) /* XXX: what was intended here? */
857 				goal = iinfo->i_location.logicalBlockNum + 1;
858 		}
859 
860 		newblocknum = udf_new_block(inode->i_sb, inode,
861 				iinfo->i_location.partitionReferenceNum,
862 				goal, err);
863 		if (!newblocknum) {
864 			*err = -ENOSPC;
865 			newblock = 0;
866 			goto out_free;
867 		}
868 		if (isBeyondEOF)
869 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
870 	}
871 
872 	/* if the extent the requsted block is located in contains multiple
873 	 * blocks, split the extent into at most three extents. blocks prior
874 	 * to requested block, requested block, and blocks after requested
875 	 * block */
876 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
877 
878 	/* We preallocate blocks only for regular files. It also makes sense
879 	 * for directories but there's a problem when to drop the
880 	 * preallocation. We might use some delayed work for that but I feel
881 	 * it's overengineering for a filesystem like UDF. */
882 	if (S_ISREG(inode->i_mode))
883 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
884 
885 	/* merge any continuous blocks in laarr */
886 	udf_merge_extents(inode, laarr, &endnum);
887 
888 	/* write back the new extents, inserting new extents if the new number
889 	 * of extents is greater than the old number, and deleting extents if
890 	 * the new number of extents is less than the old number */
891 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
892 
893 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
894 				iinfo->i_location.partitionReferenceNum, 0);
895 	if (!newblock) {
896 		*err = -EIO;
897 		goto out_free;
898 	}
899 	*new = 1;
900 	iinfo->i_next_alloc_block = block;
901 	iinfo->i_next_alloc_goal = newblocknum;
902 	inode->i_ctime = current_time(inode);
903 
904 	if (IS_SYNC(inode))
905 		udf_sync_inode(inode);
906 	else
907 		mark_inode_dirty(inode);
908 out_free:
909 	brelse(prev_epos.bh);
910 	brelse(cur_epos.bh);
911 	brelse(next_epos.bh);
912 	return newblock;
913 }
914 
915 static void udf_split_extents(struct inode *inode, int *c, int offset,
916 			       udf_pblk_t newblocknum,
917 			       struct kernel_long_ad *laarr, int *endnum)
918 {
919 	unsigned long blocksize = inode->i_sb->s_blocksize;
920 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
921 
922 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
923 	    (laarr[*c].extLength >> 30) ==
924 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
925 		int curr = *c;
926 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
927 			    blocksize - 1) >> blocksize_bits;
928 		int8_t etype = (laarr[curr].extLength >> 30);
929 
930 		if (blen == 1)
931 			;
932 		else if (!offset || blen == offset + 1) {
933 			laarr[curr + 2] = laarr[curr + 1];
934 			laarr[curr + 1] = laarr[curr];
935 		} else {
936 			laarr[curr + 3] = laarr[curr + 1];
937 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
938 		}
939 
940 		if (offset) {
941 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
942 				udf_free_blocks(inode->i_sb, inode,
943 						&laarr[curr].extLocation,
944 						0, offset);
945 				laarr[curr].extLength =
946 					EXT_NOT_RECORDED_NOT_ALLOCATED |
947 					(offset << blocksize_bits);
948 				laarr[curr].extLocation.logicalBlockNum = 0;
949 				laarr[curr].extLocation.
950 						partitionReferenceNum = 0;
951 			} else
952 				laarr[curr].extLength = (etype << 30) |
953 					(offset << blocksize_bits);
954 			curr++;
955 			(*c)++;
956 			(*endnum)++;
957 		}
958 
959 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
960 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
961 			laarr[curr].extLocation.partitionReferenceNum =
962 				UDF_I(inode)->i_location.partitionReferenceNum;
963 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
964 			blocksize;
965 		curr++;
966 
967 		if (blen != offset + 1) {
968 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
969 				laarr[curr].extLocation.logicalBlockNum +=
970 								offset + 1;
971 			laarr[curr].extLength = (etype << 30) |
972 				((blen - (offset + 1)) << blocksize_bits);
973 			curr++;
974 			(*endnum)++;
975 		}
976 	}
977 }
978 
979 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
980 				 struct kernel_long_ad *laarr,
981 				 int *endnum)
982 {
983 	int start, length = 0, currlength = 0, i;
984 
985 	if (*endnum >= (c + 1)) {
986 		if (!lastblock)
987 			return;
988 		else
989 			start = c;
990 	} else {
991 		if ((laarr[c + 1].extLength >> 30) ==
992 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
993 			start = c + 1;
994 			length = currlength =
995 				(((laarr[c + 1].extLength &
996 					UDF_EXTENT_LENGTH_MASK) +
997 				inode->i_sb->s_blocksize - 1) >>
998 				inode->i_sb->s_blocksize_bits);
999 		} else
1000 			start = c;
1001 	}
1002 
1003 	for (i = start + 1; i <= *endnum; i++) {
1004 		if (i == *endnum) {
1005 			if (lastblock)
1006 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007 		} else if ((laarr[i].extLength >> 30) ==
1008 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009 			length += (((laarr[i].extLength &
1010 						UDF_EXTENT_LENGTH_MASK) +
1011 				    inode->i_sb->s_blocksize - 1) >>
1012 				    inode->i_sb->s_blocksize_bits);
1013 		} else
1014 			break;
1015 	}
1016 
1017 	if (length) {
1018 		int next = laarr[start].extLocation.logicalBlockNum +
1019 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020 			  inode->i_sb->s_blocksize - 1) >>
1021 			  inode->i_sb->s_blocksize_bits);
1022 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023 				laarr[start].extLocation.partitionReferenceNum,
1024 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026 				currlength);
1027 		if (numalloc) 	{
1028 			if (start == (c + 1))
1029 				laarr[start].extLength +=
1030 					(numalloc <<
1031 					 inode->i_sb->s_blocksize_bits);
1032 			else {
1033 				memmove(&laarr[c + 2], &laarr[c + 1],
1034 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1035 				(*endnum)++;
1036 				laarr[c + 1].extLocation.logicalBlockNum = next;
1037 				laarr[c + 1].extLocation.partitionReferenceNum =
1038 					laarr[c].extLocation.
1039 							partitionReferenceNum;
1040 				laarr[c + 1].extLength =
1041 					EXT_NOT_RECORDED_ALLOCATED |
1042 					(numalloc <<
1043 					 inode->i_sb->s_blocksize_bits);
1044 				start = c + 1;
1045 			}
1046 
1047 			for (i = start + 1; numalloc && i < *endnum; i++) {
1048 				int elen = ((laarr[i].extLength &
1049 						UDF_EXTENT_LENGTH_MASK) +
1050 					    inode->i_sb->s_blocksize - 1) >>
1051 					    inode->i_sb->s_blocksize_bits;
1052 
1053 				if (elen > numalloc) {
1054 					laarr[i].extLength -=
1055 						(numalloc <<
1056 						 inode->i_sb->s_blocksize_bits);
1057 					numalloc = 0;
1058 				} else {
1059 					numalloc -= elen;
1060 					if (*endnum > (i + 1))
1061 						memmove(&laarr[i],
1062 							&laarr[i + 1],
1063 							sizeof(struct long_ad) *
1064 							(*endnum - (i + 1)));
1065 					i--;
1066 					(*endnum)--;
1067 				}
1068 			}
1069 			UDF_I(inode)->i_lenExtents +=
1070 				numalloc << inode->i_sb->s_blocksize_bits;
1071 		}
1072 	}
1073 }
1074 
1075 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076 			      int *endnum)
1077 {
1078 	int i;
1079 	unsigned long blocksize = inode->i_sb->s_blocksize;
1080 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081 
1082 	for (i = 0; i < (*endnum - 1); i++) {
1083 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085 
1086 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087 			(((li->extLength >> 30) ==
1088 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089 			((lip1->extLocation.logicalBlockNum -
1090 			  li->extLocation.logicalBlockNum) ==
1091 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092 			blocksize - 1) >> blocksize_bits)))) {
1093 
1094 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1097 				lip1->extLength = (lip1->extLength -
1098 						  (li->extLength &
1099 						   UDF_EXTENT_LENGTH_MASK) +
1100 						   UDF_EXTENT_LENGTH_MASK) &
1101 							~(blocksize - 1);
1102 				li->extLength = (li->extLength &
1103 						 UDF_EXTENT_FLAG_MASK) +
1104 						(UDF_EXTENT_LENGTH_MASK + 1) -
1105 						blocksize;
1106 				lip1->extLocation.logicalBlockNum =
1107 					li->extLocation.logicalBlockNum +
1108 					((li->extLength &
1109 						UDF_EXTENT_LENGTH_MASK) >>
1110 						blocksize_bits);
1111 			} else {
1112 				li->extLength = lip1->extLength +
1113 					(((li->extLength &
1114 						UDF_EXTENT_LENGTH_MASK) +
1115 					 blocksize - 1) & ~(blocksize - 1));
1116 				if (*endnum > (i + 2))
1117 					memmove(&laarr[i + 1], &laarr[i + 2],
1118 						sizeof(struct long_ad) *
1119 						(*endnum - (i + 2)));
1120 				i--;
1121 				(*endnum)--;
1122 			}
1123 		} else if (((li->extLength >> 30) ==
1124 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1125 			   ((lip1->extLength >> 30) ==
1126 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1127 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1128 					((li->extLength &
1129 					  UDF_EXTENT_LENGTH_MASK) +
1130 					 blocksize - 1) >> blocksize_bits);
1131 			li->extLocation.logicalBlockNum = 0;
1132 			li->extLocation.partitionReferenceNum = 0;
1133 
1134 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1135 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1136 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1137 				lip1->extLength = (lip1->extLength -
1138 						   (li->extLength &
1139 						   UDF_EXTENT_LENGTH_MASK) +
1140 						   UDF_EXTENT_LENGTH_MASK) &
1141 						   ~(blocksize - 1);
1142 				li->extLength = (li->extLength &
1143 						 UDF_EXTENT_FLAG_MASK) +
1144 						(UDF_EXTENT_LENGTH_MASK + 1) -
1145 						blocksize;
1146 			} else {
1147 				li->extLength = lip1->extLength +
1148 					(((li->extLength &
1149 						UDF_EXTENT_LENGTH_MASK) +
1150 					  blocksize - 1) & ~(blocksize - 1));
1151 				if (*endnum > (i + 2))
1152 					memmove(&laarr[i + 1], &laarr[i + 2],
1153 						sizeof(struct long_ad) *
1154 						(*endnum - (i + 2)));
1155 				i--;
1156 				(*endnum)--;
1157 			}
1158 		} else if ((li->extLength >> 30) ==
1159 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1160 			udf_free_blocks(inode->i_sb, inode,
1161 					&li->extLocation, 0,
1162 					((li->extLength &
1163 						UDF_EXTENT_LENGTH_MASK) +
1164 					 blocksize - 1) >> blocksize_bits);
1165 			li->extLocation.logicalBlockNum = 0;
1166 			li->extLocation.partitionReferenceNum = 0;
1167 			li->extLength = (li->extLength &
1168 						UDF_EXTENT_LENGTH_MASK) |
1169 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1170 		}
1171 	}
1172 }
1173 
1174 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1175 			       int startnum, int endnum,
1176 			       struct extent_position *epos)
1177 {
1178 	int start = 0, i;
1179 	struct kernel_lb_addr tmploc;
1180 	uint32_t tmplen;
1181 
1182 	if (startnum > endnum) {
1183 		for (i = 0; i < (startnum - endnum); i++)
1184 			udf_delete_aext(inode, *epos);
1185 	} else if (startnum < endnum) {
1186 		for (i = 0; i < (endnum - startnum); i++) {
1187 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1188 					laarr[i].extLength);
1189 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1190 				      &laarr[i].extLength, 1);
1191 			start++;
1192 		}
1193 	}
1194 
1195 	for (i = start; i < endnum; i++) {
1196 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1197 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1198 			       laarr[i].extLength, 1);
1199 	}
1200 }
1201 
1202 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1203 			      int create, int *err)
1204 {
1205 	struct buffer_head *bh = NULL;
1206 
1207 	bh = udf_getblk(inode, block, create, err);
1208 	if (!bh)
1209 		return NULL;
1210 
1211 	if (buffer_uptodate(bh))
1212 		return bh;
1213 
1214 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1215 
1216 	wait_on_buffer(bh);
1217 	if (buffer_uptodate(bh))
1218 		return bh;
1219 
1220 	brelse(bh);
1221 	*err = -EIO;
1222 	return NULL;
1223 }
1224 
1225 int udf_setsize(struct inode *inode, loff_t newsize)
1226 {
1227 	int err;
1228 	struct udf_inode_info *iinfo;
1229 	unsigned int bsize = i_blocksize(inode);
1230 
1231 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1232 	      S_ISLNK(inode->i_mode)))
1233 		return -EINVAL;
1234 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1235 		return -EPERM;
1236 
1237 	iinfo = UDF_I(inode);
1238 	if (newsize > inode->i_size) {
1239 		down_write(&iinfo->i_data_sem);
1240 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1241 			if (bsize <
1242 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1243 				err = udf_expand_file_adinicb(inode);
1244 				if (err)
1245 					return err;
1246 				down_write(&iinfo->i_data_sem);
1247 			} else {
1248 				iinfo->i_lenAlloc = newsize;
1249 				goto set_size;
1250 			}
1251 		}
1252 		err = udf_extend_file(inode, newsize);
1253 		if (err) {
1254 			up_write(&iinfo->i_data_sem);
1255 			return err;
1256 		}
1257 set_size:
1258 		up_write(&iinfo->i_data_sem);
1259 		truncate_setsize(inode, newsize);
1260 	} else {
1261 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1262 			down_write(&iinfo->i_data_sem);
1263 			udf_clear_extent_cache(inode);
1264 			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1265 			       0x00, bsize - newsize -
1266 			       udf_file_entry_alloc_offset(inode));
1267 			iinfo->i_lenAlloc = newsize;
1268 			truncate_setsize(inode, newsize);
1269 			up_write(&iinfo->i_data_sem);
1270 			goto update_time;
1271 		}
1272 		err = block_truncate_page(inode->i_mapping, newsize,
1273 					  udf_get_block);
1274 		if (err)
1275 			return err;
1276 		truncate_setsize(inode, newsize);
1277 		down_write(&iinfo->i_data_sem);
1278 		udf_clear_extent_cache(inode);
1279 		err = udf_truncate_extents(inode);
1280 		up_write(&iinfo->i_data_sem);
1281 		if (err)
1282 			return err;
1283 	}
1284 update_time:
1285 	inode->i_mtime = inode->i_ctime = current_time(inode);
1286 	if (IS_SYNC(inode))
1287 		udf_sync_inode(inode);
1288 	else
1289 		mark_inode_dirty(inode);
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1295  * arbitrary - just that we hopefully don't limit any real use of rewritten
1296  * inode on write-once media but avoid looping for too long on corrupted media.
1297  */
1298 #define UDF_MAX_ICB_NESTING 1024
1299 
1300 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1301 {
1302 	struct buffer_head *bh = NULL;
1303 	struct fileEntry *fe;
1304 	struct extendedFileEntry *efe;
1305 	uint16_t ident;
1306 	struct udf_inode_info *iinfo = UDF_I(inode);
1307 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1308 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1309 	unsigned int link_count;
1310 	unsigned int indirections = 0;
1311 	int bs = inode->i_sb->s_blocksize;
1312 	int ret = -EIO;
1313 	uint32_t uid, gid;
1314 
1315 reread:
1316 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1317 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1318 			  iloc->partitionReferenceNum, sbi->s_partitions);
1319 		return -EIO;
1320 	}
1321 
1322 	if (iloc->logicalBlockNum >=
1323 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1324 		udf_debug("block=%u, partition=%u out of range\n",
1325 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1326 		return -EIO;
1327 	}
1328 
1329 	/*
1330 	 * Set defaults, but the inode is still incomplete!
1331 	 * Note: get_new_inode() sets the following on a new inode:
1332 	 *      i_sb = sb
1333 	 *      i_no = ino
1334 	 *      i_flags = sb->s_flags
1335 	 *      i_state = 0
1336 	 * clean_inode(): zero fills and sets
1337 	 *      i_count = 1
1338 	 *      i_nlink = 1
1339 	 *      i_op = NULL;
1340 	 */
1341 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1342 	if (!bh) {
1343 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1344 		return -EIO;
1345 	}
1346 
1347 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1348 	    ident != TAG_IDENT_USE) {
1349 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1350 			inode->i_ino, ident);
1351 		goto out;
1352 	}
1353 
1354 	fe = (struct fileEntry *)bh->b_data;
1355 	efe = (struct extendedFileEntry *)bh->b_data;
1356 
1357 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1358 		struct buffer_head *ibh;
1359 
1360 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1361 		if (ident == TAG_IDENT_IE && ibh) {
1362 			struct kernel_lb_addr loc;
1363 			struct indirectEntry *ie;
1364 
1365 			ie = (struct indirectEntry *)ibh->b_data;
1366 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1367 
1368 			if (ie->indirectICB.extLength) {
1369 				brelse(ibh);
1370 				memcpy(&iinfo->i_location, &loc,
1371 				       sizeof(struct kernel_lb_addr));
1372 				if (++indirections > UDF_MAX_ICB_NESTING) {
1373 					udf_err(inode->i_sb,
1374 						"too many ICBs in ICB hierarchy"
1375 						" (max %d supported)\n",
1376 						UDF_MAX_ICB_NESTING);
1377 					goto out;
1378 				}
1379 				brelse(bh);
1380 				goto reread;
1381 			}
1382 		}
1383 		brelse(ibh);
1384 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1385 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1386 			le16_to_cpu(fe->icbTag.strategyType));
1387 		goto out;
1388 	}
1389 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1390 		iinfo->i_strat4096 = 0;
1391 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1392 		iinfo->i_strat4096 = 1;
1393 
1394 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1395 							ICBTAG_FLAG_AD_MASK;
1396 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1397 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1398 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1399 		ret = -EIO;
1400 		goto out;
1401 	}
1402 	iinfo->i_unique = 0;
1403 	iinfo->i_lenEAttr = 0;
1404 	iinfo->i_lenExtents = 0;
1405 	iinfo->i_lenAlloc = 0;
1406 	iinfo->i_next_alloc_block = 0;
1407 	iinfo->i_next_alloc_goal = 0;
1408 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1409 		iinfo->i_efe = 1;
1410 		iinfo->i_use = 0;
1411 		ret = udf_alloc_i_data(inode, bs -
1412 					sizeof(struct extendedFileEntry));
1413 		if (ret)
1414 			goto out;
1415 		memcpy(iinfo->i_ext.i_data,
1416 		       bh->b_data + sizeof(struct extendedFileEntry),
1417 		       bs - sizeof(struct extendedFileEntry));
1418 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1419 		iinfo->i_efe = 0;
1420 		iinfo->i_use = 0;
1421 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1422 		if (ret)
1423 			goto out;
1424 		memcpy(iinfo->i_ext.i_data,
1425 		       bh->b_data + sizeof(struct fileEntry),
1426 		       bs - sizeof(struct fileEntry));
1427 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1428 		iinfo->i_efe = 0;
1429 		iinfo->i_use = 1;
1430 		iinfo->i_lenAlloc = le32_to_cpu(
1431 				((struct unallocSpaceEntry *)bh->b_data)->
1432 				 lengthAllocDescs);
1433 		ret = udf_alloc_i_data(inode, bs -
1434 					sizeof(struct unallocSpaceEntry));
1435 		if (ret)
1436 			goto out;
1437 		memcpy(iinfo->i_ext.i_data,
1438 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1439 		       bs - sizeof(struct unallocSpaceEntry));
1440 		return 0;
1441 	}
1442 
1443 	ret = -EIO;
1444 	read_lock(&sbi->s_cred_lock);
1445 	uid = le32_to_cpu(fe->uid);
1446 	if (uid == UDF_INVALID_ID ||
1447 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1448 		inode->i_uid = sbi->s_uid;
1449 	else
1450 		i_uid_write(inode, uid);
1451 
1452 	gid = le32_to_cpu(fe->gid);
1453 	if (gid == UDF_INVALID_ID ||
1454 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1455 		inode->i_gid = sbi->s_gid;
1456 	else
1457 		i_gid_write(inode, gid);
1458 
1459 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1460 			sbi->s_fmode != UDF_INVALID_MODE)
1461 		inode->i_mode = sbi->s_fmode;
1462 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1463 			sbi->s_dmode != UDF_INVALID_MODE)
1464 		inode->i_mode = sbi->s_dmode;
1465 	else
1466 		inode->i_mode = udf_convert_permissions(fe);
1467 	inode->i_mode &= ~sbi->s_umask;
1468 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1469 
1470 	read_unlock(&sbi->s_cred_lock);
1471 
1472 	link_count = le16_to_cpu(fe->fileLinkCount);
1473 	if (!link_count) {
1474 		if (!hidden_inode) {
1475 			ret = -ESTALE;
1476 			goto out;
1477 		}
1478 		link_count = 1;
1479 	}
1480 	set_nlink(inode, link_count);
1481 
1482 	inode->i_size = le64_to_cpu(fe->informationLength);
1483 	iinfo->i_lenExtents = inode->i_size;
1484 
1485 	if (iinfo->i_efe == 0) {
1486 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1487 			(inode->i_sb->s_blocksize_bits - 9);
1488 
1489 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1490 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1491 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1492 
1493 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1494 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1495 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1496 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1497 		iinfo->i_streamdir = 0;
1498 		iinfo->i_lenStreams = 0;
1499 	} else {
1500 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1501 		    (inode->i_sb->s_blocksize_bits - 9);
1502 
1503 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1504 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1505 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1506 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1507 
1508 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1509 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1510 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1511 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1512 
1513 		/* Named streams */
1514 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1515 		iinfo->i_locStreamdir =
1516 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1517 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1518 		if (iinfo->i_lenStreams >= inode->i_size)
1519 			iinfo->i_lenStreams -= inode->i_size;
1520 		else
1521 			iinfo->i_lenStreams = 0;
1522 	}
1523 	inode->i_generation = iinfo->i_unique;
1524 
1525 	/*
1526 	 * Sanity check length of allocation descriptors and extended attrs to
1527 	 * avoid integer overflows
1528 	 */
1529 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1530 		goto out;
1531 	/* Now do exact checks */
1532 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1533 		goto out;
1534 	/* Sanity checks for files in ICB so that we don't get confused later */
1535 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1536 		/*
1537 		 * For file in ICB data is stored in allocation descriptor
1538 		 * so sizes should match
1539 		 */
1540 		if (iinfo->i_lenAlloc != inode->i_size)
1541 			goto out;
1542 		/* File in ICB has to fit in there... */
1543 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1544 			goto out;
1545 	}
1546 
1547 	switch (fe->icbTag.fileType) {
1548 	case ICBTAG_FILE_TYPE_DIRECTORY:
1549 		inode->i_op = &udf_dir_inode_operations;
1550 		inode->i_fop = &udf_dir_operations;
1551 		inode->i_mode |= S_IFDIR;
1552 		inc_nlink(inode);
1553 		break;
1554 	case ICBTAG_FILE_TYPE_REALTIME:
1555 	case ICBTAG_FILE_TYPE_REGULAR:
1556 	case ICBTAG_FILE_TYPE_UNDEF:
1557 	case ICBTAG_FILE_TYPE_VAT20:
1558 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1559 			inode->i_data.a_ops = &udf_adinicb_aops;
1560 		else
1561 			inode->i_data.a_ops = &udf_aops;
1562 		inode->i_op = &udf_file_inode_operations;
1563 		inode->i_fop = &udf_file_operations;
1564 		inode->i_mode |= S_IFREG;
1565 		break;
1566 	case ICBTAG_FILE_TYPE_BLOCK:
1567 		inode->i_mode |= S_IFBLK;
1568 		break;
1569 	case ICBTAG_FILE_TYPE_CHAR:
1570 		inode->i_mode |= S_IFCHR;
1571 		break;
1572 	case ICBTAG_FILE_TYPE_FIFO:
1573 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1574 		break;
1575 	case ICBTAG_FILE_TYPE_SOCKET:
1576 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1577 		break;
1578 	case ICBTAG_FILE_TYPE_SYMLINK:
1579 		inode->i_data.a_ops = &udf_symlink_aops;
1580 		inode->i_op = &udf_symlink_inode_operations;
1581 		inode_nohighmem(inode);
1582 		inode->i_mode = S_IFLNK | 0777;
1583 		break;
1584 	case ICBTAG_FILE_TYPE_MAIN:
1585 		udf_debug("METADATA FILE-----\n");
1586 		break;
1587 	case ICBTAG_FILE_TYPE_MIRROR:
1588 		udf_debug("METADATA MIRROR FILE-----\n");
1589 		break;
1590 	case ICBTAG_FILE_TYPE_BITMAP:
1591 		udf_debug("METADATA BITMAP FILE-----\n");
1592 		break;
1593 	default:
1594 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1595 			inode->i_ino, fe->icbTag.fileType);
1596 		goto out;
1597 	}
1598 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1599 		struct deviceSpec *dsea =
1600 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1601 		if (dsea) {
1602 			init_special_inode(inode, inode->i_mode,
1603 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1604 				      le32_to_cpu(dsea->minorDeviceIdent)));
1605 			/* Developer ID ??? */
1606 		} else
1607 			goto out;
1608 	}
1609 	ret = 0;
1610 out:
1611 	brelse(bh);
1612 	return ret;
1613 }
1614 
1615 static int udf_alloc_i_data(struct inode *inode, size_t size)
1616 {
1617 	struct udf_inode_info *iinfo = UDF_I(inode);
1618 	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1619 	if (!iinfo->i_ext.i_data)
1620 		return -ENOMEM;
1621 	return 0;
1622 }
1623 
1624 static umode_t udf_convert_permissions(struct fileEntry *fe)
1625 {
1626 	umode_t mode;
1627 	uint32_t permissions;
1628 	uint32_t flags;
1629 
1630 	permissions = le32_to_cpu(fe->permissions);
1631 	flags = le16_to_cpu(fe->icbTag.flags);
1632 
1633 	mode =	((permissions) & 0007) |
1634 		((permissions >> 2) & 0070) |
1635 		((permissions >> 4) & 0700) |
1636 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1637 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1638 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1639 
1640 	return mode;
1641 }
1642 
1643 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1644 {
1645 	struct udf_inode_info *iinfo = UDF_I(inode);
1646 
1647 	/*
1648 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1649 	 * In Unix, delete permission tracks write
1650 	 */
1651 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1652 	if (mode & 0200)
1653 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1654 	if (mode & 0020)
1655 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1656 	if (mode & 0002)
1657 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1658 }
1659 
1660 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1661 {
1662 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1663 }
1664 
1665 static int udf_sync_inode(struct inode *inode)
1666 {
1667 	return udf_update_inode(inode, 1);
1668 }
1669 
1670 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1671 {
1672 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1673 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1674 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1675 		iinfo->i_crtime = time;
1676 }
1677 
1678 static int udf_update_inode(struct inode *inode, int do_sync)
1679 {
1680 	struct buffer_head *bh = NULL;
1681 	struct fileEntry *fe;
1682 	struct extendedFileEntry *efe;
1683 	uint64_t lb_recorded;
1684 	uint32_t udfperms;
1685 	uint16_t icbflags;
1686 	uint16_t crclen;
1687 	int err = 0;
1688 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1689 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1690 	struct udf_inode_info *iinfo = UDF_I(inode);
1691 
1692 	bh = udf_tgetblk(inode->i_sb,
1693 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1694 	if (!bh) {
1695 		udf_debug("getblk failure\n");
1696 		return -EIO;
1697 	}
1698 
1699 	lock_buffer(bh);
1700 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1701 	fe = (struct fileEntry *)bh->b_data;
1702 	efe = (struct extendedFileEntry *)bh->b_data;
1703 
1704 	if (iinfo->i_use) {
1705 		struct unallocSpaceEntry *use =
1706 			(struct unallocSpaceEntry *)bh->b_data;
1707 
1708 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1709 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1710 		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1711 					sizeof(struct unallocSpaceEntry));
1712 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1713 		crclen = sizeof(struct unallocSpaceEntry);
1714 
1715 		goto finish;
1716 	}
1717 
1718 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1719 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1720 	else
1721 		fe->uid = cpu_to_le32(i_uid_read(inode));
1722 
1723 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1724 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1725 	else
1726 		fe->gid = cpu_to_le32(i_gid_read(inode));
1727 
1728 	udfperms = ((inode->i_mode & 0007)) |
1729 		   ((inode->i_mode & 0070) << 2) |
1730 		   ((inode->i_mode & 0700) << 4);
1731 
1732 	udfperms |= iinfo->i_extraPerms;
1733 	fe->permissions = cpu_to_le32(udfperms);
1734 
1735 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1736 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1737 	else
1738 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1739 
1740 	fe->informationLength = cpu_to_le64(inode->i_size);
1741 
1742 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1743 		struct regid *eid;
1744 		struct deviceSpec *dsea =
1745 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1746 		if (!dsea) {
1747 			dsea = (struct deviceSpec *)
1748 				udf_add_extendedattr(inode,
1749 						     sizeof(struct deviceSpec) +
1750 						     sizeof(struct regid), 12, 0x3);
1751 			dsea->attrType = cpu_to_le32(12);
1752 			dsea->attrSubtype = 1;
1753 			dsea->attrLength = cpu_to_le32(
1754 						sizeof(struct deviceSpec) +
1755 						sizeof(struct regid));
1756 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1757 		}
1758 		eid = (struct regid *)dsea->impUse;
1759 		memset(eid, 0, sizeof(*eid));
1760 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1761 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1762 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1763 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1764 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1765 	}
1766 
1767 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1768 		lb_recorded = 0; /* No extents => no blocks! */
1769 	else
1770 		lb_recorded =
1771 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1772 			(blocksize_bits - 9);
1773 
1774 	if (iinfo->i_efe == 0) {
1775 		memcpy(bh->b_data + sizeof(struct fileEntry),
1776 		       iinfo->i_ext.i_data,
1777 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1778 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1779 
1780 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1781 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1782 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1783 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1784 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1785 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1786 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1787 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1788 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1789 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1790 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1791 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1792 		crclen = sizeof(struct fileEntry);
1793 	} else {
1794 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1795 		       iinfo->i_ext.i_data,
1796 		       inode->i_sb->s_blocksize -
1797 					sizeof(struct extendedFileEntry));
1798 		efe->objectSize =
1799 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1800 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1801 
1802 		if (iinfo->i_streamdir) {
1803 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1804 
1805 			icb_lad->extLocation =
1806 				cpu_to_lelb(iinfo->i_locStreamdir);
1807 			icb_lad->extLength =
1808 				cpu_to_le32(inode->i_sb->s_blocksize);
1809 		}
1810 
1811 		udf_adjust_time(iinfo, inode->i_atime);
1812 		udf_adjust_time(iinfo, inode->i_mtime);
1813 		udf_adjust_time(iinfo, inode->i_ctime);
1814 
1815 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1816 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1817 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1818 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1819 
1820 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1821 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1822 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1823 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1824 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1825 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1826 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1827 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1828 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1829 		crclen = sizeof(struct extendedFileEntry);
1830 	}
1831 
1832 finish:
1833 	if (iinfo->i_strat4096) {
1834 		fe->icbTag.strategyType = cpu_to_le16(4096);
1835 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1836 		fe->icbTag.numEntries = cpu_to_le16(2);
1837 	} else {
1838 		fe->icbTag.strategyType = cpu_to_le16(4);
1839 		fe->icbTag.numEntries = cpu_to_le16(1);
1840 	}
1841 
1842 	if (iinfo->i_use)
1843 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1844 	else if (S_ISDIR(inode->i_mode))
1845 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1846 	else if (S_ISREG(inode->i_mode))
1847 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1848 	else if (S_ISLNK(inode->i_mode))
1849 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1850 	else if (S_ISBLK(inode->i_mode))
1851 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1852 	else if (S_ISCHR(inode->i_mode))
1853 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1854 	else if (S_ISFIFO(inode->i_mode))
1855 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1856 	else if (S_ISSOCK(inode->i_mode))
1857 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1858 
1859 	icbflags =	iinfo->i_alloc_type |
1860 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1861 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1862 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1863 			(le16_to_cpu(fe->icbTag.flags) &
1864 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1865 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1866 
1867 	fe->icbTag.flags = cpu_to_le16(icbflags);
1868 	if (sbi->s_udfrev >= 0x0200)
1869 		fe->descTag.descVersion = cpu_to_le16(3);
1870 	else
1871 		fe->descTag.descVersion = cpu_to_le16(2);
1872 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1873 	fe->descTag.tagLocation = cpu_to_le32(
1874 					iinfo->i_location.logicalBlockNum);
1875 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1876 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1877 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1878 						  crclen));
1879 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1880 
1881 	set_buffer_uptodate(bh);
1882 	unlock_buffer(bh);
1883 
1884 	/* write the data blocks */
1885 	mark_buffer_dirty(bh);
1886 	if (do_sync) {
1887 		sync_dirty_buffer(bh);
1888 		if (buffer_write_io_error(bh)) {
1889 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1890 				 inode->i_ino);
1891 			err = -EIO;
1892 		}
1893 	}
1894 	brelse(bh);
1895 
1896 	return err;
1897 }
1898 
1899 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1900 			 bool hidden_inode)
1901 {
1902 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1903 	struct inode *inode = iget_locked(sb, block);
1904 	int err;
1905 
1906 	if (!inode)
1907 		return ERR_PTR(-ENOMEM);
1908 
1909 	if (!(inode->i_state & I_NEW))
1910 		return inode;
1911 
1912 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1913 	err = udf_read_inode(inode, hidden_inode);
1914 	if (err < 0) {
1915 		iget_failed(inode);
1916 		return ERR_PTR(err);
1917 	}
1918 	unlock_new_inode(inode);
1919 
1920 	return inode;
1921 }
1922 
1923 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1924 			    struct extent_position *epos)
1925 {
1926 	struct super_block *sb = inode->i_sb;
1927 	struct buffer_head *bh;
1928 	struct allocExtDesc *aed;
1929 	struct extent_position nepos;
1930 	struct kernel_lb_addr neloc;
1931 	int ver, adsize;
1932 
1933 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1934 		adsize = sizeof(struct short_ad);
1935 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1936 		adsize = sizeof(struct long_ad);
1937 	else
1938 		return -EIO;
1939 
1940 	neloc.logicalBlockNum = block;
1941 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1942 
1943 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1944 	if (!bh)
1945 		return -EIO;
1946 	lock_buffer(bh);
1947 	memset(bh->b_data, 0x00, sb->s_blocksize);
1948 	set_buffer_uptodate(bh);
1949 	unlock_buffer(bh);
1950 	mark_buffer_dirty_inode(bh, inode);
1951 
1952 	aed = (struct allocExtDesc *)(bh->b_data);
1953 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1954 		aed->previousAllocExtLocation =
1955 				cpu_to_le32(epos->block.logicalBlockNum);
1956 	}
1957 	aed->lengthAllocDescs = cpu_to_le32(0);
1958 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1959 		ver = 3;
1960 	else
1961 		ver = 2;
1962 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1963 		    sizeof(struct tag));
1964 
1965 	nepos.block = neloc;
1966 	nepos.offset = sizeof(struct allocExtDesc);
1967 	nepos.bh = bh;
1968 
1969 	/*
1970 	 * Do we have to copy current last extent to make space for indirect
1971 	 * one?
1972 	 */
1973 	if (epos->offset + adsize > sb->s_blocksize) {
1974 		struct kernel_lb_addr cp_loc;
1975 		uint32_t cp_len;
1976 		int cp_type;
1977 
1978 		epos->offset -= adsize;
1979 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1980 		cp_len |= ((uint32_t)cp_type) << 30;
1981 
1982 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1983 		udf_write_aext(inode, epos, &nepos.block,
1984 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1985 	} else {
1986 		__udf_add_aext(inode, epos, &nepos.block,
1987 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1988 	}
1989 
1990 	brelse(epos->bh);
1991 	*epos = nepos;
1992 
1993 	return 0;
1994 }
1995 
1996 /*
1997  * Append extent at the given position - should be the first free one in inode
1998  * / indirect extent. This function assumes there is enough space in the inode
1999  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2000  */
2001 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2002 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2003 {
2004 	struct udf_inode_info *iinfo = UDF_I(inode);
2005 	struct allocExtDesc *aed;
2006 	int adsize;
2007 
2008 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2009 		adsize = sizeof(struct short_ad);
2010 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2011 		adsize = sizeof(struct long_ad);
2012 	else
2013 		return -EIO;
2014 
2015 	if (!epos->bh) {
2016 		WARN_ON(iinfo->i_lenAlloc !=
2017 			epos->offset - udf_file_entry_alloc_offset(inode));
2018 	} else {
2019 		aed = (struct allocExtDesc *)epos->bh->b_data;
2020 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2021 			epos->offset - sizeof(struct allocExtDesc));
2022 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2023 	}
2024 
2025 	udf_write_aext(inode, epos, eloc, elen, inc);
2026 
2027 	if (!epos->bh) {
2028 		iinfo->i_lenAlloc += adsize;
2029 		mark_inode_dirty(inode);
2030 	} else {
2031 		aed = (struct allocExtDesc *)epos->bh->b_data;
2032 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2033 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2034 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2035 			udf_update_tag(epos->bh->b_data,
2036 					epos->offset + (inc ? 0 : adsize));
2037 		else
2038 			udf_update_tag(epos->bh->b_data,
2039 					sizeof(struct allocExtDesc));
2040 		mark_buffer_dirty_inode(epos->bh, inode);
2041 	}
2042 
2043 	return 0;
2044 }
2045 
2046 /*
2047  * Append extent at given position - should be the first free one in inode
2048  * / indirect extent. Takes care of allocating and linking indirect blocks.
2049  */
2050 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2051 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2052 {
2053 	int adsize;
2054 	struct super_block *sb = inode->i_sb;
2055 
2056 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2057 		adsize = sizeof(struct short_ad);
2058 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2059 		adsize = sizeof(struct long_ad);
2060 	else
2061 		return -EIO;
2062 
2063 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2064 		int err;
2065 		udf_pblk_t new_block;
2066 
2067 		new_block = udf_new_block(sb, NULL,
2068 					  epos->block.partitionReferenceNum,
2069 					  epos->block.logicalBlockNum, &err);
2070 		if (!new_block)
2071 			return -ENOSPC;
2072 
2073 		err = udf_setup_indirect_aext(inode, new_block, epos);
2074 		if (err)
2075 			return err;
2076 	}
2077 
2078 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2079 }
2080 
2081 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2082 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2083 {
2084 	int adsize;
2085 	uint8_t *ptr;
2086 	struct short_ad *sad;
2087 	struct long_ad *lad;
2088 	struct udf_inode_info *iinfo = UDF_I(inode);
2089 
2090 	if (!epos->bh)
2091 		ptr = iinfo->i_ext.i_data + epos->offset -
2092 			udf_file_entry_alloc_offset(inode) +
2093 			iinfo->i_lenEAttr;
2094 	else
2095 		ptr = epos->bh->b_data + epos->offset;
2096 
2097 	switch (iinfo->i_alloc_type) {
2098 	case ICBTAG_FLAG_AD_SHORT:
2099 		sad = (struct short_ad *)ptr;
2100 		sad->extLength = cpu_to_le32(elen);
2101 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2102 		adsize = sizeof(struct short_ad);
2103 		break;
2104 	case ICBTAG_FLAG_AD_LONG:
2105 		lad = (struct long_ad *)ptr;
2106 		lad->extLength = cpu_to_le32(elen);
2107 		lad->extLocation = cpu_to_lelb(*eloc);
2108 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2109 		adsize = sizeof(struct long_ad);
2110 		break;
2111 	default:
2112 		return;
2113 	}
2114 
2115 	if (epos->bh) {
2116 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2117 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2118 			struct allocExtDesc *aed =
2119 				(struct allocExtDesc *)epos->bh->b_data;
2120 			udf_update_tag(epos->bh->b_data,
2121 				       le32_to_cpu(aed->lengthAllocDescs) +
2122 				       sizeof(struct allocExtDesc));
2123 		}
2124 		mark_buffer_dirty_inode(epos->bh, inode);
2125 	} else {
2126 		mark_inode_dirty(inode);
2127 	}
2128 
2129 	if (inc)
2130 		epos->offset += adsize;
2131 }
2132 
2133 /*
2134  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2135  * someone does some weird stuff.
2136  */
2137 #define UDF_MAX_INDIR_EXTS 16
2138 
2139 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2140 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2141 {
2142 	int8_t etype;
2143 	unsigned int indirections = 0;
2144 
2145 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2146 	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2147 		udf_pblk_t block;
2148 
2149 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2150 			udf_err(inode->i_sb,
2151 				"too many indirect extents in inode %lu\n",
2152 				inode->i_ino);
2153 			return -1;
2154 		}
2155 
2156 		epos->block = *eloc;
2157 		epos->offset = sizeof(struct allocExtDesc);
2158 		brelse(epos->bh);
2159 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2160 		epos->bh = udf_tread(inode->i_sb, block);
2161 		if (!epos->bh) {
2162 			udf_debug("reading block %u failed!\n", block);
2163 			return -1;
2164 		}
2165 	}
2166 
2167 	return etype;
2168 }
2169 
2170 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2171 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2172 {
2173 	int alen;
2174 	int8_t etype;
2175 	uint8_t *ptr;
2176 	struct short_ad *sad;
2177 	struct long_ad *lad;
2178 	struct udf_inode_info *iinfo = UDF_I(inode);
2179 
2180 	if (!epos->bh) {
2181 		if (!epos->offset)
2182 			epos->offset = udf_file_entry_alloc_offset(inode);
2183 		ptr = iinfo->i_ext.i_data + epos->offset -
2184 			udf_file_entry_alloc_offset(inode) +
2185 			iinfo->i_lenEAttr;
2186 		alen = udf_file_entry_alloc_offset(inode) +
2187 							iinfo->i_lenAlloc;
2188 	} else {
2189 		if (!epos->offset)
2190 			epos->offset = sizeof(struct allocExtDesc);
2191 		ptr = epos->bh->b_data + epos->offset;
2192 		alen = sizeof(struct allocExtDesc) +
2193 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2194 							lengthAllocDescs);
2195 	}
2196 
2197 	switch (iinfo->i_alloc_type) {
2198 	case ICBTAG_FLAG_AD_SHORT:
2199 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2200 		if (!sad)
2201 			return -1;
2202 		etype = le32_to_cpu(sad->extLength) >> 30;
2203 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2204 		eloc->partitionReferenceNum =
2205 				iinfo->i_location.partitionReferenceNum;
2206 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2207 		break;
2208 	case ICBTAG_FLAG_AD_LONG:
2209 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2210 		if (!lad)
2211 			return -1;
2212 		etype = le32_to_cpu(lad->extLength) >> 30;
2213 		*eloc = lelb_to_cpu(lad->extLocation);
2214 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2215 		break;
2216 	default:
2217 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2218 		return -1;
2219 	}
2220 
2221 	return etype;
2222 }
2223 
2224 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2225 			      struct kernel_lb_addr neloc, uint32_t nelen)
2226 {
2227 	struct kernel_lb_addr oeloc;
2228 	uint32_t oelen;
2229 	int8_t etype;
2230 
2231 	if (epos.bh)
2232 		get_bh(epos.bh);
2233 
2234 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236 		neloc = oeloc;
2237 		nelen = (etype << 30) | oelen;
2238 	}
2239 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240 	brelse(epos.bh);
2241 
2242 	return (nelen >> 30);
2243 }
2244 
2245 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246 {
2247 	struct extent_position oepos;
2248 	int adsize;
2249 	int8_t etype;
2250 	struct allocExtDesc *aed;
2251 	struct udf_inode_info *iinfo;
2252 	struct kernel_lb_addr eloc;
2253 	uint32_t elen;
2254 
2255 	if (epos.bh) {
2256 		get_bh(epos.bh);
2257 		get_bh(epos.bh);
2258 	}
2259 
2260 	iinfo = UDF_I(inode);
2261 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262 		adsize = sizeof(struct short_ad);
2263 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264 		adsize = sizeof(struct long_ad);
2265 	else
2266 		adsize = 0;
2267 
2268 	oepos = epos;
2269 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270 		return -1;
2271 
2272 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274 		if (oepos.bh != epos.bh) {
2275 			oepos.block = epos.block;
2276 			brelse(oepos.bh);
2277 			get_bh(epos.bh);
2278 			oepos.bh = epos.bh;
2279 			oepos.offset = epos.offset - adsize;
2280 		}
2281 	}
2282 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283 	elen = 0;
2284 
2285 	if (epos.bh != oepos.bh) {
2286 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289 		if (!oepos.bh) {
2290 			iinfo->i_lenAlloc -= (adsize * 2);
2291 			mark_inode_dirty(inode);
2292 		} else {
2293 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2294 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297 				udf_update_tag(oepos.bh->b_data,
2298 						oepos.offset - (2 * adsize));
2299 			else
2300 				udf_update_tag(oepos.bh->b_data,
2301 						sizeof(struct allocExtDesc));
2302 			mark_buffer_dirty_inode(oepos.bh, inode);
2303 		}
2304 	} else {
2305 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306 		if (!oepos.bh) {
2307 			iinfo->i_lenAlloc -= adsize;
2308 			mark_inode_dirty(inode);
2309 		} else {
2310 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2311 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314 				udf_update_tag(oepos.bh->b_data,
2315 						epos.offset - adsize);
2316 			else
2317 				udf_update_tag(oepos.bh->b_data,
2318 						sizeof(struct allocExtDesc));
2319 			mark_buffer_dirty_inode(oepos.bh, inode);
2320 		}
2321 	}
2322 
2323 	brelse(epos.bh);
2324 	brelse(oepos.bh);
2325 
2326 	return (elen >> 30);
2327 }
2328 
2329 int8_t inode_bmap(struct inode *inode, sector_t block,
2330 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2331 		  uint32_t *elen, sector_t *offset)
2332 {
2333 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335 	int8_t etype;
2336 	struct udf_inode_info *iinfo;
2337 
2338 	iinfo = UDF_I(inode);
2339 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340 		pos->offset = 0;
2341 		pos->block = iinfo->i_location;
2342 		pos->bh = NULL;
2343 	}
2344 	*elen = 0;
2345 	do {
2346 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347 		if (etype == -1) {
2348 			*offset = (bcount - lbcount) >> blocksize_bits;
2349 			iinfo->i_lenExtents = lbcount;
2350 			return -1;
2351 		}
2352 		lbcount += *elen;
2353 	} while (lbcount <= bcount);
2354 	/* update extent cache */
2355 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2356 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357 
2358 	return etype;
2359 }
2360 
2361 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362 {
2363 	struct kernel_lb_addr eloc;
2364 	uint32_t elen;
2365 	sector_t offset;
2366 	struct extent_position epos = {};
2367 	udf_pblk_t ret;
2368 
2369 	down_read(&UDF_I(inode)->i_data_sem);
2370 
2371 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372 						(EXT_RECORDED_ALLOCATED >> 30))
2373 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374 	else
2375 		ret = 0;
2376 
2377 	up_read(&UDF_I(inode)->i_data_sem);
2378 	brelse(epos.bh);
2379 
2380 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381 		return udf_fixed_to_variable(ret);
2382 	else
2383 		return ret;
2384 }
2385