xref: /linux/fs/udf/inode.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * inode.c
4  *
5  * PURPOSE
6  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1998 Dave Boynton
10  *  (C) 1998-2004 Ben Fennema
11  *  (C) 1999-2000 Stelias Computing Inc
12  *
13  * HISTORY
14  *
15  *  10/04/98 dgb  Added rudimentary directory functions
16  *  10/07/98      Fully working udf_block_map! It works!
17  *  11/25/98      bmap altered to better support extents
18  *  12/06/98 blf  partition support in udf_iget, udf_block_map
19  *                and udf_read_inode
20  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21  *                block boundaries (which is not actually allowed)
22  *  12/20/98      added support for strategy 4096
23  *  03/07/99      rewrote udf_block_map (again)
24  *                New funcs, inode_bmap, udf_next_aext
25  *  04/19/99      Support for writing device EA's for major/minor #
26  */
27 
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 
39 #include "udf_i.h"
40 #include "udf_sb.h"
41 
42 #define EXTENT_MERGE_SIZE 5
43 
44 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47 
48 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 			 FE_PERM_O_DELETE)
50 
51 struct udf_map_rq;
52 
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 			   struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 			      struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 			      int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 			    struct buffer_head *bh_result, int create);
69 
70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 	struct udf_inode_info *iinfo = UDF_I(inode);
73 
74 	if (iinfo->cached_extent.lstart != -1) {
75 		brelse(iinfo->cached_extent.epos.bh);
76 		iinfo->cached_extent.lstart = -1;
77 	}
78 }
79 
80 /* Invalidate extent cache */
81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 	struct udf_inode_info *iinfo = UDF_I(inode);
84 
85 	spin_lock(&iinfo->i_extent_cache_lock);
86 	__udf_clear_extent_cache(inode);
87 	spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89 
90 /* Return contents of extent cache */
91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 				 loff_t *lbcount, struct extent_position *pos)
93 {
94 	struct udf_inode_info *iinfo = UDF_I(inode);
95 	int ret = 0;
96 
97 	spin_lock(&iinfo->i_extent_cache_lock);
98 	if ((iinfo->cached_extent.lstart <= bcount) &&
99 	    (iinfo->cached_extent.lstart != -1)) {
100 		/* Cache hit */
101 		*lbcount = iinfo->cached_extent.lstart;
102 		memcpy(pos, &iinfo->cached_extent.epos,
103 		       sizeof(struct extent_position));
104 		if (pos->bh)
105 			get_bh(pos->bh);
106 		ret = 1;
107 	}
108 	spin_unlock(&iinfo->i_extent_cache_lock);
109 	return ret;
110 }
111 
112 /* Add extent to extent cache */
113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 				    struct extent_position *pos)
115 {
116 	struct udf_inode_info *iinfo = UDF_I(inode);
117 
118 	spin_lock(&iinfo->i_extent_cache_lock);
119 	/* Invalidate previously cached extent */
120 	__udf_clear_extent_cache(inode);
121 	if (pos->bh)
122 		get_bh(pos->bh);
123 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 	iinfo->cached_extent.lstart = estart;
125 	switch (iinfo->i_alloc_type) {
126 	case ICBTAG_FLAG_AD_SHORT:
127 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 		break;
129 	case ICBTAG_FLAG_AD_LONG:
130 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 		break;
132 	}
133 	spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135 
136 void udf_evict_inode(struct inode *inode)
137 {
138 	struct udf_inode_info *iinfo = UDF_I(inode);
139 	int want_delete = 0;
140 
141 	if (!is_bad_inode(inode)) {
142 		if (!inode->i_nlink) {
143 			want_delete = 1;
144 			udf_setsize(inode, 0);
145 			udf_update_inode(inode, IS_SYNC(inode));
146 		}
147 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 		    inode->i_size != iinfo->i_lenExtents) {
149 			udf_warn(inode->i_sb,
150 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 				 inode->i_ino, inode->i_mode,
152 				 (unsigned long long)inode->i_size,
153 				 (unsigned long long)iinfo->i_lenExtents);
154 		}
155 	}
156 	truncate_inode_pages_final(&inode->i_data);
157 	invalidate_inode_buffers(inode);
158 	clear_inode(inode);
159 	kfree(iinfo->i_data);
160 	iinfo->i_data = NULL;
161 	udf_clear_extent_cache(inode);
162 	if (want_delete) {
163 		udf_free_inode(inode);
164 	}
165 }
166 
167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 	struct inode *inode = mapping->host;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	loff_t isize = inode->i_size;
172 
173 	if (to > isize) {
174 		truncate_pagecache(inode, isize);
175 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 			down_write(&iinfo->i_data_sem);
177 			udf_clear_extent_cache(inode);
178 			udf_truncate_extents(inode);
179 			up_write(&iinfo->i_data_sem);
180 		}
181 	}
182 }
183 
184 static int udf_adinicb_writepage(struct folio *folio,
185 				 struct writeback_control *wbc, void *data)
186 {
187 	struct inode *inode = folio->mapping->host;
188 	struct udf_inode_info *iinfo = UDF_I(inode);
189 
190 	BUG_ON(!folio_test_locked(folio));
191 	BUG_ON(folio->index != 0);
192 	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 		       i_size_read(inode));
194 	folio_unlock(folio);
195 	mark_inode_dirty(inode);
196 
197 	return 0;
198 }
199 
200 static int udf_writepages(struct address_space *mapping,
201 			  struct writeback_control *wbc)
202 {
203 	struct inode *inode = mapping->host;
204 	struct udf_inode_info *iinfo = UDF_I(inode);
205 
206 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 		return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209 }
210 
211 static void udf_adinicb_read_folio(struct folio *folio)
212 {
213 	struct inode *inode = folio->mapping->host;
214 	struct udf_inode_info *iinfo = UDF_I(inode);
215 	loff_t isize = i_size_read(inode);
216 
217 	folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
218 	folio_mark_uptodate(folio);
219 }
220 
221 static int udf_read_folio(struct file *file, struct folio *folio)
222 {
223 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
224 
225 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
226 		udf_adinicb_read_folio(folio);
227 		folio_unlock(folio);
228 		return 0;
229 	}
230 	return mpage_read_folio(folio, udf_get_block);
231 }
232 
233 static void udf_readahead(struct readahead_control *rac)
234 {
235 	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
236 
237 	/*
238 	 * No readahead needed for in-ICB files and udf_get_block() would get
239 	 * confused for such file anyway.
240 	 */
241 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
242 		return;
243 
244 	mpage_readahead(rac, udf_get_block);
245 }
246 
247 static int udf_write_begin(struct file *file, struct address_space *mapping,
248 			   loff_t pos, unsigned len,
249 			   struct page **pagep, void **fsdata)
250 {
251 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
252 	struct folio *folio;
253 	int ret;
254 
255 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
256 		ret = block_write_begin(mapping, pos, len, pagep,
257 					udf_get_block);
258 		if (unlikely(ret))
259 			udf_write_failed(mapping, pos + len);
260 		return ret;
261 	}
262 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
263 		return -EIO;
264 	folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
265 			mapping_gfp_mask(mapping));
266 	if (IS_ERR(folio))
267 		return PTR_ERR(folio);
268 	*pagep = &folio->page;
269 	if (!folio_test_uptodate(folio))
270 		udf_adinicb_read_folio(folio);
271 	return 0;
272 }
273 
274 static int udf_write_end(struct file *file, struct address_space *mapping,
275 			 loff_t pos, unsigned len, unsigned copied,
276 			 struct page *page, void *fsdata)
277 {
278 	struct inode *inode = file_inode(file);
279 	struct folio *folio;
280 	loff_t last_pos;
281 
282 	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
283 		return generic_write_end(file, mapping, pos, len, copied, page,
284 					 fsdata);
285 	folio = page_folio(page);
286 	last_pos = pos + copied;
287 	if (last_pos > inode->i_size)
288 		i_size_write(inode, last_pos);
289 	folio_mark_dirty(folio);
290 	folio_unlock(folio);
291 	folio_put(folio);
292 
293 	return copied;
294 }
295 
296 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
297 {
298 	struct file *file = iocb->ki_filp;
299 	struct address_space *mapping = file->f_mapping;
300 	struct inode *inode = mapping->host;
301 	size_t count = iov_iter_count(iter);
302 	ssize_t ret;
303 
304 	/* Fallback to buffered IO for in-ICB files */
305 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
306 		return 0;
307 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
308 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
309 		udf_write_failed(mapping, iocb->ki_pos + count);
310 	return ret;
311 }
312 
313 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
314 {
315 	struct udf_inode_info *iinfo = UDF_I(mapping->host);
316 
317 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
318 		return -EINVAL;
319 	return generic_block_bmap(mapping, block, udf_get_block);
320 }
321 
322 const struct address_space_operations udf_aops = {
323 	.dirty_folio	= block_dirty_folio,
324 	.invalidate_folio = block_invalidate_folio,
325 	.read_folio	= udf_read_folio,
326 	.readahead	= udf_readahead,
327 	.writepages	= udf_writepages,
328 	.write_begin	= udf_write_begin,
329 	.write_end	= udf_write_end,
330 	.direct_IO	= udf_direct_IO,
331 	.bmap		= udf_bmap,
332 	.migrate_folio	= buffer_migrate_folio,
333 };
334 
335 /*
336  * Expand file stored in ICB to a normal one-block-file
337  *
338  * This function requires i_mutex held
339  */
340 int udf_expand_file_adinicb(struct inode *inode)
341 {
342 	struct folio *folio;
343 	struct udf_inode_info *iinfo = UDF_I(inode);
344 	int err;
345 
346 	WARN_ON_ONCE(!inode_is_locked(inode));
347 	if (!iinfo->i_lenAlloc) {
348 		down_write(&iinfo->i_data_sem);
349 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
350 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
351 		else
352 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
353 		up_write(&iinfo->i_data_sem);
354 		mark_inode_dirty(inode);
355 		return 0;
356 	}
357 
358 	folio = __filemap_get_folio(inode->i_mapping, 0,
359 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
360 	if (IS_ERR(folio))
361 		return PTR_ERR(folio);
362 
363 	if (!folio_test_uptodate(folio))
364 		udf_adinicb_read_folio(folio);
365 	down_write(&iinfo->i_data_sem);
366 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
367 	       iinfo->i_lenAlloc);
368 	iinfo->i_lenAlloc = 0;
369 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
370 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
371 	else
372 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
373 	folio_mark_dirty(folio);
374 	folio_unlock(folio);
375 	up_write(&iinfo->i_data_sem);
376 	err = filemap_fdatawrite(inode->i_mapping);
377 	if (err) {
378 		/* Restore everything back so that we don't lose data... */
379 		folio_lock(folio);
380 		down_write(&iinfo->i_data_sem);
381 		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
382 				folio, 0, inode->i_size);
383 		folio_unlock(folio);
384 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
385 		iinfo->i_lenAlloc = inode->i_size;
386 		up_write(&iinfo->i_data_sem);
387 	}
388 	folio_put(folio);
389 	mark_inode_dirty(inode);
390 
391 	return err;
392 }
393 
394 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
395 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
396 
397 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
398 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
399 
400 struct udf_map_rq {
401 	sector_t lblk;
402 	udf_pblk_t pblk;
403 	int iflags;		/* UDF_MAP_ flags determining behavior */
404 	int oflags;		/* UDF_BLK_ flags reporting results */
405 };
406 
407 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
408 {
409 	int err;
410 	struct udf_inode_info *iinfo = UDF_I(inode);
411 
412 	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
413 		return -EFSCORRUPTED;
414 
415 	map->oflags = 0;
416 	if (!(map->iflags & UDF_MAP_CREATE)) {
417 		struct kernel_lb_addr eloc;
418 		uint32_t elen;
419 		sector_t offset;
420 		struct extent_position epos = {};
421 
422 		down_read(&iinfo->i_data_sem);
423 		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
424 				== (EXT_RECORDED_ALLOCATED >> 30)) {
425 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
426 							offset);
427 			map->oflags |= UDF_BLK_MAPPED;
428 		}
429 		up_read(&iinfo->i_data_sem);
430 		brelse(epos.bh);
431 
432 		return 0;
433 	}
434 
435 	down_write(&iinfo->i_data_sem);
436 	/*
437 	 * Block beyond EOF and prealloc extents? Just discard preallocation
438 	 * as it is not useful and complicates things.
439 	 */
440 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
441 		udf_discard_prealloc(inode);
442 	udf_clear_extent_cache(inode);
443 	err = inode_getblk(inode, map);
444 	up_write(&iinfo->i_data_sem);
445 	return err;
446 }
447 
448 static int __udf_get_block(struct inode *inode, sector_t block,
449 			   struct buffer_head *bh_result, int flags)
450 {
451 	int err;
452 	struct udf_map_rq map = {
453 		.lblk = block,
454 		.iflags = flags,
455 	};
456 
457 	err = udf_map_block(inode, &map);
458 	if (err < 0)
459 		return err;
460 	if (map.oflags & UDF_BLK_MAPPED) {
461 		map_bh(bh_result, inode->i_sb, map.pblk);
462 		if (map.oflags & UDF_BLK_NEW)
463 			set_buffer_new(bh_result);
464 	}
465 	return 0;
466 }
467 
468 int udf_get_block(struct inode *inode, sector_t block,
469 		  struct buffer_head *bh_result, int create)
470 {
471 	int flags = create ? UDF_MAP_CREATE : 0;
472 
473 	/*
474 	 * We preallocate blocks only for regular files. It also makes sense
475 	 * for directories but there's a problem when to drop the
476 	 * preallocation. We might use some delayed work for that but I feel
477 	 * it's overengineering for a filesystem like UDF.
478 	 */
479 	if (!S_ISREG(inode->i_mode))
480 		flags |= UDF_MAP_NOPREALLOC;
481 	return __udf_get_block(inode, block, bh_result, flags);
482 }
483 
484 /*
485  * We shouldn't be allocating blocks on page writeback since we allocate them
486  * on page fault. We can spot dirty buffers without allocated blocks though
487  * when truncate expands file. These however don't have valid data so we can
488  * safely ignore them. So never allocate blocks from page writeback.
489  */
490 static int udf_get_block_wb(struct inode *inode, sector_t block,
491 			    struct buffer_head *bh_result, int create)
492 {
493 	return __udf_get_block(inode, block, bh_result, 0);
494 }
495 
496 /* Extend the file with new blocks totaling 'new_block_bytes',
497  * return the number of extents added
498  */
499 static int udf_do_extend_file(struct inode *inode,
500 			      struct extent_position *last_pos,
501 			      struct kernel_long_ad *last_ext,
502 			      loff_t new_block_bytes)
503 {
504 	uint32_t add;
505 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
506 	struct super_block *sb = inode->i_sb;
507 	struct udf_inode_info *iinfo;
508 	int err;
509 
510 	/* The previous extent is fake and we should not extend by anything
511 	 * - there's nothing to do... */
512 	if (!new_block_bytes && fake)
513 		return 0;
514 
515 	iinfo = UDF_I(inode);
516 	/* Round the last extent up to a multiple of block size */
517 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
518 		last_ext->extLength =
519 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
520 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
521 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
522 		iinfo->i_lenExtents =
523 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
524 			~(sb->s_blocksize - 1);
525 	}
526 
527 	add = 0;
528 	/* Can we merge with the previous extent? */
529 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
530 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
531 		add = (1 << 30) - sb->s_blocksize -
532 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
533 		if (add > new_block_bytes)
534 			add = new_block_bytes;
535 		new_block_bytes -= add;
536 		last_ext->extLength += add;
537 	}
538 
539 	if (fake) {
540 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
541 				   last_ext->extLength, 1);
542 		if (err < 0)
543 			goto out_err;
544 		count++;
545 	} else {
546 		struct kernel_lb_addr tmploc;
547 		uint32_t tmplen;
548 
549 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
550 				last_ext->extLength, 1);
551 
552 		/*
553 		 * We've rewritten the last extent. If we are going to add
554 		 * more extents, we may need to enter possible following
555 		 * empty indirect extent.
556 		 */
557 		if (new_block_bytes)
558 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
559 	}
560 	iinfo->i_lenExtents += add;
561 
562 	/* Managed to do everything necessary? */
563 	if (!new_block_bytes)
564 		goto out;
565 
566 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
567 	last_ext->extLocation.logicalBlockNum = 0;
568 	last_ext->extLocation.partitionReferenceNum = 0;
569 	add = (1 << 30) - sb->s_blocksize;
570 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
571 
572 	/* Create enough extents to cover the whole hole */
573 	while (new_block_bytes > add) {
574 		new_block_bytes -= add;
575 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
576 				   last_ext->extLength, 1);
577 		if (err)
578 			goto out_err;
579 		iinfo->i_lenExtents += add;
580 		count++;
581 	}
582 	if (new_block_bytes) {
583 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
584 			new_block_bytes;
585 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
586 				   last_ext->extLength, 1);
587 		if (err)
588 			goto out_err;
589 		iinfo->i_lenExtents += new_block_bytes;
590 		count++;
591 	}
592 
593 out:
594 	/* last_pos should point to the last written extent... */
595 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596 		last_pos->offset -= sizeof(struct short_ad);
597 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598 		last_pos->offset -= sizeof(struct long_ad);
599 	else
600 		return -EIO;
601 
602 	return count;
603 out_err:
604 	/* Remove extents we've created so far */
605 	udf_clear_extent_cache(inode);
606 	udf_truncate_extents(inode);
607 	return err;
608 }
609 
610 /* Extend the final block of the file to final_block_len bytes */
611 static void udf_do_extend_final_block(struct inode *inode,
612 				      struct extent_position *last_pos,
613 				      struct kernel_long_ad *last_ext,
614 				      uint32_t new_elen)
615 {
616 	uint32_t added_bytes;
617 
618 	/*
619 	 * Extent already large enough? It may be already rounded up to block
620 	 * size...
621 	 */
622 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
623 		return;
624 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
625 	last_ext->extLength += added_bytes;
626 	UDF_I(inode)->i_lenExtents += added_bytes;
627 
628 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
629 			last_ext->extLength, 1);
630 }
631 
632 static int udf_extend_file(struct inode *inode, loff_t newsize)
633 {
634 
635 	struct extent_position epos;
636 	struct kernel_lb_addr eloc;
637 	uint32_t elen;
638 	int8_t etype;
639 	struct super_block *sb = inode->i_sb;
640 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
641 	loff_t new_elen;
642 	int adsize;
643 	struct udf_inode_info *iinfo = UDF_I(inode);
644 	struct kernel_long_ad extent;
645 	int err = 0;
646 	bool within_last_ext;
647 
648 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
649 		adsize = sizeof(struct short_ad);
650 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
651 		adsize = sizeof(struct long_ad);
652 	else
653 		BUG();
654 
655 	down_write(&iinfo->i_data_sem);
656 	/*
657 	 * When creating hole in file, just don't bother with preserving
658 	 * preallocation. It likely won't be very useful anyway.
659 	 */
660 	udf_discard_prealloc(inode);
661 
662 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
663 	within_last_ext = (etype != -1);
664 	/* We don't expect extents past EOF... */
665 	WARN_ON_ONCE(within_last_ext &&
666 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
667 
668 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
669 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
670 		/* File has no extents at all or has empty last
671 		 * indirect extent! Create a fake extent... */
672 		extent.extLocation.logicalBlockNum = 0;
673 		extent.extLocation.partitionReferenceNum = 0;
674 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
675 	} else {
676 		epos.offset -= adsize;
677 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
678 				      &extent.extLength, 0);
679 		extent.extLength |= etype << 30;
680 	}
681 
682 	new_elen = ((loff_t)offset << inode->i_blkbits) |
683 					(newsize & (sb->s_blocksize - 1));
684 
685 	/* File has extent covering the new size (could happen when extending
686 	 * inside a block)?
687 	 */
688 	if (within_last_ext) {
689 		/* Extending file within the last file block */
690 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
691 	} else {
692 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
693 	}
694 
695 	if (err < 0)
696 		goto out;
697 	err = 0;
698 out:
699 	brelse(epos.bh);
700 	up_write(&iinfo->i_data_sem);
701 	return err;
702 }
703 
704 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
705 {
706 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
707 	struct extent_position prev_epos, cur_epos, next_epos;
708 	int count = 0, startnum = 0, endnum = 0;
709 	uint32_t elen = 0, tmpelen;
710 	struct kernel_lb_addr eloc, tmpeloc;
711 	int c = 1;
712 	loff_t lbcount = 0, b_off = 0;
713 	udf_pblk_t newblocknum;
714 	sector_t offset = 0;
715 	int8_t etype;
716 	struct udf_inode_info *iinfo = UDF_I(inode);
717 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
718 	int lastblock = 0;
719 	bool isBeyondEOF;
720 	int ret = 0;
721 
722 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
723 	prev_epos.block = iinfo->i_location;
724 	prev_epos.bh = NULL;
725 	cur_epos = next_epos = prev_epos;
726 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
727 
728 	/* find the extent which contains the block we are looking for.
729 	   alternate between laarr[0] and laarr[1] for locations of the
730 	   current extent, and the previous extent */
731 	do {
732 		if (prev_epos.bh != cur_epos.bh) {
733 			brelse(prev_epos.bh);
734 			get_bh(cur_epos.bh);
735 			prev_epos.bh = cur_epos.bh;
736 		}
737 		if (cur_epos.bh != next_epos.bh) {
738 			brelse(cur_epos.bh);
739 			get_bh(next_epos.bh);
740 			cur_epos.bh = next_epos.bh;
741 		}
742 
743 		lbcount += elen;
744 
745 		prev_epos.block = cur_epos.block;
746 		cur_epos.block = next_epos.block;
747 
748 		prev_epos.offset = cur_epos.offset;
749 		cur_epos.offset = next_epos.offset;
750 
751 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
752 		if (etype == -1)
753 			break;
754 
755 		c = !c;
756 
757 		laarr[c].extLength = (etype << 30) | elen;
758 		laarr[c].extLocation = eloc;
759 
760 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
761 			pgoal = eloc.logicalBlockNum +
762 				((elen + inode->i_sb->s_blocksize - 1) >>
763 				 inode->i_sb->s_blocksize_bits);
764 
765 		count++;
766 	} while (lbcount + elen <= b_off);
767 
768 	b_off -= lbcount;
769 	offset = b_off >> inode->i_sb->s_blocksize_bits;
770 	/*
771 	 * Move prev_epos and cur_epos into indirect extent if we are at
772 	 * the pointer to it
773 	 */
774 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
775 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
776 
777 	/* if the extent is allocated and recorded, return the block
778 	   if the extent is not a multiple of the blocksize, round up */
779 
780 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
781 		if (elen & (inode->i_sb->s_blocksize - 1)) {
782 			elen = EXT_RECORDED_ALLOCATED |
783 				((elen + inode->i_sb->s_blocksize - 1) &
784 				 ~(inode->i_sb->s_blocksize - 1));
785 			iinfo->i_lenExtents =
786 				ALIGN(iinfo->i_lenExtents,
787 				      inode->i_sb->s_blocksize);
788 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
789 		}
790 		map->oflags = UDF_BLK_MAPPED;
791 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
792 		goto out_free;
793 	}
794 
795 	/* Are we beyond EOF and preallocated extent? */
796 	if (etype == -1) {
797 		loff_t hole_len;
798 
799 		isBeyondEOF = true;
800 		if (count) {
801 			if (c)
802 				laarr[0] = laarr[1];
803 			startnum = 1;
804 		} else {
805 			/* Create a fake extent when there's not one */
806 			memset(&laarr[0].extLocation, 0x00,
807 				sizeof(struct kernel_lb_addr));
808 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
809 			/* Will udf_do_extend_file() create real extent from
810 			   a fake one? */
811 			startnum = (offset > 0);
812 		}
813 		/* Create extents for the hole between EOF and offset */
814 		hole_len = (loff_t)offset << inode->i_blkbits;
815 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
816 		if (ret < 0)
817 			goto out_free;
818 		c = 0;
819 		offset = 0;
820 		count += ret;
821 		/*
822 		 * Is there any real extent? - otherwise we overwrite the fake
823 		 * one...
824 		 */
825 		if (count)
826 			c = !c;
827 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
828 			inode->i_sb->s_blocksize;
829 		memset(&laarr[c].extLocation, 0x00,
830 			sizeof(struct kernel_lb_addr));
831 		count++;
832 		endnum = c + 1;
833 		lastblock = 1;
834 	} else {
835 		isBeyondEOF = false;
836 		endnum = startnum = ((count > 2) ? 2 : count);
837 
838 		/* if the current extent is in position 0,
839 		   swap it with the previous */
840 		if (!c && count != 1) {
841 			laarr[2] = laarr[0];
842 			laarr[0] = laarr[1];
843 			laarr[1] = laarr[2];
844 			c = 1;
845 		}
846 
847 		/* if the current block is located in an extent,
848 		   read the next extent */
849 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
850 		if (etype != -1) {
851 			laarr[c + 1].extLength = (etype << 30) | elen;
852 			laarr[c + 1].extLocation = eloc;
853 			count++;
854 			startnum++;
855 			endnum++;
856 		} else
857 			lastblock = 1;
858 	}
859 
860 	/* if the current extent is not recorded but allocated, get the
861 	 * block in the extent corresponding to the requested block */
862 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
863 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
864 	else { /* otherwise, allocate a new block */
865 		if (iinfo->i_next_alloc_block == map->lblk)
866 			goal = iinfo->i_next_alloc_goal;
867 
868 		if (!goal) {
869 			if (!(goal = pgoal)) /* XXX: what was intended here? */
870 				goal = iinfo->i_location.logicalBlockNum + 1;
871 		}
872 
873 		newblocknum = udf_new_block(inode->i_sb, inode,
874 				iinfo->i_location.partitionReferenceNum,
875 				goal, &ret);
876 		if (!newblocknum)
877 			goto out_free;
878 		if (isBeyondEOF)
879 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
880 	}
881 
882 	/* if the extent the requsted block is located in contains multiple
883 	 * blocks, split the extent into at most three extents. blocks prior
884 	 * to requested block, requested block, and blocks after requested
885 	 * block */
886 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
887 
888 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
889 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
890 
891 	/* merge any continuous blocks in laarr */
892 	udf_merge_extents(inode, laarr, &endnum);
893 
894 	/* write back the new extents, inserting new extents if the new number
895 	 * of extents is greater than the old number, and deleting extents if
896 	 * the new number of extents is less than the old number */
897 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
898 	if (ret < 0)
899 		goto out_free;
900 
901 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
902 				iinfo->i_location.partitionReferenceNum, 0);
903 	if (!map->pblk) {
904 		ret = -EFSCORRUPTED;
905 		goto out_free;
906 	}
907 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
908 	iinfo->i_next_alloc_block = map->lblk + 1;
909 	iinfo->i_next_alloc_goal = newblocknum + 1;
910 	inode_set_ctime_current(inode);
911 
912 	if (IS_SYNC(inode))
913 		udf_sync_inode(inode);
914 	else
915 		mark_inode_dirty(inode);
916 	ret = 0;
917 out_free:
918 	brelse(prev_epos.bh);
919 	brelse(cur_epos.bh);
920 	brelse(next_epos.bh);
921 	return ret;
922 }
923 
924 static void udf_split_extents(struct inode *inode, int *c, int offset,
925 			       udf_pblk_t newblocknum,
926 			       struct kernel_long_ad *laarr, int *endnum)
927 {
928 	unsigned long blocksize = inode->i_sb->s_blocksize;
929 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
930 
931 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
932 	    (laarr[*c].extLength >> 30) ==
933 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
934 		int curr = *c;
935 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
936 			    blocksize - 1) >> blocksize_bits;
937 		int8_t etype = (laarr[curr].extLength >> 30);
938 
939 		if (blen == 1)
940 			;
941 		else if (!offset || blen == offset + 1) {
942 			laarr[curr + 2] = laarr[curr + 1];
943 			laarr[curr + 1] = laarr[curr];
944 		} else {
945 			laarr[curr + 3] = laarr[curr + 1];
946 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
947 		}
948 
949 		if (offset) {
950 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
951 				udf_free_blocks(inode->i_sb, inode,
952 						&laarr[curr].extLocation,
953 						0, offset);
954 				laarr[curr].extLength =
955 					EXT_NOT_RECORDED_NOT_ALLOCATED |
956 					(offset << blocksize_bits);
957 				laarr[curr].extLocation.logicalBlockNum = 0;
958 				laarr[curr].extLocation.
959 						partitionReferenceNum = 0;
960 			} else
961 				laarr[curr].extLength = (etype << 30) |
962 					(offset << blocksize_bits);
963 			curr++;
964 			(*c)++;
965 			(*endnum)++;
966 		}
967 
968 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
969 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
970 			laarr[curr].extLocation.partitionReferenceNum =
971 				UDF_I(inode)->i_location.partitionReferenceNum;
972 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
973 			blocksize;
974 		curr++;
975 
976 		if (blen != offset + 1) {
977 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
978 				laarr[curr].extLocation.logicalBlockNum +=
979 								offset + 1;
980 			laarr[curr].extLength = (etype << 30) |
981 				((blen - (offset + 1)) << blocksize_bits);
982 			curr++;
983 			(*endnum)++;
984 		}
985 	}
986 }
987 
988 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
989 				 struct kernel_long_ad *laarr,
990 				 int *endnum)
991 {
992 	int start, length = 0, currlength = 0, i;
993 
994 	if (*endnum >= (c + 1)) {
995 		if (!lastblock)
996 			return;
997 		else
998 			start = c;
999 	} else {
1000 		if ((laarr[c + 1].extLength >> 30) ==
1001 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1002 			start = c + 1;
1003 			length = currlength =
1004 				(((laarr[c + 1].extLength &
1005 					UDF_EXTENT_LENGTH_MASK) +
1006 				inode->i_sb->s_blocksize - 1) >>
1007 				inode->i_sb->s_blocksize_bits);
1008 		} else
1009 			start = c;
1010 	}
1011 
1012 	for (i = start + 1; i <= *endnum; i++) {
1013 		if (i == *endnum) {
1014 			if (lastblock)
1015 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1016 		} else if ((laarr[i].extLength >> 30) ==
1017 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1018 			length += (((laarr[i].extLength &
1019 						UDF_EXTENT_LENGTH_MASK) +
1020 				    inode->i_sb->s_blocksize - 1) >>
1021 				    inode->i_sb->s_blocksize_bits);
1022 		} else
1023 			break;
1024 	}
1025 
1026 	if (length) {
1027 		int next = laarr[start].extLocation.logicalBlockNum +
1028 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1029 			  inode->i_sb->s_blocksize - 1) >>
1030 			  inode->i_sb->s_blocksize_bits);
1031 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1032 				laarr[start].extLocation.partitionReferenceNum,
1033 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1034 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1035 				currlength);
1036 		if (numalloc) 	{
1037 			if (start == (c + 1))
1038 				laarr[start].extLength +=
1039 					(numalloc <<
1040 					 inode->i_sb->s_blocksize_bits);
1041 			else {
1042 				memmove(&laarr[c + 2], &laarr[c + 1],
1043 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1044 				(*endnum)++;
1045 				laarr[c + 1].extLocation.logicalBlockNum = next;
1046 				laarr[c + 1].extLocation.partitionReferenceNum =
1047 					laarr[c].extLocation.
1048 							partitionReferenceNum;
1049 				laarr[c + 1].extLength =
1050 					EXT_NOT_RECORDED_ALLOCATED |
1051 					(numalloc <<
1052 					 inode->i_sb->s_blocksize_bits);
1053 				start = c + 1;
1054 			}
1055 
1056 			for (i = start + 1; numalloc && i < *endnum; i++) {
1057 				int elen = ((laarr[i].extLength &
1058 						UDF_EXTENT_LENGTH_MASK) +
1059 					    inode->i_sb->s_blocksize - 1) >>
1060 					    inode->i_sb->s_blocksize_bits;
1061 
1062 				if (elen > numalloc) {
1063 					laarr[i].extLength -=
1064 						(numalloc <<
1065 						 inode->i_sb->s_blocksize_bits);
1066 					numalloc = 0;
1067 				} else {
1068 					numalloc -= elen;
1069 					if (*endnum > (i + 1))
1070 						memmove(&laarr[i],
1071 							&laarr[i + 1],
1072 							sizeof(struct long_ad) *
1073 							(*endnum - (i + 1)));
1074 					i--;
1075 					(*endnum)--;
1076 				}
1077 			}
1078 			UDF_I(inode)->i_lenExtents +=
1079 				numalloc << inode->i_sb->s_blocksize_bits;
1080 		}
1081 	}
1082 }
1083 
1084 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1085 			      int *endnum)
1086 {
1087 	int i;
1088 	unsigned long blocksize = inode->i_sb->s_blocksize;
1089 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1090 
1091 	for (i = 0; i < (*endnum - 1); i++) {
1092 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1093 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1094 
1095 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1096 			(((li->extLength >> 30) ==
1097 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1098 			((lip1->extLocation.logicalBlockNum -
1099 			  li->extLocation.logicalBlockNum) ==
1100 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 			blocksize - 1) >> blocksize_bits)))) {
1102 
1103 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1104 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1105 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1106 				li->extLength = lip1->extLength +
1107 					(((li->extLength &
1108 						UDF_EXTENT_LENGTH_MASK) +
1109 					 blocksize - 1) & ~(blocksize - 1));
1110 				if (*endnum > (i + 2))
1111 					memmove(&laarr[i + 1], &laarr[i + 2],
1112 						sizeof(struct long_ad) *
1113 						(*endnum - (i + 2)));
1114 				i--;
1115 				(*endnum)--;
1116 			}
1117 		} else if (((li->extLength >> 30) ==
1118 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1119 			   ((lip1->extLength >> 30) ==
1120 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1121 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1122 					((li->extLength &
1123 					  UDF_EXTENT_LENGTH_MASK) +
1124 					 blocksize - 1) >> blocksize_bits);
1125 			li->extLocation.logicalBlockNum = 0;
1126 			li->extLocation.partitionReferenceNum = 0;
1127 
1128 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1129 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1131 				lip1->extLength = (lip1->extLength -
1132 						   (li->extLength &
1133 						   UDF_EXTENT_LENGTH_MASK) +
1134 						   UDF_EXTENT_LENGTH_MASK) &
1135 						   ~(blocksize - 1);
1136 				li->extLength = (li->extLength &
1137 						 UDF_EXTENT_FLAG_MASK) +
1138 						(UDF_EXTENT_LENGTH_MASK + 1) -
1139 						blocksize;
1140 			} else {
1141 				li->extLength = lip1->extLength +
1142 					(((li->extLength &
1143 						UDF_EXTENT_LENGTH_MASK) +
1144 					  blocksize - 1) & ~(blocksize - 1));
1145 				if (*endnum > (i + 2))
1146 					memmove(&laarr[i + 1], &laarr[i + 2],
1147 						sizeof(struct long_ad) *
1148 						(*endnum - (i + 2)));
1149 				i--;
1150 				(*endnum)--;
1151 			}
1152 		} else if ((li->extLength >> 30) ==
1153 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1154 			udf_free_blocks(inode->i_sb, inode,
1155 					&li->extLocation, 0,
1156 					((li->extLength &
1157 						UDF_EXTENT_LENGTH_MASK) +
1158 					 blocksize - 1) >> blocksize_bits);
1159 			li->extLocation.logicalBlockNum = 0;
1160 			li->extLocation.partitionReferenceNum = 0;
1161 			li->extLength = (li->extLength &
1162 						UDF_EXTENT_LENGTH_MASK) |
1163 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1164 		}
1165 	}
1166 }
1167 
1168 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1169 			      int startnum, int endnum,
1170 			      struct extent_position *epos)
1171 {
1172 	int start = 0, i;
1173 	struct kernel_lb_addr tmploc;
1174 	uint32_t tmplen;
1175 	int err;
1176 
1177 	if (startnum > endnum) {
1178 		for (i = 0; i < (startnum - endnum); i++)
1179 			udf_delete_aext(inode, *epos);
1180 	} else if (startnum < endnum) {
1181 		for (i = 0; i < (endnum - startnum); i++) {
1182 			err = udf_insert_aext(inode, *epos,
1183 					      laarr[i].extLocation,
1184 					      laarr[i].extLength);
1185 			/*
1186 			 * If we fail here, we are likely corrupting the extent
1187 			 * list and leaking blocks. At least stop early to
1188 			 * limit the damage.
1189 			 */
1190 			if (err < 0)
1191 				return err;
1192 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1193 				      &laarr[i].extLength, 1);
1194 			start++;
1195 		}
1196 	}
1197 
1198 	for (i = start; i < endnum; i++) {
1199 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1200 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1201 			       laarr[i].extLength, 1);
1202 	}
1203 	return 0;
1204 }
1205 
1206 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207 			      int create, int *err)
1208 {
1209 	struct buffer_head *bh = NULL;
1210 	struct udf_map_rq map = {
1211 		.lblk = block,
1212 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1213 	};
1214 
1215 	*err = udf_map_block(inode, &map);
1216 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1217 		return NULL;
1218 
1219 	bh = sb_getblk(inode->i_sb, map.pblk);
1220 	if (!bh) {
1221 		*err = -ENOMEM;
1222 		return NULL;
1223 	}
1224 	if (map.oflags & UDF_BLK_NEW) {
1225 		lock_buffer(bh);
1226 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1227 		set_buffer_uptodate(bh);
1228 		unlock_buffer(bh);
1229 		mark_buffer_dirty_inode(bh, inode);
1230 		return bh;
1231 	}
1232 
1233 	if (bh_read(bh, 0) >= 0)
1234 		return bh;
1235 
1236 	brelse(bh);
1237 	*err = -EIO;
1238 	return NULL;
1239 }
1240 
1241 int udf_setsize(struct inode *inode, loff_t newsize)
1242 {
1243 	int err = 0;
1244 	struct udf_inode_info *iinfo;
1245 	unsigned int bsize = i_blocksize(inode);
1246 
1247 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1248 	      S_ISLNK(inode->i_mode)))
1249 		return -EINVAL;
1250 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1251 		return -EPERM;
1252 
1253 	filemap_invalidate_lock(inode->i_mapping);
1254 	iinfo = UDF_I(inode);
1255 	if (newsize > inode->i_size) {
1256 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1257 			if (bsize >=
1258 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1259 				down_write(&iinfo->i_data_sem);
1260 				iinfo->i_lenAlloc = newsize;
1261 				up_write(&iinfo->i_data_sem);
1262 				goto set_size;
1263 			}
1264 			err = udf_expand_file_adinicb(inode);
1265 			if (err)
1266 				goto out_unlock;
1267 		}
1268 		err = udf_extend_file(inode, newsize);
1269 		if (err)
1270 			goto out_unlock;
1271 set_size:
1272 		truncate_setsize(inode, newsize);
1273 	} else {
1274 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1275 			down_write(&iinfo->i_data_sem);
1276 			udf_clear_extent_cache(inode);
1277 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1278 			       0x00, bsize - newsize -
1279 			       udf_file_entry_alloc_offset(inode));
1280 			iinfo->i_lenAlloc = newsize;
1281 			truncate_setsize(inode, newsize);
1282 			up_write(&iinfo->i_data_sem);
1283 			goto update_time;
1284 		}
1285 		err = block_truncate_page(inode->i_mapping, newsize,
1286 					  udf_get_block);
1287 		if (err)
1288 			goto out_unlock;
1289 		truncate_setsize(inode, newsize);
1290 		down_write(&iinfo->i_data_sem);
1291 		udf_clear_extent_cache(inode);
1292 		err = udf_truncate_extents(inode);
1293 		up_write(&iinfo->i_data_sem);
1294 		if (err)
1295 			goto out_unlock;
1296 	}
1297 update_time:
1298 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1299 	if (IS_SYNC(inode))
1300 		udf_sync_inode(inode);
1301 	else
1302 		mark_inode_dirty(inode);
1303 out_unlock:
1304 	filemap_invalidate_unlock(inode->i_mapping);
1305 	return err;
1306 }
1307 
1308 /*
1309  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1310  * arbitrary - just that we hopefully don't limit any real use of rewritten
1311  * inode on write-once media but avoid looping for too long on corrupted media.
1312  */
1313 #define UDF_MAX_ICB_NESTING 1024
1314 
1315 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1316 {
1317 	struct buffer_head *bh = NULL;
1318 	struct fileEntry *fe;
1319 	struct extendedFileEntry *efe;
1320 	uint16_t ident;
1321 	struct udf_inode_info *iinfo = UDF_I(inode);
1322 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1323 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1324 	unsigned int link_count;
1325 	unsigned int indirections = 0;
1326 	int bs = inode->i_sb->s_blocksize;
1327 	int ret = -EIO;
1328 	uint32_t uid, gid;
1329 	struct timespec64 ts;
1330 
1331 reread:
1332 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1333 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1334 			  iloc->partitionReferenceNum, sbi->s_partitions);
1335 		return -EIO;
1336 	}
1337 
1338 	if (iloc->logicalBlockNum >=
1339 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1340 		udf_debug("block=%u, partition=%u out of range\n",
1341 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1342 		return -EIO;
1343 	}
1344 
1345 	/*
1346 	 * Set defaults, but the inode is still incomplete!
1347 	 * Note: get_new_inode() sets the following on a new inode:
1348 	 *      i_sb = sb
1349 	 *      i_no = ino
1350 	 *      i_flags = sb->s_flags
1351 	 *      i_state = 0
1352 	 * clean_inode(): zero fills and sets
1353 	 *      i_count = 1
1354 	 *      i_nlink = 1
1355 	 *      i_op = NULL;
1356 	 */
1357 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1358 	if (!bh) {
1359 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1360 		return -EIO;
1361 	}
1362 
1363 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1364 	    ident != TAG_IDENT_USE) {
1365 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1366 			inode->i_ino, ident);
1367 		goto out;
1368 	}
1369 
1370 	fe = (struct fileEntry *)bh->b_data;
1371 	efe = (struct extendedFileEntry *)bh->b_data;
1372 
1373 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1374 		struct buffer_head *ibh;
1375 
1376 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1377 		if (ident == TAG_IDENT_IE && ibh) {
1378 			struct kernel_lb_addr loc;
1379 			struct indirectEntry *ie;
1380 
1381 			ie = (struct indirectEntry *)ibh->b_data;
1382 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1383 
1384 			if (ie->indirectICB.extLength) {
1385 				brelse(ibh);
1386 				memcpy(&iinfo->i_location, &loc,
1387 				       sizeof(struct kernel_lb_addr));
1388 				if (++indirections > UDF_MAX_ICB_NESTING) {
1389 					udf_err(inode->i_sb,
1390 						"too many ICBs in ICB hierarchy"
1391 						" (max %d supported)\n",
1392 						UDF_MAX_ICB_NESTING);
1393 					goto out;
1394 				}
1395 				brelse(bh);
1396 				goto reread;
1397 			}
1398 		}
1399 		brelse(ibh);
1400 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1401 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1402 			le16_to_cpu(fe->icbTag.strategyType));
1403 		goto out;
1404 	}
1405 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1406 		iinfo->i_strat4096 = 0;
1407 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1408 		iinfo->i_strat4096 = 1;
1409 
1410 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1411 							ICBTAG_FLAG_AD_MASK;
1412 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1413 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1414 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1415 		ret = -EIO;
1416 		goto out;
1417 	}
1418 	iinfo->i_hidden = hidden_inode;
1419 	iinfo->i_unique = 0;
1420 	iinfo->i_lenEAttr = 0;
1421 	iinfo->i_lenExtents = 0;
1422 	iinfo->i_lenAlloc = 0;
1423 	iinfo->i_next_alloc_block = 0;
1424 	iinfo->i_next_alloc_goal = 0;
1425 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1426 		iinfo->i_efe = 1;
1427 		iinfo->i_use = 0;
1428 		ret = udf_alloc_i_data(inode, bs -
1429 					sizeof(struct extendedFileEntry));
1430 		if (ret)
1431 			goto out;
1432 		memcpy(iinfo->i_data,
1433 		       bh->b_data + sizeof(struct extendedFileEntry),
1434 		       bs - sizeof(struct extendedFileEntry));
1435 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1436 		iinfo->i_efe = 0;
1437 		iinfo->i_use = 0;
1438 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1439 		if (ret)
1440 			goto out;
1441 		memcpy(iinfo->i_data,
1442 		       bh->b_data + sizeof(struct fileEntry),
1443 		       bs - sizeof(struct fileEntry));
1444 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1445 		iinfo->i_efe = 0;
1446 		iinfo->i_use = 1;
1447 		iinfo->i_lenAlloc = le32_to_cpu(
1448 				((struct unallocSpaceEntry *)bh->b_data)->
1449 				 lengthAllocDescs);
1450 		ret = udf_alloc_i_data(inode, bs -
1451 					sizeof(struct unallocSpaceEntry));
1452 		if (ret)
1453 			goto out;
1454 		memcpy(iinfo->i_data,
1455 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1456 		       bs - sizeof(struct unallocSpaceEntry));
1457 		return 0;
1458 	}
1459 
1460 	ret = -EIO;
1461 	read_lock(&sbi->s_cred_lock);
1462 	uid = le32_to_cpu(fe->uid);
1463 	if (uid == UDF_INVALID_ID ||
1464 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1465 		inode->i_uid = sbi->s_uid;
1466 	else
1467 		i_uid_write(inode, uid);
1468 
1469 	gid = le32_to_cpu(fe->gid);
1470 	if (gid == UDF_INVALID_ID ||
1471 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1472 		inode->i_gid = sbi->s_gid;
1473 	else
1474 		i_gid_write(inode, gid);
1475 
1476 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1477 			sbi->s_fmode != UDF_INVALID_MODE)
1478 		inode->i_mode = sbi->s_fmode;
1479 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1480 			sbi->s_dmode != UDF_INVALID_MODE)
1481 		inode->i_mode = sbi->s_dmode;
1482 	else
1483 		inode->i_mode = udf_convert_permissions(fe);
1484 	inode->i_mode &= ~sbi->s_umask;
1485 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1486 
1487 	read_unlock(&sbi->s_cred_lock);
1488 
1489 	link_count = le16_to_cpu(fe->fileLinkCount);
1490 	if (!link_count) {
1491 		if (!hidden_inode) {
1492 			ret = -ESTALE;
1493 			goto out;
1494 		}
1495 		link_count = 1;
1496 	}
1497 	set_nlink(inode, link_count);
1498 
1499 	inode->i_size = le64_to_cpu(fe->informationLength);
1500 	iinfo->i_lenExtents = inode->i_size;
1501 
1502 	if (iinfo->i_efe == 0) {
1503 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1504 			(inode->i_sb->s_blocksize_bits - 9);
1505 
1506 		udf_disk_stamp_to_time(&ts, fe->accessTime);
1507 		inode_set_atime_to_ts(inode, ts);
1508 		udf_disk_stamp_to_time(&ts, fe->modificationTime);
1509 		inode_set_mtime_to_ts(inode, ts);
1510 		udf_disk_stamp_to_time(&ts, fe->attrTime);
1511 		inode_set_ctime_to_ts(inode, ts);
1512 
1513 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1514 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1515 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1516 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1517 		iinfo->i_streamdir = 0;
1518 		iinfo->i_lenStreams = 0;
1519 	} else {
1520 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1521 		    (inode->i_sb->s_blocksize_bits - 9);
1522 
1523 		udf_disk_stamp_to_time(&ts, efe->accessTime);
1524 		inode_set_atime_to_ts(inode, ts);
1525 		udf_disk_stamp_to_time(&ts, efe->modificationTime);
1526 		inode_set_mtime_to_ts(inode, ts);
1527 		udf_disk_stamp_to_time(&ts, efe->attrTime);
1528 		inode_set_ctime_to_ts(inode, ts);
1529 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1530 
1531 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1532 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1533 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1534 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1535 
1536 		/* Named streams */
1537 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1538 		iinfo->i_locStreamdir =
1539 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1540 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1541 		if (iinfo->i_lenStreams >= inode->i_size)
1542 			iinfo->i_lenStreams -= inode->i_size;
1543 		else
1544 			iinfo->i_lenStreams = 0;
1545 	}
1546 	inode->i_generation = iinfo->i_unique;
1547 
1548 	/*
1549 	 * Sanity check length of allocation descriptors and extended attrs to
1550 	 * avoid integer overflows
1551 	 */
1552 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1553 		goto out;
1554 	/* Now do exact checks */
1555 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1556 		goto out;
1557 	/* Sanity checks for files in ICB so that we don't get confused later */
1558 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1559 		/*
1560 		 * For file in ICB data is stored in allocation descriptor
1561 		 * so sizes should match
1562 		 */
1563 		if (iinfo->i_lenAlloc != inode->i_size)
1564 			goto out;
1565 		/* File in ICB has to fit in there... */
1566 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1567 			goto out;
1568 	}
1569 
1570 	switch (fe->icbTag.fileType) {
1571 	case ICBTAG_FILE_TYPE_DIRECTORY:
1572 		inode->i_op = &udf_dir_inode_operations;
1573 		inode->i_fop = &udf_dir_operations;
1574 		inode->i_mode |= S_IFDIR;
1575 		inc_nlink(inode);
1576 		break;
1577 	case ICBTAG_FILE_TYPE_REALTIME:
1578 	case ICBTAG_FILE_TYPE_REGULAR:
1579 	case ICBTAG_FILE_TYPE_UNDEF:
1580 	case ICBTAG_FILE_TYPE_VAT20:
1581 		inode->i_data.a_ops = &udf_aops;
1582 		inode->i_op = &udf_file_inode_operations;
1583 		inode->i_fop = &udf_file_operations;
1584 		inode->i_mode |= S_IFREG;
1585 		break;
1586 	case ICBTAG_FILE_TYPE_BLOCK:
1587 		inode->i_mode |= S_IFBLK;
1588 		break;
1589 	case ICBTAG_FILE_TYPE_CHAR:
1590 		inode->i_mode |= S_IFCHR;
1591 		break;
1592 	case ICBTAG_FILE_TYPE_FIFO:
1593 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1594 		break;
1595 	case ICBTAG_FILE_TYPE_SOCKET:
1596 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1597 		break;
1598 	case ICBTAG_FILE_TYPE_SYMLINK:
1599 		inode->i_data.a_ops = &udf_symlink_aops;
1600 		inode->i_op = &udf_symlink_inode_operations;
1601 		inode_nohighmem(inode);
1602 		inode->i_mode = S_IFLNK | 0777;
1603 		break;
1604 	case ICBTAG_FILE_TYPE_MAIN:
1605 		udf_debug("METADATA FILE-----\n");
1606 		break;
1607 	case ICBTAG_FILE_TYPE_MIRROR:
1608 		udf_debug("METADATA MIRROR FILE-----\n");
1609 		break;
1610 	case ICBTAG_FILE_TYPE_BITMAP:
1611 		udf_debug("METADATA BITMAP FILE-----\n");
1612 		break;
1613 	default:
1614 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1615 			inode->i_ino, fe->icbTag.fileType);
1616 		goto out;
1617 	}
1618 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1619 		struct deviceSpec *dsea =
1620 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1621 		if (dsea) {
1622 			init_special_inode(inode, inode->i_mode,
1623 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1624 				      le32_to_cpu(dsea->minorDeviceIdent)));
1625 			/* Developer ID ??? */
1626 		} else
1627 			goto out;
1628 	}
1629 	ret = 0;
1630 out:
1631 	brelse(bh);
1632 	return ret;
1633 }
1634 
1635 static int udf_alloc_i_data(struct inode *inode, size_t size)
1636 {
1637 	struct udf_inode_info *iinfo = UDF_I(inode);
1638 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1639 	if (!iinfo->i_data)
1640 		return -ENOMEM;
1641 	return 0;
1642 }
1643 
1644 static umode_t udf_convert_permissions(struct fileEntry *fe)
1645 {
1646 	umode_t mode;
1647 	uint32_t permissions;
1648 	uint32_t flags;
1649 
1650 	permissions = le32_to_cpu(fe->permissions);
1651 	flags = le16_to_cpu(fe->icbTag.flags);
1652 
1653 	mode =	((permissions) & 0007) |
1654 		((permissions >> 2) & 0070) |
1655 		((permissions >> 4) & 0700) |
1656 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1657 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1658 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1659 
1660 	return mode;
1661 }
1662 
1663 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1664 {
1665 	struct udf_inode_info *iinfo = UDF_I(inode);
1666 
1667 	/*
1668 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1669 	 * In Unix, delete permission tracks write
1670 	 */
1671 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1672 	if (mode & 0200)
1673 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1674 	if (mode & 0020)
1675 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1676 	if (mode & 0002)
1677 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1678 }
1679 
1680 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1681 {
1682 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1683 }
1684 
1685 static int udf_sync_inode(struct inode *inode)
1686 {
1687 	return udf_update_inode(inode, 1);
1688 }
1689 
1690 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1691 {
1692 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1693 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1694 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1695 		iinfo->i_crtime = time;
1696 }
1697 
1698 static int udf_update_inode(struct inode *inode, int do_sync)
1699 {
1700 	struct buffer_head *bh = NULL;
1701 	struct fileEntry *fe;
1702 	struct extendedFileEntry *efe;
1703 	uint64_t lb_recorded;
1704 	uint32_t udfperms;
1705 	uint16_t icbflags;
1706 	uint16_t crclen;
1707 	int err = 0;
1708 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1709 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1710 	struct udf_inode_info *iinfo = UDF_I(inode);
1711 
1712 	bh = sb_getblk(inode->i_sb,
1713 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1714 	if (!bh) {
1715 		udf_debug("getblk failure\n");
1716 		return -EIO;
1717 	}
1718 
1719 	lock_buffer(bh);
1720 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1721 	fe = (struct fileEntry *)bh->b_data;
1722 	efe = (struct extendedFileEntry *)bh->b_data;
1723 
1724 	if (iinfo->i_use) {
1725 		struct unallocSpaceEntry *use =
1726 			(struct unallocSpaceEntry *)bh->b_data;
1727 
1728 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1729 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1730 		       iinfo->i_data, inode->i_sb->s_blocksize -
1731 					sizeof(struct unallocSpaceEntry));
1732 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1733 		crclen = sizeof(struct unallocSpaceEntry);
1734 
1735 		goto finish;
1736 	}
1737 
1738 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1739 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1740 	else
1741 		fe->uid = cpu_to_le32(i_uid_read(inode));
1742 
1743 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1744 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1745 	else
1746 		fe->gid = cpu_to_le32(i_gid_read(inode));
1747 
1748 	udfperms = ((inode->i_mode & 0007)) |
1749 		   ((inode->i_mode & 0070) << 2) |
1750 		   ((inode->i_mode & 0700) << 4);
1751 
1752 	udfperms |= iinfo->i_extraPerms;
1753 	fe->permissions = cpu_to_le32(udfperms);
1754 
1755 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1756 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1757 	else {
1758 		if (iinfo->i_hidden)
1759 			fe->fileLinkCount = cpu_to_le16(0);
1760 		else
1761 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1762 	}
1763 
1764 	fe->informationLength = cpu_to_le64(inode->i_size);
1765 
1766 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1767 		struct regid *eid;
1768 		struct deviceSpec *dsea =
1769 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1770 		if (!dsea) {
1771 			dsea = (struct deviceSpec *)
1772 				udf_add_extendedattr(inode,
1773 						     sizeof(struct deviceSpec) +
1774 						     sizeof(struct regid), 12, 0x3);
1775 			dsea->attrType = cpu_to_le32(12);
1776 			dsea->attrSubtype = 1;
1777 			dsea->attrLength = cpu_to_le32(
1778 						sizeof(struct deviceSpec) +
1779 						sizeof(struct regid));
1780 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1781 		}
1782 		eid = (struct regid *)dsea->impUse;
1783 		memset(eid, 0, sizeof(*eid));
1784 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1785 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1786 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1787 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1788 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1789 	}
1790 
1791 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1792 		lb_recorded = 0; /* No extents => no blocks! */
1793 	else
1794 		lb_recorded =
1795 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1796 			(blocksize_bits - 9);
1797 
1798 	if (iinfo->i_efe == 0) {
1799 		memcpy(bh->b_data + sizeof(struct fileEntry),
1800 		       iinfo->i_data,
1801 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1802 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1803 
1804 		udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1805 		udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1806 		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1807 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1808 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1809 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1810 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1811 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1812 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1813 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1814 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1815 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1816 		crclen = sizeof(struct fileEntry);
1817 	} else {
1818 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1819 		       iinfo->i_data,
1820 		       inode->i_sb->s_blocksize -
1821 					sizeof(struct extendedFileEntry));
1822 		efe->objectSize =
1823 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1824 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825 
1826 		if (iinfo->i_streamdir) {
1827 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1828 
1829 			icb_lad->extLocation =
1830 				cpu_to_lelb(iinfo->i_locStreamdir);
1831 			icb_lad->extLength =
1832 				cpu_to_le32(inode->i_sb->s_blocksize);
1833 		}
1834 
1835 		udf_adjust_time(iinfo, inode_get_atime(inode));
1836 		udf_adjust_time(iinfo, inode_get_mtime(inode));
1837 		udf_adjust_time(iinfo, inode_get_ctime(inode));
1838 
1839 		udf_time_to_disk_stamp(&efe->accessTime,
1840 				       inode_get_atime(inode));
1841 		udf_time_to_disk_stamp(&efe->modificationTime,
1842 				       inode_get_mtime(inode));
1843 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1844 		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1845 
1846 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1847 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1848 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1849 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1850 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1851 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1852 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1853 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1854 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1855 		crclen = sizeof(struct extendedFileEntry);
1856 	}
1857 
1858 finish:
1859 	if (iinfo->i_strat4096) {
1860 		fe->icbTag.strategyType = cpu_to_le16(4096);
1861 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1862 		fe->icbTag.numEntries = cpu_to_le16(2);
1863 	} else {
1864 		fe->icbTag.strategyType = cpu_to_le16(4);
1865 		fe->icbTag.numEntries = cpu_to_le16(1);
1866 	}
1867 
1868 	if (iinfo->i_use)
1869 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1870 	else if (S_ISDIR(inode->i_mode))
1871 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1872 	else if (S_ISREG(inode->i_mode))
1873 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1874 	else if (S_ISLNK(inode->i_mode))
1875 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1876 	else if (S_ISBLK(inode->i_mode))
1877 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1878 	else if (S_ISCHR(inode->i_mode))
1879 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1880 	else if (S_ISFIFO(inode->i_mode))
1881 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1882 	else if (S_ISSOCK(inode->i_mode))
1883 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1884 
1885 	icbflags =	iinfo->i_alloc_type |
1886 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1887 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1888 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1889 			(le16_to_cpu(fe->icbTag.flags) &
1890 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1891 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1892 
1893 	fe->icbTag.flags = cpu_to_le16(icbflags);
1894 	if (sbi->s_udfrev >= 0x0200)
1895 		fe->descTag.descVersion = cpu_to_le16(3);
1896 	else
1897 		fe->descTag.descVersion = cpu_to_le16(2);
1898 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1899 	fe->descTag.tagLocation = cpu_to_le32(
1900 					iinfo->i_location.logicalBlockNum);
1901 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1902 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1903 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1904 						  crclen));
1905 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1906 
1907 	set_buffer_uptodate(bh);
1908 	unlock_buffer(bh);
1909 
1910 	/* write the data blocks */
1911 	mark_buffer_dirty(bh);
1912 	if (do_sync) {
1913 		sync_dirty_buffer(bh);
1914 		if (buffer_write_io_error(bh)) {
1915 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1916 				 inode->i_ino);
1917 			err = -EIO;
1918 		}
1919 	}
1920 	brelse(bh);
1921 
1922 	return err;
1923 }
1924 
1925 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1926 			 bool hidden_inode)
1927 {
1928 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1929 	struct inode *inode = iget_locked(sb, block);
1930 	int err;
1931 
1932 	if (!inode)
1933 		return ERR_PTR(-ENOMEM);
1934 
1935 	if (!(inode->i_state & I_NEW)) {
1936 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1937 			iput(inode);
1938 			return ERR_PTR(-EFSCORRUPTED);
1939 		}
1940 		return inode;
1941 	}
1942 
1943 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1944 	err = udf_read_inode(inode, hidden_inode);
1945 	if (err < 0) {
1946 		iget_failed(inode);
1947 		return ERR_PTR(err);
1948 	}
1949 	unlock_new_inode(inode);
1950 
1951 	return inode;
1952 }
1953 
1954 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1955 			    struct extent_position *epos)
1956 {
1957 	struct super_block *sb = inode->i_sb;
1958 	struct buffer_head *bh;
1959 	struct allocExtDesc *aed;
1960 	struct extent_position nepos;
1961 	struct kernel_lb_addr neloc;
1962 	int ver, adsize;
1963 
1964 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1965 		adsize = sizeof(struct short_ad);
1966 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1967 		adsize = sizeof(struct long_ad);
1968 	else
1969 		return -EIO;
1970 
1971 	neloc.logicalBlockNum = block;
1972 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1973 
1974 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1975 	if (!bh)
1976 		return -EIO;
1977 	lock_buffer(bh);
1978 	memset(bh->b_data, 0x00, sb->s_blocksize);
1979 	set_buffer_uptodate(bh);
1980 	unlock_buffer(bh);
1981 	mark_buffer_dirty_inode(bh, inode);
1982 
1983 	aed = (struct allocExtDesc *)(bh->b_data);
1984 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1985 		aed->previousAllocExtLocation =
1986 				cpu_to_le32(epos->block.logicalBlockNum);
1987 	}
1988 	aed->lengthAllocDescs = cpu_to_le32(0);
1989 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1990 		ver = 3;
1991 	else
1992 		ver = 2;
1993 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1994 		    sizeof(struct tag));
1995 
1996 	nepos.block = neloc;
1997 	nepos.offset = sizeof(struct allocExtDesc);
1998 	nepos.bh = bh;
1999 
2000 	/*
2001 	 * Do we have to copy current last extent to make space for indirect
2002 	 * one?
2003 	 */
2004 	if (epos->offset + adsize > sb->s_blocksize) {
2005 		struct kernel_lb_addr cp_loc;
2006 		uint32_t cp_len;
2007 		int cp_type;
2008 
2009 		epos->offset -= adsize;
2010 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2011 		cp_len |= ((uint32_t)cp_type) << 30;
2012 
2013 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2014 		udf_write_aext(inode, epos, &nepos.block,
2015 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2016 	} else {
2017 		__udf_add_aext(inode, epos, &nepos.block,
2018 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2019 	}
2020 
2021 	brelse(epos->bh);
2022 	*epos = nepos;
2023 
2024 	return 0;
2025 }
2026 
2027 /*
2028  * Append extent at the given position - should be the first free one in inode
2029  * / indirect extent. This function assumes there is enough space in the inode
2030  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2031  */
2032 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2033 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2034 {
2035 	struct udf_inode_info *iinfo = UDF_I(inode);
2036 	struct allocExtDesc *aed;
2037 	int adsize;
2038 
2039 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2040 		adsize = sizeof(struct short_ad);
2041 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2042 		adsize = sizeof(struct long_ad);
2043 	else
2044 		return -EIO;
2045 
2046 	if (!epos->bh) {
2047 		WARN_ON(iinfo->i_lenAlloc !=
2048 			epos->offset - udf_file_entry_alloc_offset(inode));
2049 	} else {
2050 		aed = (struct allocExtDesc *)epos->bh->b_data;
2051 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2052 			epos->offset - sizeof(struct allocExtDesc));
2053 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2054 	}
2055 
2056 	udf_write_aext(inode, epos, eloc, elen, inc);
2057 
2058 	if (!epos->bh) {
2059 		iinfo->i_lenAlloc += adsize;
2060 		mark_inode_dirty(inode);
2061 	} else {
2062 		aed = (struct allocExtDesc *)epos->bh->b_data;
2063 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2064 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2065 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2066 			udf_update_tag(epos->bh->b_data,
2067 					epos->offset + (inc ? 0 : adsize));
2068 		else
2069 			udf_update_tag(epos->bh->b_data,
2070 					sizeof(struct allocExtDesc));
2071 		mark_buffer_dirty_inode(epos->bh, inode);
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 /*
2078  * Append extent at given position - should be the first free one in inode
2079  * / indirect extent. Takes care of allocating and linking indirect blocks.
2080  */
2081 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2082 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2083 {
2084 	int adsize;
2085 	struct super_block *sb = inode->i_sb;
2086 
2087 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2088 		adsize = sizeof(struct short_ad);
2089 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2090 		adsize = sizeof(struct long_ad);
2091 	else
2092 		return -EIO;
2093 
2094 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2095 		int err;
2096 		udf_pblk_t new_block;
2097 
2098 		new_block = udf_new_block(sb, NULL,
2099 					  epos->block.partitionReferenceNum,
2100 					  epos->block.logicalBlockNum, &err);
2101 		if (!new_block)
2102 			return -ENOSPC;
2103 
2104 		err = udf_setup_indirect_aext(inode, new_block, epos);
2105 		if (err)
2106 			return err;
2107 	}
2108 
2109 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2110 }
2111 
2112 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2113 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2114 {
2115 	int adsize;
2116 	uint8_t *ptr;
2117 	struct short_ad *sad;
2118 	struct long_ad *lad;
2119 	struct udf_inode_info *iinfo = UDF_I(inode);
2120 
2121 	if (!epos->bh)
2122 		ptr = iinfo->i_data + epos->offset -
2123 			udf_file_entry_alloc_offset(inode) +
2124 			iinfo->i_lenEAttr;
2125 	else
2126 		ptr = epos->bh->b_data + epos->offset;
2127 
2128 	switch (iinfo->i_alloc_type) {
2129 	case ICBTAG_FLAG_AD_SHORT:
2130 		sad = (struct short_ad *)ptr;
2131 		sad->extLength = cpu_to_le32(elen);
2132 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2133 		adsize = sizeof(struct short_ad);
2134 		break;
2135 	case ICBTAG_FLAG_AD_LONG:
2136 		lad = (struct long_ad *)ptr;
2137 		lad->extLength = cpu_to_le32(elen);
2138 		lad->extLocation = cpu_to_lelb(*eloc);
2139 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2140 		adsize = sizeof(struct long_ad);
2141 		break;
2142 	default:
2143 		return;
2144 	}
2145 
2146 	if (epos->bh) {
2147 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2148 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2149 			struct allocExtDesc *aed =
2150 				(struct allocExtDesc *)epos->bh->b_data;
2151 			udf_update_tag(epos->bh->b_data,
2152 				       le32_to_cpu(aed->lengthAllocDescs) +
2153 				       sizeof(struct allocExtDesc));
2154 		}
2155 		mark_buffer_dirty_inode(epos->bh, inode);
2156 	} else {
2157 		mark_inode_dirty(inode);
2158 	}
2159 
2160 	if (inc)
2161 		epos->offset += adsize;
2162 }
2163 
2164 /*
2165  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2166  * someone does some weird stuff.
2167  */
2168 #define UDF_MAX_INDIR_EXTS 16
2169 
2170 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2171 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2172 {
2173 	int8_t etype;
2174 	unsigned int indirections = 0;
2175 
2176 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2177 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2178 		udf_pblk_t block;
2179 
2180 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2181 			udf_err(inode->i_sb,
2182 				"too many indirect extents in inode %lu\n",
2183 				inode->i_ino);
2184 			return -1;
2185 		}
2186 
2187 		epos->block = *eloc;
2188 		epos->offset = sizeof(struct allocExtDesc);
2189 		brelse(epos->bh);
2190 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2191 		epos->bh = sb_bread(inode->i_sb, block);
2192 		if (!epos->bh) {
2193 			udf_debug("reading block %u failed!\n", block);
2194 			return -1;
2195 		}
2196 	}
2197 
2198 	return etype;
2199 }
2200 
2201 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2202 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2203 {
2204 	int alen;
2205 	int8_t etype;
2206 	uint8_t *ptr;
2207 	struct short_ad *sad;
2208 	struct long_ad *lad;
2209 	struct udf_inode_info *iinfo = UDF_I(inode);
2210 
2211 	if (!epos->bh) {
2212 		if (!epos->offset)
2213 			epos->offset = udf_file_entry_alloc_offset(inode);
2214 		ptr = iinfo->i_data + epos->offset -
2215 			udf_file_entry_alloc_offset(inode) +
2216 			iinfo->i_lenEAttr;
2217 		alen = udf_file_entry_alloc_offset(inode) +
2218 							iinfo->i_lenAlloc;
2219 	} else {
2220 		if (!epos->offset)
2221 			epos->offset = sizeof(struct allocExtDesc);
2222 		ptr = epos->bh->b_data + epos->offset;
2223 		alen = sizeof(struct allocExtDesc) +
2224 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2225 							lengthAllocDescs);
2226 	}
2227 
2228 	switch (iinfo->i_alloc_type) {
2229 	case ICBTAG_FLAG_AD_SHORT:
2230 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2231 		if (!sad)
2232 			return -1;
2233 		etype = le32_to_cpu(sad->extLength) >> 30;
2234 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2235 		eloc->partitionReferenceNum =
2236 				iinfo->i_location.partitionReferenceNum;
2237 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2238 		break;
2239 	case ICBTAG_FLAG_AD_LONG:
2240 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2241 		if (!lad)
2242 			return -1;
2243 		etype = le32_to_cpu(lad->extLength) >> 30;
2244 		*eloc = lelb_to_cpu(lad->extLocation);
2245 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2246 		break;
2247 	default:
2248 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2249 		return -1;
2250 	}
2251 
2252 	return etype;
2253 }
2254 
2255 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2256 			   struct kernel_lb_addr neloc, uint32_t nelen)
2257 {
2258 	struct kernel_lb_addr oeloc;
2259 	uint32_t oelen;
2260 	int8_t etype;
2261 	int err;
2262 
2263 	if (epos.bh)
2264 		get_bh(epos.bh);
2265 
2266 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2267 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2268 		neloc = oeloc;
2269 		nelen = (etype << 30) | oelen;
2270 	}
2271 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2272 	brelse(epos.bh);
2273 
2274 	return err;
2275 }
2276 
2277 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2278 {
2279 	struct extent_position oepos;
2280 	int adsize;
2281 	int8_t etype;
2282 	struct allocExtDesc *aed;
2283 	struct udf_inode_info *iinfo;
2284 	struct kernel_lb_addr eloc;
2285 	uint32_t elen;
2286 
2287 	if (epos.bh) {
2288 		get_bh(epos.bh);
2289 		get_bh(epos.bh);
2290 	}
2291 
2292 	iinfo = UDF_I(inode);
2293 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2294 		adsize = sizeof(struct short_ad);
2295 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2296 		adsize = sizeof(struct long_ad);
2297 	else
2298 		adsize = 0;
2299 
2300 	oepos = epos;
2301 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2302 		return -1;
2303 
2304 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2305 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2306 		if (oepos.bh != epos.bh) {
2307 			oepos.block = epos.block;
2308 			brelse(oepos.bh);
2309 			get_bh(epos.bh);
2310 			oepos.bh = epos.bh;
2311 			oepos.offset = epos.offset - adsize;
2312 		}
2313 	}
2314 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2315 	elen = 0;
2316 
2317 	if (epos.bh != oepos.bh) {
2318 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2319 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2320 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2321 		if (!oepos.bh) {
2322 			iinfo->i_lenAlloc -= (adsize * 2);
2323 			mark_inode_dirty(inode);
2324 		} else {
2325 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2326 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2327 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2328 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2329 				udf_update_tag(oepos.bh->b_data,
2330 						oepos.offset - (2 * adsize));
2331 			else
2332 				udf_update_tag(oepos.bh->b_data,
2333 						sizeof(struct allocExtDesc));
2334 			mark_buffer_dirty_inode(oepos.bh, inode);
2335 		}
2336 	} else {
2337 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2338 		if (!oepos.bh) {
2339 			iinfo->i_lenAlloc -= adsize;
2340 			mark_inode_dirty(inode);
2341 		} else {
2342 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2343 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2344 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2345 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2346 				udf_update_tag(oepos.bh->b_data,
2347 						epos.offset - adsize);
2348 			else
2349 				udf_update_tag(oepos.bh->b_data,
2350 						sizeof(struct allocExtDesc));
2351 			mark_buffer_dirty_inode(oepos.bh, inode);
2352 		}
2353 	}
2354 
2355 	brelse(epos.bh);
2356 	brelse(oepos.bh);
2357 
2358 	return (elen >> 30);
2359 }
2360 
2361 int8_t inode_bmap(struct inode *inode, sector_t block,
2362 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2363 		  uint32_t *elen, sector_t *offset)
2364 {
2365 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2366 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2367 	int8_t etype;
2368 	struct udf_inode_info *iinfo;
2369 
2370 	iinfo = UDF_I(inode);
2371 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2372 		pos->offset = 0;
2373 		pos->block = iinfo->i_location;
2374 		pos->bh = NULL;
2375 	}
2376 	*elen = 0;
2377 	do {
2378 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2379 		if (etype == -1) {
2380 			*offset = (bcount - lbcount) >> blocksize_bits;
2381 			iinfo->i_lenExtents = lbcount;
2382 			return -1;
2383 		}
2384 		lbcount += *elen;
2385 	} while (lbcount <= bcount);
2386 	/* update extent cache */
2387 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2388 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2389 
2390 	return etype;
2391 }
2392