1 /* 2 * balloc.c 3 * 4 * PURPOSE 5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1999-2001 Ben Fennema 14 * (C) 1999 Stelias Computing Inc 15 * 16 * HISTORY 17 * 18 * 02/24/99 blf Created. 19 * 20 */ 21 22 #include "udfdecl.h" 23 24 #include <linux/bitops.h> 25 26 #include "udf_i.h" 27 #include "udf_sb.h" 28 29 #define udf_clear_bit __test_and_clear_bit_le 30 #define udf_set_bit __test_and_set_bit_le 31 #define udf_test_bit test_bit_le 32 #define udf_find_next_one_bit find_next_bit_le 33 34 static int read_block_bitmap(struct super_block *sb, 35 struct udf_bitmap *bitmap, unsigned int block, 36 unsigned long bitmap_nr) 37 { 38 struct buffer_head *bh = NULL; 39 int retval = 0; 40 struct kernel_lb_addr loc; 41 42 loc.logicalBlockNum = bitmap->s_extPosition; 43 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 44 45 bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block)); 46 if (!bh) 47 retval = -EIO; 48 49 bitmap->s_block_bitmap[bitmap_nr] = bh; 50 return retval; 51 } 52 53 static int __load_block_bitmap(struct super_block *sb, 54 struct udf_bitmap *bitmap, 55 unsigned int block_group) 56 { 57 int retval = 0; 58 int nr_groups = bitmap->s_nr_groups; 59 60 if (block_group >= nr_groups) { 61 udf_debug("block_group (%u) > nr_groups (%d)\n", 62 block_group, nr_groups); 63 } 64 65 if (bitmap->s_block_bitmap[block_group]) 66 return block_group; 67 68 retval = read_block_bitmap(sb, bitmap, block_group, block_group); 69 if (retval < 0) 70 return retval; 71 72 return block_group; 73 } 74 75 static inline int load_block_bitmap(struct super_block *sb, 76 struct udf_bitmap *bitmap, 77 unsigned int block_group) 78 { 79 int slot; 80 81 slot = __load_block_bitmap(sb, bitmap, block_group); 82 83 if (slot < 0) 84 return slot; 85 86 if (!bitmap->s_block_bitmap[slot]) 87 return -EIO; 88 89 return slot; 90 } 91 92 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt) 93 { 94 struct udf_sb_info *sbi = UDF_SB(sb); 95 struct logicalVolIntegrityDesc *lvid; 96 97 if (!sbi->s_lvid_bh) 98 return; 99 100 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt); 102 udf_updated_lvid(sb); 103 } 104 105 static void udf_bitmap_free_blocks(struct super_block *sb, 106 struct udf_bitmap *bitmap, 107 struct kernel_lb_addr *bloc, 108 uint32_t offset, 109 uint32_t count) 110 { 111 struct udf_sb_info *sbi = UDF_SB(sb); 112 struct buffer_head *bh = NULL; 113 struct udf_part_map *partmap; 114 unsigned long block; 115 unsigned long block_group; 116 unsigned long bit; 117 unsigned long i; 118 int bitmap_nr; 119 unsigned long overflow; 120 121 mutex_lock(&sbi->s_alloc_mutex); 122 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 123 if (bloc->logicalBlockNum + count < count || 124 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 125 udf_debug("%u < %d || %u + %u > %u\n", 126 bloc->logicalBlockNum, 0, 127 bloc->logicalBlockNum, count, 128 partmap->s_partition_len); 129 goto error_return; 130 } 131 132 block = bloc->logicalBlockNum + offset + 133 (sizeof(struct spaceBitmapDesc) << 3); 134 135 do { 136 overflow = 0; 137 block_group = block >> (sb->s_blocksize_bits + 3); 138 bit = block % (sb->s_blocksize << 3); 139 140 /* 141 * Check to see if we are freeing blocks across a group boundary. 142 */ 143 if (bit + count > (sb->s_blocksize << 3)) { 144 overflow = bit + count - (sb->s_blocksize << 3); 145 count -= overflow; 146 } 147 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 148 if (bitmap_nr < 0) 149 goto error_return; 150 151 bh = bitmap->s_block_bitmap[bitmap_nr]; 152 for (i = 0; i < count; i++) { 153 if (udf_set_bit(bit + i, bh->b_data)) { 154 udf_debug("bit %lu already set\n", bit + i); 155 udf_debug("byte=%2x\n", 156 ((__u8 *)bh->b_data)[(bit + i) >> 3]); 157 } 158 } 159 udf_add_free_space(sb, sbi->s_partition, count); 160 mark_buffer_dirty(bh); 161 if (overflow) { 162 block += count; 163 count = overflow; 164 } 165 } while (overflow); 166 167 error_return: 168 mutex_unlock(&sbi->s_alloc_mutex); 169 } 170 171 static int udf_bitmap_prealloc_blocks(struct super_block *sb, 172 struct udf_bitmap *bitmap, 173 uint16_t partition, uint32_t first_block, 174 uint32_t block_count) 175 { 176 struct udf_sb_info *sbi = UDF_SB(sb); 177 int alloc_count = 0; 178 int bit, block, block_group, group_start; 179 int nr_groups, bitmap_nr; 180 struct buffer_head *bh; 181 __u32 part_len; 182 183 mutex_lock(&sbi->s_alloc_mutex); 184 part_len = sbi->s_partmaps[partition].s_partition_len; 185 if (first_block >= part_len) 186 goto out; 187 188 if (first_block + block_count > part_len) 189 block_count = part_len - first_block; 190 191 do { 192 nr_groups = udf_compute_nr_groups(sb, partition); 193 block = first_block + (sizeof(struct spaceBitmapDesc) << 3); 194 block_group = block >> (sb->s_blocksize_bits + 3); 195 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 196 197 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 198 if (bitmap_nr < 0) 199 goto out; 200 bh = bitmap->s_block_bitmap[bitmap_nr]; 201 202 bit = block % (sb->s_blocksize << 3); 203 204 while (bit < (sb->s_blocksize << 3) && block_count > 0) { 205 if (!udf_clear_bit(bit, bh->b_data)) 206 goto out; 207 block_count--; 208 alloc_count++; 209 bit++; 210 block++; 211 } 212 mark_buffer_dirty(bh); 213 } while (block_count > 0); 214 215 out: 216 udf_add_free_space(sb, partition, -alloc_count); 217 mutex_unlock(&sbi->s_alloc_mutex); 218 return alloc_count; 219 } 220 221 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb, 222 struct udf_bitmap *bitmap, uint16_t partition, 223 uint32_t goal, int *err) 224 { 225 struct udf_sb_info *sbi = UDF_SB(sb); 226 int newbit, bit = 0; 227 udf_pblk_t block; 228 int block_group, group_start; 229 int end_goal, nr_groups, bitmap_nr, i; 230 struct buffer_head *bh = NULL; 231 char *ptr; 232 udf_pblk_t newblock = 0; 233 234 *err = -ENOSPC; 235 mutex_lock(&sbi->s_alloc_mutex); 236 237 repeat: 238 if (goal >= sbi->s_partmaps[partition].s_partition_len) 239 goal = 0; 240 241 nr_groups = bitmap->s_nr_groups; 242 block = goal + (sizeof(struct spaceBitmapDesc) << 3); 243 block_group = block >> (sb->s_blocksize_bits + 3); 244 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 245 246 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 247 if (bitmap_nr < 0) 248 goto error_return; 249 bh = bitmap->s_block_bitmap[bitmap_nr]; 250 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 251 sb->s_blocksize - group_start); 252 253 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 254 bit = block % (sb->s_blocksize << 3); 255 if (udf_test_bit(bit, bh->b_data)) 256 goto got_block; 257 258 end_goal = (bit + 63) & ~63; 259 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); 260 if (bit < end_goal) 261 goto got_block; 262 263 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, 264 sb->s_blocksize - ((bit + 7) >> 3)); 265 newbit = (ptr - ((char *)bh->b_data)) << 3; 266 if (newbit < sb->s_blocksize << 3) { 267 bit = newbit; 268 goto search_back; 269 } 270 271 newbit = udf_find_next_one_bit(bh->b_data, 272 sb->s_blocksize << 3, bit); 273 if (newbit < sb->s_blocksize << 3) { 274 bit = newbit; 275 goto got_block; 276 } 277 } 278 279 for (i = 0; i < (nr_groups * 2); i++) { 280 block_group++; 281 if (block_group >= nr_groups) 282 block_group = 0; 283 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 284 285 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 286 if (bitmap_nr < 0) 287 goto error_return; 288 bh = bitmap->s_block_bitmap[bitmap_nr]; 289 if (i < nr_groups) { 290 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 291 sb->s_blocksize - group_start); 292 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 293 bit = (ptr - ((char *)bh->b_data)) << 3; 294 break; 295 } 296 } else { 297 bit = udf_find_next_one_bit(bh->b_data, 298 sb->s_blocksize << 3, 299 group_start << 3); 300 if (bit < sb->s_blocksize << 3) 301 break; 302 } 303 } 304 if (i >= (nr_groups * 2)) { 305 mutex_unlock(&sbi->s_alloc_mutex); 306 return newblock; 307 } 308 if (bit < sb->s_blocksize << 3) 309 goto search_back; 310 else 311 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, 312 group_start << 3); 313 if (bit >= sb->s_blocksize << 3) { 314 mutex_unlock(&sbi->s_alloc_mutex); 315 return 0; 316 } 317 318 search_back: 319 i = 0; 320 while (i < 7 && bit > (group_start << 3) && 321 udf_test_bit(bit - 1, bh->b_data)) { 322 ++i; 323 --bit; 324 } 325 326 got_block: 327 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - 328 (sizeof(struct spaceBitmapDesc) << 3); 329 330 if (!udf_clear_bit(bit, bh->b_data)) { 331 udf_debug("bit already cleared for block %d\n", bit); 332 goto repeat; 333 } 334 335 mark_buffer_dirty(bh); 336 337 udf_add_free_space(sb, partition, -1); 338 mutex_unlock(&sbi->s_alloc_mutex); 339 *err = 0; 340 return newblock; 341 342 error_return: 343 *err = -EIO; 344 mutex_unlock(&sbi->s_alloc_mutex); 345 return 0; 346 } 347 348 static void udf_table_free_blocks(struct super_block *sb, 349 struct inode *table, 350 struct kernel_lb_addr *bloc, 351 uint32_t offset, 352 uint32_t count) 353 { 354 struct udf_sb_info *sbi = UDF_SB(sb); 355 struct udf_part_map *partmap; 356 uint32_t start, end; 357 uint32_t elen; 358 struct kernel_lb_addr eloc; 359 struct extent_position oepos, epos; 360 int8_t etype; 361 struct udf_inode_info *iinfo; 362 363 mutex_lock(&sbi->s_alloc_mutex); 364 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 365 if (bloc->logicalBlockNum + count < count || 366 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 367 udf_debug("%u < %d || %u + %u > %u\n", 368 bloc->logicalBlockNum, 0, 369 bloc->logicalBlockNum, count, 370 partmap->s_partition_len); 371 goto error_return; 372 } 373 374 iinfo = UDF_I(table); 375 udf_add_free_space(sb, sbi->s_partition, count); 376 377 start = bloc->logicalBlockNum + offset; 378 end = bloc->logicalBlockNum + offset + count - 1; 379 380 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry); 381 elen = 0; 382 epos.block = oepos.block = iinfo->i_location; 383 epos.bh = oepos.bh = NULL; 384 385 while (count && 386 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 387 if (((eloc.logicalBlockNum + 388 (elen >> sb->s_blocksize_bits)) == start)) { 389 if ((0x3FFFFFFF - elen) < 390 (count << sb->s_blocksize_bits)) { 391 uint32_t tmp = ((0x3FFFFFFF - elen) >> 392 sb->s_blocksize_bits); 393 count -= tmp; 394 start += tmp; 395 elen = (etype << 30) | 396 (0x40000000 - sb->s_blocksize); 397 } else { 398 elen = (etype << 30) | 399 (elen + 400 (count << sb->s_blocksize_bits)); 401 start += count; 402 count = 0; 403 } 404 udf_write_aext(table, &oepos, &eloc, elen, 1); 405 } else if (eloc.logicalBlockNum == (end + 1)) { 406 if ((0x3FFFFFFF - elen) < 407 (count << sb->s_blocksize_bits)) { 408 uint32_t tmp = ((0x3FFFFFFF - elen) >> 409 sb->s_blocksize_bits); 410 count -= tmp; 411 end -= tmp; 412 eloc.logicalBlockNum -= tmp; 413 elen = (etype << 30) | 414 (0x40000000 - sb->s_blocksize); 415 } else { 416 eloc.logicalBlockNum = start; 417 elen = (etype << 30) | 418 (elen + 419 (count << sb->s_blocksize_bits)); 420 end -= count; 421 count = 0; 422 } 423 udf_write_aext(table, &oepos, &eloc, elen, 1); 424 } 425 426 if (epos.bh != oepos.bh) { 427 oepos.block = epos.block; 428 brelse(oepos.bh); 429 get_bh(epos.bh); 430 oepos.bh = epos.bh; 431 oepos.offset = 0; 432 } else { 433 oepos.offset = epos.offset; 434 } 435 } 436 437 if (count) { 438 /* 439 * NOTE: we CANNOT use udf_add_aext here, as it can try to 440 * allocate a new block, and since we hold the super block 441 * lock already very bad things would happen :) 442 * 443 * We copy the behavior of udf_add_aext, but instead of 444 * trying to allocate a new block close to the existing one, 445 * we just steal a block from the extent we are trying to add. 446 * 447 * It would be nice if the blocks were close together, but it 448 * isn't required. 449 */ 450 451 int adsize; 452 453 eloc.logicalBlockNum = start; 454 elen = EXT_RECORDED_ALLOCATED | 455 (count << sb->s_blocksize_bits); 456 457 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 458 adsize = sizeof(struct short_ad); 459 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 460 adsize = sizeof(struct long_ad); 461 else { 462 brelse(oepos.bh); 463 brelse(epos.bh); 464 goto error_return; 465 } 466 467 if (epos.offset + (2 * adsize) > sb->s_blocksize) { 468 /* Steal a block from the extent being free'd */ 469 udf_setup_indirect_aext(table, eloc.logicalBlockNum, 470 &epos); 471 472 eloc.logicalBlockNum++; 473 elen -= sb->s_blocksize; 474 } 475 476 /* It's possible that stealing the block emptied the extent */ 477 if (elen) 478 __udf_add_aext(table, &epos, &eloc, elen, 1); 479 } 480 481 brelse(epos.bh); 482 brelse(oepos.bh); 483 484 error_return: 485 mutex_unlock(&sbi->s_alloc_mutex); 486 return; 487 } 488 489 static int udf_table_prealloc_blocks(struct super_block *sb, 490 struct inode *table, uint16_t partition, 491 uint32_t first_block, uint32_t block_count) 492 { 493 struct udf_sb_info *sbi = UDF_SB(sb); 494 int alloc_count = 0; 495 uint32_t elen, adsize; 496 struct kernel_lb_addr eloc; 497 struct extent_position epos; 498 int8_t etype = -1; 499 struct udf_inode_info *iinfo; 500 501 if (first_block >= sbi->s_partmaps[partition].s_partition_len) 502 return 0; 503 504 iinfo = UDF_I(table); 505 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 506 adsize = sizeof(struct short_ad); 507 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 508 adsize = sizeof(struct long_ad); 509 else 510 return 0; 511 512 mutex_lock(&sbi->s_alloc_mutex); 513 epos.offset = sizeof(struct unallocSpaceEntry); 514 epos.block = iinfo->i_location; 515 epos.bh = NULL; 516 eloc.logicalBlockNum = 0xFFFFFFFF; 517 518 while (first_block != eloc.logicalBlockNum && 519 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 520 udf_debug("eloc=%u, elen=%u, first_block=%u\n", 521 eloc.logicalBlockNum, elen, first_block); 522 ; /* empty loop body */ 523 } 524 525 if (first_block == eloc.logicalBlockNum) { 526 epos.offset -= adsize; 527 528 alloc_count = (elen >> sb->s_blocksize_bits); 529 if (alloc_count > block_count) { 530 alloc_count = block_count; 531 eloc.logicalBlockNum += alloc_count; 532 elen -= (alloc_count << sb->s_blocksize_bits); 533 udf_write_aext(table, &epos, &eloc, 534 (etype << 30) | elen, 1); 535 } else 536 udf_delete_aext(table, epos, eloc, 537 (etype << 30) | elen); 538 } else { 539 alloc_count = 0; 540 } 541 542 brelse(epos.bh); 543 544 if (alloc_count) 545 udf_add_free_space(sb, partition, -alloc_count); 546 mutex_unlock(&sbi->s_alloc_mutex); 547 return alloc_count; 548 } 549 550 static udf_pblk_t udf_table_new_block(struct super_block *sb, 551 struct inode *table, uint16_t partition, 552 uint32_t goal, int *err) 553 { 554 struct udf_sb_info *sbi = UDF_SB(sb); 555 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; 556 udf_pblk_t newblock = 0; 557 uint32_t adsize; 558 uint32_t elen, goal_elen = 0; 559 struct kernel_lb_addr eloc, uninitialized_var(goal_eloc); 560 struct extent_position epos, goal_epos; 561 int8_t etype; 562 struct udf_inode_info *iinfo = UDF_I(table); 563 564 *err = -ENOSPC; 565 566 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 567 adsize = sizeof(struct short_ad); 568 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 569 adsize = sizeof(struct long_ad); 570 else 571 return newblock; 572 573 mutex_lock(&sbi->s_alloc_mutex); 574 if (goal >= sbi->s_partmaps[partition].s_partition_len) 575 goal = 0; 576 577 /* We search for the closest matching block to goal. If we find 578 a exact hit, we stop. Otherwise we keep going till we run out 579 of extents. We store the buffer_head, bloc, and extoffset 580 of the current closest match and use that when we are done. 581 */ 582 epos.offset = sizeof(struct unallocSpaceEntry); 583 epos.block = iinfo->i_location; 584 epos.bh = goal_epos.bh = NULL; 585 586 while (spread && 587 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 588 if (goal >= eloc.logicalBlockNum) { 589 if (goal < eloc.logicalBlockNum + 590 (elen >> sb->s_blocksize_bits)) 591 nspread = 0; 592 else 593 nspread = goal - eloc.logicalBlockNum - 594 (elen >> sb->s_blocksize_bits); 595 } else { 596 nspread = eloc.logicalBlockNum - goal; 597 } 598 599 if (nspread < spread) { 600 spread = nspread; 601 if (goal_epos.bh != epos.bh) { 602 brelse(goal_epos.bh); 603 goal_epos.bh = epos.bh; 604 get_bh(goal_epos.bh); 605 } 606 goal_epos.block = epos.block; 607 goal_epos.offset = epos.offset - adsize; 608 goal_eloc = eloc; 609 goal_elen = (etype << 30) | elen; 610 } 611 } 612 613 brelse(epos.bh); 614 615 if (spread == 0xFFFFFFFF) { 616 brelse(goal_epos.bh); 617 mutex_unlock(&sbi->s_alloc_mutex); 618 return 0; 619 } 620 621 /* Only allocate blocks from the beginning of the extent. 622 That way, we only delete (empty) extents, never have to insert an 623 extent because of splitting */ 624 /* This works, but very poorly.... */ 625 626 newblock = goal_eloc.logicalBlockNum; 627 goal_eloc.logicalBlockNum++; 628 goal_elen -= sb->s_blocksize; 629 630 if (goal_elen) 631 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1); 632 else 633 udf_delete_aext(table, goal_epos, goal_eloc, goal_elen); 634 brelse(goal_epos.bh); 635 636 udf_add_free_space(sb, partition, -1); 637 638 mutex_unlock(&sbi->s_alloc_mutex); 639 *err = 0; 640 return newblock; 641 } 642 643 void udf_free_blocks(struct super_block *sb, struct inode *inode, 644 struct kernel_lb_addr *bloc, uint32_t offset, 645 uint32_t count) 646 { 647 uint16_t partition = bloc->partitionReferenceNum; 648 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 649 650 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 651 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap, 652 bloc, offset, count); 653 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 654 udf_table_free_blocks(sb, map->s_uspace.s_table, 655 bloc, offset, count); 656 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 657 udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap, 658 bloc, offset, count); 659 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 660 udf_table_free_blocks(sb, map->s_fspace.s_table, 661 bloc, offset, count); 662 } 663 664 if (inode) { 665 inode_sub_bytes(inode, 666 ((sector_t)count) << sb->s_blocksize_bits); 667 } 668 } 669 670 inline int udf_prealloc_blocks(struct super_block *sb, 671 struct inode *inode, 672 uint16_t partition, uint32_t first_block, 673 uint32_t block_count) 674 { 675 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 676 int allocated; 677 678 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 679 allocated = udf_bitmap_prealloc_blocks(sb, 680 map->s_uspace.s_bitmap, 681 partition, first_block, 682 block_count); 683 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 684 allocated = udf_table_prealloc_blocks(sb, 685 map->s_uspace.s_table, 686 partition, first_block, 687 block_count); 688 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 689 allocated = udf_bitmap_prealloc_blocks(sb, 690 map->s_fspace.s_bitmap, 691 partition, first_block, 692 block_count); 693 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 694 allocated = udf_table_prealloc_blocks(sb, 695 map->s_fspace.s_table, 696 partition, first_block, 697 block_count); 698 else 699 return 0; 700 701 if (inode && allocated > 0) 702 inode_add_bytes(inode, allocated << sb->s_blocksize_bits); 703 return allocated; 704 } 705 706 inline udf_pblk_t udf_new_block(struct super_block *sb, 707 struct inode *inode, 708 uint16_t partition, uint32_t goal, int *err) 709 { 710 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 711 udf_pblk_t block; 712 713 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 714 block = udf_bitmap_new_block(sb, 715 map->s_uspace.s_bitmap, 716 partition, goal, err); 717 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 718 block = udf_table_new_block(sb, 719 map->s_uspace.s_table, 720 partition, goal, err); 721 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 722 block = udf_bitmap_new_block(sb, 723 map->s_fspace.s_bitmap, 724 partition, goal, err); 725 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 726 block = udf_table_new_block(sb, 727 map->s_fspace.s_table, 728 partition, goal, err); 729 else { 730 *err = -EIO; 731 return 0; 732 } 733 if (inode && block) 734 inode_add_bytes(inode, sb->s_blocksize); 735 return block; 736 } 737