xref: /linux/fs/udf/balloc.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27 
28 #include "udf_i.h"
29 #include "udf_sb.h"
30 
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_next_one_bit(addr, size, offset) \
35 		ext2_find_next_bit(addr, size, offset)
36 
37 static int read_block_bitmap(struct super_block *sb,
38 			     struct udf_bitmap *bitmap, unsigned int block,
39 			     unsigned long bitmap_nr)
40 {
41 	struct buffer_head *bh = NULL;
42 	int retval = 0;
43 	struct kernel_lb_addr loc;
44 
45 	loc.logicalBlockNum = bitmap->s_extPosition;
46 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
47 
48 	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
49 	if (!bh)
50 		retval = -EIO;
51 
52 	bitmap->s_block_bitmap[bitmap_nr] = bh;
53 	return retval;
54 }
55 
56 static int __load_block_bitmap(struct super_block *sb,
57 			       struct udf_bitmap *bitmap,
58 			       unsigned int block_group)
59 {
60 	int retval = 0;
61 	int nr_groups = bitmap->s_nr_groups;
62 
63 	if (block_group >= nr_groups) {
64 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
65 			  nr_groups);
66 	}
67 
68 	if (bitmap->s_block_bitmap[block_group]) {
69 		return block_group;
70 	} else {
71 		retval = read_block_bitmap(sb, bitmap, block_group,
72 					   block_group);
73 		if (retval < 0)
74 			return retval;
75 		return block_group;
76 	}
77 }
78 
79 static inline int load_block_bitmap(struct super_block *sb,
80 				    struct udf_bitmap *bitmap,
81 				    unsigned int block_group)
82 {
83 	int slot;
84 
85 	slot = __load_block_bitmap(sb, bitmap, block_group);
86 
87 	if (slot < 0)
88 		return slot;
89 
90 	if (!bitmap->s_block_bitmap[slot])
91 		return -EIO;
92 
93 	return slot;
94 }
95 
96 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
97 {
98 	struct udf_sb_info *sbi = UDF_SB(sb);
99 	struct logicalVolIntegrityDesc *lvid;
100 
101 	if (!sbi->s_lvid_bh)
102 		return;
103 
104 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
105 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
106 	udf_updated_lvid(sb);
107 }
108 
109 static void udf_bitmap_free_blocks(struct super_block *sb,
110 				   struct inode *inode,
111 				   struct udf_bitmap *bitmap,
112 				   struct kernel_lb_addr *bloc,
113 				   uint32_t offset,
114 				   uint32_t count)
115 {
116 	struct udf_sb_info *sbi = UDF_SB(sb);
117 	struct buffer_head *bh = NULL;
118 	struct udf_part_map *partmap;
119 	unsigned long block;
120 	unsigned long block_group;
121 	unsigned long bit;
122 	unsigned long i;
123 	int bitmap_nr;
124 	unsigned long overflow;
125 
126 	mutex_lock(&sbi->s_alloc_mutex);
127 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
128 	if (bloc->logicalBlockNum + count < count ||
129 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
130 		udf_debug("%d < %d || %d + %d > %d\n",
131 			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum,
132 			  count, partmap->s_partition_len);
133 		goto error_return;
134 	}
135 
136 	block = bloc->logicalBlockNum + offset +
137 		(sizeof(struct spaceBitmapDesc) << 3);
138 
139 	do {
140 		overflow = 0;
141 		block_group = block >> (sb->s_blocksize_bits + 3);
142 		bit = block % (sb->s_blocksize << 3);
143 
144 		/*
145 		* Check to see if we are freeing blocks across a group boundary.
146 		*/
147 		if (bit + count > (sb->s_blocksize << 3)) {
148 			overflow = bit + count - (sb->s_blocksize << 3);
149 			count -= overflow;
150 		}
151 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
152 		if (bitmap_nr < 0)
153 			goto error_return;
154 
155 		bh = bitmap->s_block_bitmap[bitmap_nr];
156 		for (i = 0; i < count; i++) {
157 			if (udf_set_bit(bit + i, bh->b_data)) {
158 				udf_debug("bit %ld already set\n", bit + i);
159 				udf_debug("byte=%2x\n",
160 					((char *)bh->b_data)[(bit + i) >> 3]);
161 			} else {
162 				if (inode)
163 					dquot_free_block(inode, 1);
164 				udf_add_free_space(sb, sbi->s_partition, 1);
165 			}
166 		}
167 		mark_buffer_dirty(bh);
168 		if (overflow) {
169 			block += count;
170 			count = overflow;
171 		}
172 	} while (overflow);
173 
174 error_return:
175 	mutex_unlock(&sbi->s_alloc_mutex);
176 }
177 
178 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
179 				      struct inode *inode,
180 				      struct udf_bitmap *bitmap,
181 				      uint16_t partition, uint32_t first_block,
182 				      uint32_t block_count)
183 {
184 	struct udf_sb_info *sbi = UDF_SB(sb);
185 	int alloc_count = 0;
186 	int bit, block, block_group, group_start;
187 	int nr_groups, bitmap_nr;
188 	struct buffer_head *bh;
189 	__u32 part_len;
190 
191 	mutex_lock(&sbi->s_alloc_mutex);
192 	part_len = sbi->s_partmaps[partition].s_partition_len;
193 	if (first_block >= part_len)
194 		goto out;
195 
196 	if (first_block + block_count > part_len)
197 		block_count = part_len - first_block;
198 
199 	do {
200 		nr_groups = udf_compute_nr_groups(sb, partition);
201 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
202 		block_group = block >> (sb->s_blocksize_bits + 3);
203 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
204 
205 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
206 		if (bitmap_nr < 0)
207 			goto out;
208 		bh = bitmap->s_block_bitmap[bitmap_nr];
209 
210 		bit = block % (sb->s_blocksize << 3);
211 
212 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
213 			if (!udf_test_bit(bit, bh->b_data))
214 				goto out;
215 			else if (dquot_prealloc_block(inode, 1))
216 				goto out;
217 			else if (!udf_clear_bit(bit, bh->b_data)) {
218 				udf_debug("bit already cleared for block %d\n", bit);
219 				dquot_free_block(inode, 1);
220 				goto out;
221 			}
222 			block_count--;
223 			alloc_count++;
224 			bit++;
225 			block++;
226 		}
227 		mark_buffer_dirty(bh);
228 	} while (block_count > 0);
229 
230 out:
231 	udf_add_free_space(sb, partition, -alloc_count);
232 	mutex_unlock(&sbi->s_alloc_mutex);
233 	return alloc_count;
234 }
235 
236 static int udf_bitmap_new_block(struct super_block *sb,
237 				struct inode *inode,
238 				struct udf_bitmap *bitmap, uint16_t partition,
239 				uint32_t goal, int *err)
240 {
241 	struct udf_sb_info *sbi = UDF_SB(sb);
242 	int newbit, bit = 0, block, block_group, group_start;
243 	int end_goal, nr_groups, bitmap_nr, i;
244 	struct buffer_head *bh = NULL;
245 	char *ptr;
246 	int newblock = 0;
247 
248 	*err = -ENOSPC;
249 	mutex_lock(&sbi->s_alloc_mutex);
250 
251 repeat:
252 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
253 		goal = 0;
254 
255 	nr_groups = bitmap->s_nr_groups;
256 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
257 	block_group = block >> (sb->s_blocksize_bits + 3);
258 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
259 
260 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
261 	if (bitmap_nr < 0)
262 		goto error_return;
263 	bh = bitmap->s_block_bitmap[bitmap_nr];
264 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
265 		      sb->s_blocksize - group_start);
266 
267 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
268 		bit = block % (sb->s_blocksize << 3);
269 		if (udf_test_bit(bit, bh->b_data))
270 			goto got_block;
271 
272 		end_goal = (bit + 63) & ~63;
273 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
274 		if (bit < end_goal)
275 			goto got_block;
276 
277 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
278 			      sb->s_blocksize - ((bit + 7) >> 3));
279 		newbit = (ptr - ((char *)bh->b_data)) << 3;
280 		if (newbit < sb->s_blocksize << 3) {
281 			bit = newbit;
282 			goto search_back;
283 		}
284 
285 		newbit = udf_find_next_one_bit(bh->b_data,
286 					       sb->s_blocksize << 3, bit);
287 		if (newbit < sb->s_blocksize << 3) {
288 			bit = newbit;
289 			goto got_block;
290 		}
291 	}
292 
293 	for (i = 0; i < (nr_groups * 2); i++) {
294 		block_group++;
295 		if (block_group >= nr_groups)
296 			block_group = 0;
297 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
298 
299 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
300 		if (bitmap_nr < 0)
301 			goto error_return;
302 		bh = bitmap->s_block_bitmap[bitmap_nr];
303 		if (i < nr_groups) {
304 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
305 				      sb->s_blocksize - group_start);
306 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
307 				bit = (ptr - ((char *)bh->b_data)) << 3;
308 				break;
309 			}
310 		} else {
311 			bit = udf_find_next_one_bit((char *)bh->b_data,
312 						    sb->s_blocksize << 3,
313 						    group_start << 3);
314 			if (bit < sb->s_blocksize << 3)
315 				break;
316 		}
317 	}
318 	if (i >= (nr_groups * 2)) {
319 		mutex_unlock(&sbi->s_alloc_mutex);
320 		return newblock;
321 	}
322 	if (bit < sb->s_blocksize << 3)
323 		goto search_back;
324 	else
325 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
326 					    group_start << 3);
327 	if (bit >= sb->s_blocksize << 3) {
328 		mutex_unlock(&sbi->s_alloc_mutex);
329 		return 0;
330 	}
331 
332 search_back:
333 	i = 0;
334 	while (i < 7 && bit > (group_start << 3) &&
335 	       udf_test_bit(bit - 1, bh->b_data)) {
336 		++i;
337 		--bit;
338 	}
339 
340 got_block:
341 
342 	/*
343 	 * Check quota for allocation of this block.
344 	 */
345 	if (inode) {
346 		int ret = dquot_alloc_block(inode, 1);
347 
348 		if (ret) {
349 			mutex_unlock(&sbi->s_alloc_mutex);
350 			*err = ret;
351 			return 0;
352 		}
353 	}
354 
355 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
356 		(sizeof(struct spaceBitmapDesc) << 3);
357 
358 	if (!udf_clear_bit(bit, bh->b_data)) {
359 		udf_debug("bit already cleared for block %d\n", bit);
360 		goto repeat;
361 	}
362 
363 	mark_buffer_dirty(bh);
364 
365 	udf_add_free_space(sb, partition, -1);
366 	mutex_unlock(&sbi->s_alloc_mutex);
367 	*err = 0;
368 	return newblock;
369 
370 error_return:
371 	*err = -EIO;
372 	mutex_unlock(&sbi->s_alloc_mutex);
373 	return 0;
374 }
375 
376 static void udf_table_free_blocks(struct super_block *sb,
377 				  struct inode *inode,
378 				  struct inode *table,
379 				  struct kernel_lb_addr *bloc,
380 				  uint32_t offset,
381 				  uint32_t count)
382 {
383 	struct udf_sb_info *sbi = UDF_SB(sb);
384 	struct udf_part_map *partmap;
385 	uint32_t start, end;
386 	uint32_t elen;
387 	struct kernel_lb_addr eloc;
388 	struct extent_position oepos, epos;
389 	int8_t etype;
390 	int i;
391 	struct udf_inode_info *iinfo;
392 
393 	mutex_lock(&sbi->s_alloc_mutex);
394 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
395 	if (bloc->logicalBlockNum + count < count ||
396 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
397 		udf_debug("%d < %d || %d + %d > %d\n",
398 			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum, count,
399 			  partmap->s_partition_len);
400 		goto error_return;
401 	}
402 
403 	iinfo = UDF_I(table);
404 	/* We do this up front - There are some error conditions that
405 	   could occure, but.. oh well */
406 	if (inode)
407 		dquot_free_block(inode, count);
408 	udf_add_free_space(sb, sbi->s_partition, count);
409 
410 	start = bloc->logicalBlockNum + offset;
411 	end = bloc->logicalBlockNum + offset + count - 1;
412 
413 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
414 	elen = 0;
415 	epos.block = oepos.block = iinfo->i_location;
416 	epos.bh = oepos.bh = NULL;
417 
418 	while (count &&
419 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
420 		if (((eloc.logicalBlockNum +
421 			(elen >> sb->s_blocksize_bits)) == start)) {
422 			if ((0x3FFFFFFF - elen) <
423 					(count << sb->s_blocksize_bits)) {
424 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
425 							sb->s_blocksize_bits);
426 				count -= tmp;
427 				start += tmp;
428 				elen = (etype << 30) |
429 					(0x40000000 - sb->s_blocksize);
430 			} else {
431 				elen = (etype << 30) |
432 					(elen +
433 					(count << sb->s_blocksize_bits));
434 				start += count;
435 				count = 0;
436 			}
437 			udf_write_aext(table, &oepos, &eloc, elen, 1);
438 		} else if (eloc.logicalBlockNum == (end + 1)) {
439 			if ((0x3FFFFFFF - elen) <
440 					(count << sb->s_blocksize_bits)) {
441 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
442 						sb->s_blocksize_bits);
443 				count -= tmp;
444 				end -= tmp;
445 				eloc.logicalBlockNum -= tmp;
446 				elen = (etype << 30) |
447 					(0x40000000 - sb->s_blocksize);
448 			} else {
449 				eloc.logicalBlockNum = start;
450 				elen = (etype << 30) |
451 					(elen +
452 					(count << sb->s_blocksize_bits));
453 				end -= count;
454 				count = 0;
455 			}
456 			udf_write_aext(table, &oepos, &eloc, elen, 1);
457 		}
458 
459 		if (epos.bh != oepos.bh) {
460 			i = -1;
461 			oepos.block = epos.block;
462 			brelse(oepos.bh);
463 			get_bh(epos.bh);
464 			oepos.bh = epos.bh;
465 			oepos.offset = 0;
466 		} else {
467 			oepos.offset = epos.offset;
468 		}
469 	}
470 
471 	if (count) {
472 		/*
473 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
474 		 * allocate a new block, and since we hold the super block
475 		 * lock already very bad things would happen :)
476 		 *
477 		 * We copy the behavior of udf_add_aext, but instead of
478 		 * trying to allocate a new block close to the existing one,
479 		 * we just steal a block from the extent we are trying to add.
480 		 *
481 		 * It would be nice if the blocks were close together, but it
482 		 * isn't required.
483 		 */
484 
485 		int adsize;
486 		struct short_ad *sad = NULL;
487 		struct long_ad *lad = NULL;
488 		struct allocExtDesc *aed;
489 
490 		eloc.logicalBlockNum = start;
491 		elen = EXT_RECORDED_ALLOCATED |
492 			(count << sb->s_blocksize_bits);
493 
494 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
495 			adsize = sizeof(struct short_ad);
496 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
497 			adsize = sizeof(struct long_ad);
498 		else {
499 			brelse(oepos.bh);
500 			brelse(epos.bh);
501 			goto error_return;
502 		}
503 
504 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
505 			unsigned char *sptr, *dptr;
506 			int loffset;
507 
508 			brelse(oepos.bh);
509 			oepos = epos;
510 
511 			/* Steal a block from the extent being free'd */
512 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
513 			eloc.logicalBlockNum++;
514 			elen -= sb->s_blocksize;
515 
516 			epos.bh = udf_tread(sb,
517 					udf_get_lb_pblock(sb, &epos.block, 0));
518 			if (!epos.bh) {
519 				brelse(oepos.bh);
520 				goto error_return;
521 			}
522 			aed = (struct allocExtDesc *)(epos.bh->b_data);
523 			aed->previousAllocExtLocation =
524 				cpu_to_le32(oepos.block.logicalBlockNum);
525 			if (epos.offset + adsize > sb->s_blocksize) {
526 				loffset = epos.offset;
527 				aed->lengthAllocDescs = cpu_to_le32(adsize);
528 				sptr = iinfo->i_ext.i_data + epos.offset
529 								- adsize;
530 				dptr = epos.bh->b_data +
531 					sizeof(struct allocExtDesc);
532 				memcpy(dptr, sptr, adsize);
533 				epos.offset = sizeof(struct allocExtDesc) +
534 						adsize;
535 			} else {
536 				loffset = epos.offset + adsize;
537 				aed->lengthAllocDescs = cpu_to_le32(0);
538 				if (oepos.bh) {
539 					sptr = oepos.bh->b_data + epos.offset;
540 					aed = (struct allocExtDesc *)
541 						oepos.bh->b_data;
542 					le32_add_cpu(&aed->lengthAllocDescs,
543 							adsize);
544 				} else {
545 					sptr = iinfo->i_ext.i_data +
546 								epos.offset;
547 					iinfo->i_lenAlloc += adsize;
548 					mark_inode_dirty(table);
549 				}
550 				epos.offset = sizeof(struct allocExtDesc);
551 			}
552 			if (sbi->s_udfrev >= 0x0200)
553 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
554 					    3, 1, epos.block.logicalBlockNum,
555 					    sizeof(struct tag));
556 			else
557 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
558 					    2, 1, epos.block.logicalBlockNum,
559 					    sizeof(struct tag));
560 
561 			switch (iinfo->i_alloc_type) {
562 			case ICBTAG_FLAG_AD_SHORT:
563 				sad = (struct short_ad *)sptr;
564 				sad->extLength = cpu_to_le32(
565 					EXT_NEXT_EXTENT_ALLOCDECS |
566 					sb->s_blocksize);
567 				sad->extPosition =
568 					cpu_to_le32(epos.block.logicalBlockNum);
569 				break;
570 			case ICBTAG_FLAG_AD_LONG:
571 				lad = (struct long_ad *)sptr;
572 				lad->extLength = cpu_to_le32(
573 					EXT_NEXT_EXTENT_ALLOCDECS |
574 					sb->s_blocksize);
575 				lad->extLocation =
576 					cpu_to_lelb(epos.block);
577 				break;
578 			}
579 			if (oepos.bh) {
580 				udf_update_tag(oepos.bh->b_data, loffset);
581 				mark_buffer_dirty(oepos.bh);
582 			} else {
583 				mark_inode_dirty(table);
584 			}
585 		}
586 
587 		/* It's possible that stealing the block emptied the extent */
588 		if (elen) {
589 			udf_write_aext(table, &epos, &eloc, elen, 1);
590 
591 			if (!epos.bh) {
592 				iinfo->i_lenAlloc += adsize;
593 				mark_inode_dirty(table);
594 			} else {
595 				aed = (struct allocExtDesc *)epos.bh->b_data;
596 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
597 				udf_update_tag(epos.bh->b_data, epos.offset);
598 				mark_buffer_dirty(epos.bh);
599 			}
600 		}
601 	}
602 
603 	brelse(epos.bh);
604 	brelse(oepos.bh);
605 
606 error_return:
607 	mutex_unlock(&sbi->s_alloc_mutex);
608 	return;
609 }
610 
611 static int udf_table_prealloc_blocks(struct super_block *sb,
612 				     struct inode *inode,
613 				     struct inode *table, uint16_t partition,
614 				     uint32_t first_block, uint32_t block_count)
615 {
616 	struct udf_sb_info *sbi = UDF_SB(sb);
617 	int alloc_count = 0;
618 	uint32_t elen, adsize;
619 	struct kernel_lb_addr eloc;
620 	struct extent_position epos;
621 	int8_t etype = -1;
622 	struct udf_inode_info *iinfo;
623 
624 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
625 		return 0;
626 
627 	iinfo = UDF_I(table);
628 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
629 		adsize = sizeof(struct short_ad);
630 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
631 		adsize = sizeof(struct long_ad);
632 	else
633 		return 0;
634 
635 	mutex_lock(&sbi->s_alloc_mutex);
636 	epos.offset = sizeof(struct unallocSpaceEntry);
637 	epos.block = iinfo->i_location;
638 	epos.bh = NULL;
639 	eloc.logicalBlockNum = 0xFFFFFFFF;
640 
641 	while (first_block != eloc.logicalBlockNum &&
642 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
643 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
644 			  eloc.logicalBlockNum, elen, first_block);
645 		; /* empty loop body */
646 	}
647 
648 	if (first_block == eloc.logicalBlockNum) {
649 		epos.offset -= adsize;
650 
651 		alloc_count = (elen >> sb->s_blocksize_bits);
652 		if (inode && dquot_prealloc_block(inode,
653 			alloc_count > block_count ? block_count : alloc_count))
654 			alloc_count = 0;
655 		else if (alloc_count > block_count) {
656 			alloc_count = block_count;
657 			eloc.logicalBlockNum += alloc_count;
658 			elen -= (alloc_count << sb->s_blocksize_bits);
659 			udf_write_aext(table, &epos, &eloc,
660 					(etype << 30) | elen, 1);
661 		} else
662 			udf_delete_aext(table, epos, eloc,
663 					(etype << 30) | elen);
664 	} else {
665 		alloc_count = 0;
666 	}
667 
668 	brelse(epos.bh);
669 
670 	if (alloc_count)
671 		udf_add_free_space(sb, partition, -alloc_count);
672 	mutex_unlock(&sbi->s_alloc_mutex);
673 	return alloc_count;
674 }
675 
676 static int udf_table_new_block(struct super_block *sb,
677 			       struct inode *inode,
678 			       struct inode *table, uint16_t partition,
679 			       uint32_t goal, int *err)
680 {
681 	struct udf_sb_info *sbi = UDF_SB(sb);
682 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
683 	uint32_t newblock = 0, adsize;
684 	uint32_t elen, goal_elen = 0;
685 	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
686 	struct extent_position epos, goal_epos;
687 	int8_t etype;
688 	struct udf_inode_info *iinfo = UDF_I(table);
689 
690 	*err = -ENOSPC;
691 
692 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
693 		adsize = sizeof(struct short_ad);
694 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
695 		adsize = sizeof(struct long_ad);
696 	else
697 		return newblock;
698 
699 	mutex_lock(&sbi->s_alloc_mutex);
700 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
701 		goal = 0;
702 
703 	/* We search for the closest matching block to goal. If we find
704 	   a exact hit, we stop. Otherwise we keep going till we run out
705 	   of extents. We store the buffer_head, bloc, and extoffset
706 	   of the current closest match and use that when we are done.
707 	 */
708 	epos.offset = sizeof(struct unallocSpaceEntry);
709 	epos.block = iinfo->i_location;
710 	epos.bh = goal_epos.bh = NULL;
711 
712 	while (spread &&
713 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
714 		if (goal >= eloc.logicalBlockNum) {
715 			if (goal < eloc.logicalBlockNum +
716 					(elen >> sb->s_blocksize_bits))
717 				nspread = 0;
718 			else
719 				nspread = goal - eloc.logicalBlockNum -
720 					(elen >> sb->s_blocksize_bits);
721 		} else {
722 			nspread = eloc.logicalBlockNum - goal;
723 		}
724 
725 		if (nspread < spread) {
726 			spread = nspread;
727 			if (goal_epos.bh != epos.bh) {
728 				brelse(goal_epos.bh);
729 				goal_epos.bh = epos.bh;
730 				get_bh(goal_epos.bh);
731 			}
732 			goal_epos.block = epos.block;
733 			goal_epos.offset = epos.offset - adsize;
734 			goal_eloc = eloc;
735 			goal_elen = (etype << 30) | elen;
736 		}
737 	}
738 
739 	brelse(epos.bh);
740 
741 	if (spread == 0xFFFFFFFF) {
742 		brelse(goal_epos.bh);
743 		mutex_unlock(&sbi->s_alloc_mutex);
744 		return 0;
745 	}
746 
747 	/* Only allocate blocks from the beginning of the extent.
748 	   That way, we only delete (empty) extents, never have to insert an
749 	   extent because of splitting */
750 	/* This works, but very poorly.... */
751 
752 	newblock = goal_eloc.logicalBlockNum;
753 	goal_eloc.logicalBlockNum++;
754 	goal_elen -= sb->s_blocksize;
755 	if (inode) {
756 		*err = dquot_alloc_block(inode, 1);
757 		if (*err) {
758 			brelse(goal_epos.bh);
759 			mutex_unlock(&sbi->s_alloc_mutex);
760 			return 0;
761 		}
762 	}
763 
764 	if (goal_elen)
765 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
766 	else
767 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
768 	brelse(goal_epos.bh);
769 
770 	udf_add_free_space(sb, partition, -1);
771 
772 	mutex_unlock(&sbi->s_alloc_mutex);
773 	*err = 0;
774 	return newblock;
775 }
776 
777 void udf_free_blocks(struct super_block *sb, struct inode *inode,
778 		     struct kernel_lb_addr *bloc, uint32_t offset,
779 		     uint32_t count)
780 {
781 	uint16_t partition = bloc->partitionReferenceNum;
782 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
783 
784 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
785 		udf_bitmap_free_blocks(sb, inode, map->s_uspace.s_bitmap,
786 				       bloc, offset, count);
787 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
788 		udf_table_free_blocks(sb, inode, map->s_uspace.s_table,
789 				      bloc, offset, count);
790 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
791 		udf_bitmap_free_blocks(sb, inode, map->s_fspace.s_bitmap,
792 				       bloc, offset, count);
793 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
794 		udf_table_free_blocks(sb, inode, map->s_fspace.s_table,
795 				      bloc, offset, count);
796 	}
797 }
798 
799 inline int udf_prealloc_blocks(struct super_block *sb,
800 			       struct inode *inode,
801 			       uint16_t partition, uint32_t first_block,
802 			       uint32_t block_count)
803 {
804 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
805 
806 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
807 		return udf_bitmap_prealloc_blocks(sb, inode,
808 						  map->s_uspace.s_bitmap,
809 						  partition, first_block,
810 						  block_count);
811 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
812 		return udf_table_prealloc_blocks(sb, inode,
813 						 map->s_uspace.s_table,
814 						 partition, first_block,
815 						 block_count);
816 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
817 		return udf_bitmap_prealloc_blocks(sb, inode,
818 						  map->s_fspace.s_bitmap,
819 						  partition, first_block,
820 						  block_count);
821 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
822 		return udf_table_prealloc_blocks(sb, inode,
823 						 map->s_fspace.s_table,
824 						 partition, first_block,
825 						 block_count);
826 	else
827 		return 0;
828 }
829 
830 inline int udf_new_block(struct super_block *sb,
831 			 struct inode *inode,
832 			 uint16_t partition, uint32_t goal, int *err)
833 {
834 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
835 
836 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
837 		return udf_bitmap_new_block(sb, inode,
838 					   map->s_uspace.s_bitmap,
839 					   partition, goal, err);
840 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
841 		return udf_table_new_block(sb, inode,
842 					   map->s_uspace.s_table,
843 					   partition, goal, err);
844 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
845 		return udf_bitmap_new_block(sb, inode,
846 					    map->s_fspace.s_bitmap,
847 					    partition, goal, err);
848 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
849 		return udf_table_new_block(sb, inode,
850 					   map->s_fspace.s_table,
851 					   partition, goal, err);
852 	else {
853 		*err = -EIO;
854 		return 0;
855 	}
856 }
857