1 /* 2 * balloc.c 3 * 4 * PURPOSE 5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1999-2001 Ben Fennema 14 * (C) 1999 Stelias Computing Inc 15 * 16 * HISTORY 17 * 18 * 02/24/99 blf Created. 19 * 20 */ 21 22 #include "udfdecl.h" 23 24 #include <linux/bitops.h> 25 26 #include "udf_i.h" 27 #include "udf_sb.h" 28 29 #define udf_clear_bit __test_and_clear_bit_le 30 #define udf_set_bit __test_and_set_bit_le 31 #define udf_test_bit test_bit_le 32 #define udf_find_next_one_bit find_next_bit_le 33 34 static int read_block_bitmap(struct super_block *sb, 35 struct udf_bitmap *bitmap, unsigned int block, 36 unsigned long bitmap_nr) 37 { 38 struct buffer_head *bh = NULL; 39 int i; 40 int max_bits, off, count; 41 struct kernel_lb_addr loc; 42 43 loc.logicalBlockNum = bitmap->s_extPosition; 44 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 45 46 bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block)); 47 bitmap->s_block_bitmap[bitmap_nr] = bh; 48 if (!bh) 49 return -EIO; 50 51 /* Check consistency of Space Bitmap buffer. */ 52 max_bits = sb->s_blocksize * 8; 53 if (!bitmap_nr) { 54 off = sizeof(struct spaceBitmapDesc) << 3; 55 count = min(max_bits - off, bitmap->s_nr_groups); 56 } else { 57 /* 58 * Rough check if bitmap number is too big to have any bitmap 59 * blocks reserved. 60 */ 61 if (bitmap_nr > 62 (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2) 63 return 0; 64 off = 0; 65 count = bitmap->s_nr_groups - bitmap_nr * max_bits + 66 (sizeof(struct spaceBitmapDesc) << 3); 67 count = min(count, max_bits); 68 } 69 70 for (i = 0; i < count; i++) 71 if (udf_test_bit(i + off, bh->b_data)) 72 return -EFSCORRUPTED; 73 return 0; 74 } 75 76 static int __load_block_bitmap(struct super_block *sb, 77 struct udf_bitmap *bitmap, 78 unsigned int block_group) 79 { 80 int retval = 0; 81 int nr_groups = bitmap->s_nr_groups; 82 83 if (block_group >= nr_groups) { 84 udf_debug("block_group (%u) > nr_groups (%d)\n", 85 block_group, nr_groups); 86 } 87 88 if (bitmap->s_block_bitmap[block_group]) 89 return block_group; 90 91 retval = read_block_bitmap(sb, bitmap, block_group, block_group); 92 if (retval < 0) 93 return retval; 94 95 return block_group; 96 } 97 98 static inline int load_block_bitmap(struct super_block *sb, 99 struct udf_bitmap *bitmap, 100 unsigned int block_group) 101 { 102 int slot; 103 104 slot = __load_block_bitmap(sb, bitmap, block_group); 105 106 if (slot < 0) 107 return slot; 108 109 if (!bitmap->s_block_bitmap[slot]) 110 return -EIO; 111 112 return slot; 113 } 114 115 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt) 116 { 117 struct udf_sb_info *sbi = UDF_SB(sb); 118 struct logicalVolIntegrityDesc *lvid; 119 120 if (!sbi->s_lvid_bh) 121 return; 122 123 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 124 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt); 125 udf_updated_lvid(sb); 126 } 127 128 static void udf_bitmap_free_blocks(struct super_block *sb, 129 struct udf_bitmap *bitmap, 130 struct kernel_lb_addr *bloc, 131 uint32_t offset, 132 uint32_t count) 133 { 134 struct udf_sb_info *sbi = UDF_SB(sb); 135 struct buffer_head *bh = NULL; 136 struct udf_part_map *partmap; 137 unsigned long block; 138 unsigned long block_group; 139 unsigned long bit; 140 unsigned long i; 141 int bitmap_nr; 142 unsigned long overflow; 143 144 mutex_lock(&sbi->s_alloc_mutex); 145 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 146 if (bloc->logicalBlockNum + count < count || 147 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 148 udf_debug("%u < %d || %u + %u > %u\n", 149 bloc->logicalBlockNum, 0, 150 bloc->logicalBlockNum, count, 151 partmap->s_partition_len); 152 goto error_return; 153 } 154 155 block = bloc->logicalBlockNum + offset + 156 (sizeof(struct spaceBitmapDesc) << 3); 157 158 do { 159 overflow = 0; 160 block_group = block >> (sb->s_blocksize_bits + 3); 161 bit = block % (sb->s_blocksize << 3); 162 163 /* 164 * Check to see if we are freeing blocks across a group boundary. 165 */ 166 if (bit + count > (sb->s_blocksize << 3)) { 167 overflow = bit + count - (sb->s_blocksize << 3); 168 count -= overflow; 169 } 170 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 171 if (bitmap_nr < 0) 172 goto error_return; 173 174 bh = bitmap->s_block_bitmap[bitmap_nr]; 175 for (i = 0; i < count; i++) { 176 if (udf_set_bit(bit + i, bh->b_data)) { 177 udf_debug("bit %lu already set\n", bit + i); 178 udf_debug("byte=%2x\n", 179 ((__u8 *)bh->b_data)[(bit + i) >> 3]); 180 } 181 } 182 udf_add_free_space(sb, sbi->s_partition, count); 183 mark_buffer_dirty(bh); 184 if (overflow) { 185 block += count; 186 count = overflow; 187 } 188 } while (overflow); 189 190 error_return: 191 mutex_unlock(&sbi->s_alloc_mutex); 192 } 193 194 static int udf_bitmap_prealloc_blocks(struct super_block *sb, 195 struct udf_bitmap *bitmap, 196 uint16_t partition, uint32_t first_block, 197 uint32_t block_count) 198 { 199 struct udf_sb_info *sbi = UDF_SB(sb); 200 int alloc_count = 0; 201 int bit, block, block_group; 202 int bitmap_nr; 203 struct buffer_head *bh; 204 __u32 part_len; 205 206 mutex_lock(&sbi->s_alloc_mutex); 207 part_len = sbi->s_partmaps[partition].s_partition_len; 208 if (first_block >= part_len) 209 goto out; 210 211 if (first_block + block_count > part_len) 212 block_count = part_len - first_block; 213 214 do { 215 block = first_block + (sizeof(struct spaceBitmapDesc) << 3); 216 block_group = block >> (sb->s_blocksize_bits + 3); 217 218 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 219 if (bitmap_nr < 0) 220 goto out; 221 bh = bitmap->s_block_bitmap[bitmap_nr]; 222 223 bit = block % (sb->s_blocksize << 3); 224 225 while (bit < (sb->s_blocksize << 3) && block_count > 0) { 226 if (!udf_clear_bit(bit, bh->b_data)) 227 goto out; 228 block_count--; 229 alloc_count++; 230 bit++; 231 block++; 232 } 233 mark_buffer_dirty(bh); 234 } while (block_count > 0); 235 236 out: 237 udf_add_free_space(sb, partition, -alloc_count); 238 mutex_unlock(&sbi->s_alloc_mutex); 239 return alloc_count; 240 } 241 242 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb, 243 struct udf_bitmap *bitmap, uint16_t partition, 244 uint32_t goal, int *err) 245 { 246 struct udf_sb_info *sbi = UDF_SB(sb); 247 int newbit, bit = 0; 248 udf_pblk_t block; 249 int block_group, group_start; 250 int end_goal, nr_groups, bitmap_nr, i; 251 struct buffer_head *bh = NULL; 252 char *ptr; 253 udf_pblk_t newblock = 0; 254 255 *err = -ENOSPC; 256 mutex_lock(&sbi->s_alloc_mutex); 257 258 repeat: 259 if (goal >= sbi->s_partmaps[partition].s_partition_len) 260 goal = 0; 261 262 nr_groups = bitmap->s_nr_groups; 263 block = goal + (sizeof(struct spaceBitmapDesc) << 3); 264 block_group = block >> (sb->s_blocksize_bits + 3); 265 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 266 267 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 268 if (bitmap_nr < 0) 269 goto error_return; 270 bh = bitmap->s_block_bitmap[bitmap_nr]; 271 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 272 sb->s_blocksize - group_start); 273 274 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 275 bit = block % (sb->s_blocksize << 3); 276 if (udf_test_bit(bit, bh->b_data)) 277 goto got_block; 278 279 end_goal = (bit + 63) & ~63; 280 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); 281 if (bit < end_goal) 282 goto got_block; 283 284 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, 285 sb->s_blocksize - ((bit + 7) >> 3)); 286 newbit = (ptr - ((char *)bh->b_data)) << 3; 287 if (newbit < sb->s_blocksize << 3) { 288 bit = newbit; 289 goto search_back; 290 } 291 292 newbit = udf_find_next_one_bit(bh->b_data, 293 sb->s_blocksize << 3, bit); 294 if (newbit < sb->s_blocksize << 3) { 295 bit = newbit; 296 goto got_block; 297 } 298 } 299 300 for (i = 0; i < (nr_groups * 2); i++) { 301 block_group++; 302 if (block_group >= nr_groups) 303 block_group = 0; 304 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 305 306 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 307 if (bitmap_nr < 0) 308 goto error_return; 309 bh = bitmap->s_block_bitmap[bitmap_nr]; 310 if (i < nr_groups) { 311 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 312 sb->s_blocksize - group_start); 313 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 314 bit = (ptr - ((char *)bh->b_data)) << 3; 315 break; 316 } 317 } else { 318 bit = udf_find_next_one_bit(bh->b_data, 319 sb->s_blocksize << 3, 320 group_start << 3); 321 if (bit < sb->s_blocksize << 3) 322 break; 323 } 324 } 325 if (i >= (nr_groups * 2)) { 326 mutex_unlock(&sbi->s_alloc_mutex); 327 return newblock; 328 } 329 if (bit < sb->s_blocksize << 3) 330 goto search_back; 331 else 332 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, 333 group_start << 3); 334 if (bit >= sb->s_blocksize << 3) { 335 mutex_unlock(&sbi->s_alloc_mutex); 336 return 0; 337 } 338 339 search_back: 340 i = 0; 341 while (i < 7 && bit > (group_start << 3) && 342 udf_test_bit(bit - 1, bh->b_data)) { 343 ++i; 344 --bit; 345 } 346 347 got_block: 348 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - 349 (sizeof(struct spaceBitmapDesc) << 3); 350 351 if (newblock >= sbi->s_partmaps[partition].s_partition_len) { 352 /* 353 * Ran off the end of the bitmap, and bits following are 354 * non-compliant (not all zero) 355 */ 356 udf_err(sb, "bitmap for partition %d corrupted (block %u marked" 357 " as free, partition length is %u)\n", partition, 358 newblock, sbi->s_partmaps[partition].s_partition_len); 359 goto error_return; 360 } 361 362 if (!udf_clear_bit(bit, bh->b_data)) { 363 udf_debug("bit already cleared for block %d\n", bit); 364 goto repeat; 365 } 366 367 mark_buffer_dirty(bh); 368 369 udf_add_free_space(sb, partition, -1); 370 mutex_unlock(&sbi->s_alloc_mutex); 371 *err = 0; 372 return newblock; 373 374 error_return: 375 *err = -EIO; 376 mutex_unlock(&sbi->s_alloc_mutex); 377 return 0; 378 } 379 380 static void udf_table_free_blocks(struct super_block *sb, 381 struct inode *table, 382 struct kernel_lb_addr *bloc, 383 uint32_t offset, 384 uint32_t count) 385 { 386 struct udf_sb_info *sbi = UDF_SB(sb); 387 struct udf_part_map *partmap; 388 uint32_t start, end; 389 uint32_t elen; 390 struct kernel_lb_addr eloc; 391 struct extent_position oepos, epos; 392 int8_t etype; 393 struct udf_inode_info *iinfo; 394 395 mutex_lock(&sbi->s_alloc_mutex); 396 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 397 if (bloc->logicalBlockNum + count < count || 398 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 399 udf_debug("%u < %d || %u + %u > %u\n", 400 bloc->logicalBlockNum, 0, 401 bloc->logicalBlockNum, count, 402 partmap->s_partition_len); 403 goto error_return; 404 } 405 406 iinfo = UDF_I(table); 407 udf_add_free_space(sb, sbi->s_partition, count); 408 409 start = bloc->logicalBlockNum + offset; 410 end = bloc->logicalBlockNum + offset + count - 1; 411 412 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry); 413 elen = 0; 414 epos.block = oepos.block = iinfo->i_location; 415 epos.bh = oepos.bh = NULL; 416 417 while (count && 418 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 419 if (((eloc.logicalBlockNum + 420 (elen >> sb->s_blocksize_bits)) == start)) { 421 if ((0x3FFFFFFF - elen) < 422 (count << sb->s_blocksize_bits)) { 423 uint32_t tmp = ((0x3FFFFFFF - elen) >> 424 sb->s_blocksize_bits); 425 count -= tmp; 426 start += tmp; 427 elen = (etype << 30) | 428 (0x40000000 - sb->s_blocksize); 429 } else { 430 elen = (etype << 30) | 431 (elen + 432 (count << sb->s_blocksize_bits)); 433 start += count; 434 count = 0; 435 } 436 udf_write_aext(table, &oepos, &eloc, elen, 1); 437 } else if (eloc.logicalBlockNum == (end + 1)) { 438 if ((0x3FFFFFFF - elen) < 439 (count << sb->s_blocksize_bits)) { 440 uint32_t tmp = ((0x3FFFFFFF - elen) >> 441 sb->s_blocksize_bits); 442 count -= tmp; 443 end -= tmp; 444 eloc.logicalBlockNum -= tmp; 445 elen = (etype << 30) | 446 (0x40000000 - sb->s_blocksize); 447 } else { 448 eloc.logicalBlockNum = start; 449 elen = (etype << 30) | 450 (elen + 451 (count << sb->s_blocksize_bits)); 452 end -= count; 453 count = 0; 454 } 455 udf_write_aext(table, &oepos, &eloc, elen, 1); 456 } 457 458 if (epos.bh != oepos.bh) { 459 oepos.block = epos.block; 460 brelse(oepos.bh); 461 get_bh(epos.bh); 462 oepos.bh = epos.bh; 463 oepos.offset = 0; 464 } else { 465 oepos.offset = epos.offset; 466 } 467 } 468 469 if (count) { 470 /* 471 * NOTE: we CANNOT use udf_add_aext here, as it can try to 472 * allocate a new block, and since we hold the super block 473 * lock already very bad things would happen :) 474 * 475 * We copy the behavior of udf_add_aext, but instead of 476 * trying to allocate a new block close to the existing one, 477 * we just steal a block from the extent we are trying to add. 478 * 479 * It would be nice if the blocks were close together, but it 480 * isn't required. 481 */ 482 483 int adsize; 484 485 eloc.logicalBlockNum = start; 486 elen = EXT_RECORDED_ALLOCATED | 487 (count << sb->s_blocksize_bits); 488 489 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 490 adsize = sizeof(struct short_ad); 491 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 492 adsize = sizeof(struct long_ad); 493 else { 494 brelse(oepos.bh); 495 brelse(epos.bh); 496 goto error_return; 497 } 498 499 if (epos.offset + (2 * adsize) > sb->s_blocksize) { 500 /* Steal a block from the extent being free'd */ 501 udf_setup_indirect_aext(table, eloc.logicalBlockNum, 502 &epos); 503 504 eloc.logicalBlockNum++; 505 elen -= sb->s_blocksize; 506 } 507 508 /* It's possible that stealing the block emptied the extent */ 509 if (elen) 510 __udf_add_aext(table, &epos, &eloc, elen, 1); 511 } 512 513 brelse(epos.bh); 514 brelse(oepos.bh); 515 516 error_return: 517 mutex_unlock(&sbi->s_alloc_mutex); 518 return; 519 } 520 521 static int udf_table_prealloc_blocks(struct super_block *sb, 522 struct inode *table, uint16_t partition, 523 uint32_t first_block, uint32_t block_count) 524 { 525 struct udf_sb_info *sbi = UDF_SB(sb); 526 int alloc_count = 0; 527 uint32_t elen, adsize; 528 struct kernel_lb_addr eloc; 529 struct extent_position epos; 530 int8_t etype = -1; 531 struct udf_inode_info *iinfo; 532 533 if (first_block >= sbi->s_partmaps[partition].s_partition_len) 534 return 0; 535 536 iinfo = UDF_I(table); 537 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 538 adsize = sizeof(struct short_ad); 539 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 540 adsize = sizeof(struct long_ad); 541 else 542 return 0; 543 544 mutex_lock(&sbi->s_alloc_mutex); 545 epos.offset = sizeof(struct unallocSpaceEntry); 546 epos.block = iinfo->i_location; 547 epos.bh = NULL; 548 eloc.logicalBlockNum = 0xFFFFFFFF; 549 550 while (first_block != eloc.logicalBlockNum && 551 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 552 udf_debug("eloc=%u, elen=%u, first_block=%u\n", 553 eloc.logicalBlockNum, elen, first_block); 554 ; /* empty loop body */ 555 } 556 557 if (first_block == eloc.logicalBlockNum) { 558 epos.offset -= adsize; 559 560 alloc_count = (elen >> sb->s_blocksize_bits); 561 if (alloc_count > block_count) { 562 alloc_count = block_count; 563 eloc.logicalBlockNum += alloc_count; 564 elen -= (alloc_count << sb->s_blocksize_bits); 565 udf_write_aext(table, &epos, &eloc, 566 (etype << 30) | elen, 1); 567 } else 568 udf_delete_aext(table, epos); 569 } else { 570 alloc_count = 0; 571 } 572 573 brelse(epos.bh); 574 575 if (alloc_count) 576 udf_add_free_space(sb, partition, -alloc_count); 577 mutex_unlock(&sbi->s_alloc_mutex); 578 return alloc_count; 579 } 580 581 static udf_pblk_t udf_table_new_block(struct super_block *sb, 582 struct inode *table, uint16_t partition, 583 uint32_t goal, int *err) 584 { 585 struct udf_sb_info *sbi = UDF_SB(sb); 586 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; 587 udf_pblk_t newblock = 0; 588 uint32_t adsize; 589 uint32_t elen, goal_elen = 0; 590 struct kernel_lb_addr eloc, goal_eloc; 591 struct extent_position epos, goal_epos; 592 int8_t etype; 593 struct udf_inode_info *iinfo = UDF_I(table); 594 595 *err = -ENOSPC; 596 597 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 598 adsize = sizeof(struct short_ad); 599 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 600 adsize = sizeof(struct long_ad); 601 else 602 return newblock; 603 604 mutex_lock(&sbi->s_alloc_mutex); 605 if (goal >= sbi->s_partmaps[partition].s_partition_len) 606 goal = 0; 607 608 /* We search for the closest matching block to goal. If we find 609 a exact hit, we stop. Otherwise we keep going till we run out 610 of extents. We store the buffer_head, bloc, and extoffset 611 of the current closest match and use that when we are done. 612 */ 613 epos.offset = sizeof(struct unallocSpaceEntry); 614 epos.block = iinfo->i_location; 615 epos.bh = goal_epos.bh = NULL; 616 617 while (spread && 618 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 619 if (goal >= eloc.logicalBlockNum) { 620 if (goal < eloc.logicalBlockNum + 621 (elen >> sb->s_blocksize_bits)) 622 nspread = 0; 623 else 624 nspread = goal - eloc.logicalBlockNum - 625 (elen >> sb->s_blocksize_bits); 626 } else { 627 nspread = eloc.logicalBlockNum - goal; 628 } 629 630 if (nspread < spread) { 631 spread = nspread; 632 if (goal_epos.bh != epos.bh) { 633 brelse(goal_epos.bh); 634 goal_epos.bh = epos.bh; 635 get_bh(goal_epos.bh); 636 } 637 goal_epos.block = epos.block; 638 goal_epos.offset = epos.offset - adsize; 639 goal_eloc = eloc; 640 goal_elen = (etype << 30) | elen; 641 } 642 } 643 644 brelse(epos.bh); 645 646 if (spread == 0xFFFFFFFF) { 647 brelse(goal_epos.bh); 648 mutex_unlock(&sbi->s_alloc_mutex); 649 return 0; 650 } 651 652 /* Only allocate blocks from the beginning of the extent. 653 That way, we only delete (empty) extents, never have to insert an 654 extent because of splitting */ 655 /* This works, but very poorly.... */ 656 657 newblock = goal_eloc.logicalBlockNum; 658 goal_eloc.logicalBlockNum++; 659 goal_elen -= sb->s_blocksize; 660 661 if (goal_elen) 662 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1); 663 else 664 udf_delete_aext(table, goal_epos); 665 brelse(goal_epos.bh); 666 667 udf_add_free_space(sb, partition, -1); 668 669 mutex_unlock(&sbi->s_alloc_mutex); 670 *err = 0; 671 return newblock; 672 } 673 674 void udf_free_blocks(struct super_block *sb, struct inode *inode, 675 struct kernel_lb_addr *bloc, uint32_t offset, 676 uint32_t count) 677 { 678 uint16_t partition = bloc->partitionReferenceNum; 679 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 680 681 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 682 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap, 683 bloc, offset, count); 684 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 685 udf_table_free_blocks(sb, map->s_uspace.s_table, 686 bloc, offset, count); 687 } 688 689 if (inode) { 690 inode_sub_bytes(inode, 691 ((sector_t)count) << sb->s_blocksize_bits); 692 } 693 } 694 695 inline int udf_prealloc_blocks(struct super_block *sb, 696 struct inode *inode, 697 uint16_t partition, uint32_t first_block, 698 uint32_t block_count) 699 { 700 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 701 int allocated; 702 703 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 704 allocated = udf_bitmap_prealloc_blocks(sb, 705 map->s_uspace.s_bitmap, 706 partition, first_block, 707 block_count); 708 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 709 allocated = udf_table_prealloc_blocks(sb, 710 map->s_uspace.s_table, 711 partition, first_block, 712 block_count); 713 else 714 return 0; 715 716 if (inode && allocated > 0) 717 inode_add_bytes(inode, allocated << sb->s_blocksize_bits); 718 return allocated; 719 } 720 721 inline udf_pblk_t udf_new_block(struct super_block *sb, 722 struct inode *inode, 723 uint16_t partition, uint32_t goal, int *err) 724 { 725 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 726 udf_pblk_t block; 727 728 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 729 block = udf_bitmap_new_block(sb, 730 map->s_uspace.s_bitmap, 731 partition, goal, err); 732 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 733 block = udf_table_new_block(sb, 734 map->s_uspace.s_table, 735 partition, goal, err); 736 else { 737 *err = -EIO; 738 return 0; 739 } 740 if (inode && block) 741 inode_add_bytes(inode, sb->s_blocksize); 742 return block; 743 } 744