xref: /linux/fs/udf/inode.c (revision 07f0148aafe8c95a3a76cd59e9e75b4d78d1d31d)
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int8_t udf_insert_aext(struct inode *, struct extent_position,
61 			      struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			       int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
185 static int udf_writepages(struct address_space *mapping,
186 			struct writeback_control *wbc)
187 {
188 	return mpage_writepages(mapping, wbc, udf_get_block);
189 }
190 
191 static int udf_read_folio(struct file *file, struct folio *folio)
192 {
193 	return mpage_read_folio(folio, udf_get_block);
194 }
195 
196 static void udf_readahead(struct readahead_control *rac)
197 {
198 	mpage_readahead(rac, udf_get_block);
199 }
200 
201 static int udf_write_begin(struct file *file, struct address_space *mapping,
202 			loff_t pos, unsigned len,
203 			struct page **pagep, void **fsdata)
204 {
205 	int ret;
206 
207 	ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
208 	if (unlikely(ret))
209 		udf_write_failed(mapping, pos + len);
210 	return ret;
211 }
212 
213 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
214 {
215 	struct file *file = iocb->ki_filp;
216 	struct address_space *mapping = file->f_mapping;
217 	struct inode *inode = mapping->host;
218 	size_t count = iov_iter_count(iter);
219 	ssize_t ret;
220 
221 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
222 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
223 		udf_write_failed(mapping, iocb->ki_pos + count);
224 	return ret;
225 }
226 
227 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
228 {
229 	return generic_block_bmap(mapping, block, udf_get_block);
230 }
231 
232 const struct address_space_operations udf_aops = {
233 	.dirty_folio	= block_dirty_folio,
234 	.invalidate_folio = block_invalidate_folio,
235 	.read_folio	= udf_read_folio,
236 	.readahead	= udf_readahead,
237 	.writepages	= udf_writepages,
238 	.write_begin	= udf_write_begin,
239 	.write_end	= generic_write_end,
240 	.direct_IO	= udf_direct_IO,
241 	.bmap		= udf_bmap,
242 	.migrate_folio	= buffer_migrate_folio,
243 };
244 
245 /*
246  * Expand file stored in ICB to a normal one-block-file
247  *
248  * This function requires i_data_sem for writing and releases it.
249  * This function requires i_mutex held
250  */
251 int udf_expand_file_adinicb(struct inode *inode)
252 {
253 	struct page *page;
254 	char *kaddr;
255 	struct udf_inode_info *iinfo = UDF_I(inode);
256 	int err;
257 
258 	WARN_ON_ONCE(!inode_is_locked(inode));
259 	if (!iinfo->i_lenAlloc) {
260 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
261 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
262 		else
263 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
264 		/* from now on we have normal address_space methods */
265 		inode->i_data.a_ops = &udf_aops;
266 		up_write(&iinfo->i_data_sem);
267 		mark_inode_dirty(inode);
268 		return 0;
269 	}
270 	/*
271 	 * Release i_data_sem so that we can lock a page - page lock ranks
272 	 * above i_data_sem. i_mutex still protects us against file changes.
273 	 */
274 	up_write(&iinfo->i_data_sem);
275 
276 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
277 	if (!page)
278 		return -ENOMEM;
279 
280 	if (!PageUptodate(page)) {
281 		kaddr = kmap_atomic(page);
282 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
283 		       PAGE_SIZE - iinfo->i_lenAlloc);
284 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
285 			iinfo->i_lenAlloc);
286 		flush_dcache_page(page);
287 		SetPageUptodate(page);
288 		kunmap_atomic(kaddr);
289 	}
290 	down_write(&iinfo->i_data_sem);
291 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
292 	       iinfo->i_lenAlloc);
293 	iinfo->i_lenAlloc = 0;
294 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
295 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
296 	else
297 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
298 	/* from now on we have normal address_space methods */
299 	inode->i_data.a_ops = &udf_aops;
300 	set_page_dirty(page);
301 	unlock_page(page);
302 	up_write(&iinfo->i_data_sem);
303 	err = filemap_fdatawrite(inode->i_mapping);
304 	if (err) {
305 		/* Restore everything back so that we don't lose data... */
306 		lock_page(page);
307 		down_write(&iinfo->i_data_sem);
308 		kaddr = kmap_atomic(page);
309 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
310 		kunmap_atomic(kaddr);
311 		unlock_page(page);
312 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
313 		inode->i_data.a_ops = &udf_adinicb_aops;
314 		iinfo->i_lenAlloc = inode->i_size;
315 		up_write(&iinfo->i_data_sem);
316 	}
317 	put_page(page);
318 	mark_inode_dirty(inode);
319 
320 	return err;
321 }
322 
323 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
324 					    udf_pblk_t *block, int *err)
325 {
326 	udf_pblk_t newblock;
327 	struct buffer_head *dbh = NULL;
328 	struct kernel_lb_addr eloc;
329 	uint8_t alloctype;
330 	struct extent_position epos;
331 
332 	struct udf_fileident_bh sfibh, dfibh;
333 	loff_t f_pos = udf_ext0_offset(inode);
334 	int size = udf_ext0_offset(inode) + inode->i_size;
335 	struct fileIdentDesc cfi, *sfi, *dfi;
336 	struct udf_inode_info *iinfo = UDF_I(inode);
337 
338 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
339 		alloctype = ICBTAG_FLAG_AD_SHORT;
340 	else
341 		alloctype = ICBTAG_FLAG_AD_LONG;
342 
343 	if (!inode->i_size) {
344 		iinfo->i_alloc_type = alloctype;
345 		mark_inode_dirty(inode);
346 		return NULL;
347 	}
348 
349 	/* alloc block, and copy data to it */
350 	*block = udf_new_block(inode->i_sb, inode,
351 			       iinfo->i_location.partitionReferenceNum,
352 			       iinfo->i_location.logicalBlockNum, err);
353 	if (!(*block))
354 		return NULL;
355 	newblock = udf_get_pblock(inode->i_sb, *block,
356 				  iinfo->i_location.partitionReferenceNum,
357 				0);
358 	if (!newblock)
359 		return NULL;
360 	dbh = udf_tgetblk(inode->i_sb, newblock);
361 	if (!dbh)
362 		return NULL;
363 	lock_buffer(dbh);
364 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
365 	set_buffer_uptodate(dbh);
366 	unlock_buffer(dbh);
367 	mark_buffer_dirty_inode(dbh, inode);
368 
369 	sfibh.soffset = sfibh.eoffset =
370 			f_pos & (inode->i_sb->s_blocksize - 1);
371 	sfibh.sbh = sfibh.ebh = NULL;
372 	dfibh.soffset = dfibh.eoffset = 0;
373 	dfibh.sbh = dfibh.ebh = dbh;
374 	while (f_pos < size) {
375 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
376 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
377 					 NULL, NULL, NULL);
378 		if (!sfi) {
379 			brelse(dbh);
380 			return NULL;
381 		}
382 		iinfo->i_alloc_type = alloctype;
383 		sfi->descTag.tagLocation = cpu_to_le32(*block);
384 		dfibh.soffset = dfibh.eoffset;
385 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
386 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
387 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
388 				 udf_get_fi_ident(sfi))) {
389 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
390 			brelse(dbh);
391 			return NULL;
392 		}
393 	}
394 	mark_buffer_dirty_inode(dbh, inode);
395 
396 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
397 	iinfo->i_lenAlloc = 0;
398 	eloc.logicalBlockNum = *block;
399 	eloc.partitionReferenceNum =
400 				iinfo->i_location.partitionReferenceNum;
401 	iinfo->i_lenExtents = inode->i_size;
402 	epos.bh = NULL;
403 	epos.block = iinfo->i_location;
404 	epos.offset = udf_file_entry_alloc_offset(inode);
405 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
406 	/* UniqueID stuff */
407 
408 	brelse(epos.bh);
409 	mark_inode_dirty(inode);
410 	return dbh;
411 }
412 
413 static int udf_get_block(struct inode *inode, sector_t block,
414 			 struct buffer_head *bh_result, int create)
415 {
416 	int err, new;
417 	sector_t phys = 0;
418 	struct udf_inode_info *iinfo;
419 
420 	if (!create) {
421 		phys = udf_block_map(inode, block);
422 		if (phys)
423 			map_bh(bh_result, inode->i_sb, phys);
424 		return 0;
425 	}
426 
427 	err = -EIO;
428 	new = 0;
429 	iinfo = UDF_I(inode);
430 
431 	down_write(&iinfo->i_data_sem);
432 	if (block == iinfo->i_next_alloc_block + 1) {
433 		iinfo->i_next_alloc_block++;
434 		iinfo->i_next_alloc_goal++;
435 	}
436 
437 	/*
438 	 * Block beyond EOF and prealloc extents? Just discard preallocation
439 	 * as it is not useful and complicates things.
440 	 */
441 	if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
442 		udf_discard_prealloc(inode);
443 	udf_clear_extent_cache(inode);
444 	phys = inode_getblk(inode, block, &err, &new);
445 	if (!phys)
446 		goto abort;
447 
448 	if (new)
449 		set_buffer_new(bh_result);
450 	map_bh(bh_result, inode->i_sb, phys);
451 
452 abort:
453 	up_write(&iinfo->i_data_sem);
454 	return err;
455 }
456 
457 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
458 				      int create, int *err)
459 {
460 	struct buffer_head *bh;
461 	struct buffer_head dummy;
462 
463 	dummy.b_state = 0;
464 	dummy.b_blocknr = -1000;
465 	*err = udf_get_block(inode, block, &dummy, create);
466 	if (!*err && buffer_mapped(&dummy)) {
467 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
468 		if (buffer_new(&dummy)) {
469 			lock_buffer(bh);
470 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
471 			set_buffer_uptodate(bh);
472 			unlock_buffer(bh);
473 			mark_buffer_dirty_inode(bh, inode);
474 		}
475 		return bh;
476 	}
477 
478 	return NULL;
479 }
480 
481 /* Extend the file with new blocks totaling 'new_block_bytes',
482  * return the number of extents added
483  */
484 static int udf_do_extend_file(struct inode *inode,
485 			      struct extent_position *last_pos,
486 			      struct kernel_long_ad *last_ext,
487 			      loff_t new_block_bytes)
488 {
489 	uint32_t add;
490 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
491 	struct super_block *sb = inode->i_sb;
492 	struct udf_inode_info *iinfo;
493 	int err;
494 
495 	/* The previous extent is fake and we should not extend by anything
496 	 * - there's nothing to do... */
497 	if (!new_block_bytes && fake)
498 		return 0;
499 
500 	iinfo = UDF_I(inode);
501 	/* Round the last extent up to a multiple of block size */
502 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
503 		last_ext->extLength =
504 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
505 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
506 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
507 		iinfo->i_lenExtents =
508 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
509 			~(sb->s_blocksize - 1);
510 	}
511 
512 	/* Can we merge with the previous extent? */
513 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
514 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
515 		add = (1 << 30) - sb->s_blocksize -
516 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
517 		if (add > new_block_bytes)
518 			add = new_block_bytes;
519 		new_block_bytes -= add;
520 		last_ext->extLength += add;
521 	}
522 
523 	if (fake) {
524 		udf_add_aext(inode, last_pos, &last_ext->extLocation,
525 			     last_ext->extLength, 1);
526 		count++;
527 	} else {
528 		struct kernel_lb_addr tmploc;
529 		uint32_t tmplen;
530 
531 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
532 				last_ext->extLength, 1);
533 
534 		/*
535 		 * We've rewritten the last extent. If we are going to add
536 		 * more extents, we may need to enter possible following
537 		 * empty indirect extent.
538 		 */
539 		if (new_block_bytes)
540 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
541 	}
542 
543 	/* Managed to do everything necessary? */
544 	if (!new_block_bytes)
545 		goto out;
546 
547 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
548 	last_ext->extLocation.logicalBlockNum = 0;
549 	last_ext->extLocation.partitionReferenceNum = 0;
550 	add = (1 << 30) - sb->s_blocksize;
551 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
552 
553 	/* Create enough extents to cover the whole hole */
554 	while (new_block_bytes > add) {
555 		new_block_bytes -= add;
556 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
557 				   last_ext->extLength, 1);
558 		if (err)
559 			return err;
560 		count++;
561 	}
562 	if (new_block_bytes) {
563 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 			new_block_bytes;
565 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
566 				   last_ext->extLength, 1);
567 		if (err)
568 			return err;
569 		count++;
570 	}
571 
572 out:
573 	/* last_pos should point to the last written extent... */
574 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 		last_pos->offset -= sizeof(struct short_ad);
576 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 		last_pos->offset -= sizeof(struct long_ad);
578 	else
579 		return -EIO;
580 
581 	return count;
582 }
583 
584 /* Extend the final block of the file to final_block_len bytes */
585 static void udf_do_extend_final_block(struct inode *inode,
586 				      struct extent_position *last_pos,
587 				      struct kernel_long_ad *last_ext,
588 				      uint32_t new_elen)
589 {
590 	uint32_t added_bytes;
591 
592 	/*
593 	 * Extent already large enough? It may be already rounded up to block
594 	 * size...
595 	 */
596 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
597 		return;
598 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
599 	last_ext->extLength += added_bytes;
600 	UDF_I(inode)->i_lenExtents += added_bytes;
601 
602 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
603 			last_ext->extLength, 1);
604 }
605 
606 static int udf_extend_file(struct inode *inode, loff_t newsize)
607 {
608 
609 	struct extent_position epos;
610 	struct kernel_lb_addr eloc;
611 	uint32_t elen;
612 	int8_t etype;
613 	struct super_block *sb = inode->i_sb;
614 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
615 	loff_t new_elen;
616 	int adsize;
617 	struct udf_inode_info *iinfo = UDF_I(inode);
618 	struct kernel_long_ad extent;
619 	int err = 0;
620 	bool within_last_ext;
621 
622 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 		adsize = sizeof(struct short_ad);
624 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 		adsize = sizeof(struct long_ad);
626 	else
627 		BUG();
628 
629 	/*
630 	 * When creating hole in file, just don't bother with preserving
631 	 * preallocation. It likely won't be very useful anyway.
632 	 */
633 	udf_discard_prealloc(inode);
634 
635 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
636 	within_last_ext = (etype != -1);
637 	/* We don't expect extents past EOF... */
638 	WARN_ON_ONCE(within_last_ext &&
639 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
640 
641 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
642 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
643 		/* File has no extents at all or has empty last
644 		 * indirect extent! Create a fake extent... */
645 		extent.extLocation.logicalBlockNum = 0;
646 		extent.extLocation.partitionReferenceNum = 0;
647 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
648 	} else {
649 		epos.offset -= adsize;
650 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
651 				      &extent.extLength, 0);
652 		extent.extLength |= etype << 30;
653 	}
654 
655 	new_elen = ((loff_t)offset << inode->i_blkbits) |
656 					(newsize & (sb->s_blocksize - 1));
657 
658 	/* File has extent covering the new size (could happen when extending
659 	 * inside a block)?
660 	 */
661 	if (within_last_ext) {
662 		/* Extending file within the last file block */
663 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
664 	} else {
665 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
666 	}
667 
668 	if (err < 0)
669 		goto out;
670 	err = 0;
671 	iinfo->i_lenExtents = newsize;
672 out:
673 	brelse(epos.bh);
674 	return err;
675 }
676 
677 static sector_t inode_getblk(struct inode *inode, sector_t block,
678 			     int *err, int *new)
679 {
680 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
681 	struct extent_position prev_epos, cur_epos, next_epos;
682 	int count = 0, startnum = 0, endnum = 0;
683 	uint32_t elen = 0, tmpelen;
684 	struct kernel_lb_addr eloc, tmpeloc;
685 	int c = 1;
686 	loff_t lbcount = 0, b_off = 0;
687 	udf_pblk_t newblocknum, newblock = 0;
688 	sector_t offset = 0;
689 	int8_t etype;
690 	struct udf_inode_info *iinfo = UDF_I(inode);
691 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
692 	int lastblock = 0;
693 	bool isBeyondEOF;
694 
695 	*err = 0;
696 	*new = 0;
697 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
698 	prev_epos.block = iinfo->i_location;
699 	prev_epos.bh = NULL;
700 	cur_epos = next_epos = prev_epos;
701 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
702 
703 	/* find the extent which contains the block we are looking for.
704 	   alternate between laarr[0] and laarr[1] for locations of the
705 	   current extent, and the previous extent */
706 	do {
707 		if (prev_epos.bh != cur_epos.bh) {
708 			brelse(prev_epos.bh);
709 			get_bh(cur_epos.bh);
710 			prev_epos.bh = cur_epos.bh;
711 		}
712 		if (cur_epos.bh != next_epos.bh) {
713 			brelse(cur_epos.bh);
714 			get_bh(next_epos.bh);
715 			cur_epos.bh = next_epos.bh;
716 		}
717 
718 		lbcount += elen;
719 
720 		prev_epos.block = cur_epos.block;
721 		cur_epos.block = next_epos.block;
722 
723 		prev_epos.offset = cur_epos.offset;
724 		cur_epos.offset = next_epos.offset;
725 
726 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
727 		if (etype == -1)
728 			break;
729 
730 		c = !c;
731 
732 		laarr[c].extLength = (etype << 30) | elen;
733 		laarr[c].extLocation = eloc;
734 
735 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
736 			pgoal = eloc.logicalBlockNum +
737 				((elen + inode->i_sb->s_blocksize - 1) >>
738 				 inode->i_sb->s_blocksize_bits);
739 
740 		count++;
741 	} while (lbcount + elen <= b_off);
742 
743 	b_off -= lbcount;
744 	offset = b_off >> inode->i_sb->s_blocksize_bits;
745 	/*
746 	 * Move prev_epos and cur_epos into indirect extent if we are at
747 	 * the pointer to it
748 	 */
749 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
750 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
751 
752 	/* if the extent is allocated and recorded, return the block
753 	   if the extent is not a multiple of the blocksize, round up */
754 
755 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
756 		if (elen & (inode->i_sb->s_blocksize - 1)) {
757 			elen = EXT_RECORDED_ALLOCATED |
758 				((elen + inode->i_sb->s_blocksize - 1) &
759 				 ~(inode->i_sb->s_blocksize - 1));
760 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
761 		}
762 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
763 		goto out_free;
764 	}
765 
766 	/* Are we beyond EOF and preallocated extent? */
767 	if (etype == -1) {
768 		int ret;
769 		loff_t hole_len;
770 
771 		isBeyondEOF = true;
772 		if (count) {
773 			if (c)
774 				laarr[0] = laarr[1];
775 			startnum = 1;
776 		} else {
777 			/* Create a fake extent when there's not one */
778 			memset(&laarr[0].extLocation, 0x00,
779 				sizeof(struct kernel_lb_addr));
780 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
781 			/* Will udf_do_extend_file() create real extent from
782 			   a fake one? */
783 			startnum = (offset > 0);
784 		}
785 		/* Create extents for the hole between EOF and offset */
786 		hole_len = (loff_t)offset << inode->i_blkbits;
787 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
788 		if (ret < 0) {
789 			*err = ret;
790 			goto out_free;
791 		}
792 		c = 0;
793 		offset = 0;
794 		count += ret;
795 		/* We are not covered by a preallocated extent? */
796 		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
797 						EXT_NOT_RECORDED_ALLOCATED) {
798 			/* Is there any real extent? - otherwise we overwrite
799 			 * the fake one... */
800 			if (count)
801 				c = !c;
802 			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
803 				inode->i_sb->s_blocksize;
804 			memset(&laarr[c].extLocation, 0x00,
805 				sizeof(struct kernel_lb_addr));
806 			count++;
807 		}
808 		endnum = c + 1;
809 		lastblock = 1;
810 	} else {
811 		isBeyondEOF = false;
812 		endnum = startnum = ((count > 2) ? 2 : count);
813 
814 		/* if the current extent is in position 0,
815 		   swap it with the previous */
816 		if (!c && count != 1) {
817 			laarr[2] = laarr[0];
818 			laarr[0] = laarr[1];
819 			laarr[1] = laarr[2];
820 			c = 1;
821 		}
822 
823 		/* if the current block is located in an extent,
824 		   read the next extent */
825 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
826 		if (etype != -1) {
827 			laarr[c + 1].extLength = (etype << 30) | elen;
828 			laarr[c + 1].extLocation = eloc;
829 			count++;
830 			startnum++;
831 			endnum++;
832 		} else
833 			lastblock = 1;
834 	}
835 
836 	/* if the current extent is not recorded but allocated, get the
837 	 * block in the extent corresponding to the requested block */
838 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
839 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
840 	else { /* otherwise, allocate a new block */
841 		if (iinfo->i_next_alloc_block == block)
842 			goal = iinfo->i_next_alloc_goal;
843 
844 		if (!goal) {
845 			if (!(goal = pgoal)) /* XXX: what was intended here? */
846 				goal = iinfo->i_location.logicalBlockNum + 1;
847 		}
848 
849 		newblocknum = udf_new_block(inode->i_sb, inode,
850 				iinfo->i_location.partitionReferenceNum,
851 				goal, err);
852 		if (!newblocknum) {
853 			*err = -ENOSPC;
854 			goto out_free;
855 		}
856 		if (isBeyondEOF)
857 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
858 	}
859 
860 	/* if the extent the requsted block is located in contains multiple
861 	 * blocks, split the extent into at most three extents. blocks prior
862 	 * to requested block, requested block, and blocks after requested
863 	 * block */
864 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
865 
866 	/* We preallocate blocks only for regular files. It also makes sense
867 	 * for directories but there's a problem when to drop the
868 	 * preallocation. We might use some delayed work for that but I feel
869 	 * it's overengineering for a filesystem like UDF. */
870 	if (S_ISREG(inode->i_mode))
871 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
872 
873 	/* merge any continuous blocks in laarr */
874 	udf_merge_extents(inode, laarr, &endnum);
875 
876 	/* write back the new extents, inserting new extents if the new number
877 	 * of extents is greater than the old number, and deleting extents if
878 	 * the new number of extents is less than the old number */
879 	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
880 
881 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
882 				iinfo->i_location.partitionReferenceNum, 0);
883 	if (!newblock) {
884 		*err = -EIO;
885 		goto out_free;
886 	}
887 	*new = 1;
888 	iinfo->i_next_alloc_block = block;
889 	iinfo->i_next_alloc_goal = newblocknum;
890 	inode->i_ctime = current_time(inode);
891 
892 	if (IS_SYNC(inode))
893 		udf_sync_inode(inode);
894 	else
895 		mark_inode_dirty(inode);
896 out_free:
897 	brelse(prev_epos.bh);
898 	brelse(cur_epos.bh);
899 	brelse(next_epos.bh);
900 	return newblock;
901 }
902 
903 static void udf_split_extents(struct inode *inode, int *c, int offset,
904 			       udf_pblk_t newblocknum,
905 			       struct kernel_long_ad *laarr, int *endnum)
906 {
907 	unsigned long blocksize = inode->i_sb->s_blocksize;
908 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
909 
910 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
911 	    (laarr[*c].extLength >> 30) ==
912 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
913 		int curr = *c;
914 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
915 			    blocksize - 1) >> blocksize_bits;
916 		int8_t etype = (laarr[curr].extLength >> 30);
917 
918 		if (blen == 1)
919 			;
920 		else if (!offset || blen == offset + 1) {
921 			laarr[curr + 2] = laarr[curr + 1];
922 			laarr[curr + 1] = laarr[curr];
923 		} else {
924 			laarr[curr + 3] = laarr[curr + 1];
925 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
926 		}
927 
928 		if (offset) {
929 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
930 				udf_free_blocks(inode->i_sb, inode,
931 						&laarr[curr].extLocation,
932 						0, offset);
933 				laarr[curr].extLength =
934 					EXT_NOT_RECORDED_NOT_ALLOCATED |
935 					(offset << blocksize_bits);
936 				laarr[curr].extLocation.logicalBlockNum = 0;
937 				laarr[curr].extLocation.
938 						partitionReferenceNum = 0;
939 			} else
940 				laarr[curr].extLength = (etype << 30) |
941 					(offset << blocksize_bits);
942 			curr++;
943 			(*c)++;
944 			(*endnum)++;
945 		}
946 
947 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
948 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
949 			laarr[curr].extLocation.partitionReferenceNum =
950 				UDF_I(inode)->i_location.partitionReferenceNum;
951 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
952 			blocksize;
953 		curr++;
954 
955 		if (blen != offset + 1) {
956 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
957 				laarr[curr].extLocation.logicalBlockNum +=
958 								offset + 1;
959 			laarr[curr].extLength = (etype << 30) |
960 				((blen - (offset + 1)) << blocksize_bits);
961 			curr++;
962 			(*endnum)++;
963 		}
964 	}
965 }
966 
967 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
968 				 struct kernel_long_ad *laarr,
969 				 int *endnum)
970 {
971 	int start, length = 0, currlength = 0, i;
972 
973 	if (*endnum >= (c + 1)) {
974 		if (!lastblock)
975 			return;
976 		else
977 			start = c;
978 	} else {
979 		if ((laarr[c + 1].extLength >> 30) ==
980 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
981 			start = c + 1;
982 			length = currlength =
983 				(((laarr[c + 1].extLength &
984 					UDF_EXTENT_LENGTH_MASK) +
985 				inode->i_sb->s_blocksize - 1) >>
986 				inode->i_sb->s_blocksize_bits);
987 		} else
988 			start = c;
989 	}
990 
991 	for (i = start + 1; i <= *endnum; i++) {
992 		if (i == *endnum) {
993 			if (lastblock)
994 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
995 		} else if ((laarr[i].extLength >> 30) ==
996 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
997 			length += (((laarr[i].extLength &
998 						UDF_EXTENT_LENGTH_MASK) +
999 				    inode->i_sb->s_blocksize - 1) >>
1000 				    inode->i_sb->s_blocksize_bits);
1001 		} else
1002 			break;
1003 	}
1004 
1005 	if (length) {
1006 		int next = laarr[start].extLocation.logicalBlockNum +
1007 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1008 			  inode->i_sb->s_blocksize - 1) >>
1009 			  inode->i_sb->s_blocksize_bits);
1010 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1011 				laarr[start].extLocation.partitionReferenceNum,
1012 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1013 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1014 				currlength);
1015 		if (numalloc) 	{
1016 			if (start == (c + 1))
1017 				laarr[start].extLength +=
1018 					(numalloc <<
1019 					 inode->i_sb->s_blocksize_bits);
1020 			else {
1021 				memmove(&laarr[c + 2], &laarr[c + 1],
1022 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1023 				(*endnum)++;
1024 				laarr[c + 1].extLocation.logicalBlockNum = next;
1025 				laarr[c + 1].extLocation.partitionReferenceNum =
1026 					laarr[c].extLocation.
1027 							partitionReferenceNum;
1028 				laarr[c + 1].extLength =
1029 					EXT_NOT_RECORDED_ALLOCATED |
1030 					(numalloc <<
1031 					 inode->i_sb->s_blocksize_bits);
1032 				start = c + 1;
1033 			}
1034 
1035 			for (i = start + 1; numalloc && i < *endnum; i++) {
1036 				int elen = ((laarr[i].extLength &
1037 						UDF_EXTENT_LENGTH_MASK) +
1038 					    inode->i_sb->s_blocksize - 1) >>
1039 					    inode->i_sb->s_blocksize_bits;
1040 
1041 				if (elen > numalloc) {
1042 					laarr[i].extLength -=
1043 						(numalloc <<
1044 						 inode->i_sb->s_blocksize_bits);
1045 					numalloc = 0;
1046 				} else {
1047 					numalloc -= elen;
1048 					if (*endnum > (i + 1))
1049 						memmove(&laarr[i],
1050 							&laarr[i + 1],
1051 							sizeof(struct long_ad) *
1052 							(*endnum - (i + 1)));
1053 					i--;
1054 					(*endnum)--;
1055 				}
1056 			}
1057 			UDF_I(inode)->i_lenExtents +=
1058 				numalloc << inode->i_sb->s_blocksize_bits;
1059 		}
1060 	}
1061 }
1062 
1063 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1064 			      int *endnum)
1065 {
1066 	int i;
1067 	unsigned long blocksize = inode->i_sb->s_blocksize;
1068 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1069 
1070 	for (i = 0; i < (*endnum - 1); i++) {
1071 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1072 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1073 
1074 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1075 			(((li->extLength >> 30) ==
1076 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1077 			((lip1->extLocation.logicalBlockNum -
1078 			  li->extLocation.logicalBlockNum) ==
1079 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1080 			blocksize - 1) >> blocksize_bits)))) {
1081 
1082 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1083 				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1084 				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1085 				lip1->extLength = (lip1->extLength -
1086 						  (li->extLength &
1087 						   UDF_EXTENT_LENGTH_MASK) +
1088 						   UDF_EXTENT_LENGTH_MASK) &
1089 							~(blocksize - 1);
1090 				li->extLength = (li->extLength &
1091 						 UDF_EXTENT_FLAG_MASK) +
1092 						(UDF_EXTENT_LENGTH_MASK + 1) -
1093 						blocksize;
1094 				lip1->extLocation.logicalBlockNum =
1095 					li->extLocation.logicalBlockNum +
1096 					((li->extLength &
1097 						UDF_EXTENT_LENGTH_MASK) >>
1098 						blocksize_bits);
1099 			} else {
1100 				li->extLength = lip1->extLength +
1101 					(((li->extLength &
1102 						UDF_EXTENT_LENGTH_MASK) +
1103 					 blocksize - 1) & ~(blocksize - 1));
1104 				if (*endnum > (i + 2))
1105 					memmove(&laarr[i + 1], &laarr[i + 2],
1106 						sizeof(struct long_ad) *
1107 						(*endnum - (i + 2)));
1108 				i--;
1109 				(*endnum)--;
1110 			}
1111 		} else if (((li->extLength >> 30) ==
1112 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1113 			   ((lip1->extLength >> 30) ==
1114 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1115 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1116 					((li->extLength &
1117 					  UDF_EXTENT_LENGTH_MASK) +
1118 					 blocksize - 1) >> blocksize_bits);
1119 			li->extLocation.logicalBlockNum = 0;
1120 			li->extLocation.partitionReferenceNum = 0;
1121 
1122 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1123 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1124 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1125 				lip1->extLength = (lip1->extLength -
1126 						   (li->extLength &
1127 						   UDF_EXTENT_LENGTH_MASK) +
1128 						   UDF_EXTENT_LENGTH_MASK) &
1129 						   ~(blocksize - 1);
1130 				li->extLength = (li->extLength &
1131 						 UDF_EXTENT_FLAG_MASK) +
1132 						(UDF_EXTENT_LENGTH_MASK + 1) -
1133 						blocksize;
1134 			} else {
1135 				li->extLength = lip1->extLength +
1136 					(((li->extLength &
1137 						UDF_EXTENT_LENGTH_MASK) +
1138 					  blocksize - 1) & ~(blocksize - 1));
1139 				if (*endnum > (i + 2))
1140 					memmove(&laarr[i + 1], &laarr[i + 2],
1141 						sizeof(struct long_ad) *
1142 						(*endnum - (i + 2)));
1143 				i--;
1144 				(*endnum)--;
1145 			}
1146 		} else if ((li->extLength >> 30) ==
1147 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1148 			udf_free_blocks(inode->i_sb, inode,
1149 					&li->extLocation, 0,
1150 					((li->extLength &
1151 						UDF_EXTENT_LENGTH_MASK) +
1152 					 blocksize - 1) >> blocksize_bits);
1153 			li->extLocation.logicalBlockNum = 0;
1154 			li->extLocation.partitionReferenceNum = 0;
1155 			li->extLength = (li->extLength &
1156 						UDF_EXTENT_LENGTH_MASK) |
1157 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1158 		}
1159 	}
1160 }
1161 
1162 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1163 			       int startnum, int endnum,
1164 			       struct extent_position *epos)
1165 {
1166 	int start = 0, i;
1167 	struct kernel_lb_addr tmploc;
1168 	uint32_t tmplen;
1169 
1170 	if (startnum > endnum) {
1171 		for (i = 0; i < (startnum - endnum); i++)
1172 			udf_delete_aext(inode, *epos);
1173 	} else if (startnum < endnum) {
1174 		for (i = 0; i < (endnum - startnum); i++) {
1175 			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1176 					laarr[i].extLength);
1177 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1178 				      &laarr[i].extLength, 1);
1179 			start++;
1180 		}
1181 	}
1182 
1183 	for (i = start; i < endnum; i++) {
1184 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1185 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1186 			       laarr[i].extLength, 1);
1187 	}
1188 }
1189 
1190 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1191 			      int create, int *err)
1192 {
1193 	struct buffer_head *bh = NULL;
1194 
1195 	bh = udf_getblk(inode, block, create, err);
1196 	if (!bh)
1197 		return NULL;
1198 
1199 	if (bh_read(bh, 0) >= 0)
1200 		return bh;
1201 
1202 	brelse(bh);
1203 	*err = -EIO;
1204 	return NULL;
1205 }
1206 
1207 int udf_setsize(struct inode *inode, loff_t newsize)
1208 {
1209 	int err;
1210 	struct udf_inode_info *iinfo;
1211 	unsigned int bsize = i_blocksize(inode);
1212 
1213 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214 	      S_ISLNK(inode->i_mode)))
1215 		return -EINVAL;
1216 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217 		return -EPERM;
1218 
1219 	iinfo = UDF_I(inode);
1220 	if (newsize > inode->i_size) {
1221 		down_write(&iinfo->i_data_sem);
1222 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223 			if (bsize <
1224 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1225 				err = udf_expand_file_adinicb(inode);
1226 				if (err)
1227 					return err;
1228 				down_write(&iinfo->i_data_sem);
1229 			} else {
1230 				iinfo->i_lenAlloc = newsize;
1231 				goto set_size;
1232 			}
1233 		}
1234 		err = udf_extend_file(inode, newsize);
1235 		if (err) {
1236 			up_write(&iinfo->i_data_sem);
1237 			return err;
1238 		}
1239 set_size:
1240 		up_write(&iinfo->i_data_sem);
1241 		truncate_setsize(inode, newsize);
1242 	} else {
1243 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 			down_write(&iinfo->i_data_sem);
1245 			udf_clear_extent_cache(inode);
1246 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1247 			       0x00, bsize - newsize -
1248 			       udf_file_entry_alloc_offset(inode));
1249 			iinfo->i_lenAlloc = newsize;
1250 			truncate_setsize(inode, newsize);
1251 			up_write(&iinfo->i_data_sem);
1252 			goto update_time;
1253 		}
1254 		err = block_truncate_page(inode->i_mapping, newsize,
1255 					  udf_get_block);
1256 		if (err)
1257 			return err;
1258 		truncate_setsize(inode, newsize);
1259 		down_write(&iinfo->i_data_sem);
1260 		udf_clear_extent_cache(inode);
1261 		err = udf_truncate_extents(inode);
1262 		up_write(&iinfo->i_data_sem);
1263 		if (err)
1264 			return err;
1265 	}
1266 update_time:
1267 	inode->i_mtime = inode->i_ctime = current_time(inode);
1268 	if (IS_SYNC(inode))
1269 		udf_sync_inode(inode);
1270 	else
1271 		mark_inode_dirty(inode);
1272 	return 0;
1273 }
1274 
1275 /*
1276  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1277  * arbitrary - just that we hopefully don't limit any real use of rewritten
1278  * inode on write-once media but avoid looping for too long on corrupted media.
1279  */
1280 #define UDF_MAX_ICB_NESTING 1024
1281 
1282 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1283 {
1284 	struct buffer_head *bh = NULL;
1285 	struct fileEntry *fe;
1286 	struct extendedFileEntry *efe;
1287 	uint16_t ident;
1288 	struct udf_inode_info *iinfo = UDF_I(inode);
1289 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1290 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1291 	unsigned int link_count;
1292 	unsigned int indirections = 0;
1293 	int bs = inode->i_sb->s_blocksize;
1294 	int ret = -EIO;
1295 	uint32_t uid, gid;
1296 
1297 reread:
1298 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1299 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1300 			  iloc->partitionReferenceNum, sbi->s_partitions);
1301 		return -EIO;
1302 	}
1303 
1304 	if (iloc->logicalBlockNum >=
1305 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1306 		udf_debug("block=%u, partition=%u out of range\n",
1307 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1308 		return -EIO;
1309 	}
1310 
1311 	/*
1312 	 * Set defaults, but the inode is still incomplete!
1313 	 * Note: get_new_inode() sets the following on a new inode:
1314 	 *      i_sb = sb
1315 	 *      i_no = ino
1316 	 *      i_flags = sb->s_flags
1317 	 *      i_state = 0
1318 	 * clean_inode(): zero fills and sets
1319 	 *      i_count = 1
1320 	 *      i_nlink = 1
1321 	 *      i_op = NULL;
1322 	 */
1323 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1324 	if (!bh) {
1325 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1326 		return -EIO;
1327 	}
1328 
1329 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1330 	    ident != TAG_IDENT_USE) {
1331 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1332 			inode->i_ino, ident);
1333 		goto out;
1334 	}
1335 
1336 	fe = (struct fileEntry *)bh->b_data;
1337 	efe = (struct extendedFileEntry *)bh->b_data;
1338 
1339 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1340 		struct buffer_head *ibh;
1341 
1342 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1343 		if (ident == TAG_IDENT_IE && ibh) {
1344 			struct kernel_lb_addr loc;
1345 			struct indirectEntry *ie;
1346 
1347 			ie = (struct indirectEntry *)ibh->b_data;
1348 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1349 
1350 			if (ie->indirectICB.extLength) {
1351 				brelse(ibh);
1352 				memcpy(&iinfo->i_location, &loc,
1353 				       sizeof(struct kernel_lb_addr));
1354 				if (++indirections > UDF_MAX_ICB_NESTING) {
1355 					udf_err(inode->i_sb,
1356 						"too many ICBs in ICB hierarchy"
1357 						" (max %d supported)\n",
1358 						UDF_MAX_ICB_NESTING);
1359 					goto out;
1360 				}
1361 				brelse(bh);
1362 				goto reread;
1363 			}
1364 		}
1365 		brelse(ibh);
1366 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1367 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1368 			le16_to_cpu(fe->icbTag.strategyType));
1369 		goto out;
1370 	}
1371 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1372 		iinfo->i_strat4096 = 0;
1373 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1374 		iinfo->i_strat4096 = 1;
1375 
1376 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1377 							ICBTAG_FLAG_AD_MASK;
1378 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1379 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1380 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1381 		ret = -EIO;
1382 		goto out;
1383 	}
1384 	iinfo->i_unique = 0;
1385 	iinfo->i_lenEAttr = 0;
1386 	iinfo->i_lenExtents = 0;
1387 	iinfo->i_lenAlloc = 0;
1388 	iinfo->i_next_alloc_block = 0;
1389 	iinfo->i_next_alloc_goal = 0;
1390 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1391 		iinfo->i_efe = 1;
1392 		iinfo->i_use = 0;
1393 		ret = udf_alloc_i_data(inode, bs -
1394 					sizeof(struct extendedFileEntry));
1395 		if (ret)
1396 			goto out;
1397 		memcpy(iinfo->i_data,
1398 		       bh->b_data + sizeof(struct extendedFileEntry),
1399 		       bs - sizeof(struct extendedFileEntry));
1400 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1401 		iinfo->i_efe = 0;
1402 		iinfo->i_use = 0;
1403 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1404 		if (ret)
1405 			goto out;
1406 		memcpy(iinfo->i_data,
1407 		       bh->b_data + sizeof(struct fileEntry),
1408 		       bs - sizeof(struct fileEntry));
1409 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1410 		iinfo->i_efe = 0;
1411 		iinfo->i_use = 1;
1412 		iinfo->i_lenAlloc = le32_to_cpu(
1413 				((struct unallocSpaceEntry *)bh->b_data)->
1414 				 lengthAllocDescs);
1415 		ret = udf_alloc_i_data(inode, bs -
1416 					sizeof(struct unallocSpaceEntry));
1417 		if (ret)
1418 			goto out;
1419 		memcpy(iinfo->i_data,
1420 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1421 		       bs - sizeof(struct unallocSpaceEntry));
1422 		return 0;
1423 	}
1424 
1425 	ret = -EIO;
1426 	read_lock(&sbi->s_cred_lock);
1427 	uid = le32_to_cpu(fe->uid);
1428 	if (uid == UDF_INVALID_ID ||
1429 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1430 		inode->i_uid = sbi->s_uid;
1431 	else
1432 		i_uid_write(inode, uid);
1433 
1434 	gid = le32_to_cpu(fe->gid);
1435 	if (gid == UDF_INVALID_ID ||
1436 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1437 		inode->i_gid = sbi->s_gid;
1438 	else
1439 		i_gid_write(inode, gid);
1440 
1441 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1442 			sbi->s_fmode != UDF_INVALID_MODE)
1443 		inode->i_mode = sbi->s_fmode;
1444 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1445 			sbi->s_dmode != UDF_INVALID_MODE)
1446 		inode->i_mode = sbi->s_dmode;
1447 	else
1448 		inode->i_mode = udf_convert_permissions(fe);
1449 	inode->i_mode &= ~sbi->s_umask;
1450 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1451 
1452 	read_unlock(&sbi->s_cred_lock);
1453 
1454 	link_count = le16_to_cpu(fe->fileLinkCount);
1455 	if (!link_count) {
1456 		if (!hidden_inode) {
1457 			ret = -ESTALE;
1458 			goto out;
1459 		}
1460 		link_count = 1;
1461 	}
1462 	set_nlink(inode, link_count);
1463 
1464 	inode->i_size = le64_to_cpu(fe->informationLength);
1465 	iinfo->i_lenExtents = inode->i_size;
1466 
1467 	if (iinfo->i_efe == 0) {
1468 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1469 			(inode->i_sb->s_blocksize_bits - 9);
1470 
1471 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1472 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1473 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1474 
1475 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1476 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1477 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1478 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1479 		iinfo->i_streamdir = 0;
1480 		iinfo->i_lenStreams = 0;
1481 	} else {
1482 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1483 		    (inode->i_sb->s_blocksize_bits - 9);
1484 
1485 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1486 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1487 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1488 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1489 
1490 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494 
1495 		/* Named streams */
1496 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1497 		iinfo->i_locStreamdir =
1498 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1499 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1500 		if (iinfo->i_lenStreams >= inode->i_size)
1501 			iinfo->i_lenStreams -= inode->i_size;
1502 		else
1503 			iinfo->i_lenStreams = 0;
1504 	}
1505 	inode->i_generation = iinfo->i_unique;
1506 
1507 	/*
1508 	 * Sanity check length of allocation descriptors and extended attrs to
1509 	 * avoid integer overflows
1510 	 */
1511 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1512 		goto out;
1513 	/* Now do exact checks */
1514 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1515 		goto out;
1516 	/* Sanity checks for files in ICB so that we don't get confused later */
1517 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1518 		/*
1519 		 * For file in ICB data is stored in allocation descriptor
1520 		 * so sizes should match
1521 		 */
1522 		if (iinfo->i_lenAlloc != inode->i_size)
1523 			goto out;
1524 		/* File in ICB has to fit in there... */
1525 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1526 			goto out;
1527 	}
1528 
1529 	switch (fe->icbTag.fileType) {
1530 	case ICBTAG_FILE_TYPE_DIRECTORY:
1531 		inode->i_op = &udf_dir_inode_operations;
1532 		inode->i_fop = &udf_dir_operations;
1533 		inode->i_mode |= S_IFDIR;
1534 		inc_nlink(inode);
1535 		break;
1536 	case ICBTAG_FILE_TYPE_REALTIME:
1537 	case ICBTAG_FILE_TYPE_REGULAR:
1538 	case ICBTAG_FILE_TYPE_UNDEF:
1539 	case ICBTAG_FILE_TYPE_VAT20:
1540 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1541 			inode->i_data.a_ops = &udf_adinicb_aops;
1542 		else
1543 			inode->i_data.a_ops = &udf_aops;
1544 		inode->i_op = &udf_file_inode_operations;
1545 		inode->i_fop = &udf_file_operations;
1546 		inode->i_mode |= S_IFREG;
1547 		break;
1548 	case ICBTAG_FILE_TYPE_BLOCK:
1549 		inode->i_mode |= S_IFBLK;
1550 		break;
1551 	case ICBTAG_FILE_TYPE_CHAR:
1552 		inode->i_mode |= S_IFCHR;
1553 		break;
1554 	case ICBTAG_FILE_TYPE_FIFO:
1555 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1556 		break;
1557 	case ICBTAG_FILE_TYPE_SOCKET:
1558 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1559 		break;
1560 	case ICBTAG_FILE_TYPE_SYMLINK:
1561 		inode->i_data.a_ops = &udf_symlink_aops;
1562 		inode->i_op = &udf_symlink_inode_operations;
1563 		inode_nohighmem(inode);
1564 		inode->i_mode = S_IFLNK | 0777;
1565 		break;
1566 	case ICBTAG_FILE_TYPE_MAIN:
1567 		udf_debug("METADATA FILE-----\n");
1568 		break;
1569 	case ICBTAG_FILE_TYPE_MIRROR:
1570 		udf_debug("METADATA MIRROR FILE-----\n");
1571 		break;
1572 	case ICBTAG_FILE_TYPE_BITMAP:
1573 		udf_debug("METADATA BITMAP FILE-----\n");
1574 		break;
1575 	default:
1576 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1577 			inode->i_ino, fe->icbTag.fileType);
1578 		goto out;
1579 	}
1580 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1581 		struct deviceSpec *dsea =
1582 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1583 		if (dsea) {
1584 			init_special_inode(inode, inode->i_mode,
1585 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1586 				      le32_to_cpu(dsea->minorDeviceIdent)));
1587 			/* Developer ID ??? */
1588 		} else
1589 			goto out;
1590 	}
1591 	ret = 0;
1592 out:
1593 	brelse(bh);
1594 	return ret;
1595 }
1596 
1597 static int udf_alloc_i_data(struct inode *inode, size_t size)
1598 {
1599 	struct udf_inode_info *iinfo = UDF_I(inode);
1600 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1601 	if (!iinfo->i_data)
1602 		return -ENOMEM;
1603 	return 0;
1604 }
1605 
1606 static umode_t udf_convert_permissions(struct fileEntry *fe)
1607 {
1608 	umode_t mode;
1609 	uint32_t permissions;
1610 	uint32_t flags;
1611 
1612 	permissions = le32_to_cpu(fe->permissions);
1613 	flags = le16_to_cpu(fe->icbTag.flags);
1614 
1615 	mode =	((permissions) & 0007) |
1616 		((permissions >> 2) & 0070) |
1617 		((permissions >> 4) & 0700) |
1618 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1619 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1620 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1621 
1622 	return mode;
1623 }
1624 
1625 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1626 {
1627 	struct udf_inode_info *iinfo = UDF_I(inode);
1628 
1629 	/*
1630 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1631 	 * In Unix, delete permission tracks write
1632 	 */
1633 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1634 	if (mode & 0200)
1635 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1636 	if (mode & 0020)
1637 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1638 	if (mode & 0002)
1639 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1640 }
1641 
1642 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1643 {
1644 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1645 }
1646 
1647 static int udf_sync_inode(struct inode *inode)
1648 {
1649 	return udf_update_inode(inode, 1);
1650 }
1651 
1652 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1653 {
1654 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1655 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1656 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1657 		iinfo->i_crtime = time;
1658 }
1659 
1660 static int udf_update_inode(struct inode *inode, int do_sync)
1661 {
1662 	struct buffer_head *bh = NULL;
1663 	struct fileEntry *fe;
1664 	struct extendedFileEntry *efe;
1665 	uint64_t lb_recorded;
1666 	uint32_t udfperms;
1667 	uint16_t icbflags;
1668 	uint16_t crclen;
1669 	int err = 0;
1670 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1671 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1672 	struct udf_inode_info *iinfo = UDF_I(inode);
1673 
1674 	bh = udf_tgetblk(inode->i_sb,
1675 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1676 	if (!bh) {
1677 		udf_debug("getblk failure\n");
1678 		return -EIO;
1679 	}
1680 
1681 	lock_buffer(bh);
1682 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1683 	fe = (struct fileEntry *)bh->b_data;
1684 	efe = (struct extendedFileEntry *)bh->b_data;
1685 
1686 	if (iinfo->i_use) {
1687 		struct unallocSpaceEntry *use =
1688 			(struct unallocSpaceEntry *)bh->b_data;
1689 
1690 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1691 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1692 		       iinfo->i_data, inode->i_sb->s_blocksize -
1693 					sizeof(struct unallocSpaceEntry));
1694 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1695 		crclen = sizeof(struct unallocSpaceEntry);
1696 
1697 		goto finish;
1698 	}
1699 
1700 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1701 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1702 	else
1703 		fe->uid = cpu_to_le32(i_uid_read(inode));
1704 
1705 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1706 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1707 	else
1708 		fe->gid = cpu_to_le32(i_gid_read(inode));
1709 
1710 	udfperms = ((inode->i_mode & 0007)) |
1711 		   ((inode->i_mode & 0070) << 2) |
1712 		   ((inode->i_mode & 0700) << 4);
1713 
1714 	udfperms |= iinfo->i_extraPerms;
1715 	fe->permissions = cpu_to_le32(udfperms);
1716 
1717 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1718 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1719 	else
1720 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1721 
1722 	fe->informationLength = cpu_to_le64(inode->i_size);
1723 
1724 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1725 		struct regid *eid;
1726 		struct deviceSpec *dsea =
1727 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1728 		if (!dsea) {
1729 			dsea = (struct deviceSpec *)
1730 				udf_add_extendedattr(inode,
1731 						     sizeof(struct deviceSpec) +
1732 						     sizeof(struct regid), 12, 0x3);
1733 			dsea->attrType = cpu_to_le32(12);
1734 			dsea->attrSubtype = 1;
1735 			dsea->attrLength = cpu_to_le32(
1736 						sizeof(struct deviceSpec) +
1737 						sizeof(struct regid));
1738 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1739 		}
1740 		eid = (struct regid *)dsea->impUse;
1741 		memset(eid, 0, sizeof(*eid));
1742 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1743 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1744 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1745 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1746 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1747 	}
1748 
1749 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1750 		lb_recorded = 0; /* No extents => no blocks! */
1751 	else
1752 		lb_recorded =
1753 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1754 			(blocksize_bits - 9);
1755 
1756 	if (iinfo->i_efe == 0) {
1757 		memcpy(bh->b_data + sizeof(struct fileEntry),
1758 		       iinfo->i_data,
1759 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1760 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1761 
1762 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1763 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1764 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1765 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1766 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1767 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1768 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1769 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1770 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1771 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1772 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1773 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1774 		crclen = sizeof(struct fileEntry);
1775 	} else {
1776 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1777 		       iinfo->i_data,
1778 		       inode->i_sb->s_blocksize -
1779 					sizeof(struct extendedFileEntry));
1780 		efe->objectSize =
1781 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1782 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783 
1784 		if (iinfo->i_streamdir) {
1785 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1786 
1787 			icb_lad->extLocation =
1788 				cpu_to_lelb(iinfo->i_locStreamdir);
1789 			icb_lad->extLength =
1790 				cpu_to_le32(inode->i_sb->s_blocksize);
1791 		}
1792 
1793 		udf_adjust_time(iinfo, inode->i_atime);
1794 		udf_adjust_time(iinfo, inode->i_mtime);
1795 		udf_adjust_time(iinfo, inode->i_ctime);
1796 
1797 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1798 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1799 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1800 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1801 
1802 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1803 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1804 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1805 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1806 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1807 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1808 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1809 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1810 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1811 		crclen = sizeof(struct extendedFileEntry);
1812 	}
1813 
1814 finish:
1815 	if (iinfo->i_strat4096) {
1816 		fe->icbTag.strategyType = cpu_to_le16(4096);
1817 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1818 		fe->icbTag.numEntries = cpu_to_le16(2);
1819 	} else {
1820 		fe->icbTag.strategyType = cpu_to_le16(4);
1821 		fe->icbTag.numEntries = cpu_to_le16(1);
1822 	}
1823 
1824 	if (iinfo->i_use)
1825 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1826 	else if (S_ISDIR(inode->i_mode))
1827 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1828 	else if (S_ISREG(inode->i_mode))
1829 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1830 	else if (S_ISLNK(inode->i_mode))
1831 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1832 	else if (S_ISBLK(inode->i_mode))
1833 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1834 	else if (S_ISCHR(inode->i_mode))
1835 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1836 	else if (S_ISFIFO(inode->i_mode))
1837 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1838 	else if (S_ISSOCK(inode->i_mode))
1839 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1840 
1841 	icbflags =	iinfo->i_alloc_type |
1842 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1843 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1844 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1845 			(le16_to_cpu(fe->icbTag.flags) &
1846 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1847 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1848 
1849 	fe->icbTag.flags = cpu_to_le16(icbflags);
1850 	if (sbi->s_udfrev >= 0x0200)
1851 		fe->descTag.descVersion = cpu_to_le16(3);
1852 	else
1853 		fe->descTag.descVersion = cpu_to_le16(2);
1854 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1855 	fe->descTag.tagLocation = cpu_to_le32(
1856 					iinfo->i_location.logicalBlockNum);
1857 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1858 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1859 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1860 						  crclen));
1861 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1862 
1863 	set_buffer_uptodate(bh);
1864 	unlock_buffer(bh);
1865 
1866 	/* write the data blocks */
1867 	mark_buffer_dirty(bh);
1868 	if (do_sync) {
1869 		sync_dirty_buffer(bh);
1870 		if (buffer_write_io_error(bh)) {
1871 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1872 				 inode->i_ino);
1873 			err = -EIO;
1874 		}
1875 	}
1876 	brelse(bh);
1877 
1878 	return err;
1879 }
1880 
1881 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1882 			 bool hidden_inode)
1883 {
1884 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1885 	struct inode *inode = iget_locked(sb, block);
1886 	int err;
1887 
1888 	if (!inode)
1889 		return ERR_PTR(-ENOMEM);
1890 
1891 	if (!(inode->i_state & I_NEW))
1892 		return inode;
1893 
1894 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1895 	err = udf_read_inode(inode, hidden_inode);
1896 	if (err < 0) {
1897 		iget_failed(inode);
1898 		return ERR_PTR(err);
1899 	}
1900 	unlock_new_inode(inode);
1901 
1902 	return inode;
1903 }
1904 
1905 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1906 			    struct extent_position *epos)
1907 {
1908 	struct super_block *sb = inode->i_sb;
1909 	struct buffer_head *bh;
1910 	struct allocExtDesc *aed;
1911 	struct extent_position nepos;
1912 	struct kernel_lb_addr neloc;
1913 	int ver, adsize;
1914 
1915 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1916 		adsize = sizeof(struct short_ad);
1917 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1918 		adsize = sizeof(struct long_ad);
1919 	else
1920 		return -EIO;
1921 
1922 	neloc.logicalBlockNum = block;
1923 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1924 
1925 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1926 	if (!bh)
1927 		return -EIO;
1928 	lock_buffer(bh);
1929 	memset(bh->b_data, 0x00, sb->s_blocksize);
1930 	set_buffer_uptodate(bh);
1931 	unlock_buffer(bh);
1932 	mark_buffer_dirty_inode(bh, inode);
1933 
1934 	aed = (struct allocExtDesc *)(bh->b_data);
1935 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1936 		aed->previousAllocExtLocation =
1937 				cpu_to_le32(epos->block.logicalBlockNum);
1938 	}
1939 	aed->lengthAllocDescs = cpu_to_le32(0);
1940 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1941 		ver = 3;
1942 	else
1943 		ver = 2;
1944 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1945 		    sizeof(struct tag));
1946 
1947 	nepos.block = neloc;
1948 	nepos.offset = sizeof(struct allocExtDesc);
1949 	nepos.bh = bh;
1950 
1951 	/*
1952 	 * Do we have to copy current last extent to make space for indirect
1953 	 * one?
1954 	 */
1955 	if (epos->offset + adsize > sb->s_blocksize) {
1956 		struct kernel_lb_addr cp_loc;
1957 		uint32_t cp_len;
1958 		int cp_type;
1959 
1960 		epos->offset -= adsize;
1961 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1962 		cp_len |= ((uint32_t)cp_type) << 30;
1963 
1964 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1965 		udf_write_aext(inode, epos, &nepos.block,
1966 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1967 	} else {
1968 		__udf_add_aext(inode, epos, &nepos.block,
1969 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1970 	}
1971 
1972 	brelse(epos->bh);
1973 	*epos = nepos;
1974 
1975 	return 0;
1976 }
1977 
1978 /*
1979  * Append extent at the given position - should be the first free one in inode
1980  * / indirect extent. This function assumes there is enough space in the inode
1981  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1982  */
1983 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1984 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1985 {
1986 	struct udf_inode_info *iinfo = UDF_I(inode);
1987 	struct allocExtDesc *aed;
1988 	int adsize;
1989 
1990 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1991 		adsize = sizeof(struct short_ad);
1992 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1993 		adsize = sizeof(struct long_ad);
1994 	else
1995 		return -EIO;
1996 
1997 	if (!epos->bh) {
1998 		WARN_ON(iinfo->i_lenAlloc !=
1999 			epos->offset - udf_file_entry_alloc_offset(inode));
2000 	} else {
2001 		aed = (struct allocExtDesc *)epos->bh->b_data;
2002 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2003 			epos->offset - sizeof(struct allocExtDesc));
2004 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2005 	}
2006 
2007 	udf_write_aext(inode, epos, eloc, elen, inc);
2008 
2009 	if (!epos->bh) {
2010 		iinfo->i_lenAlloc += adsize;
2011 		mark_inode_dirty(inode);
2012 	} else {
2013 		aed = (struct allocExtDesc *)epos->bh->b_data;
2014 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2015 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2016 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2017 			udf_update_tag(epos->bh->b_data,
2018 					epos->offset + (inc ? 0 : adsize));
2019 		else
2020 			udf_update_tag(epos->bh->b_data,
2021 					sizeof(struct allocExtDesc));
2022 		mark_buffer_dirty_inode(epos->bh, inode);
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 /*
2029  * Append extent at given position - should be the first free one in inode
2030  * / indirect extent. Takes care of allocating and linking indirect blocks.
2031  */
2032 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2033 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2034 {
2035 	int adsize;
2036 	struct super_block *sb = inode->i_sb;
2037 
2038 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2039 		adsize = sizeof(struct short_ad);
2040 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2041 		adsize = sizeof(struct long_ad);
2042 	else
2043 		return -EIO;
2044 
2045 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2046 		int err;
2047 		udf_pblk_t new_block;
2048 
2049 		new_block = udf_new_block(sb, NULL,
2050 					  epos->block.partitionReferenceNum,
2051 					  epos->block.logicalBlockNum, &err);
2052 		if (!new_block)
2053 			return -ENOSPC;
2054 
2055 		err = udf_setup_indirect_aext(inode, new_block, epos);
2056 		if (err)
2057 			return err;
2058 	}
2059 
2060 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2061 }
2062 
2063 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2064 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2065 {
2066 	int adsize;
2067 	uint8_t *ptr;
2068 	struct short_ad *sad;
2069 	struct long_ad *lad;
2070 	struct udf_inode_info *iinfo = UDF_I(inode);
2071 
2072 	if (!epos->bh)
2073 		ptr = iinfo->i_data + epos->offset -
2074 			udf_file_entry_alloc_offset(inode) +
2075 			iinfo->i_lenEAttr;
2076 	else
2077 		ptr = epos->bh->b_data + epos->offset;
2078 
2079 	switch (iinfo->i_alloc_type) {
2080 	case ICBTAG_FLAG_AD_SHORT:
2081 		sad = (struct short_ad *)ptr;
2082 		sad->extLength = cpu_to_le32(elen);
2083 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2084 		adsize = sizeof(struct short_ad);
2085 		break;
2086 	case ICBTAG_FLAG_AD_LONG:
2087 		lad = (struct long_ad *)ptr;
2088 		lad->extLength = cpu_to_le32(elen);
2089 		lad->extLocation = cpu_to_lelb(*eloc);
2090 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2091 		adsize = sizeof(struct long_ad);
2092 		break;
2093 	default:
2094 		return;
2095 	}
2096 
2097 	if (epos->bh) {
2098 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2099 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2100 			struct allocExtDesc *aed =
2101 				(struct allocExtDesc *)epos->bh->b_data;
2102 			udf_update_tag(epos->bh->b_data,
2103 				       le32_to_cpu(aed->lengthAllocDescs) +
2104 				       sizeof(struct allocExtDesc));
2105 		}
2106 		mark_buffer_dirty_inode(epos->bh, inode);
2107 	} else {
2108 		mark_inode_dirty(inode);
2109 	}
2110 
2111 	if (inc)
2112 		epos->offset += adsize;
2113 }
2114 
2115 /*
2116  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2117  * someone does some weird stuff.
2118  */
2119 #define UDF_MAX_INDIR_EXTS 16
2120 
2121 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2122 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2123 {
2124 	int8_t etype;
2125 	unsigned int indirections = 0;
2126 
2127 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2128 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2129 		udf_pblk_t block;
2130 
2131 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2132 			udf_err(inode->i_sb,
2133 				"too many indirect extents in inode %lu\n",
2134 				inode->i_ino);
2135 			return -1;
2136 		}
2137 
2138 		epos->block = *eloc;
2139 		epos->offset = sizeof(struct allocExtDesc);
2140 		brelse(epos->bh);
2141 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2142 		epos->bh = udf_tread(inode->i_sb, block);
2143 		if (!epos->bh) {
2144 			udf_debug("reading block %u failed!\n", block);
2145 			return -1;
2146 		}
2147 	}
2148 
2149 	return etype;
2150 }
2151 
2152 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2153 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2154 {
2155 	int alen;
2156 	int8_t etype;
2157 	uint8_t *ptr;
2158 	struct short_ad *sad;
2159 	struct long_ad *lad;
2160 	struct udf_inode_info *iinfo = UDF_I(inode);
2161 
2162 	if (!epos->bh) {
2163 		if (!epos->offset)
2164 			epos->offset = udf_file_entry_alloc_offset(inode);
2165 		ptr = iinfo->i_data + epos->offset -
2166 			udf_file_entry_alloc_offset(inode) +
2167 			iinfo->i_lenEAttr;
2168 		alen = udf_file_entry_alloc_offset(inode) +
2169 							iinfo->i_lenAlloc;
2170 	} else {
2171 		if (!epos->offset)
2172 			epos->offset = sizeof(struct allocExtDesc);
2173 		ptr = epos->bh->b_data + epos->offset;
2174 		alen = sizeof(struct allocExtDesc) +
2175 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2176 							lengthAllocDescs);
2177 	}
2178 
2179 	switch (iinfo->i_alloc_type) {
2180 	case ICBTAG_FLAG_AD_SHORT:
2181 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2182 		if (!sad)
2183 			return -1;
2184 		etype = le32_to_cpu(sad->extLength) >> 30;
2185 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2186 		eloc->partitionReferenceNum =
2187 				iinfo->i_location.partitionReferenceNum;
2188 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2189 		break;
2190 	case ICBTAG_FLAG_AD_LONG:
2191 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2192 		if (!lad)
2193 			return -1;
2194 		etype = le32_to_cpu(lad->extLength) >> 30;
2195 		*eloc = lelb_to_cpu(lad->extLocation);
2196 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2197 		break;
2198 	default:
2199 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2200 		return -1;
2201 	}
2202 
2203 	return etype;
2204 }
2205 
2206 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2207 			      struct kernel_lb_addr neloc, uint32_t nelen)
2208 {
2209 	struct kernel_lb_addr oeloc;
2210 	uint32_t oelen;
2211 	int8_t etype;
2212 
2213 	if (epos.bh)
2214 		get_bh(epos.bh);
2215 
2216 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2217 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2218 		neloc = oeloc;
2219 		nelen = (etype << 30) | oelen;
2220 	}
2221 	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2222 	brelse(epos.bh);
2223 
2224 	return (nelen >> 30);
2225 }
2226 
2227 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2228 {
2229 	struct extent_position oepos;
2230 	int adsize;
2231 	int8_t etype;
2232 	struct allocExtDesc *aed;
2233 	struct udf_inode_info *iinfo;
2234 	struct kernel_lb_addr eloc;
2235 	uint32_t elen;
2236 
2237 	if (epos.bh) {
2238 		get_bh(epos.bh);
2239 		get_bh(epos.bh);
2240 	}
2241 
2242 	iinfo = UDF_I(inode);
2243 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2244 		adsize = sizeof(struct short_ad);
2245 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2246 		adsize = sizeof(struct long_ad);
2247 	else
2248 		adsize = 0;
2249 
2250 	oepos = epos;
2251 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2252 		return -1;
2253 
2254 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2255 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2256 		if (oepos.bh != epos.bh) {
2257 			oepos.block = epos.block;
2258 			brelse(oepos.bh);
2259 			get_bh(epos.bh);
2260 			oepos.bh = epos.bh;
2261 			oepos.offset = epos.offset - adsize;
2262 		}
2263 	}
2264 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2265 	elen = 0;
2266 
2267 	if (epos.bh != oepos.bh) {
2268 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2269 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2270 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2271 		if (!oepos.bh) {
2272 			iinfo->i_lenAlloc -= (adsize * 2);
2273 			mark_inode_dirty(inode);
2274 		} else {
2275 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2276 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2277 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2278 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2279 				udf_update_tag(oepos.bh->b_data,
2280 						oepos.offset - (2 * adsize));
2281 			else
2282 				udf_update_tag(oepos.bh->b_data,
2283 						sizeof(struct allocExtDesc));
2284 			mark_buffer_dirty_inode(oepos.bh, inode);
2285 		}
2286 	} else {
2287 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 		if (!oepos.bh) {
2289 			iinfo->i_lenAlloc -= adsize;
2290 			mark_inode_dirty(inode);
2291 		} else {
2292 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2293 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2294 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296 				udf_update_tag(oepos.bh->b_data,
2297 						epos.offset - adsize);
2298 			else
2299 				udf_update_tag(oepos.bh->b_data,
2300 						sizeof(struct allocExtDesc));
2301 			mark_buffer_dirty_inode(oepos.bh, inode);
2302 		}
2303 	}
2304 
2305 	brelse(epos.bh);
2306 	brelse(oepos.bh);
2307 
2308 	return (elen >> 30);
2309 }
2310 
2311 int8_t inode_bmap(struct inode *inode, sector_t block,
2312 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2313 		  uint32_t *elen, sector_t *offset)
2314 {
2315 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2316 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2317 	int8_t etype;
2318 	struct udf_inode_info *iinfo;
2319 
2320 	iinfo = UDF_I(inode);
2321 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2322 		pos->offset = 0;
2323 		pos->block = iinfo->i_location;
2324 		pos->bh = NULL;
2325 	}
2326 	*elen = 0;
2327 	do {
2328 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2329 		if (etype == -1) {
2330 			*offset = (bcount - lbcount) >> blocksize_bits;
2331 			iinfo->i_lenExtents = lbcount;
2332 			return -1;
2333 		}
2334 		lbcount += *elen;
2335 	} while (lbcount <= bcount);
2336 	/* update extent cache */
2337 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2338 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2339 
2340 	return etype;
2341 }
2342 
2343 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2344 {
2345 	struct kernel_lb_addr eloc;
2346 	uint32_t elen;
2347 	sector_t offset;
2348 	struct extent_position epos = {};
2349 	udf_pblk_t ret;
2350 
2351 	down_read(&UDF_I(inode)->i_data_sem);
2352 
2353 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2354 						(EXT_RECORDED_ALLOCATED >> 30))
2355 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2356 	else
2357 		ret = 0;
2358 
2359 	up_read(&UDF_I(inode)->i_data_sem);
2360 	brelse(epos.bh);
2361 
2362 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2363 		return udf_fixed_to_variable(ret);
2364 	else
2365 		return ret;
2366 }
2367