1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_read_folio(struct folio *folio) 212 { 213 struct inode *inode = folio->mapping->host; 214 struct udf_inode_info *iinfo = UDF_I(inode); 215 loff_t isize = i_size_read(inode); 216 217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize); 218 folio_mark_uptodate(folio); 219 } 220 221 static int udf_read_folio(struct file *file, struct folio *folio) 222 { 223 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 224 225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 226 udf_adinicb_read_folio(folio); 227 folio_unlock(folio); 228 return 0; 229 } 230 return mpage_read_folio(folio, udf_get_block); 231 } 232 233 static void udf_readahead(struct readahead_control *rac) 234 { 235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 236 237 /* 238 * No readahead needed for in-ICB files and udf_get_block() would get 239 * confused for such file anyway. 240 */ 241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 242 return; 243 244 mpage_readahead(rac, udf_get_block); 245 } 246 247 static int udf_write_begin(struct file *file, struct address_space *mapping, 248 loff_t pos, unsigned len, 249 struct folio **foliop, void **fsdata) 250 { 251 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 252 struct folio *folio; 253 int ret; 254 255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 256 ret = block_write_begin(mapping, pos, len, foliop, 257 udf_get_block); 258 if (unlikely(ret)) 259 udf_write_failed(mapping, pos + len); 260 return ret; 261 } 262 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 263 return -EIO; 264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN, 265 mapping_gfp_mask(mapping)); 266 if (IS_ERR(folio)) 267 return PTR_ERR(folio); 268 *foliop = folio; 269 if (!folio_test_uptodate(folio)) 270 udf_adinicb_read_folio(folio); 271 return 0; 272 } 273 274 static int udf_write_end(struct file *file, struct address_space *mapping, 275 loff_t pos, unsigned len, unsigned copied, 276 struct folio *folio, void *fsdata) 277 { 278 struct inode *inode = file_inode(file); 279 loff_t last_pos; 280 281 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 282 return generic_write_end(file, mapping, pos, len, copied, folio, 283 fsdata); 284 last_pos = pos + copied; 285 if (last_pos > inode->i_size) 286 i_size_write(inode, last_pos); 287 folio_mark_dirty(folio); 288 folio_unlock(folio); 289 folio_put(folio); 290 291 return copied; 292 } 293 294 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 295 { 296 struct file *file = iocb->ki_filp; 297 struct address_space *mapping = file->f_mapping; 298 struct inode *inode = mapping->host; 299 size_t count = iov_iter_count(iter); 300 ssize_t ret; 301 302 /* Fallback to buffered IO for in-ICB files */ 303 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 304 return 0; 305 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 306 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 307 udf_write_failed(mapping, iocb->ki_pos + count); 308 return ret; 309 } 310 311 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 312 { 313 struct udf_inode_info *iinfo = UDF_I(mapping->host); 314 315 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 316 return -EINVAL; 317 return generic_block_bmap(mapping, block, udf_get_block); 318 } 319 320 const struct address_space_operations udf_aops = { 321 .dirty_folio = block_dirty_folio, 322 .invalidate_folio = block_invalidate_folio, 323 .read_folio = udf_read_folio, 324 .readahead = udf_readahead, 325 .writepages = udf_writepages, 326 .write_begin = udf_write_begin, 327 .write_end = udf_write_end, 328 .direct_IO = udf_direct_IO, 329 .bmap = udf_bmap, 330 .migrate_folio = buffer_migrate_folio, 331 }; 332 333 /* 334 * Expand file stored in ICB to a normal one-block-file 335 * 336 * This function requires i_mutex held 337 */ 338 int udf_expand_file_adinicb(struct inode *inode) 339 { 340 struct folio *folio; 341 struct udf_inode_info *iinfo = UDF_I(inode); 342 int err; 343 344 WARN_ON_ONCE(!inode_is_locked(inode)); 345 if (!iinfo->i_lenAlloc) { 346 down_write(&iinfo->i_data_sem); 347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 349 else 350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 351 up_write(&iinfo->i_data_sem); 352 mark_inode_dirty(inode); 353 return 0; 354 } 355 356 folio = __filemap_get_folio(inode->i_mapping, 0, 357 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 358 if (IS_ERR(folio)) 359 return PTR_ERR(folio); 360 361 if (!folio_test_uptodate(folio)) 362 udf_adinicb_read_folio(folio); 363 down_write(&iinfo->i_data_sem); 364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 365 iinfo->i_lenAlloc); 366 iinfo->i_lenAlloc = 0; 367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 369 else 370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 371 folio_mark_dirty(folio); 372 folio_unlock(folio); 373 up_write(&iinfo->i_data_sem); 374 err = filemap_fdatawrite(inode->i_mapping); 375 if (err) { 376 /* Restore everything back so that we don't lose data... */ 377 folio_lock(folio); 378 down_write(&iinfo->i_data_sem); 379 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 380 folio, 0, inode->i_size); 381 folio_unlock(folio); 382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 383 iinfo->i_lenAlloc = inode->i_size; 384 up_write(&iinfo->i_data_sem); 385 } 386 folio_put(folio); 387 mark_inode_dirty(inode); 388 389 return err; 390 } 391 392 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 393 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 394 395 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 396 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 397 398 struct udf_map_rq { 399 sector_t lblk; 400 udf_pblk_t pblk; 401 int iflags; /* UDF_MAP_ flags determining behavior */ 402 int oflags; /* UDF_BLK_ flags reporting results */ 403 }; 404 405 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 406 { 407 int err; 408 struct udf_inode_info *iinfo = UDF_I(inode); 409 410 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 411 return -EFSCORRUPTED; 412 413 map->oflags = 0; 414 if (!(map->iflags & UDF_MAP_CREATE)) { 415 struct kernel_lb_addr eloc; 416 uint32_t elen; 417 sector_t offset; 418 struct extent_position epos = {}; 419 420 down_read(&iinfo->i_data_sem); 421 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 422 == (EXT_RECORDED_ALLOCATED >> 30)) { 423 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 424 offset); 425 map->oflags |= UDF_BLK_MAPPED; 426 } 427 up_read(&iinfo->i_data_sem); 428 brelse(epos.bh); 429 430 return 0; 431 } 432 433 down_write(&iinfo->i_data_sem); 434 /* 435 * Block beyond EOF and prealloc extents? Just discard preallocation 436 * as it is not useful and complicates things. 437 */ 438 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 439 udf_discard_prealloc(inode); 440 udf_clear_extent_cache(inode); 441 err = inode_getblk(inode, map); 442 up_write(&iinfo->i_data_sem); 443 return err; 444 } 445 446 static int __udf_get_block(struct inode *inode, sector_t block, 447 struct buffer_head *bh_result, int flags) 448 { 449 int err; 450 struct udf_map_rq map = { 451 .lblk = block, 452 .iflags = flags, 453 }; 454 455 err = udf_map_block(inode, &map); 456 if (err < 0) 457 return err; 458 if (map.oflags & UDF_BLK_MAPPED) { 459 map_bh(bh_result, inode->i_sb, map.pblk); 460 if (map.oflags & UDF_BLK_NEW) 461 set_buffer_new(bh_result); 462 } 463 return 0; 464 } 465 466 int udf_get_block(struct inode *inode, sector_t block, 467 struct buffer_head *bh_result, int create) 468 { 469 int flags = create ? UDF_MAP_CREATE : 0; 470 471 /* 472 * We preallocate blocks only for regular files. It also makes sense 473 * for directories but there's a problem when to drop the 474 * preallocation. We might use some delayed work for that but I feel 475 * it's overengineering for a filesystem like UDF. 476 */ 477 if (!S_ISREG(inode->i_mode)) 478 flags |= UDF_MAP_NOPREALLOC; 479 return __udf_get_block(inode, block, bh_result, flags); 480 } 481 482 /* 483 * We shouldn't be allocating blocks on page writeback since we allocate them 484 * on page fault. We can spot dirty buffers without allocated blocks though 485 * when truncate expands file. These however don't have valid data so we can 486 * safely ignore them. So never allocate blocks from page writeback. 487 */ 488 static int udf_get_block_wb(struct inode *inode, sector_t block, 489 struct buffer_head *bh_result, int create) 490 { 491 return __udf_get_block(inode, block, bh_result, 0); 492 } 493 494 /* Extend the file with new blocks totaling 'new_block_bytes', 495 * return the number of extents added 496 */ 497 static int udf_do_extend_file(struct inode *inode, 498 struct extent_position *last_pos, 499 struct kernel_long_ad *last_ext, 500 loff_t new_block_bytes) 501 { 502 uint32_t add; 503 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 504 struct super_block *sb = inode->i_sb; 505 struct udf_inode_info *iinfo; 506 int err; 507 508 /* The previous extent is fake and we should not extend by anything 509 * - there's nothing to do... */ 510 if (!new_block_bytes && fake) 511 return 0; 512 513 iinfo = UDF_I(inode); 514 /* Round the last extent up to a multiple of block size */ 515 if (last_ext->extLength & (sb->s_blocksize - 1)) { 516 last_ext->extLength = 517 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 518 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 519 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 520 iinfo->i_lenExtents = 521 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 522 ~(sb->s_blocksize - 1); 523 } 524 525 add = 0; 526 /* Can we merge with the previous extent? */ 527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 528 EXT_NOT_RECORDED_NOT_ALLOCATED) { 529 add = (1 << 30) - sb->s_blocksize - 530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 531 if (add > new_block_bytes) 532 add = new_block_bytes; 533 new_block_bytes -= add; 534 last_ext->extLength += add; 535 } 536 537 if (fake) { 538 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 539 last_ext->extLength, 1); 540 if (err < 0) 541 goto out_err; 542 count++; 543 } else { 544 struct kernel_lb_addr tmploc; 545 uint32_t tmplen; 546 547 udf_write_aext(inode, last_pos, &last_ext->extLocation, 548 last_ext->extLength, 1); 549 550 /* 551 * We've rewritten the last extent. If we are going to add 552 * more extents, we may need to enter possible following 553 * empty indirect extent. 554 */ 555 if (new_block_bytes) 556 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 557 } 558 iinfo->i_lenExtents += add; 559 560 /* Managed to do everything necessary? */ 561 if (!new_block_bytes) 562 goto out; 563 564 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 565 last_ext->extLocation.logicalBlockNum = 0; 566 last_ext->extLocation.partitionReferenceNum = 0; 567 add = (1 << 30) - sb->s_blocksize; 568 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 569 570 /* Create enough extents to cover the whole hole */ 571 while (new_block_bytes > add) { 572 new_block_bytes -= add; 573 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 574 last_ext->extLength, 1); 575 if (err) 576 goto out_err; 577 iinfo->i_lenExtents += add; 578 count++; 579 } 580 if (new_block_bytes) { 581 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 582 new_block_bytes; 583 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 584 last_ext->extLength, 1); 585 if (err) 586 goto out_err; 587 iinfo->i_lenExtents += new_block_bytes; 588 count++; 589 } 590 591 out: 592 /* last_pos should point to the last written extent... */ 593 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 594 last_pos->offset -= sizeof(struct short_ad); 595 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 596 last_pos->offset -= sizeof(struct long_ad); 597 else 598 return -EIO; 599 600 return count; 601 out_err: 602 /* Remove extents we've created so far */ 603 udf_clear_extent_cache(inode); 604 udf_truncate_extents(inode); 605 return err; 606 } 607 608 /* Extend the final block of the file to final_block_len bytes */ 609 static void udf_do_extend_final_block(struct inode *inode, 610 struct extent_position *last_pos, 611 struct kernel_long_ad *last_ext, 612 uint32_t new_elen) 613 { 614 uint32_t added_bytes; 615 616 /* 617 * Extent already large enough? It may be already rounded up to block 618 * size... 619 */ 620 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 621 return; 622 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 623 last_ext->extLength += added_bytes; 624 UDF_I(inode)->i_lenExtents += added_bytes; 625 626 udf_write_aext(inode, last_pos, &last_ext->extLocation, 627 last_ext->extLength, 1); 628 } 629 630 static int udf_extend_file(struct inode *inode, loff_t newsize) 631 { 632 633 struct extent_position epos; 634 struct kernel_lb_addr eloc; 635 uint32_t elen; 636 int8_t etype; 637 struct super_block *sb = inode->i_sb; 638 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 639 loff_t new_elen; 640 int adsize; 641 struct udf_inode_info *iinfo = UDF_I(inode); 642 struct kernel_long_ad extent; 643 int err = 0; 644 bool within_last_ext; 645 646 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 647 adsize = sizeof(struct short_ad); 648 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 649 adsize = sizeof(struct long_ad); 650 else 651 BUG(); 652 653 down_write(&iinfo->i_data_sem); 654 /* 655 * When creating hole in file, just don't bother with preserving 656 * preallocation. It likely won't be very useful anyway. 657 */ 658 udf_discard_prealloc(inode); 659 660 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 661 within_last_ext = (etype != -1); 662 /* We don't expect extents past EOF... */ 663 WARN_ON_ONCE(within_last_ext && 664 elen > ((loff_t)offset + 1) << inode->i_blkbits); 665 666 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 667 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 668 /* File has no extents at all or has empty last 669 * indirect extent! Create a fake extent... */ 670 extent.extLocation.logicalBlockNum = 0; 671 extent.extLocation.partitionReferenceNum = 0; 672 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 673 } else { 674 epos.offset -= adsize; 675 etype = udf_next_aext(inode, &epos, &extent.extLocation, 676 &extent.extLength, 0); 677 extent.extLength |= etype << 30; 678 } 679 680 new_elen = ((loff_t)offset << inode->i_blkbits) | 681 (newsize & (sb->s_blocksize - 1)); 682 683 /* File has extent covering the new size (could happen when extending 684 * inside a block)? 685 */ 686 if (within_last_ext) { 687 /* Extending file within the last file block */ 688 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 689 } else { 690 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 691 } 692 693 if (err < 0) 694 goto out; 695 err = 0; 696 out: 697 brelse(epos.bh); 698 up_write(&iinfo->i_data_sem); 699 return err; 700 } 701 702 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 703 { 704 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 705 struct extent_position prev_epos, cur_epos, next_epos; 706 int count = 0, startnum = 0, endnum = 0; 707 uint32_t elen = 0, tmpelen; 708 struct kernel_lb_addr eloc, tmpeloc; 709 int c = 1; 710 loff_t lbcount = 0, b_off = 0; 711 udf_pblk_t newblocknum; 712 sector_t offset = 0; 713 int8_t etype; 714 struct udf_inode_info *iinfo = UDF_I(inode); 715 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 716 int lastblock = 0; 717 bool isBeyondEOF; 718 int ret = 0; 719 720 prev_epos.offset = udf_file_entry_alloc_offset(inode); 721 prev_epos.block = iinfo->i_location; 722 prev_epos.bh = NULL; 723 cur_epos = next_epos = prev_epos; 724 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 725 726 /* find the extent which contains the block we are looking for. 727 alternate between laarr[0] and laarr[1] for locations of the 728 current extent, and the previous extent */ 729 do { 730 if (prev_epos.bh != cur_epos.bh) { 731 brelse(prev_epos.bh); 732 get_bh(cur_epos.bh); 733 prev_epos.bh = cur_epos.bh; 734 } 735 if (cur_epos.bh != next_epos.bh) { 736 brelse(cur_epos.bh); 737 get_bh(next_epos.bh); 738 cur_epos.bh = next_epos.bh; 739 } 740 741 lbcount += elen; 742 743 prev_epos.block = cur_epos.block; 744 cur_epos.block = next_epos.block; 745 746 prev_epos.offset = cur_epos.offset; 747 cur_epos.offset = next_epos.offset; 748 749 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 750 if (etype == -1) 751 break; 752 753 c = !c; 754 755 laarr[c].extLength = (etype << 30) | elen; 756 laarr[c].extLocation = eloc; 757 758 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 759 pgoal = eloc.logicalBlockNum + 760 ((elen + inode->i_sb->s_blocksize - 1) >> 761 inode->i_sb->s_blocksize_bits); 762 763 count++; 764 } while (lbcount + elen <= b_off); 765 766 b_off -= lbcount; 767 offset = b_off >> inode->i_sb->s_blocksize_bits; 768 /* 769 * Move prev_epos and cur_epos into indirect extent if we are at 770 * the pointer to it 771 */ 772 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 773 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 774 775 /* if the extent is allocated and recorded, return the block 776 if the extent is not a multiple of the blocksize, round up */ 777 778 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 779 if (elen & (inode->i_sb->s_blocksize - 1)) { 780 elen = EXT_RECORDED_ALLOCATED | 781 ((elen + inode->i_sb->s_blocksize - 1) & 782 ~(inode->i_sb->s_blocksize - 1)); 783 iinfo->i_lenExtents = 784 ALIGN(iinfo->i_lenExtents, 785 inode->i_sb->s_blocksize); 786 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 787 } 788 map->oflags = UDF_BLK_MAPPED; 789 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 790 goto out_free; 791 } 792 793 /* Are we beyond EOF and preallocated extent? */ 794 if (etype == -1) { 795 loff_t hole_len; 796 797 isBeyondEOF = true; 798 if (count) { 799 if (c) 800 laarr[0] = laarr[1]; 801 startnum = 1; 802 } else { 803 /* Create a fake extent when there's not one */ 804 memset(&laarr[0].extLocation, 0x00, 805 sizeof(struct kernel_lb_addr)); 806 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 807 /* Will udf_do_extend_file() create real extent from 808 a fake one? */ 809 startnum = (offset > 0); 810 } 811 /* Create extents for the hole between EOF and offset */ 812 hole_len = (loff_t)offset << inode->i_blkbits; 813 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 814 if (ret < 0) 815 goto out_free; 816 c = 0; 817 offset = 0; 818 count += ret; 819 /* 820 * Is there any real extent? - otherwise we overwrite the fake 821 * one... 822 */ 823 if (count) 824 c = !c; 825 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 826 inode->i_sb->s_blocksize; 827 memset(&laarr[c].extLocation, 0x00, 828 sizeof(struct kernel_lb_addr)); 829 count++; 830 endnum = c + 1; 831 lastblock = 1; 832 } else { 833 isBeyondEOF = false; 834 endnum = startnum = ((count > 2) ? 2 : count); 835 836 /* if the current extent is in position 0, 837 swap it with the previous */ 838 if (!c && count != 1) { 839 laarr[2] = laarr[0]; 840 laarr[0] = laarr[1]; 841 laarr[1] = laarr[2]; 842 c = 1; 843 } 844 845 /* if the current block is located in an extent, 846 read the next extent */ 847 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 848 if (etype != -1) { 849 laarr[c + 1].extLength = (etype << 30) | elen; 850 laarr[c + 1].extLocation = eloc; 851 count++; 852 startnum++; 853 endnum++; 854 } else 855 lastblock = 1; 856 } 857 858 /* if the current extent is not recorded but allocated, get the 859 * block in the extent corresponding to the requested block */ 860 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 861 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 862 else { /* otherwise, allocate a new block */ 863 if (iinfo->i_next_alloc_block == map->lblk) 864 goal = iinfo->i_next_alloc_goal; 865 866 if (!goal) { 867 if (!(goal = pgoal)) /* XXX: what was intended here? */ 868 goal = iinfo->i_location.logicalBlockNum + 1; 869 } 870 871 newblocknum = udf_new_block(inode->i_sb, inode, 872 iinfo->i_location.partitionReferenceNum, 873 goal, &ret); 874 if (!newblocknum) 875 goto out_free; 876 if (isBeyondEOF) 877 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 878 } 879 880 /* if the extent the requsted block is located in contains multiple 881 * blocks, split the extent into at most three extents. blocks prior 882 * to requested block, requested block, and blocks after requested 883 * block */ 884 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 885 886 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 887 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 888 889 /* merge any continuous blocks in laarr */ 890 udf_merge_extents(inode, laarr, &endnum); 891 892 /* write back the new extents, inserting new extents if the new number 893 * of extents is greater than the old number, and deleting extents if 894 * the new number of extents is less than the old number */ 895 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 896 if (ret < 0) 897 goto out_free; 898 899 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 900 iinfo->i_location.partitionReferenceNum, 0); 901 if (!map->pblk) { 902 ret = -EFSCORRUPTED; 903 goto out_free; 904 } 905 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 906 iinfo->i_next_alloc_block = map->lblk + 1; 907 iinfo->i_next_alloc_goal = newblocknum + 1; 908 inode_set_ctime_current(inode); 909 910 if (IS_SYNC(inode)) 911 udf_sync_inode(inode); 912 else 913 mark_inode_dirty(inode); 914 ret = 0; 915 out_free: 916 brelse(prev_epos.bh); 917 brelse(cur_epos.bh); 918 brelse(next_epos.bh); 919 return ret; 920 } 921 922 static void udf_split_extents(struct inode *inode, int *c, int offset, 923 udf_pblk_t newblocknum, 924 struct kernel_long_ad *laarr, int *endnum) 925 { 926 unsigned long blocksize = inode->i_sb->s_blocksize; 927 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 928 929 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 930 (laarr[*c].extLength >> 30) == 931 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 932 int curr = *c; 933 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 934 blocksize - 1) >> blocksize_bits; 935 int8_t etype = (laarr[curr].extLength >> 30); 936 937 if (blen == 1) 938 ; 939 else if (!offset || blen == offset + 1) { 940 laarr[curr + 2] = laarr[curr + 1]; 941 laarr[curr + 1] = laarr[curr]; 942 } else { 943 laarr[curr + 3] = laarr[curr + 1]; 944 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 945 } 946 947 if (offset) { 948 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 949 udf_free_blocks(inode->i_sb, inode, 950 &laarr[curr].extLocation, 951 0, offset); 952 laarr[curr].extLength = 953 EXT_NOT_RECORDED_NOT_ALLOCATED | 954 (offset << blocksize_bits); 955 laarr[curr].extLocation.logicalBlockNum = 0; 956 laarr[curr].extLocation. 957 partitionReferenceNum = 0; 958 } else 959 laarr[curr].extLength = (etype << 30) | 960 (offset << blocksize_bits); 961 curr++; 962 (*c)++; 963 (*endnum)++; 964 } 965 966 laarr[curr].extLocation.logicalBlockNum = newblocknum; 967 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 968 laarr[curr].extLocation.partitionReferenceNum = 969 UDF_I(inode)->i_location.partitionReferenceNum; 970 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 971 blocksize; 972 curr++; 973 974 if (blen != offset + 1) { 975 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 976 laarr[curr].extLocation.logicalBlockNum += 977 offset + 1; 978 laarr[curr].extLength = (etype << 30) | 979 ((blen - (offset + 1)) << blocksize_bits); 980 curr++; 981 (*endnum)++; 982 } 983 } 984 } 985 986 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 987 struct kernel_long_ad *laarr, 988 int *endnum) 989 { 990 int start, length = 0, currlength = 0, i; 991 992 if (*endnum >= (c + 1)) { 993 if (!lastblock) 994 return; 995 else 996 start = c; 997 } else { 998 if ((laarr[c + 1].extLength >> 30) == 999 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1000 start = c + 1; 1001 length = currlength = 1002 (((laarr[c + 1].extLength & 1003 UDF_EXTENT_LENGTH_MASK) + 1004 inode->i_sb->s_blocksize - 1) >> 1005 inode->i_sb->s_blocksize_bits); 1006 } else 1007 start = c; 1008 } 1009 1010 for (i = start + 1; i <= *endnum; i++) { 1011 if (i == *endnum) { 1012 if (lastblock) 1013 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1014 } else if ((laarr[i].extLength >> 30) == 1015 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1016 length += (((laarr[i].extLength & 1017 UDF_EXTENT_LENGTH_MASK) + 1018 inode->i_sb->s_blocksize - 1) >> 1019 inode->i_sb->s_blocksize_bits); 1020 } else 1021 break; 1022 } 1023 1024 if (length) { 1025 int next = laarr[start].extLocation.logicalBlockNum + 1026 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1027 inode->i_sb->s_blocksize - 1) >> 1028 inode->i_sb->s_blocksize_bits); 1029 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1030 laarr[start].extLocation.partitionReferenceNum, 1031 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1032 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1033 currlength); 1034 if (numalloc) { 1035 if (start == (c + 1)) 1036 laarr[start].extLength += 1037 (numalloc << 1038 inode->i_sb->s_blocksize_bits); 1039 else { 1040 memmove(&laarr[c + 2], &laarr[c + 1], 1041 sizeof(struct long_ad) * (*endnum - (c + 1))); 1042 (*endnum)++; 1043 laarr[c + 1].extLocation.logicalBlockNum = next; 1044 laarr[c + 1].extLocation.partitionReferenceNum = 1045 laarr[c].extLocation. 1046 partitionReferenceNum; 1047 laarr[c + 1].extLength = 1048 EXT_NOT_RECORDED_ALLOCATED | 1049 (numalloc << 1050 inode->i_sb->s_blocksize_bits); 1051 start = c + 1; 1052 } 1053 1054 for (i = start + 1; numalloc && i < *endnum; i++) { 1055 int elen = ((laarr[i].extLength & 1056 UDF_EXTENT_LENGTH_MASK) + 1057 inode->i_sb->s_blocksize - 1) >> 1058 inode->i_sb->s_blocksize_bits; 1059 1060 if (elen > numalloc) { 1061 laarr[i].extLength -= 1062 (numalloc << 1063 inode->i_sb->s_blocksize_bits); 1064 numalloc = 0; 1065 } else { 1066 numalloc -= elen; 1067 if (*endnum > (i + 1)) 1068 memmove(&laarr[i], 1069 &laarr[i + 1], 1070 sizeof(struct long_ad) * 1071 (*endnum - (i + 1))); 1072 i--; 1073 (*endnum)--; 1074 } 1075 } 1076 UDF_I(inode)->i_lenExtents += 1077 numalloc << inode->i_sb->s_blocksize_bits; 1078 } 1079 } 1080 } 1081 1082 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1083 int *endnum) 1084 { 1085 int i; 1086 unsigned long blocksize = inode->i_sb->s_blocksize; 1087 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1088 1089 for (i = 0; i < (*endnum - 1); i++) { 1090 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1091 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1092 1093 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1094 (((li->extLength >> 30) == 1095 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1096 ((lip1->extLocation.logicalBlockNum - 1097 li->extLocation.logicalBlockNum) == 1098 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1099 blocksize - 1) >> blocksize_bits)))) { 1100 1101 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1102 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1103 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1104 li->extLength = lip1->extLength + 1105 (((li->extLength & 1106 UDF_EXTENT_LENGTH_MASK) + 1107 blocksize - 1) & ~(blocksize - 1)); 1108 if (*endnum > (i + 2)) 1109 memmove(&laarr[i + 1], &laarr[i + 2], 1110 sizeof(struct long_ad) * 1111 (*endnum - (i + 2))); 1112 i--; 1113 (*endnum)--; 1114 } 1115 } else if (((li->extLength >> 30) == 1116 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1117 ((lip1->extLength >> 30) == 1118 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1119 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1120 ((li->extLength & 1121 UDF_EXTENT_LENGTH_MASK) + 1122 blocksize - 1) >> blocksize_bits); 1123 li->extLocation.logicalBlockNum = 0; 1124 li->extLocation.partitionReferenceNum = 0; 1125 1126 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1127 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1128 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1129 lip1->extLength = (lip1->extLength - 1130 (li->extLength & 1131 UDF_EXTENT_LENGTH_MASK) + 1132 UDF_EXTENT_LENGTH_MASK) & 1133 ~(blocksize - 1); 1134 li->extLength = (li->extLength & 1135 UDF_EXTENT_FLAG_MASK) + 1136 (UDF_EXTENT_LENGTH_MASK + 1) - 1137 blocksize; 1138 } else { 1139 li->extLength = lip1->extLength + 1140 (((li->extLength & 1141 UDF_EXTENT_LENGTH_MASK) + 1142 blocksize - 1) & ~(blocksize - 1)); 1143 if (*endnum > (i + 2)) 1144 memmove(&laarr[i + 1], &laarr[i + 2], 1145 sizeof(struct long_ad) * 1146 (*endnum - (i + 2))); 1147 i--; 1148 (*endnum)--; 1149 } 1150 } else if ((li->extLength >> 30) == 1151 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1152 udf_free_blocks(inode->i_sb, inode, 1153 &li->extLocation, 0, 1154 ((li->extLength & 1155 UDF_EXTENT_LENGTH_MASK) + 1156 blocksize - 1) >> blocksize_bits); 1157 li->extLocation.logicalBlockNum = 0; 1158 li->extLocation.partitionReferenceNum = 0; 1159 li->extLength = (li->extLength & 1160 UDF_EXTENT_LENGTH_MASK) | 1161 EXT_NOT_RECORDED_NOT_ALLOCATED; 1162 } 1163 } 1164 } 1165 1166 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1167 int startnum, int endnum, 1168 struct extent_position *epos) 1169 { 1170 int start = 0, i; 1171 struct kernel_lb_addr tmploc; 1172 uint32_t tmplen; 1173 int err; 1174 1175 if (startnum > endnum) { 1176 for (i = 0; i < (startnum - endnum); i++) 1177 udf_delete_aext(inode, *epos); 1178 } else if (startnum < endnum) { 1179 for (i = 0; i < (endnum - startnum); i++) { 1180 err = udf_insert_aext(inode, *epos, 1181 laarr[i].extLocation, 1182 laarr[i].extLength); 1183 /* 1184 * If we fail here, we are likely corrupting the extent 1185 * list and leaking blocks. At least stop early to 1186 * limit the damage. 1187 */ 1188 if (err < 0) 1189 return err; 1190 udf_next_aext(inode, epos, &laarr[i].extLocation, 1191 &laarr[i].extLength, 1); 1192 start++; 1193 } 1194 } 1195 1196 for (i = start; i < endnum; i++) { 1197 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1198 udf_write_aext(inode, epos, &laarr[i].extLocation, 1199 laarr[i].extLength, 1); 1200 } 1201 return 0; 1202 } 1203 1204 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1205 int create, int *err) 1206 { 1207 struct buffer_head *bh = NULL; 1208 struct udf_map_rq map = { 1209 .lblk = block, 1210 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1211 }; 1212 1213 *err = udf_map_block(inode, &map); 1214 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1215 return NULL; 1216 1217 bh = sb_getblk(inode->i_sb, map.pblk); 1218 if (!bh) { 1219 *err = -ENOMEM; 1220 return NULL; 1221 } 1222 if (map.oflags & UDF_BLK_NEW) { 1223 lock_buffer(bh); 1224 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1225 set_buffer_uptodate(bh); 1226 unlock_buffer(bh); 1227 mark_buffer_dirty_inode(bh, inode); 1228 return bh; 1229 } 1230 1231 if (bh_read(bh, 0) >= 0) 1232 return bh; 1233 1234 brelse(bh); 1235 *err = -EIO; 1236 return NULL; 1237 } 1238 1239 int udf_setsize(struct inode *inode, loff_t newsize) 1240 { 1241 int err = 0; 1242 struct udf_inode_info *iinfo; 1243 unsigned int bsize = i_blocksize(inode); 1244 1245 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1246 S_ISLNK(inode->i_mode))) 1247 return -EINVAL; 1248 1249 iinfo = UDF_I(inode); 1250 if (newsize > inode->i_size) { 1251 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1252 if (bsize >= 1253 (udf_file_entry_alloc_offset(inode) + newsize)) { 1254 down_write(&iinfo->i_data_sem); 1255 iinfo->i_lenAlloc = newsize; 1256 up_write(&iinfo->i_data_sem); 1257 goto set_size; 1258 } 1259 err = udf_expand_file_adinicb(inode); 1260 if (err) 1261 return err; 1262 } 1263 err = udf_extend_file(inode, newsize); 1264 if (err) 1265 return err; 1266 set_size: 1267 truncate_setsize(inode, newsize); 1268 } else { 1269 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1270 down_write(&iinfo->i_data_sem); 1271 udf_clear_extent_cache(inode); 1272 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1273 0x00, bsize - newsize - 1274 udf_file_entry_alloc_offset(inode)); 1275 iinfo->i_lenAlloc = newsize; 1276 truncate_setsize(inode, newsize); 1277 up_write(&iinfo->i_data_sem); 1278 goto update_time; 1279 } 1280 err = block_truncate_page(inode->i_mapping, newsize, 1281 udf_get_block); 1282 if (err) 1283 return err; 1284 truncate_setsize(inode, newsize); 1285 down_write(&iinfo->i_data_sem); 1286 udf_clear_extent_cache(inode); 1287 err = udf_truncate_extents(inode); 1288 up_write(&iinfo->i_data_sem); 1289 if (err) 1290 return err; 1291 } 1292 update_time: 1293 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1294 if (IS_SYNC(inode)) 1295 udf_sync_inode(inode); 1296 else 1297 mark_inode_dirty(inode); 1298 return err; 1299 } 1300 1301 /* 1302 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1303 * arbitrary - just that we hopefully don't limit any real use of rewritten 1304 * inode on write-once media but avoid looping for too long on corrupted media. 1305 */ 1306 #define UDF_MAX_ICB_NESTING 1024 1307 1308 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1309 { 1310 struct buffer_head *bh = NULL; 1311 struct fileEntry *fe; 1312 struct extendedFileEntry *efe; 1313 uint16_t ident; 1314 struct udf_inode_info *iinfo = UDF_I(inode); 1315 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1316 struct kernel_lb_addr *iloc = &iinfo->i_location; 1317 unsigned int link_count; 1318 unsigned int indirections = 0; 1319 int bs = inode->i_sb->s_blocksize; 1320 int ret = -EIO; 1321 uint32_t uid, gid; 1322 struct timespec64 ts; 1323 1324 reread: 1325 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1326 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1327 iloc->partitionReferenceNum, sbi->s_partitions); 1328 return -EIO; 1329 } 1330 1331 if (iloc->logicalBlockNum >= 1332 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1333 udf_debug("block=%u, partition=%u out of range\n", 1334 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1335 return -EIO; 1336 } 1337 1338 /* 1339 * Set defaults, but the inode is still incomplete! 1340 * Note: get_new_inode() sets the following on a new inode: 1341 * i_sb = sb 1342 * i_no = ino 1343 * i_flags = sb->s_flags 1344 * i_state = 0 1345 * clean_inode(): zero fills and sets 1346 * i_count = 1 1347 * i_nlink = 1 1348 * i_op = NULL; 1349 */ 1350 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1351 if (!bh) { 1352 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1353 return -EIO; 1354 } 1355 1356 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1357 ident != TAG_IDENT_USE) { 1358 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1359 inode->i_ino, ident); 1360 goto out; 1361 } 1362 1363 fe = (struct fileEntry *)bh->b_data; 1364 efe = (struct extendedFileEntry *)bh->b_data; 1365 1366 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1367 struct buffer_head *ibh; 1368 1369 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1370 if (ident == TAG_IDENT_IE && ibh) { 1371 struct kernel_lb_addr loc; 1372 struct indirectEntry *ie; 1373 1374 ie = (struct indirectEntry *)ibh->b_data; 1375 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1376 1377 if (ie->indirectICB.extLength) { 1378 brelse(ibh); 1379 memcpy(&iinfo->i_location, &loc, 1380 sizeof(struct kernel_lb_addr)); 1381 if (++indirections > UDF_MAX_ICB_NESTING) { 1382 udf_err(inode->i_sb, 1383 "too many ICBs in ICB hierarchy" 1384 " (max %d supported)\n", 1385 UDF_MAX_ICB_NESTING); 1386 goto out; 1387 } 1388 brelse(bh); 1389 goto reread; 1390 } 1391 } 1392 brelse(ibh); 1393 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1394 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1395 le16_to_cpu(fe->icbTag.strategyType)); 1396 goto out; 1397 } 1398 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1399 iinfo->i_strat4096 = 0; 1400 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1401 iinfo->i_strat4096 = 1; 1402 1403 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1404 ICBTAG_FLAG_AD_MASK; 1405 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1406 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1407 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1408 ret = -EIO; 1409 goto out; 1410 } 1411 iinfo->i_hidden = hidden_inode; 1412 iinfo->i_unique = 0; 1413 iinfo->i_lenEAttr = 0; 1414 iinfo->i_lenExtents = 0; 1415 iinfo->i_lenAlloc = 0; 1416 iinfo->i_next_alloc_block = 0; 1417 iinfo->i_next_alloc_goal = 0; 1418 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1419 iinfo->i_efe = 1; 1420 iinfo->i_use = 0; 1421 ret = udf_alloc_i_data(inode, bs - 1422 sizeof(struct extendedFileEntry)); 1423 if (ret) 1424 goto out; 1425 memcpy(iinfo->i_data, 1426 bh->b_data + sizeof(struct extendedFileEntry), 1427 bs - sizeof(struct extendedFileEntry)); 1428 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1429 iinfo->i_efe = 0; 1430 iinfo->i_use = 0; 1431 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1432 if (ret) 1433 goto out; 1434 memcpy(iinfo->i_data, 1435 bh->b_data + sizeof(struct fileEntry), 1436 bs - sizeof(struct fileEntry)); 1437 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1438 iinfo->i_efe = 0; 1439 iinfo->i_use = 1; 1440 iinfo->i_lenAlloc = le32_to_cpu( 1441 ((struct unallocSpaceEntry *)bh->b_data)-> 1442 lengthAllocDescs); 1443 ret = udf_alloc_i_data(inode, bs - 1444 sizeof(struct unallocSpaceEntry)); 1445 if (ret) 1446 goto out; 1447 memcpy(iinfo->i_data, 1448 bh->b_data + sizeof(struct unallocSpaceEntry), 1449 bs - sizeof(struct unallocSpaceEntry)); 1450 return 0; 1451 } 1452 1453 ret = -EIO; 1454 read_lock(&sbi->s_cred_lock); 1455 uid = le32_to_cpu(fe->uid); 1456 if (uid == UDF_INVALID_ID || 1457 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1458 inode->i_uid = sbi->s_uid; 1459 else 1460 i_uid_write(inode, uid); 1461 1462 gid = le32_to_cpu(fe->gid); 1463 if (gid == UDF_INVALID_ID || 1464 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1465 inode->i_gid = sbi->s_gid; 1466 else 1467 i_gid_write(inode, gid); 1468 1469 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1470 sbi->s_fmode != UDF_INVALID_MODE) 1471 inode->i_mode = sbi->s_fmode; 1472 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1473 sbi->s_dmode != UDF_INVALID_MODE) 1474 inode->i_mode = sbi->s_dmode; 1475 else 1476 inode->i_mode = udf_convert_permissions(fe); 1477 inode->i_mode &= ~sbi->s_umask; 1478 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1479 1480 read_unlock(&sbi->s_cred_lock); 1481 1482 link_count = le16_to_cpu(fe->fileLinkCount); 1483 if (!link_count) { 1484 if (!hidden_inode) { 1485 ret = -ESTALE; 1486 goto out; 1487 } 1488 link_count = 1; 1489 } 1490 set_nlink(inode, link_count); 1491 1492 inode->i_size = le64_to_cpu(fe->informationLength); 1493 iinfo->i_lenExtents = inode->i_size; 1494 1495 if (iinfo->i_efe == 0) { 1496 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1497 (inode->i_sb->s_blocksize_bits - 9); 1498 1499 udf_disk_stamp_to_time(&ts, fe->accessTime); 1500 inode_set_atime_to_ts(inode, ts); 1501 udf_disk_stamp_to_time(&ts, fe->modificationTime); 1502 inode_set_mtime_to_ts(inode, ts); 1503 udf_disk_stamp_to_time(&ts, fe->attrTime); 1504 inode_set_ctime_to_ts(inode, ts); 1505 1506 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1507 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1508 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1509 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1510 iinfo->i_streamdir = 0; 1511 iinfo->i_lenStreams = 0; 1512 } else { 1513 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1514 (inode->i_sb->s_blocksize_bits - 9); 1515 1516 udf_disk_stamp_to_time(&ts, efe->accessTime); 1517 inode_set_atime_to_ts(inode, ts); 1518 udf_disk_stamp_to_time(&ts, efe->modificationTime); 1519 inode_set_mtime_to_ts(inode, ts); 1520 udf_disk_stamp_to_time(&ts, efe->attrTime); 1521 inode_set_ctime_to_ts(inode, ts); 1522 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1523 1524 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1525 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1526 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1527 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1528 1529 /* Named streams */ 1530 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1531 iinfo->i_locStreamdir = 1532 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1533 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1534 if (iinfo->i_lenStreams >= inode->i_size) 1535 iinfo->i_lenStreams -= inode->i_size; 1536 else 1537 iinfo->i_lenStreams = 0; 1538 } 1539 inode->i_generation = iinfo->i_unique; 1540 1541 /* 1542 * Sanity check length of allocation descriptors and extended attrs to 1543 * avoid integer overflows 1544 */ 1545 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1546 goto out; 1547 /* Now do exact checks */ 1548 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1549 goto out; 1550 /* Sanity checks for files in ICB so that we don't get confused later */ 1551 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1552 /* 1553 * For file in ICB data is stored in allocation descriptor 1554 * so sizes should match 1555 */ 1556 if (iinfo->i_lenAlloc != inode->i_size) 1557 goto out; 1558 /* File in ICB has to fit in there... */ 1559 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1560 goto out; 1561 } 1562 1563 switch (fe->icbTag.fileType) { 1564 case ICBTAG_FILE_TYPE_DIRECTORY: 1565 inode->i_op = &udf_dir_inode_operations; 1566 inode->i_fop = &udf_dir_operations; 1567 inode->i_mode |= S_IFDIR; 1568 inc_nlink(inode); 1569 break; 1570 case ICBTAG_FILE_TYPE_REALTIME: 1571 case ICBTAG_FILE_TYPE_REGULAR: 1572 case ICBTAG_FILE_TYPE_UNDEF: 1573 case ICBTAG_FILE_TYPE_VAT20: 1574 inode->i_data.a_ops = &udf_aops; 1575 inode->i_op = &udf_file_inode_operations; 1576 inode->i_fop = &udf_file_operations; 1577 inode->i_mode |= S_IFREG; 1578 break; 1579 case ICBTAG_FILE_TYPE_BLOCK: 1580 inode->i_mode |= S_IFBLK; 1581 break; 1582 case ICBTAG_FILE_TYPE_CHAR: 1583 inode->i_mode |= S_IFCHR; 1584 break; 1585 case ICBTAG_FILE_TYPE_FIFO: 1586 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1587 break; 1588 case ICBTAG_FILE_TYPE_SOCKET: 1589 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1590 break; 1591 case ICBTAG_FILE_TYPE_SYMLINK: 1592 inode->i_data.a_ops = &udf_symlink_aops; 1593 inode->i_op = &udf_symlink_inode_operations; 1594 inode_nohighmem(inode); 1595 inode->i_mode = S_IFLNK | 0777; 1596 break; 1597 case ICBTAG_FILE_TYPE_MAIN: 1598 udf_debug("METADATA FILE-----\n"); 1599 break; 1600 case ICBTAG_FILE_TYPE_MIRROR: 1601 udf_debug("METADATA MIRROR FILE-----\n"); 1602 break; 1603 case ICBTAG_FILE_TYPE_BITMAP: 1604 udf_debug("METADATA BITMAP FILE-----\n"); 1605 break; 1606 default: 1607 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1608 inode->i_ino, fe->icbTag.fileType); 1609 goto out; 1610 } 1611 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1612 struct deviceSpec *dsea = 1613 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1614 if (dsea) { 1615 init_special_inode(inode, inode->i_mode, 1616 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1617 le32_to_cpu(dsea->minorDeviceIdent))); 1618 /* Developer ID ??? */ 1619 } else 1620 goto out; 1621 } 1622 ret = 0; 1623 out: 1624 brelse(bh); 1625 return ret; 1626 } 1627 1628 static int udf_alloc_i_data(struct inode *inode, size_t size) 1629 { 1630 struct udf_inode_info *iinfo = UDF_I(inode); 1631 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1632 if (!iinfo->i_data) 1633 return -ENOMEM; 1634 return 0; 1635 } 1636 1637 static umode_t udf_convert_permissions(struct fileEntry *fe) 1638 { 1639 umode_t mode; 1640 uint32_t permissions; 1641 uint32_t flags; 1642 1643 permissions = le32_to_cpu(fe->permissions); 1644 flags = le16_to_cpu(fe->icbTag.flags); 1645 1646 mode = ((permissions) & 0007) | 1647 ((permissions >> 2) & 0070) | 1648 ((permissions >> 4) & 0700) | 1649 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1650 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1651 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1652 1653 return mode; 1654 } 1655 1656 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1657 { 1658 struct udf_inode_info *iinfo = UDF_I(inode); 1659 1660 /* 1661 * UDF 2.01 sec. 3.3.3.3 Note 2: 1662 * In Unix, delete permission tracks write 1663 */ 1664 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1665 if (mode & 0200) 1666 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1667 if (mode & 0020) 1668 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1669 if (mode & 0002) 1670 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1671 } 1672 1673 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1674 { 1675 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1676 } 1677 1678 static int udf_sync_inode(struct inode *inode) 1679 { 1680 return udf_update_inode(inode, 1); 1681 } 1682 1683 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1684 { 1685 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1686 (iinfo->i_crtime.tv_sec == time.tv_sec && 1687 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1688 iinfo->i_crtime = time; 1689 } 1690 1691 static int udf_update_inode(struct inode *inode, int do_sync) 1692 { 1693 struct buffer_head *bh = NULL; 1694 struct fileEntry *fe; 1695 struct extendedFileEntry *efe; 1696 uint64_t lb_recorded; 1697 uint32_t udfperms; 1698 uint16_t icbflags; 1699 uint16_t crclen; 1700 int err = 0; 1701 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1702 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1703 struct udf_inode_info *iinfo = UDF_I(inode); 1704 1705 bh = sb_getblk(inode->i_sb, 1706 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1707 if (!bh) { 1708 udf_debug("getblk failure\n"); 1709 return -EIO; 1710 } 1711 1712 lock_buffer(bh); 1713 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1714 fe = (struct fileEntry *)bh->b_data; 1715 efe = (struct extendedFileEntry *)bh->b_data; 1716 1717 if (iinfo->i_use) { 1718 struct unallocSpaceEntry *use = 1719 (struct unallocSpaceEntry *)bh->b_data; 1720 1721 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1722 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1723 iinfo->i_data, inode->i_sb->s_blocksize - 1724 sizeof(struct unallocSpaceEntry)); 1725 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1726 crclen = sizeof(struct unallocSpaceEntry); 1727 1728 goto finish; 1729 } 1730 1731 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1732 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1733 else 1734 fe->uid = cpu_to_le32(i_uid_read(inode)); 1735 1736 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1737 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1738 else 1739 fe->gid = cpu_to_le32(i_gid_read(inode)); 1740 1741 udfperms = ((inode->i_mode & 0007)) | 1742 ((inode->i_mode & 0070) << 2) | 1743 ((inode->i_mode & 0700) << 4); 1744 1745 udfperms |= iinfo->i_extraPerms; 1746 fe->permissions = cpu_to_le32(udfperms); 1747 1748 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1749 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1750 else { 1751 if (iinfo->i_hidden) 1752 fe->fileLinkCount = cpu_to_le16(0); 1753 else 1754 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1755 } 1756 1757 fe->informationLength = cpu_to_le64(inode->i_size); 1758 1759 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1760 struct regid *eid; 1761 struct deviceSpec *dsea = 1762 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1763 if (!dsea) { 1764 dsea = (struct deviceSpec *) 1765 udf_add_extendedattr(inode, 1766 sizeof(struct deviceSpec) + 1767 sizeof(struct regid), 12, 0x3); 1768 dsea->attrType = cpu_to_le32(12); 1769 dsea->attrSubtype = 1; 1770 dsea->attrLength = cpu_to_le32( 1771 sizeof(struct deviceSpec) + 1772 sizeof(struct regid)); 1773 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1774 } 1775 eid = (struct regid *)dsea->impUse; 1776 memset(eid, 0, sizeof(*eid)); 1777 strcpy(eid->ident, UDF_ID_DEVELOPER); 1778 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1779 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1780 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1781 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1782 } 1783 1784 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1785 lb_recorded = 0; /* No extents => no blocks! */ 1786 else 1787 lb_recorded = 1788 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1789 (blocksize_bits - 9); 1790 1791 if (iinfo->i_efe == 0) { 1792 memcpy(bh->b_data + sizeof(struct fileEntry), 1793 iinfo->i_data, 1794 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1795 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1796 1797 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode)); 1798 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode)); 1799 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1800 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1801 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1802 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1803 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1804 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1805 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1806 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1807 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1808 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1809 crclen = sizeof(struct fileEntry); 1810 } else { 1811 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1812 iinfo->i_data, 1813 inode->i_sb->s_blocksize - 1814 sizeof(struct extendedFileEntry)); 1815 efe->objectSize = 1816 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1817 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1818 1819 if (iinfo->i_streamdir) { 1820 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1821 1822 icb_lad->extLocation = 1823 cpu_to_lelb(iinfo->i_locStreamdir); 1824 icb_lad->extLength = 1825 cpu_to_le32(inode->i_sb->s_blocksize); 1826 } 1827 1828 udf_adjust_time(iinfo, inode_get_atime(inode)); 1829 udf_adjust_time(iinfo, inode_get_mtime(inode)); 1830 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1831 1832 udf_time_to_disk_stamp(&efe->accessTime, 1833 inode_get_atime(inode)); 1834 udf_time_to_disk_stamp(&efe->modificationTime, 1835 inode_get_mtime(inode)); 1836 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1837 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1838 1839 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1840 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1841 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1842 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1843 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1844 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1845 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1846 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1847 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1848 crclen = sizeof(struct extendedFileEntry); 1849 } 1850 1851 finish: 1852 if (iinfo->i_strat4096) { 1853 fe->icbTag.strategyType = cpu_to_le16(4096); 1854 fe->icbTag.strategyParameter = cpu_to_le16(1); 1855 fe->icbTag.numEntries = cpu_to_le16(2); 1856 } else { 1857 fe->icbTag.strategyType = cpu_to_le16(4); 1858 fe->icbTag.numEntries = cpu_to_le16(1); 1859 } 1860 1861 if (iinfo->i_use) 1862 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1863 else if (S_ISDIR(inode->i_mode)) 1864 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1865 else if (S_ISREG(inode->i_mode)) 1866 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1867 else if (S_ISLNK(inode->i_mode)) 1868 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1869 else if (S_ISBLK(inode->i_mode)) 1870 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1871 else if (S_ISCHR(inode->i_mode)) 1872 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1873 else if (S_ISFIFO(inode->i_mode)) 1874 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1875 else if (S_ISSOCK(inode->i_mode)) 1876 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1877 1878 icbflags = iinfo->i_alloc_type | 1879 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1880 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1881 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1882 (le16_to_cpu(fe->icbTag.flags) & 1883 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1884 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1885 1886 fe->icbTag.flags = cpu_to_le16(icbflags); 1887 if (sbi->s_udfrev >= 0x0200) 1888 fe->descTag.descVersion = cpu_to_le16(3); 1889 else 1890 fe->descTag.descVersion = cpu_to_le16(2); 1891 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1892 fe->descTag.tagLocation = cpu_to_le32( 1893 iinfo->i_location.logicalBlockNum); 1894 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1895 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1896 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1897 crclen)); 1898 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1899 1900 set_buffer_uptodate(bh); 1901 unlock_buffer(bh); 1902 1903 /* write the data blocks */ 1904 mark_buffer_dirty(bh); 1905 if (do_sync) { 1906 sync_dirty_buffer(bh); 1907 if (buffer_write_io_error(bh)) { 1908 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1909 inode->i_ino); 1910 err = -EIO; 1911 } 1912 } 1913 brelse(bh); 1914 1915 return err; 1916 } 1917 1918 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1919 bool hidden_inode) 1920 { 1921 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1922 struct inode *inode = iget_locked(sb, block); 1923 int err; 1924 1925 if (!inode) 1926 return ERR_PTR(-ENOMEM); 1927 1928 if (!(inode->i_state & I_NEW)) { 1929 if (UDF_I(inode)->i_hidden != hidden_inode) { 1930 iput(inode); 1931 return ERR_PTR(-EFSCORRUPTED); 1932 } 1933 return inode; 1934 } 1935 1936 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1937 err = udf_read_inode(inode, hidden_inode); 1938 if (err < 0) { 1939 iget_failed(inode); 1940 return ERR_PTR(err); 1941 } 1942 unlock_new_inode(inode); 1943 1944 return inode; 1945 } 1946 1947 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1948 struct extent_position *epos) 1949 { 1950 struct super_block *sb = inode->i_sb; 1951 struct buffer_head *bh; 1952 struct allocExtDesc *aed; 1953 struct extent_position nepos; 1954 struct kernel_lb_addr neloc; 1955 int ver, adsize; 1956 1957 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1958 adsize = sizeof(struct short_ad); 1959 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1960 adsize = sizeof(struct long_ad); 1961 else 1962 return -EIO; 1963 1964 neloc.logicalBlockNum = block; 1965 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1966 1967 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1968 if (!bh) 1969 return -EIO; 1970 lock_buffer(bh); 1971 memset(bh->b_data, 0x00, sb->s_blocksize); 1972 set_buffer_uptodate(bh); 1973 unlock_buffer(bh); 1974 mark_buffer_dirty_inode(bh, inode); 1975 1976 aed = (struct allocExtDesc *)(bh->b_data); 1977 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1978 aed->previousAllocExtLocation = 1979 cpu_to_le32(epos->block.logicalBlockNum); 1980 } 1981 aed->lengthAllocDescs = cpu_to_le32(0); 1982 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1983 ver = 3; 1984 else 1985 ver = 2; 1986 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1987 sizeof(struct tag)); 1988 1989 nepos.block = neloc; 1990 nepos.offset = sizeof(struct allocExtDesc); 1991 nepos.bh = bh; 1992 1993 /* 1994 * Do we have to copy current last extent to make space for indirect 1995 * one? 1996 */ 1997 if (epos->offset + adsize > sb->s_blocksize) { 1998 struct kernel_lb_addr cp_loc; 1999 uint32_t cp_len; 2000 int cp_type; 2001 2002 epos->offset -= adsize; 2003 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2004 cp_len |= ((uint32_t)cp_type) << 30; 2005 2006 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2007 udf_write_aext(inode, epos, &nepos.block, 2008 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2009 } else { 2010 __udf_add_aext(inode, epos, &nepos.block, 2011 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2012 } 2013 2014 brelse(epos->bh); 2015 *epos = nepos; 2016 2017 return 0; 2018 } 2019 2020 /* 2021 * Append extent at the given position - should be the first free one in inode 2022 * / indirect extent. This function assumes there is enough space in the inode 2023 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2024 */ 2025 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2026 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2027 { 2028 struct udf_inode_info *iinfo = UDF_I(inode); 2029 struct allocExtDesc *aed; 2030 int adsize; 2031 2032 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2033 adsize = sizeof(struct short_ad); 2034 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2035 adsize = sizeof(struct long_ad); 2036 else 2037 return -EIO; 2038 2039 if (!epos->bh) { 2040 WARN_ON(iinfo->i_lenAlloc != 2041 epos->offset - udf_file_entry_alloc_offset(inode)); 2042 } else { 2043 aed = (struct allocExtDesc *)epos->bh->b_data; 2044 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2045 epos->offset - sizeof(struct allocExtDesc)); 2046 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2047 } 2048 2049 udf_write_aext(inode, epos, eloc, elen, inc); 2050 2051 if (!epos->bh) { 2052 iinfo->i_lenAlloc += adsize; 2053 mark_inode_dirty(inode); 2054 } else { 2055 aed = (struct allocExtDesc *)epos->bh->b_data; 2056 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2057 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2058 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2059 udf_update_tag(epos->bh->b_data, 2060 epos->offset + (inc ? 0 : adsize)); 2061 else 2062 udf_update_tag(epos->bh->b_data, 2063 sizeof(struct allocExtDesc)); 2064 mark_buffer_dirty_inode(epos->bh, inode); 2065 } 2066 2067 return 0; 2068 } 2069 2070 /* 2071 * Append extent at given position - should be the first free one in inode 2072 * / indirect extent. Takes care of allocating and linking indirect blocks. 2073 */ 2074 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2075 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2076 { 2077 int adsize; 2078 struct super_block *sb = inode->i_sb; 2079 2080 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2081 adsize = sizeof(struct short_ad); 2082 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2083 adsize = sizeof(struct long_ad); 2084 else 2085 return -EIO; 2086 2087 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2088 int err; 2089 udf_pblk_t new_block; 2090 2091 new_block = udf_new_block(sb, NULL, 2092 epos->block.partitionReferenceNum, 2093 epos->block.logicalBlockNum, &err); 2094 if (!new_block) 2095 return -ENOSPC; 2096 2097 err = udf_setup_indirect_aext(inode, new_block, epos); 2098 if (err) 2099 return err; 2100 } 2101 2102 return __udf_add_aext(inode, epos, eloc, elen, inc); 2103 } 2104 2105 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2106 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2107 { 2108 int adsize; 2109 uint8_t *ptr; 2110 struct short_ad *sad; 2111 struct long_ad *lad; 2112 struct udf_inode_info *iinfo = UDF_I(inode); 2113 2114 if (!epos->bh) 2115 ptr = iinfo->i_data + epos->offset - 2116 udf_file_entry_alloc_offset(inode) + 2117 iinfo->i_lenEAttr; 2118 else 2119 ptr = epos->bh->b_data + epos->offset; 2120 2121 switch (iinfo->i_alloc_type) { 2122 case ICBTAG_FLAG_AD_SHORT: 2123 sad = (struct short_ad *)ptr; 2124 sad->extLength = cpu_to_le32(elen); 2125 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2126 adsize = sizeof(struct short_ad); 2127 break; 2128 case ICBTAG_FLAG_AD_LONG: 2129 lad = (struct long_ad *)ptr; 2130 lad->extLength = cpu_to_le32(elen); 2131 lad->extLocation = cpu_to_lelb(*eloc); 2132 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2133 adsize = sizeof(struct long_ad); 2134 break; 2135 default: 2136 return; 2137 } 2138 2139 if (epos->bh) { 2140 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2141 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2142 struct allocExtDesc *aed = 2143 (struct allocExtDesc *)epos->bh->b_data; 2144 udf_update_tag(epos->bh->b_data, 2145 le32_to_cpu(aed->lengthAllocDescs) + 2146 sizeof(struct allocExtDesc)); 2147 } 2148 mark_buffer_dirty_inode(epos->bh, inode); 2149 } else { 2150 mark_inode_dirty(inode); 2151 } 2152 2153 if (inc) 2154 epos->offset += adsize; 2155 } 2156 2157 /* 2158 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2159 * someone does some weird stuff. 2160 */ 2161 #define UDF_MAX_INDIR_EXTS 16 2162 2163 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2164 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2165 { 2166 int8_t etype; 2167 unsigned int indirections = 0; 2168 2169 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2170 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2171 udf_pblk_t block; 2172 2173 if (++indirections > UDF_MAX_INDIR_EXTS) { 2174 udf_err(inode->i_sb, 2175 "too many indirect extents in inode %lu\n", 2176 inode->i_ino); 2177 return -1; 2178 } 2179 2180 epos->block = *eloc; 2181 epos->offset = sizeof(struct allocExtDesc); 2182 brelse(epos->bh); 2183 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2184 epos->bh = sb_bread(inode->i_sb, block); 2185 if (!epos->bh) { 2186 udf_debug("reading block %u failed!\n", block); 2187 return -1; 2188 } 2189 } 2190 2191 return etype; 2192 } 2193 2194 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2195 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2196 { 2197 int alen; 2198 int8_t etype; 2199 uint8_t *ptr; 2200 struct short_ad *sad; 2201 struct long_ad *lad; 2202 struct udf_inode_info *iinfo = UDF_I(inode); 2203 2204 if (!epos->bh) { 2205 if (!epos->offset) 2206 epos->offset = udf_file_entry_alloc_offset(inode); 2207 ptr = iinfo->i_data + epos->offset - 2208 udf_file_entry_alloc_offset(inode) + 2209 iinfo->i_lenEAttr; 2210 alen = udf_file_entry_alloc_offset(inode) + 2211 iinfo->i_lenAlloc; 2212 } else { 2213 if (!epos->offset) 2214 epos->offset = sizeof(struct allocExtDesc); 2215 ptr = epos->bh->b_data + epos->offset; 2216 alen = sizeof(struct allocExtDesc) + 2217 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2218 lengthAllocDescs); 2219 } 2220 2221 switch (iinfo->i_alloc_type) { 2222 case ICBTAG_FLAG_AD_SHORT: 2223 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2224 if (!sad) 2225 return -1; 2226 etype = le32_to_cpu(sad->extLength) >> 30; 2227 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2228 eloc->partitionReferenceNum = 2229 iinfo->i_location.partitionReferenceNum; 2230 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2231 break; 2232 case ICBTAG_FLAG_AD_LONG: 2233 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2234 if (!lad) 2235 return -1; 2236 etype = le32_to_cpu(lad->extLength) >> 30; 2237 *eloc = lelb_to_cpu(lad->extLocation); 2238 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2239 break; 2240 default: 2241 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2242 return -1; 2243 } 2244 2245 return etype; 2246 } 2247 2248 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2249 struct kernel_lb_addr neloc, uint32_t nelen) 2250 { 2251 struct kernel_lb_addr oeloc; 2252 uint32_t oelen; 2253 int8_t etype; 2254 int err; 2255 2256 if (epos.bh) 2257 get_bh(epos.bh); 2258 2259 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2260 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2261 neloc = oeloc; 2262 nelen = (etype << 30) | oelen; 2263 } 2264 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2265 brelse(epos.bh); 2266 2267 return err; 2268 } 2269 2270 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2271 { 2272 struct extent_position oepos; 2273 int adsize; 2274 int8_t etype; 2275 struct allocExtDesc *aed; 2276 struct udf_inode_info *iinfo; 2277 struct kernel_lb_addr eloc; 2278 uint32_t elen; 2279 2280 if (epos.bh) { 2281 get_bh(epos.bh); 2282 get_bh(epos.bh); 2283 } 2284 2285 iinfo = UDF_I(inode); 2286 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2287 adsize = sizeof(struct short_ad); 2288 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2289 adsize = sizeof(struct long_ad); 2290 else 2291 adsize = 0; 2292 2293 oepos = epos; 2294 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2295 return -1; 2296 2297 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2298 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2299 if (oepos.bh != epos.bh) { 2300 oepos.block = epos.block; 2301 brelse(oepos.bh); 2302 get_bh(epos.bh); 2303 oepos.bh = epos.bh; 2304 oepos.offset = epos.offset - adsize; 2305 } 2306 } 2307 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2308 elen = 0; 2309 2310 if (epos.bh != oepos.bh) { 2311 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2312 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2313 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2314 if (!oepos.bh) { 2315 iinfo->i_lenAlloc -= (adsize * 2); 2316 mark_inode_dirty(inode); 2317 } else { 2318 aed = (struct allocExtDesc *)oepos.bh->b_data; 2319 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2320 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2321 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2322 udf_update_tag(oepos.bh->b_data, 2323 oepos.offset - (2 * adsize)); 2324 else 2325 udf_update_tag(oepos.bh->b_data, 2326 sizeof(struct allocExtDesc)); 2327 mark_buffer_dirty_inode(oepos.bh, inode); 2328 } 2329 } else { 2330 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2331 if (!oepos.bh) { 2332 iinfo->i_lenAlloc -= adsize; 2333 mark_inode_dirty(inode); 2334 } else { 2335 aed = (struct allocExtDesc *)oepos.bh->b_data; 2336 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2337 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2338 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2339 udf_update_tag(oepos.bh->b_data, 2340 epos.offset - adsize); 2341 else 2342 udf_update_tag(oepos.bh->b_data, 2343 sizeof(struct allocExtDesc)); 2344 mark_buffer_dirty_inode(oepos.bh, inode); 2345 } 2346 } 2347 2348 brelse(epos.bh); 2349 brelse(oepos.bh); 2350 2351 return (elen >> 30); 2352 } 2353 2354 int8_t inode_bmap(struct inode *inode, sector_t block, 2355 struct extent_position *pos, struct kernel_lb_addr *eloc, 2356 uint32_t *elen, sector_t *offset) 2357 { 2358 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2359 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2360 int8_t etype; 2361 struct udf_inode_info *iinfo; 2362 2363 iinfo = UDF_I(inode); 2364 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2365 pos->offset = 0; 2366 pos->block = iinfo->i_location; 2367 pos->bh = NULL; 2368 } 2369 *elen = 0; 2370 do { 2371 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2372 if (etype == -1) { 2373 *offset = (bcount - lbcount) >> blocksize_bits; 2374 iinfo->i_lenExtents = lbcount; 2375 return -1; 2376 } 2377 lbcount += *elen; 2378 } while (lbcount <= bcount); 2379 /* update extent cache */ 2380 udf_update_extent_cache(inode, lbcount - *elen, pos); 2381 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2382 2383 return etype; 2384 } 2385