1 /* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32 #include "udfdecl.h" 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/pagemap.h> 36 #include <linux/writeback.h> 37 #include <linux/slab.h> 38 #include <linux/crc-itu-t.h> 39 #include <linux/mpage.h> 40 #include <linux/uio.h> 41 #include <linux/bio.h> 42 43 #include "udf_i.h" 44 #include "udf_sb.h" 45 46 #define EXTENT_MERGE_SIZE 5 47 48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55 static umode_t udf_convert_permissions(struct fileEntry *); 56 static int udf_update_inode(struct inode *, int); 57 static int udf_sync_inode(struct inode *inode); 58 static int udf_alloc_i_data(struct inode *inode, size_t size); 59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60 static int8_t udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64 static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71 static void __udf_clear_extent_cache(struct inode *inode) 72 { 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79 } 80 81 /* Invalidate extent cache */ 82 static void udf_clear_extent_cache(struct inode *inode) 83 { 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89 } 90 91 /* Return contents of extent cache */ 92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94 { 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111 } 112 113 /* Add extent to extent cache */ 114 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116 { 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135 } 136 137 void udf_evict_inode(struct inode *inode) 138 { 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166 } 167 168 static void udf_write_failed(struct address_space *mapping, loff_t to) 169 { 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183 } 184 185 static int udf_writepages(struct address_space *mapping, 186 struct writeback_control *wbc) 187 { 188 return mpage_writepages(mapping, wbc, udf_get_block); 189 } 190 191 static int udf_read_folio(struct file *file, struct folio *folio) 192 { 193 return mpage_read_folio(folio, udf_get_block); 194 } 195 196 static void udf_readahead(struct readahead_control *rac) 197 { 198 mpage_readahead(rac, udf_get_block); 199 } 200 201 static int udf_write_begin(struct file *file, struct address_space *mapping, 202 loff_t pos, unsigned len, 203 struct page **pagep, void **fsdata) 204 { 205 int ret; 206 207 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block); 208 if (unlikely(ret)) 209 udf_write_failed(mapping, pos + len); 210 return ret; 211 } 212 213 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 214 { 215 struct file *file = iocb->ki_filp; 216 struct address_space *mapping = file->f_mapping; 217 struct inode *inode = mapping->host; 218 size_t count = iov_iter_count(iter); 219 ssize_t ret; 220 221 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 222 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 223 udf_write_failed(mapping, iocb->ki_pos + count); 224 return ret; 225 } 226 227 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 228 { 229 return generic_block_bmap(mapping, block, udf_get_block); 230 } 231 232 const struct address_space_operations udf_aops = { 233 .dirty_folio = block_dirty_folio, 234 .invalidate_folio = block_invalidate_folio, 235 .read_folio = udf_read_folio, 236 .readahead = udf_readahead, 237 .writepages = udf_writepages, 238 .write_begin = udf_write_begin, 239 .write_end = generic_write_end, 240 .direct_IO = udf_direct_IO, 241 .bmap = udf_bmap, 242 .migrate_folio = buffer_migrate_folio, 243 }; 244 245 /* 246 * Expand file stored in ICB to a normal one-block-file 247 * 248 * This function requires i_data_sem for writing and releases it. 249 * This function requires i_mutex held 250 */ 251 int udf_expand_file_adinicb(struct inode *inode) 252 { 253 struct page *page; 254 char *kaddr; 255 struct udf_inode_info *iinfo = UDF_I(inode); 256 int err; 257 258 WARN_ON_ONCE(!inode_is_locked(inode)); 259 if (!iinfo->i_lenAlloc) { 260 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 262 else 263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 264 /* from now on we have normal address_space methods */ 265 inode->i_data.a_ops = &udf_aops; 266 up_write(&iinfo->i_data_sem); 267 mark_inode_dirty(inode); 268 return 0; 269 } 270 /* 271 * Release i_data_sem so that we can lock a page - page lock ranks 272 * above i_data_sem. i_mutex still protects us against file changes. 273 */ 274 up_write(&iinfo->i_data_sem); 275 276 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 277 if (!page) 278 return -ENOMEM; 279 280 if (!PageUptodate(page)) { 281 kaddr = kmap_atomic(page); 282 memset(kaddr + iinfo->i_lenAlloc, 0x00, 283 PAGE_SIZE - iinfo->i_lenAlloc); 284 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 285 iinfo->i_lenAlloc); 286 flush_dcache_page(page); 287 SetPageUptodate(page); 288 kunmap_atomic(kaddr); 289 } 290 down_write(&iinfo->i_data_sem); 291 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 292 iinfo->i_lenAlloc); 293 iinfo->i_lenAlloc = 0; 294 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 296 else 297 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 298 /* from now on we have normal address_space methods */ 299 inode->i_data.a_ops = &udf_aops; 300 set_page_dirty(page); 301 unlock_page(page); 302 up_write(&iinfo->i_data_sem); 303 err = filemap_fdatawrite(inode->i_mapping); 304 if (err) { 305 /* Restore everything back so that we don't lose data... */ 306 lock_page(page); 307 down_write(&iinfo->i_data_sem); 308 kaddr = kmap_atomic(page); 309 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 310 kunmap_atomic(kaddr); 311 unlock_page(page); 312 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 313 inode->i_data.a_ops = &udf_adinicb_aops; 314 iinfo->i_lenAlloc = inode->i_size; 315 up_write(&iinfo->i_data_sem); 316 } 317 put_page(page); 318 mark_inode_dirty(inode); 319 320 return err; 321 } 322 323 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 324 udf_pblk_t *block, int *err) 325 { 326 udf_pblk_t newblock; 327 struct buffer_head *dbh = NULL; 328 struct kernel_lb_addr eloc; 329 uint8_t alloctype; 330 struct extent_position epos; 331 332 struct udf_fileident_bh sfibh, dfibh; 333 loff_t f_pos = udf_ext0_offset(inode); 334 int size = udf_ext0_offset(inode) + inode->i_size; 335 struct fileIdentDesc cfi, *sfi, *dfi; 336 struct udf_inode_info *iinfo = UDF_I(inode); 337 338 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 339 alloctype = ICBTAG_FLAG_AD_SHORT; 340 else 341 alloctype = ICBTAG_FLAG_AD_LONG; 342 343 if (!inode->i_size) { 344 iinfo->i_alloc_type = alloctype; 345 mark_inode_dirty(inode); 346 return NULL; 347 } 348 349 /* alloc block, and copy data to it */ 350 *block = udf_new_block(inode->i_sb, inode, 351 iinfo->i_location.partitionReferenceNum, 352 iinfo->i_location.logicalBlockNum, err); 353 if (!(*block)) 354 return NULL; 355 newblock = udf_get_pblock(inode->i_sb, *block, 356 iinfo->i_location.partitionReferenceNum, 357 0); 358 if (!newblock) 359 return NULL; 360 dbh = udf_tgetblk(inode->i_sb, newblock); 361 if (!dbh) 362 return NULL; 363 lock_buffer(dbh); 364 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 365 set_buffer_uptodate(dbh); 366 unlock_buffer(dbh); 367 mark_buffer_dirty_inode(dbh, inode); 368 369 sfibh.soffset = sfibh.eoffset = 370 f_pos & (inode->i_sb->s_blocksize - 1); 371 sfibh.sbh = sfibh.ebh = NULL; 372 dfibh.soffset = dfibh.eoffset = 0; 373 dfibh.sbh = dfibh.ebh = dbh; 374 while (f_pos < size) { 375 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 376 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 377 NULL, NULL, NULL); 378 if (!sfi) { 379 brelse(dbh); 380 return NULL; 381 } 382 iinfo->i_alloc_type = alloctype; 383 sfi->descTag.tagLocation = cpu_to_le32(*block); 384 dfibh.soffset = dfibh.eoffset; 385 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 386 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 387 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 388 udf_get_fi_ident(sfi))) { 389 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 390 brelse(dbh); 391 return NULL; 392 } 393 } 394 mark_buffer_dirty_inode(dbh, inode); 395 396 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 397 iinfo->i_lenAlloc = 0; 398 eloc.logicalBlockNum = *block; 399 eloc.partitionReferenceNum = 400 iinfo->i_location.partitionReferenceNum; 401 iinfo->i_lenExtents = inode->i_size; 402 epos.bh = NULL; 403 epos.block = iinfo->i_location; 404 epos.offset = udf_file_entry_alloc_offset(inode); 405 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 406 /* UniqueID stuff */ 407 408 brelse(epos.bh); 409 mark_inode_dirty(inode); 410 return dbh; 411 } 412 413 static int udf_get_block(struct inode *inode, sector_t block, 414 struct buffer_head *bh_result, int create) 415 { 416 int err, new; 417 sector_t phys = 0; 418 struct udf_inode_info *iinfo; 419 420 if (!create) { 421 phys = udf_block_map(inode, block); 422 if (phys) 423 map_bh(bh_result, inode->i_sb, phys); 424 return 0; 425 } 426 427 err = -EIO; 428 new = 0; 429 iinfo = UDF_I(inode); 430 431 down_write(&iinfo->i_data_sem); 432 if (block == iinfo->i_next_alloc_block + 1) { 433 iinfo->i_next_alloc_block++; 434 iinfo->i_next_alloc_goal++; 435 } 436 437 /* 438 * Block beyond EOF and prealloc extents? Just discard preallocation 439 * as it is not useful and complicates things. 440 */ 441 if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents) 442 udf_discard_prealloc(inode); 443 udf_clear_extent_cache(inode); 444 phys = inode_getblk(inode, block, &err, &new); 445 if (!phys) 446 goto abort; 447 448 if (new) 449 set_buffer_new(bh_result); 450 map_bh(bh_result, inode->i_sb, phys); 451 452 abort: 453 up_write(&iinfo->i_data_sem); 454 return err; 455 } 456 457 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 458 int create, int *err) 459 { 460 struct buffer_head *bh; 461 struct buffer_head dummy; 462 463 dummy.b_state = 0; 464 dummy.b_blocknr = -1000; 465 *err = udf_get_block(inode, block, &dummy, create); 466 if (!*err && buffer_mapped(&dummy)) { 467 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 468 if (buffer_new(&dummy)) { 469 lock_buffer(bh); 470 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 471 set_buffer_uptodate(bh); 472 unlock_buffer(bh); 473 mark_buffer_dirty_inode(bh, inode); 474 } 475 return bh; 476 } 477 478 return NULL; 479 } 480 481 /* Extend the file with new blocks totaling 'new_block_bytes', 482 * return the number of extents added 483 */ 484 static int udf_do_extend_file(struct inode *inode, 485 struct extent_position *last_pos, 486 struct kernel_long_ad *last_ext, 487 loff_t new_block_bytes) 488 { 489 uint32_t add; 490 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 491 struct super_block *sb = inode->i_sb; 492 struct udf_inode_info *iinfo; 493 int err; 494 495 /* The previous extent is fake and we should not extend by anything 496 * - there's nothing to do... */ 497 if (!new_block_bytes && fake) 498 return 0; 499 500 iinfo = UDF_I(inode); 501 /* Round the last extent up to a multiple of block size */ 502 if (last_ext->extLength & (sb->s_blocksize - 1)) { 503 last_ext->extLength = 504 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 505 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 506 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 507 iinfo->i_lenExtents = 508 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 509 ~(sb->s_blocksize - 1); 510 } 511 512 /* Can we merge with the previous extent? */ 513 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 514 EXT_NOT_RECORDED_NOT_ALLOCATED) { 515 add = (1 << 30) - sb->s_blocksize - 516 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 517 if (add > new_block_bytes) 518 add = new_block_bytes; 519 new_block_bytes -= add; 520 last_ext->extLength += add; 521 } 522 523 if (fake) { 524 udf_add_aext(inode, last_pos, &last_ext->extLocation, 525 last_ext->extLength, 1); 526 count++; 527 } else { 528 struct kernel_lb_addr tmploc; 529 uint32_t tmplen; 530 531 udf_write_aext(inode, last_pos, &last_ext->extLocation, 532 last_ext->extLength, 1); 533 534 /* 535 * We've rewritten the last extent. If we are going to add 536 * more extents, we may need to enter possible following 537 * empty indirect extent. 538 */ 539 if (new_block_bytes) 540 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 541 } 542 543 /* Managed to do everything necessary? */ 544 if (!new_block_bytes) 545 goto out; 546 547 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 548 last_ext->extLocation.logicalBlockNum = 0; 549 last_ext->extLocation.partitionReferenceNum = 0; 550 add = (1 << 30) - sb->s_blocksize; 551 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 552 553 /* Create enough extents to cover the whole hole */ 554 while (new_block_bytes > add) { 555 new_block_bytes -= add; 556 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 557 last_ext->extLength, 1); 558 if (err) 559 return err; 560 count++; 561 } 562 if (new_block_bytes) { 563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 564 new_block_bytes; 565 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 566 last_ext->extLength, 1); 567 if (err) 568 return err; 569 count++; 570 } 571 572 out: 573 /* last_pos should point to the last written extent... */ 574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 575 last_pos->offset -= sizeof(struct short_ad); 576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 577 last_pos->offset -= sizeof(struct long_ad); 578 else 579 return -EIO; 580 581 return count; 582 } 583 584 /* Extend the final block of the file to final_block_len bytes */ 585 static void udf_do_extend_final_block(struct inode *inode, 586 struct extent_position *last_pos, 587 struct kernel_long_ad *last_ext, 588 uint32_t new_elen) 589 { 590 uint32_t added_bytes; 591 592 /* 593 * Extent already large enough? It may be already rounded up to block 594 * size... 595 */ 596 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 597 return; 598 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 599 last_ext->extLength += added_bytes; 600 UDF_I(inode)->i_lenExtents += added_bytes; 601 602 udf_write_aext(inode, last_pos, &last_ext->extLocation, 603 last_ext->extLength, 1); 604 } 605 606 static int udf_extend_file(struct inode *inode, loff_t newsize) 607 { 608 609 struct extent_position epos; 610 struct kernel_lb_addr eloc; 611 uint32_t elen; 612 int8_t etype; 613 struct super_block *sb = inode->i_sb; 614 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 615 loff_t new_elen; 616 int adsize; 617 struct udf_inode_info *iinfo = UDF_I(inode); 618 struct kernel_long_ad extent; 619 int err = 0; 620 bool within_last_ext; 621 622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 623 adsize = sizeof(struct short_ad); 624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 625 adsize = sizeof(struct long_ad); 626 else 627 BUG(); 628 629 /* 630 * When creating hole in file, just don't bother with preserving 631 * preallocation. It likely won't be very useful anyway. 632 */ 633 udf_discard_prealloc(inode); 634 635 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 636 within_last_ext = (etype != -1); 637 /* We don't expect extents past EOF... */ 638 WARN_ON_ONCE(within_last_ext && 639 elen > ((loff_t)offset + 1) << inode->i_blkbits); 640 641 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 642 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 643 /* File has no extents at all or has empty last 644 * indirect extent! Create a fake extent... */ 645 extent.extLocation.logicalBlockNum = 0; 646 extent.extLocation.partitionReferenceNum = 0; 647 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 648 } else { 649 epos.offset -= adsize; 650 etype = udf_next_aext(inode, &epos, &extent.extLocation, 651 &extent.extLength, 0); 652 extent.extLength |= etype << 30; 653 } 654 655 new_elen = ((loff_t)offset << inode->i_blkbits) | 656 (newsize & (sb->s_blocksize - 1)); 657 658 /* File has extent covering the new size (could happen when extending 659 * inside a block)? 660 */ 661 if (within_last_ext) { 662 /* Extending file within the last file block */ 663 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 664 } else { 665 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 666 } 667 668 if (err < 0) 669 goto out; 670 err = 0; 671 iinfo->i_lenExtents = newsize; 672 out: 673 brelse(epos.bh); 674 return err; 675 } 676 677 static sector_t inode_getblk(struct inode *inode, sector_t block, 678 int *err, int *new) 679 { 680 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 681 struct extent_position prev_epos, cur_epos, next_epos; 682 int count = 0, startnum = 0, endnum = 0; 683 uint32_t elen = 0, tmpelen; 684 struct kernel_lb_addr eloc, tmpeloc; 685 int c = 1; 686 loff_t lbcount = 0, b_off = 0; 687 udf_pblk_t newblocknum, newblock = 0; 688 sector_t offset = 0; 689 int8_t etype; 690 struct udf_inode_info *iinfo = UDF_I(inode); 691 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 692 int lastblock = 0; 693 bool isBeyondEOF; 694 695 *err = 0; 696 *new = 0; 697 prev_epos.offset = udf_file_entry_alloc_offset(inode); 698 prev_epos.block = iinfo->i_location; 699 prev_epos.bh = NULL; 700 cur_epos = next_epos = prev_epos; 701 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 702 703 /* find the extent which contains the block we are looking for. 704 alternate between laarr[0] and laarr[1] for locations of the 705 current extent, and the previous extent */ 706 do { 707 if (prev_epos.bh != cur_epos.bh) { 708 brelse(prev_epos.bh); 709 get_bh(cur_epos.bh); 710 prev_epos.bh = cur_epos.bh; 711 } 712 if (cur_epos.bh != next_epos.bh) { 713 brelse(cur_epos.bh); 714 get_bh(next_epos.bh); 715 cur_epos.bh = next_epos.bh; 716 } 717 718 lbcount += elen; 719 720 prev_epos.block = cur_epos.block; 721 cur_epos.block = next_epos.block; 722 723 prev_epos.offset = cur_epos.offset; 724 cur_epos.offset = next_epos.offset; 725 726 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 727 if (etype == -1) 728 break; 729 730 c = !c; 731 732 laarr[c].extLength = (etype << 30) | elen; 733 laarr[c].extLocation = eloc; 734 735 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 736 pgoal = eloc.logicalBlockNum + 737 ((elen + inode->i_sb->s_blocksize - 1) >> 738 inode->i_sb->s_blocksize_bits); 739 740 count++; 741 } while (lbcount + elen <= b_off); 742 743 b_off -= lbcount; 744 offset = b_off >> inode->i_sb->s_blocksize_bits; 745 /* 746 * Move prev_epos and cur_epos into indirect extent if we are at 747 * the pointer to it 748 */ 749 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 750 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 751 752 /* if the extent is allocated and recorded, return the block 753 if the extent is not a multiple of the blocksize, round up */ 754 755 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 756 if (elen & (inode->i_sb->s_blocksize - 1)) { 757 elen = EXT_RECORDED_ALLOCATED | 758 ((elen + inode->i_sb->s_blocksize - 1) & 759 ~(inode->i_sb->s_blocksize - 1)); 760 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 761 } 762 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 763 goto out_free; 764 } 765 766 /* Are we beyond EOF and preallocated extent? */ 767 if (etype == -1) { 768 int ret; 769 loff_t hole_len; 770 771 isBeyondEOF = true; 772 if (count) { 773 if (c) 774 laarr[0] = laarr[1]; 775 startnum = 1; 776 } else { 777 /* Create a fake extent when there's not one */ 778 memset(&laarr[0].extLocation, 0x00, 779 sizeof(struct kernel_lb_addr)); 780 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 781 /* Will udf_do_extend_file() create real extent from 782 a fake one? */ 783 startnum = (offset > 0); 784 } 785 /* Create extents for the hole between EOF and offset */ 786 hole_len = (loff_t)offset << inode->i_blkbits; 787 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 788 if (ret < 0) { 789 *err = ret; 790 goto out_free; 791 } 792 c = 0; 793 offset = 0; 794 count += ret; 795 /* We are not covered by a preallocated extent? */ 796 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != 797 EXT_NOT_RECORDED_ALLOCATED) { 798 /* Is there any real extent? - otherwise we overwrite 799 * the fake one... */ 800 if (count) 801 c = !c; 802 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 803 inode->i_sb->s_blocksize; 804 memset(&laarr[c].extLocation, 0x00, 805 sizeof(struct kernel_lb_addr)); 806 count++; 807 } 808 endnum = c + 1; 809 lastblock = 1; 810 } else { 811 isBeyondEOF = false; 812 endnum = startnum = ((count > 2) ? 2 : count); 813 814 /* if the current extent is in position 0, 815 swap it with the previous */ 816 if (!c && count != 1) { 817 laarr[2] = laarr[0]; 818 laarr[0] = laarr[1]; 819 laarr[1] = laarr[2]; 820 c = 1; 821 } 822 823 /* if the current block is located in an extent, 824 read the next extent */ 825 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 826 if (etype != -1) { 827 laarr[c + 1].extLength = (etype << 30) | elen; 828 laarr[c + 1].extLocation = eloc; 829 count++; 830 startnum++; 831 endnum++; 832 } else 833 lastblock = 1; 834 } 835 836 /* if the current extent is not recorded but allocated, get the 837 * block in the extent corresponding to the requested block */ 838 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 839 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 840 else { /* otherwise, allocate a new block */ 841 if (iinfo->i_next_alloc_block == block) 842 goal = iinfo->i_next_alloc_goal; 843 844 if (!goal) { 845 if (!(goal = pgoal)) /* XXX: what was intended here? */ 846 goal = iinfo->i_location.logicalBlockNum + 1; 847 } 848 849 newblocknum = udf_new_block(inode->i_sb, inode, 850 iinfo->i_location.partitionReferenceNum, 851 goal, err); 852 if (!newblocknum) { 853 *err = -ENOSPC; 854 goto out_free; 855 } 856 if (isBeyondEOF) 857 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 858 } 859 860 /* if the extent the requsted block is located in contains multiple 861 * blocks, split the extent into at most three extents. blocks prior 862 * to requested block, requested block, and blocks after requested 863 * block */ 864 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 865 866 /* We preallocate blocks only for regular files. It also makes sense 867 * for directories but there's a problem when to drop the 868 * preallocation. We might use some delayed work for that but I feel 869 * it's overengineering for a filesystem like UDF. */ 870 if (S_ISREG(inode->i_mode)) 871 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 872 873 /* merge any continuous blocks in laarr */ 874 udf_merge_extents(inode, laarr, &endnum); 875 876 /* write back the new extents, inserting new extents if the new number 877 * of extents is greater than the old number, and deleting extents if 878 * the new number of extents is less than the old number */ 879 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 880 881 newblock = udf_get_pblock(inode->i_sb, newblocknum, 882 iinfo->i_location.partitionReferenceNum, 0); 883 if (!newblock) { 884 *err = -EIO; 885 goto out_free; 886 } 887 *new = 1; 888 iinfo->i_next_alloc_block = block; 889 iinfo->i_next_alloc_goal = newblocknum; 890 inode->i_ctime = current_time(inode); 891 892 if (IS_SYNC(inode)) 893 udf_sync_inode(inode); 894 else 895 mark_inode_dirty(inode); 896 out_free: 897 brelse(prev_epos.bh); 898 brelse(cur_epos.bh); 899 brelse(next_epos.bh); 900 return newblock; 901 } 902 903 static void udf_split_extents(struct inode *inode, int *c, int offset, 904 udf_pblk_t newblocknum, 905 struct kernel_long_ad *laarr, int *endnum) 906 { 907 unsigned long blocksize = inode->i_sb->s_blocksize; 908 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 909 910 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 911 (laarr[*c].extLength >> 30) == 912 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 913 int curr = *c; 914 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 915 blocksize - 1) >> blocksize_bits; 916 int8_t etype = (laarr[curr].extLength >> 30); 917 918 if (blen == 1) 919 ; 920 else if (!offset || blen == offset + 1) { 921 laarr[curr + 2] = laarr[curr + 1]; 922 laarr[curr + 1] = laarr[curr]; 923 } else { 924 laarr[curr + 3] = laarr[curr + 1]; 925 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 926 } 927 928 if (offset) { 929 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 930 udf_free_blocks(inode->i_sb, inode, 931 &laarr[curr].extLocation, 932 0, offset); 933 laarr[curr].extLength = 934 EXT_NOT_RECORDED_NOT_ALLOCATED | 935 (offset << blocksize_bits); 936 laarr[curr].extLocation.logicalBlockNum = 0; 937 laarr[curr].extLocation. 938 partitionReferenceNum = 0; 939 } else 940 laarr[curr].extLength = (etype << 30) | 941 (offset << blocksize_bits); 942 curr++; 943 (*c)++; 944 (*endnum)++; 945 } 946 947 laarr[curr].extLocation.logicalBlockNum = newblocknum; 948 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 949 laarr[curr].extLocation.partitionReferenceNum = 950 UDF_I(inode)->i_location.partitionReferenceNum; 951 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 952 blocksize; 953 curr++; 954 955 if (blen != offset + 1) { 956 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 957 laarr[curr].extLocation.logicalBlockNum += 958 offset + 1; 959 laarr[curr].extLength = (etype << 30) | 960 ((blen - (offset + 1)) << blocksize_bits); 961 curr++; 962 (*endnum)++; 963 } 964 } 965 } 966 967 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 968 struct kernel_long_ad *laarr, 969 int *endnum) 970 { 971 int start, length = 0, currlength = 0, i; 972 973 if (*endnum >= (c + 1)) { 974 if (!lastblock) 975 return; 976 else 977 start = c; 978 } else { 979 if ((laarr[c + 1].extLength >> 30) == 980 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 981 start = c + 1; 982 length = currlength = 983 (((laarr[c + 1].extLength & 984 UDF_EXTENT_LENGTH_MASK) + 985 inode->i_sb->s_blocksize - 1) >> 986 inode->i_sb->s_blocksize_bits); 987 } else 988 start = c; 989 } 990 991 for (i = start + 1; i <= *endnum; i++) { 992 if (i == *endnum) { 993 if (lastblock) 994 length += UDF_DEFAULT_PREALLOC_BLOCKS; 995 } else if ((laarr[i].extLength >> 30) == 996 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 997 length += (((laarr[i].extLength & 998 UDF_EXTENT_LENGTH_MASK) + 999 inode->i_sb->s_blocksize - 1) >> 1000 inode->i_sb->s_blocksize_bits); 1001 } else 1002 break; 1003 } 1004 1005 if (length) { 1006 int next = laarr[start].extLocation.logicalBlockNum + 1007 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1008 inode->i_sb->s_blocksize - 1) >> 1009 inode->i_sb->s_blocksize_bits); 1010 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1011 laarr[start].extLocation.partitionReferenceNum, 1012 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1013 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1014 currlength); 1015 if (numalloc) { 1016 if (start == (c + 1)) 1017 laarr[start].extLength += 1018 (numalloc << 1019 inode->i_sb->s_blocksize_bits); 1020 else { 1021 memmove(&laarr[c + 2], &laarr[c + 1], 1022 sizeof(struct long_ad) * (*endnum - (c + 1))); 1023 (*endnum)++; 1024 laarr[c + 1].extLocation.logicalBlockNum = next; 1025 laarr[c + 1].extLocation.partitionReferenceNum = 1026 laarr[c].extLocation. 1027 partitionReferenceNum; 1028 laarr[c + 1].extLength = 1029 EXT_NOT_RECORDED_ALLOCATED | 1030 (numalloc << 1031 inode->i_sb->s_blocksize_bits); 1032 start = c + 1; 1033 } 1034 1035 for (i = start + 1; numalloc && i < *endnum; i++) { 1036 int elen = ((laarr[i].extLength & 1037 UDF_EXTENT_LENGTH_MASK) + 1038 inode->i_sb->s_blocksize - 1) >> 1039 inode->i_sb->s_blocksize_bits; 1040 1041 if (elen > numalloc) { 1042 laarr[i].extLength -= 1043 (numalloc << 1044 inode->i_sb->s_blocksize_bits); 1045 numalloc = 0; 1046 } else { 1047 numalloc -= elen; 1048 if (*endnum > (i + 1)) 1049 memmove(&laarr[i], 1050 &laarr[i + 1], 1051 sizeof(struct long_ad) * 1052 (*endnum - (i + 1))); 1053 i--; 1054 (*endnum)--; 1055 } 1056 } 1057 UDF_I(inode)->i_lenExtents += 1058 numalloc << inode->i_sb->s_blocksize_bits; 1059 } 1060 } 1061 } 1062 1063 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1064 int *endnum) 1065 { 1066 int i; 1067 unsigned long blocksize = inode->i_sb->s_blocksize; 1068 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1069 1070 for (i = 0; i < (*endnum - 1); i++) { 1071 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1072 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1073 1074 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1075 (((li->extLength >> 30) == 1076 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1077 ((lip1->extLocation.logicalBlockNum - 1078 li->extLocation.logicalBlockNum) == 1079 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1080 blocksize - 1) >> blocksize_bits)))) { 1081 1082 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1083 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1084 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1085 lip1->extLength = (lip1->extLength - 1086 (li->extLength & 1087 UDF_EXTENT_LENGTH_MASK) + 1088 UDF_EXTENT_LENGTH_MASK) & 1089 ~(blocksize - 1); 1090 li->extLength = (li->extLength & 1091 UDF_EXTENT_FLAG_MASK) + 1092 (UDF_EXTENT_LENGTH_MASK + 1) - 1093 blocksize; 1094 lip1->extLocation.logicalBlockNum = 1095 li->extLocation.logicalBlockNum + 1096 ((li->extLength & 1097 UDF_EXTENT_LENGTH_MASK) >> 1098 blocksize_bits); 1099 } else { 1100 li->extLength = lip1->extLength + 1101 (((li->extLength & 1102 UDF_EXTENT_LENGTH_MASK) + 1103 blocksize - 1) & ~(blocksize - 1)); 1104 if (*endnum > (i + 2)) 1105 memmove(&laarr[i + 1], &laarr[i + 2], 1106 sizeof(struct long_ad) * 1107 (*endnum - (i + 2))); 1108 i--; 1109 (*endnum)--; 1110 } 1111 } else if (((li->extLength >> 30) == 1112 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1113 ((lip1->extLength >> 30) == 1114 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1115 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1116 ((li->extLength & 1117 UDF_EXTENT_LENGTH_MASK) + 1118 blocksize - 1) >> blocksize_bits); 1119 li->extLocation.logicalBlockNum = 0; 1120 li->extLocation.partitionReferenceNum = 0; 1121 1122 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1123 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1124 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1125 lip1->extLength = (lip1->extLength - 1126 (li->extLength & 1127 UDF_EXTENT_LENGTH_MASK) + 1128 UDF_EXTENT_LENGTH_MASK) & 1129 ~(blocksize - 1); 1130 li->extLength = (li->extLength & 1131 UDF_EXTENT_FLAG_MASK) + 1132 (UDF_EXTENT_LENGTH_MASK + 1) - 1133 blocksize; 1134 } else { 1135 li->extLength = lip1->extLength + 1136 (((li->extLength & 1137 UDF_EXTENT_LENGTH_MASK) + 1138 blocksize - 1) & ~(blocksize - 1)); 1139 if (*endnum > (i + 2)) 1140 memmove(&laarr[i + 1], &laarr[i + 2], 1141 sizeof(struct long_ad) * 1142 (*endnum - (i + 2))); 1143 i--; 1144 (*endnum)--; 1145 } 1146 } else if ((li->extLength >> 30) == 1147 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1148 udf_free_blocks(inode->i_sb, inode, 1149 &li->extLocation, 0, 1150 ((li->extLength & 1151 UDF_EXTENT_LENGTH_MASK) + 1152 blocksize - 1) >> blocksize_bits); 1153 li->extLocation.logicalBlockNum = 0; 1154 li->extLocation.partitionReferenceNum = 0; 1155 li->extLength = (li->extLength & 1156 UDF_EXTENT_LENGTH_MASK) | 1157 EXT_NOT_RECORDED_NOT_ALLOCATED; 1158 } 1159 } 1160 } 1161 1162 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1163 int startnum, int endnum, 1164 struct extent_position *epos) 1165 { 1166 int start = 0, i; 1167 struct kernel_lb_addr tmploc; 1168 uint32_t tmplen; 1169 1170 if (startnum > endnum) { 1171 for (i = 0; i < (startnum - endnum); i++) 1172 udf_delete_aext(inode, *epos); 1173 } else if (startnum < endnum) { 1174 for (i = 0; i < (endnum - startnum); i++) { 1175 udf_insert_aext(inode, *epos, laarr[i].extLocation, 1176 laarr[i].extLength); 1177 udf_next_aext(inode, epos, &laarr[i].extLocation, 1178 &laarr[i].extLength, 1); 1179 start++; 1180 } 1181 } 1182 1183 for (i = start; i < endnum; i++) { 1184 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1185 udf_write_aext(inode, epos, &laarr[i].extLocation, 1186 laarr[i].extLength, 1); 1187 } 1188 } 1189 1190 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1191 int create, int *err) 1192 { 1193 struct buffer_head *bh = NULL; 1194 1195 bh = udf_getblk(inode, block, create, err); 1196 if (!bh) 1197 return NULL; 1198 1199 if (bh_read(bh, 0) >= 0) 1200 return bh; 1201 1202 brelse(bh); 1203 *err = -EIO; 1204 return NULL; 1205 } 1206 1207 int udf_setsize(struct inode *inode, loff_t newsize) 1208 { 1209 int err; 1210 struct udf_inode_info *iinfo; 1211 unsigned int bsize = i_blocksize(inode); 1212 1213 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1214 S_ISLNK(inode->i_mode))) 1215 return -EINVAL; 1216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1217 return -EPERM; 1218 1219 iinfo = UDF_I(inode); 1220 if (newsize > inode->i_size) { 1221 down_write(&iinfo->i_data_sem); 1222 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1223 if (bsize < 1224 (udf_file_entry_alloc_offset(inode) + newsize)) { 1225 err = udf_expand_file_adinicb(inode); 1226 if (err) 1227 return err; 1228 down_write(&iinfo->i_data_sem); 1229 } else { 1230 iinfo->i_lenAlloc = newsize; 1231 goto set_size; 1232 } 1233 } 1234 err = udf_extend_file(inode, newsize); 1235 if (err) { 1236 up_write(&iinfo->i_data_sem); 1237 return err; 1238 } 1239 set_size: 1240 up_write(&iinfo->i_data_sem); 1241 truncate_setsize(inode, newsize); 1242 } else { 1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1244 down_write(&iinfo->i_data_sem); 1245 udf_clear_extent_cache(inode); 1246 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1247 0x00, bsize - newsize - 1248 udf_file_entry_alloc_offset(inode)); 1249 iinfo->i_lenAlloc = newsize; 1250 truncate_setsize(inode, newsize); 1251 up_write(&iinfo->i_data_sem); 1252 goto update_time; 1253 } 1254 err = block_truncate_page(inode->i_mapping, newsize, 1255 udf_get_block); 1256 if (err) 1257 return err; 1258 truncate_setsize(inode, newsize); 1259 down_write(&iinfo->i_data_sem); 1260 udf_clear_extent_cache(inode); 1261 err = udf_truncate_extents(inode); 1262 up_write(&iinfo->i_data_sem); 1263 if (err) 1264 return err; 1265 } 1266 update_time: 1267 inode->i_mtime = inode->i_ctime = current_time(inode); 1268 if (IS_SYNC(inode)) 1269 udf_sync_inode(inode); 1270 else 1271 mark_inode_dirty(inode); 1272 return 0; 1273 } 1274 1275 /* 1276 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1277 * arbitrary - just that we hopefully don't limit any real use of rewritten 1278 * inode on write-once media but avoid looping for too long on corrupted media. 1279 */ 1280 #define UDF_MAX_ICB_NESTING 1024 1281 1282 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1283 { 1284 struct buffer_head *bh = NULL; 1285 struct fileEntry *fe; 1286 struct extendedFileEntry *efe; 1287 uint16_t ident; 1288 struct udf_inode_info *iinfo = UDF_I(inode); 1289 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1290 struct kernel_lb_addr *iloc = &iinfo->i_location; 1291 unsigned int link_count; 1292 unsigned int indirections = 0; 1293 int bs = inode->i_sb->s_blocksize; 1294 int ret = -EIO; 1295 uint32_t uid, gid; 1296 1297 reread: 1298 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1299 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1300 iloc->partitionReferenceNum, sbi->s_partitions); 1301 return -EIO; 1302 } 1303 1304 if (iloc->logicalBlockNum >= 1305 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1306 udf_debug("block=%u, partition=%u out of range\n", 1307 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1308 return -EIO; 1309 } 1310 1311 /* 1312 * Set defaults, but the inode is still incomplete! 1313 * Note: get_new_inode() sets the following on a new inode: 1314 * i_sb = sb 1315 * i_no = ino 1316 * i_flags = sb->s_flags 1317 * i_state = 0 1318 * clean_inode(): zero fills and sets 1319 * i_count = 1 1320 * i_nlink = 1 1321 * i_op = NULL; 1322 */ 1323 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1324 if (!bh) { 1325 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1326 return -EIO; 1327 } 1328 1329 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1330 ident != TAG_IDENT_USE) { 1331 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1332 inode->i_ino, ident); 1333 goto out; 1334 } 1335 1336 fe = (struct fileEntry *)bh->b_data; 1337 efe = (struct extendedFileEntry *)bh->b_data; 1338 1339 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1340 struct buffer_head *ibh; 1341 1342 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1343 if (ident == TAG_IDENT_IE && ibh) { 1344 struct kernel_lb_addr loc; 1345 struct indirectEntry *ie; 1346 1347 ie = (struct indirectEntry *)ibh->b_data; 1348 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1349 1350 if (ie->indirectICB.extLength) { 1351 brelse(ibh); 1352 memcpy(&iinfo->i_location, &loc, 1353 sizeof(struct kernel_lb_addr)); 1354 if (++indirections > UDF_MAX_ICB_NESTING) { 1355 udf_err(inode->i_sb, 1356 "too many ICBs in ICB hierarchy" 1357 " (max %d supported)\n", 1358 UDF_MAX_ICB_NESTING); 1359 goto out; 1360 } 1361 brelse(bh); 1362 goto reread; 1363 } 1364 } 1365 brelse(ibh); 1366 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1367 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1368 le16_to_cpu(fe->icbTag.strategyType)); 1369 goto out; 1370 } 1371 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1372 iinfo->i_strat4096 = 0; 1373 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1374 iinfo->i_strat4096 = 1; 1375 1376 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1377 ICBTAG_FLAG_AD_MASK; 1378 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1379 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1380 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1381 ret = -EIO; 1382 goto out; 1383 } 1384 iinfo->i_unique = 0; 1385 iinfo->i_lenEAttr = 0; 1386 iinfo->i_lenExtents = 0; 1387 iinfo->i_lenAlloc = 0; 1388 iinfo->i_next_alloc_block = 0; 1389 iinfo->i_next_alloc_goal = 0; 1390 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1391 iinfo->i_efe = 1; 1392 iinfo->i_use = 0; 1393 ret = udf_alloc_i_data(inode, bs - 1394 sizeof(struct extendedFileEntry)); 1395 if (ret) 1396 goto out; 1397 memcpy(iinfo->i_data, 1398 bh->b_data + sizeof(struct extendedFileEntry), 1399 bs - sizeof(struct extendedFileEntry)); 1400 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1401 iinfo->i_efe = 0; 1402 iinfo->i_use = 0; 1403 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1404 if (ret) 1405 goto out; 1406 memcpy(iinfo->i_data, 1407 bh->b_data + sizeof(struct fileEntry), 1408 bs - sizeof(struct fileEntry)); 1409 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1410 iinfo->i_efe = 0; 1411 iinfo->i_use = 1; 1412 iinfo->i_lenAlloc = le32_to_cpu( 1413 ((struct unallocSpaceEntry *)bh->b_data)-> 1414 lengthAllocDescs); 1415 ret = udf_alloc_i_data(inode, bs - 1416 sizeof(struct unallocSpaceEntry)); 1417 if (ret) 1418 goto out; 1419 memcpy(iinfo->i_data, 1420 bh->b_data + sizeof(struct unallocSpaceEntry), 1421 bs - sizeof(struct unallocSpaceEntry)); 1422 return 0; 1423 } 1424 1425 ret = -EIO; 1426 read_lock(&sbi->s_cred_lock); 1427 uid = le32_to_cpu(fe->uid); 1428 if (uid == UDF_INVALID_ID || 1429 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1430 inode->i_uid = sbi->s_uid; 1431 else 1432 i_uid_write(inode, uid); 1433 1434 gid = le32_to_cpu(fe->gid); 1435 if (gid == UDF_INVALID_ID || 1436 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1437 inode->i_gid = sbi->s_gid; 1438 else 1439 i_gid_write(inode, gid); 1440 1441 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1442 sbi->s_fmode != UDF_INVALID_MODE) 1443 inode->i_mode = sbi->s_fmode; 1444 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1445 sbi->s_dmode != UDF_INVALID_MODE) 1446 inode->i_mode = sbi->s_dmode; 1447 else 1448 inode->i_mode = udf_convert_permissions(fe); 1449 inode->i_mode &= ~sbi->s_umask; 1450 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1451 1452 read_unlock(&sbi->s_cred_lock); 1453 1454 link_count = le16_to_cpu(fe->fileLinkCount); 1455 if (!link_count) { 1456 if (!hidden_inode) { 1457 ret = -ESTALE; 1458 goto out; 1459 } 1460 link_count = 1; 1461 } 1462 set_nlink(inode, link_count); 1463 1464 inode->i_size = le64_to_cpu(fe->informationLength); 1465 iinfo->i_lenExtents = inode->i_size; 1466 1467 if (iinfo->i_efe == 0) { 1468 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1469 (inode->i_sb->s_blocksize_bits - 9); 1470 1471 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1472 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1473 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1474 1475 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1476 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1477 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1478 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1479 iinfo->i_streamdir = 0; 1480 iinfo->i_lenStreams = 0; 1481 } else { 1482 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1483 (inode->i_sb->s_blocksize_bits - 9); 1484 1485 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1486 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1487 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1488 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1489 1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1494 1495 /* Named streams */ 1496 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1497 iinfo->i_locStreamdir = 1498 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1499 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1500 if (iinfo->i_lenStreams >= inode->i_size) 1501 iinfo->i_lenStreams -= inode->i_size; 1502 else 1503 iinfo->i_lenStreams = 0; 1504 } 1505 inode->i_generation = iinfo->i_unique; 1506 1507 /* 1508 * Sanity check length of allocation descriptors and extended attrs to 1509 * avoid integer overflows 1510 */ 1511 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1512 goto out; 1513 /* Now do exact checks */ 1514 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1515 goto out; 1516 /* Sanity checks for files in ICB so that we don't get confused later */ 1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1518 /* 1519 * For file in ICB data is stored in allocation descriptor 1520 * so sizes should match 1521 */ 1522 if (iinfo->i_lenAlloc != inode->i_size) 1523 goto out; 1524 /* File in ICB has to fit in there... */ 1525 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1526 goto out; 1527 } 1528 1529 switch (fe->icbTag.fileType) { 1530 case ICBTAG_FILE_TYPE_DIRECTORY: 1531 inode->i_op = &udf_dir_inode_operations; 1532 inode->i_fop = &udf_dir_operations; 1533 inode->i_mode |= S_IFDIR; 1534 inc_nlink(inode); 1535 break; 1536 case ICBTAG_FILE_TYPE_REALTIME: 1537 case ICBTAG_FILE_TYPE_REGULAR: 1538 case ICBTAG_FILE_TYPE_UNDEF: 1539 case ICBTAG_FILE_TYPE_VAT20: 1540 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1541 inode->i_data.a_ops = &udf_adinicb_aops; 1542 else 1543 inode->i_data.a_ops = &udf_aops; 1544 inode->i_op = &udf_file_inode_operations; 1545 inode->i_fop = &udf_file_operations; 1546 inode->i_mode |= S_IFREG; 1547 break; 1548 case ICBTAG_FILE_TYPE_BLOCK: 1549 inode->i_mode |= S_IFBLK; 1550 break; 1551 case ICBTAG_FILE_TYPE_CHAR: 1552 inode->i_mode |= S_IFCHR; 1553 break; 1554 case ICBTAG_FILE_TYPE_FIFO: 1555 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1556 break; 1557 case ICBTAG_FILE_TYPE_SOCKET: 1558 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1559 break; 1560 case ICBTAG_FILE_TYPE_SYMLINK: 1561 inode->i_data.a_ops = &udf_symlink_aops; 1562 inode->i_op = &udf_symlink_inode_operations; 1563 inode_nohighmem(inode); 1564 inode->i_mode = S_IFLNK | 0777; 1565 break; 1566 case ICBTAG_FILE_TYPE_MAIN: 1567 udf_debug("METADATA FILE-----\n"); 1568 break; 1569 case ICBTAG_FILE_TYPE_MIRROR: 1570 udf_debug("METADATA MIRROR FILE-----\n"); 1571 break; 1572 case ICBTAG_FILE_TYPE_BITMAP: 1573 udf_debug("METADATA BITMAP FILE-----\n"); 1574 break; 1575 default: 1576 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1577 inode->i_ino, fe->icbTag.fileType); 1578 goto out; 1579 } 1580 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1581 struct deviceSpec *dsea = 1582 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1583 if (dsea) { 1584 init_special_inode(inode, inode->i_mode, 1585 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1586 le32_to_cpu(dsea->minorDeviceIdent))); 1587 /* Developer ID ??? */ 1588 } else 1589 goto out; 1590 } 1591 ret = 0; 1592 out: 1593 brelse(bh); 1594 return ret; 1595 } 1596 1597 static int udf_alloc_i_data(struct inode *inode, size_t size) 1598 { 1599 struct udf_inode_info *iinfo = UDF_I(inode); 1600 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1601 if (!iinfo->i_data) 1602 return -ENOMEM; 1603 return 0; 1604 } 1605 1606 static umode_t udf_convert_permissions(struct fileEntry *fe) 1607 { 1608 umode_t mode; 1609 uint32_t permissions; 1610 uint32_t flags; 1611 1612 permissions = le32_to_cpu(fe->permissions); 1613 flags = le16_to_cpu(fe->icbTag.flags); 1614 1615 mode = ((permissions) & 0007) | 1616 ((permissions >> 2) & 0070) | 1617 ((permissions >> 4) & 0700) | 1618 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1619 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1620 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1621 1622 return mode; 1623 } 1624 1625 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1626 { 1627 struct udf_inode_info *iinfo = UDF_I(inode); 1628 1629 /* 1630 * UDF 2.01 sec. 3.3.3.3 Note 2: 1631 * In Unix, delete permission tracks write 1632 */ 1633 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1634 if (mode & 0200) 1635 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1636 if (mode & 0020) 1637 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1638 if (mode & 0002) 1639 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1640 } 1641 1642 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1643 { 1644 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1645 } 1646 1647 static int udf_sync_inode(struct inode *inode) 1648 { 1649 return udf_update_inode(inode, 1); 1650 } 1651 1652 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1653 { 1654 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1655 (iinfo->i_crtime.tv_sec == time.tv_sec && 1656 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1657 iinfo->i_crtime = time; 1658 } 1659 1660 static int udf_update_inode(struct inode *inode, int do_sync) 1661 { 1662 struct buffer_head *bh = NULL; 1663 struct fileEntry *fe; 1664 struct extendedFileEntry *efe; 1665 uint64_t lb_recorded; 1666 uint32_t udfperms; 1667 uint16_t icbflags; 1668 uint16_t crclen; 1669 int err = 0; 1670 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1671 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1672 struct udf_inode_info *iinfo = UDF_I(inode); 1673 1674 bh = udf_tgetblk(inode->i_sb, 1675 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1676 if (!bh) { 1677 udf_debug("getblk failure\n"); 1678 return -EIO; 1679 } 1680 1681 lock_buffer(bh); 1682 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1683 fe = (struct fileEntry *)bh->b_data; 1684 efe = (struct extendedFileEntry *)bh->b_data; 1685 1686 if (iinfo->i_use) { 1687 struct unallocSpaceEntry *use = 1688 (struct unallocSpaceEntry *)bh->b_data; 1689 1690 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1691 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1692 iinfo->i_data, inode->i_sb->s_blocksize - 1693 sizeof(struct unallocSpaceEntry)); 1694 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1695 crclen = sizeof(struct unallocSpaceEntry); 1696 1697 goto finish; 1698 } 1699 1700 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1701 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1702 else 1703 fe->uid = cpu_to_le32(i_uid_read(inode)); 1704 1705 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1706 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1707 else 1708 fe->gid = cpu_to_le32(i_gid_read(inode)); 1709 1710 udfperms = ((inode->i_mode & 0007)) | 1711 ((inode->i_mode & 0070) << 2) | 1712 ((inode->i_mode & 0700) << 4); 1713 1714 udfperms |= iinfo->i_extraPerms; 1715 fe->permissions = cpu_to_le32(udfperms); 1716 1717 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1718 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1719 else 1720 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1721 1722 fe->informationLength = cpu_to_le64(inode->i_size); 1723 1724 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1725 struct regid *eid; 1726 struct deviceSpec *dsea = 1727 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1728 if (!dsea) { 1729 dsea = (struct deviceSpec *) 1730 udf_add_extendedattr(inode, 1731 sizeof(struct deviceSpec) + 1732 sizeof(struct regid), 12, 0x3); 1733 dsea->attrType = cpu_to_le32(12); 1734 dsea->attrSubtype = 1; 1735 dsea->attrLength = cpu_to_le32( 1736 sizeof(struct deviceSpec) + 1737 sizeof(struct regid)); 1738 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1739 } 1740 eid = (struct regid *)dsea->impUse; 1741 memset(eid, 0, sizeof(*eid)); 1742 strcpy(eid->ident, UDF_ID_DEVELOPER); 1743 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1744 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1745 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1746 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1747 } 1748 1749 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1750 lb_recorded = 0; /* No extents => no blocks! */ 1751 else 1752 lb_recorded = 1753 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1754 (blocksize_bits - 9); 1755 1756 if (iinfo->i_efe == 0) { 1757 memcpy(bh->b_data + sizeof(struct fileEntry), 1758 iinfo->i_data, 1759 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1760 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1761 1762 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1763 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1764 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1765 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1766 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1767 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1768 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1769 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1770 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1771 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1772 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1773 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1774 crclen = sizeof(struct fileEntry); 1775 } else { 1776 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1777 iinfo->i_data, 1778 inode->i_sb->s_blocksize - 1779 sizeof(struct extendedFileEntry)); 1780 efe->objectSize = 1781 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1782 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1783 1784 if (iinfo->i_streamdir) { 1785 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1786 1787 icb_lad->extLocation = 1788 cpu_to_lelb(iinfo->i_locStreamdir); 1789 icb_lad->extLength = 1790 cpu_to_le32(inode->i_sb->s_blocksize); 1791 } 1792 1793 udf_adjust_time(iinfo, inode->i_atime); 1794 udf_adjust_time(iinfo, inode->i_mtime); 1795 udf_adjust_time(iinfo, inode->i_ctime); 1796 1797 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1798 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1799 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1800 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1801 1802 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1803 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1804 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1805 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1806 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1807 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1808 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1809 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1810 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1811 crclen = sizeof(struct extendedFileEntry); 1812 } 1813 1814 finish: 1815 if (iinfo->i_strat4096) { 1816 fe->icbTag.strategyType = cpu_to_le16(4096); 1817 fe->icbTag.strategyParameter = cpu_to_le16(1); 1818 fe->icbTag.numEntries = cpu_to_le16(2); 1819 } else { 1820 fe->icbTag.strategyType = cpu_to_le16(4); 1821 fe->icbTag.numEntries = cpu_to_le16(1); 1822 } 1823 1824 if (iinfo->i_use) 1825 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1826 else if (S_ISDIR(inode->i_mode)) 1827 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1828 else if (S_ISREG(inode->i_mode)) 1829 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1830 else if (S_ISLNK(inode->i_mode)) 1831 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1832 else if (S_ISBLK(inode->i_mode)) 1833 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1834 else if (S_ISCHR(inode->i_mode)) 1835 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1836 else if (S_ISFIFO(inode->i_mode)) 1837 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1838 else if (S_ISSOCK(inode->i_mode)) 1839 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1840 1841 icbflags = iinfo->i_alloc_type | 1842 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1843 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1844 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1845 (le16_to_cpu(fe->icbTag.flags) & 1846 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1847 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1848 1849 fe->icbTag.flags = cpu_to_le16(icbflags); 1850 if (sbi->s_udfrev >= 0x0200) 1851 fe->descTag.descVersion = cpu_to_le16(3); 1852 else 1853 fe->descTag.descVersion = cpu_to_le16(2); 1854 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1855 fe->descTag.tagLocation = cpu_to_le32( 1856 iinfo->i_location.logicalBlockNum); 1857 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1858 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1859 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1860 crclen)); 1861 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1862 1863 set_buffer_uptodate(bh); 1864 unlock_buffer(bh); 1865 1866 /* write the data blocks */ 1867 mark_buffer_dirty(bh); 1868 if (do_sync) { 1869 sync_dirty_buffer(bh); 1870 if (buffer_write_io_error(bh)) { 1871 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1872 inode->i_ino); 1873 err = -EIO; 1874 } 1875 } 1876 brelse(bh); 1877 1878 return err; 1879 } 1880 1881 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1882 bool hidden_inode) 1883 { 1884 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1885 struct inode *inode = iget_locked(sb, block); 1886 int err; 1887 1888 if (!inode) 1889 return ERR_PTR(-ENOMEM); 1890 1891 if (!(inode->i_state & I_NEW)) 1892 return inode; 1893 1894 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1895 err = udf_read_inode(inode, hidden_inode); 1896 if (err < 0) { 1897 iget_failed(inode); 1898 return ERR_PTR(err); 1899 } 1900 unlock_new_inode(inode); 1901 1902 return inode; 1903 } 1904 1905 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1906 struct extent_position *epos) 1907 { 1908 struct super_block *sb = inode->i_sb; 1909 struct buffer_head *bh; 1910 struct allocExtDesc *aed; 1911 struct extent_position nepos; 1912 struct kernel_lb_addr neloc; 1913 int ver, adsize; 1914 1915 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1916 adsize = sizeof(struct short_ad); 1917 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1918 adsize = sizeof(struct long_ad); 1919 else 1920 return -EIO; 1921 1922 neloc.logicalBlockNum = block; 1923 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1924 1925 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1926 if (!bh) 1927 return -EIO; 1928 lock_buffer(bh); 1929 memset(bh->b_data, 0x00, sb->s_blocksize); 1930 set_buffer_uptodate(bh); 1931 unlock_buffer(bh); 1932 mark_buffer_dirty_inode(bh, inode); 1933 1934 aed = (struct allocExtDesc *)(bh->b_data); 1935 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1936 aed->previousAllocExtLocation = 1937 cpu_to_le32(epos->block.logicalBlockNum); 1938 } 1939 aed->lengthAllocDescs = cpu_to_le32(0); 1940 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1941 ver = 3; 1942 else 1943 ver = 2; 1944 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1945 sizeof(struct tag)); 1946 1947 nepos.block = neloc; 1948 nepos.offset = sizeof(struct allocExtDesc); 1949 nepos.bh = bh; 1950 1951 /* 1952 * Do we have to copy current last extent to make space for indirect 1953 * one? 1954 */ 1955 if (epos->offset + adsize > sb->s_blocksize) { 1956 struct kernel_lb_addr cp_loc; 1957 uint32_t cp_len; 1958 int cp_type; 1959 1960 epos->offset -= adsize; 1961 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1962 cp_len |= ((uint32_t)cp_type) << 30; 1963 1964 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1965 udf_write_aext(inode, epos, &nepos.block, 1966 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1967 } else { 1968 __udf_add_aext(inode, epos, &nepos.block, 1969 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1970 } 1971 1972 brelse(epos->bh); 1973 *epos = nepos; 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Append extent at the given position - should be the first free one in inode 1980 * / indirect extent. This function assumes there is enough space in the inode 1981 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 1982 */ 1983 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 1984 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 1985 { 1986 struct udf_inode_info *iinfo = UDF_I(inode); 1987 struct allocExtDesc *aed; 1988 int adsize; 1989 1990 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1991 adsize = sizeof(struct short_ad); 1992 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1993 adsize = sizeof(struct long_ad); 1994 else 1995 return -EIO; 1996 1997 if (!epos->bh) { 1998 WARN_ON(iinfo->i_lenAlloc != 1999 epos->offset - udf_file_entry_alloc_offset(inode)); 2000 } else { 2001 aed = (struct allocExtDesc *)epos->bh->b_data; 2002 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2003 epos->offset - sizeof(struct allocExtDesc)); 2004 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2005 } 2006 2007 udf_write_aext(inode, epos, eloc, elen, inc); 2008 2009 if (!epos->bh) { 2010 iinfo->i_lenAlloc += adsize; 2011 mark_inode_dirty(inode); 2012 } else { 2013 aed = (struct allocExtDesc *)epos->bh->b_data; 2014 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2015 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2016 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2017 udf_update_tag(epos->bh->b_data, 2018 epos->offset + (inc ? 0 : adsize)); 2019 else 2020 udf_update_tag(epos->bh->b_data, 2021 sizeof(struct allocExtDesc)); 2022 mark_buffer_dirty_inode(epos->bh, inode); 2023 } 2024 2025 return 0; 2026 } 2027 2028 /* 2029 * Append extent at given position - should be the first free one in inode 2030 * / indirect extent. Takes care of allocating and linking indirect blocks. 2031 */ 2032 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2033 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2034 { 2035 int adsize; 2036 struct super_block *sb = inode->i_sb; 2037 2038 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2039 adsize = sizeof(struct short_ad); 2040 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2041 adsize = sizeof(struct long_ad); 2042 else 2043 return -EIO; 2044 2045 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2046 int err; 2047 udf_pblk_t new_block; 2048 2049 new_block = udf_new_block(sb, NULL, 2050 epos->block.partitionReferenceNum, 2051 epos->block.logicalBlockNum, &err); 2052 if (!new_block) 2053 return -ENOSPC; 2054 2055 err = udf_setup_indirect_aext(inode, new_block, epos); 2056 if (err) 2057 return err; 2058 } 2059 2060 return __udf_add_aext(inode, epos, eloc, elen, inc); 2061 } 2062 2063 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2064 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2065 { 2066 int adsize; 2067 uint8_t *ptr; 2068 struct short_ad *sad; 2069 struct long_ad *lad; 2070 struct udf_inode_info *iinfo = UDF_I(inode); 2071 2072 if (!epos->bh) 2073 ptr = iinfo->i_data + epos->offset - 2074 udf_file_entry_alloc_offset(inode) + 2075 iinfo->i_lenEAttr; 2076 else 2077 ptr = epos->bh->b_data + epos->offset; 2078 2079 switch (iinfo->i_alloc_type) { 2080 case ICBTAG_FLAG_AD_SHORT: 2081 sad = (struct short_ad *)ptr; 2082 sad->extLength = cpu_to_le32(elen); 2083 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2084 adsize = sizeof(struct short_ad); 2085 break; 2086 case ICBTAG_FLAG_AD_LONG: 2087 lad = (struct long_ad *)ptr; 2088 lad->extLength = cpu_to_le32(elen); 2089 lad->extLocation = cpu_to_lelb(*eloc); 2090 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2091 adsize = sizeof(struct long_ad); 2092 break; 2093 default: 2094 return; 2095 } 2096 2097 if (epos->bh) { 2098 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2099 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2100 struct allocExtDesc *aed = 2101 (struct allocExtDesc *)epos->bh->b_data; 2102 udf_update_tag(epos->bh->b_data, 2103 le32_to_cpu(aed->lengthAllocDescs) + 2104 sizeof(struct allocExtDesc)); 2105 } 2106 mark_buffer_dirty_inode(epos->bh, inode); 2107 } else { 2108 mark_inode_dirty(inode); 2109 } 2110 2111 if (inc) 2112 epos->offset += adsize; 2113 } 2114 2115 /* 2116 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2117 * someone does some weird stuff. 2118 */ 2119 #define UDF_MAX_INDIR_EXTS 16 2120 2121 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2122 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2123 { 2124 int8_t etype; 2125 unsigned int indirections = 0; 2126 2127 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2128 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2129 udf_pblk_t block; 2130 2131 if (++indirections > UDF_MAX_INDIR_EXTS) { 2132 udf_err(inode->i_sb, 2133 "too many indirect extents in inode %lu\n", 2134 inode->i_ino); 2135 return -1; 2136 } 2137 2138 epos->block = *eloc; 2139 epos->offset = sizeof(struct allocExtDesc); 2140 brelse(epos->bh); 2141 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2142 epos->bh = udf_tread(inode->i_sb, block); 2143 if (!epos->bh) { 2144 udf_debug("reading block %u failed!\n", block); 2145 return -1; 2146 } 2147 } 2148 2149 return etype; 2150 } 2151 2152 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2153 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2154 { 2155 int alen; 2156 int8_t etype; 2157 uint8_t *ptr; 2158 struct short_ad *sad; 2159 struct long_ad *lad; 2160 struct udf_inode_info *iinfo = UDF_I(inode); 2161 2162 if (!epos->bh) { 2163 if (!epos->offset) 2164 epos->offset = udf_file_entry_alloc_offset(inode); 2165 ptr = iinfo->i_data + epos->offset - 2166 udf_file_entry_alloc_offset(inode) + 2167 iinfo->i_lenEAttr; 2168 alen = udf_file_entry_alloc_offset(inode) + 2169 iinfo->i_lenAlloc; 2170 } else { 2171 if (!epos->offset) 2172 epos->offset = sizeof(struct allocExtDesc); 2173 ptr = epos->bh->b_data + epos->offset; 2174 alen = sizeof(struct allocExtDesc) + 2175 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2176 lengthAllocDescs); 2177 } 2178 2179 switch (iinfo->i_alloc_type) { 2180 case ICBTAG_FLAG_AD_SHORT: 2181 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2182 if (!sad) 2183 return -1; 2184 etype = le32_to_cpu(sad->extLength) >> 30; 2185 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2186 eloc->partitionReferenceNum = 2187 iinfo->i_location.partitionReferenceNum; 2188 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2189 break; 2190 case ICBTAG_FLAG_AD_LONG: 2191 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2192 if (!lad) 2193 return -1; 2194 etype = le32_to_cpu(lad->extLength) >> 30; 2195 *eloc = lelb_to_cpu(lad->extLocation); 2196 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2197 break; 2198 default: 2199 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2200 return -1; 2201 } 2202 2203 return etype; 2204 } 2205 2206 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, 2207 struct kernel_lb_addr neloc, uint32_t nelen) 2208 { 2209 struct kernel_lb_addr oeloc; 2210 uint32_t oelen; 2211 int8_t etype; 2212 2213 if (epos.bh) 2214 get_bh(epos.bh); 2215 2216 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2217 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2218 neloc = oeloc; 2219 nelen = (etype << 30) | oelen; 2220 } 2221 udf_add_aext(inode, &epos, &neloc, nelen, 1); 2222 brelse(epos.bh); 2223 2224 return (nelen >> 30); 2225 } 2226 2227 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2228 { 2229 struct extent_position oepos; 2230 int adsize; 2231 int8_t etype; 2232 struct allocExtDesc *aed; 2233 struct udf_inode_info *iinfo; 2234 struct kernel_lb_addr eloc; 2235 uint32_t elen; 2236 2237 if (epos.bh) { 2238 get_bh(epos.bh); 2239 get_bh(epos.bh); 2240 } 2241 2242 iinfo = UDF_I(inode); 2243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2244 adsize = sizeof(struct short_ad); 2245 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2246 adsize = sizeof(struct long_ad); 2247 else 2248 adsize = 0; 2249 2250 oepos = epos; 2251 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2252 return -1; 2253 2254 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2255 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2256 if (oepos.bh != epos.bh) { 2257 oepos.block = epos.block; 2258 brelse(oepos.bh); 2259 get_bh(epos.bh); 2260 oepos.bh = epos.bh; 2261 oepos.offset = epos.offset - adsize; 2262 } 2263 } 2264 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2265 elen = 0; 2266 2267 if (epos.bh != oepos.bh) { 2268 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2269 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2270 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2271 if (!oepos.bh) { 2272 iinfo->i_lenAlloc -= (adsize * 2); 2273 mark_inode_dirty(inode); 2274 } else { 2275 aed = (struct allocExtDesc *)oepos.bh->b_data; 2276 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2277 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2278 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2279 udf_update_tag(oepos.bh->b_data, 2280 oepos.offset - (2 * adsize)); 2281 else 2282 udf_update_tag(oepos.bh->b_data, 2283 sizeof(struct allocExtDesc)); 2284 mark_buffer_dirty_inode(oepos.bh, inode); 2285 } 2286 } else { 2287 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2288 if (!oepos.bh) { 2289 iinfo->i_lenAlloc -= adsize; 2290 mark_inode_dirty(inode); 2291 } else { 2292 aed = (struct allocExtDesc *)oepos.bh->b_data; 2293 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2294 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2295 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2296 udf_update_tag(oepos.bh->b_data, 2297 epos.offset - adsize); 2298 else 2299 udf_update_tag(oepos.bh->b_data, 2300 sizeof(struct allocExtDesc)); 2301 mark_buffer_dirty_inode(oepos.bh, inode); 2302 } 2303 } 2304 2305 brelse(epos.bh); 2306 brelse(oepos.bh); 2307 2308 return (elen >> 30); 2309 } 2310 2311 int8_t inode_bmap(struct inode *inode, sector_t block, 2312 struct extent_position *pos, struct kernel_lb_addr *eloc, 2313 uint32_t *elen, sector_t *offset) 2314 { 2315 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2316 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2317 int8_t etype; 2318 struct udf_inode_info *iinfo; 2319 2320 iinfo = UDF_I(inode); 2321 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2322 pos->offset = 0; 2323 pos->block = iinfo->i_location; 2324 pos->bh = NULL; 2325 } 2326 *elen = 0; 2327 do { 2328 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2329 if (etype == -1) { 2330 *offset = (bcount - lbcount) >> blocksize_bits; 2331 iinfo->i_lenExtents = lbcount; 2332 return -1; 2333 } 2334 lbcount += *elen; 2335 } while (lbcount <= bcount); 2336 /* update extent cache */ 2337 udf_update_extent_cache(inode, lbcount - *elen, pos); 2338 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2339 2340 return etype; 2341 } 2342 2343 udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2344 { 2345 struct kernel_lb_addr eloc; 2346 uint32_t elen; 2347 sector_t offset; 2348 struct extent_position epos = {}; 2349 udf_pblk_t ret; 2350 2351 down_read(&UDF_I(inode)->i_data_sem); 2352 2353 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2354 (EXT_RECORDED_ALLOCATED >> 30)) 2355 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2356 else 2357 ret = 0; 2358 2359 up_read(&UDF_I(inode)->i_data_sem); 2360 brelse(epos.bh); 2361 2362 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2363 return udf_fixed_to_variable(ret); 2364 else 2365 return ret; 2366 } 2367