xref: /linux/fs/udf/balloc.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27 
28 #include "udf_i.h"
29 #include "udf_sb.h"
30 
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) \
36 		find_next_one_bit(addr, size, offset)
37 
38 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
39 #define leNUM_to_cpup(x, y) xleNUM_to_cpup(x, y)
40 #define xleNUM_to_cpup(x, y) (le ## x ## _to_cpup(y))
41 #define uintBPL_t uint(BITS_PER_LONG)
42 #define uint(x) xuint(x)
43 #define xuint(x) __le ## x
44 
45 static inline int find_next_one_bit(void *addr, int size, int offset)
46 {
47 	uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
48 	int result = offset & ~(BITS_PER_LONG - 1);
49 	unsigned long tmp;
50 
51 	if (offset >= size)
52 		return size;
53 	size -= result;
54 	offset &= (BITS_PER_LONG - 1);
55 	if (offset) {
56 		tmp = leBPL_to_cpup(p++);
57 		tmp &= ~0UL << offset;
58 		if (size < BITS_PER_LONG)
59 			goto found_first;
60 		if (tmp)
61 			goto found_middle;
62 		size -= BITS_PER_LONG;
63 		result += BITS_PER_LONG;
64 	}
65 	while (size & ~(BITS_PER_LONG - 1)) {
66 		tmp = leBPL_to_cpup(p++);
67 		if (tmp)
68 			goto found_middle;
69 		result += BITS_PER_LONG;
70 		size -= BITS_PER_LONG;
71 	}
72 	if (!size)
73 		return result;
74 	tmp = leBPL_to_cpup(p);
75 found_first:
76 	tmp &= ~0UL >> (BITS_PER_LONG - size);
77 found_middle:
78 	return result + ffz(~tmp);
79 }
80 
81 #define find_first_one_bit(addr, size)\
82 	find_next_one_bit((addr), (size), 0)
83 
84 static int read_block_bitmap(struct super_block *sb,
85 			     struct udf_bitmap *bitmap, unsigned int block,
86 			     unsigned long bitmap_nr)
87 {
88 	struct buffer_head *bh = NULL;
89 	int retval = 0;
90 	struct kernel_lb_addr loc;
91 
92 	loc.logicalBlockNum = bitmap->s_extPosition;
93 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
94 
95 	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
96 	if (!bh)
97 		retval = -EIO;
98 
99 	bitmap->s_block_bitmap[bitmap_nr] = bh;
100 	return retval;
101 }
102 
103 static int __load_block_bitmap(struct super_block *sb,
104 			       struct udf_bitmap *bitmap,
105 			       unsigned int block_group)
106 {
107 	int retval = 0;
108 	int nr_groups = bitmap->s_nr_groups;
109 
110 	if (block_group >= nr_groups) {
111 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
112 			  nr_groups);
113 	}
114 
115 	if (bitmap->s_block_bitmap[block_group]) {
116 		return block_group;
117 	} else {
118 		retval = read_block_bitmap(sb, bitmap, block_group,
119 					   block_group);
120 		if (retval < 0)
121 			return retval;
122 		return block_group;
123 	}
124 }
125 
126 static inline int load_block_bitmap(struct super_block *sb,
127 				    struct udf_bitmap *bitmap,
128 				    unsigned int block_group)
129 {
130 	int slot;
131 
132 	slot = __load_block_bitmap(sb, bitmap, block_group);
133 
134 	if (slot < 0)
135 		return slot;
136 
137 	if (!bitmap->s_block_bitmap[slot])
138 		return -EIO;
139 
140 	return slot;
141 }
142 
143 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
144 {
145 	struct udf_sb_info *sbi = UDF_SB(sb);
146 	struct logicalVolIntegrityDesc *lvid;
147 
148 	if (!sbi->s_lvid_bh)
149 		return;
150 
151 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
152 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
153 	udf_updated_lvid(sb);
154 }
155 
156 static void udf_bitmap_free_blocks(struct super_block *sb,
157 				   struct inode *inode,
158 				   struct udf_bitmap *bitmap,
159 				   struct kernel_lb_addr *bloc,
160 				   uint32_t offset,
161 				   uint32_t count)
162 {
163 	struct udf_sb_info *sbi = UDF_SB(sb);
164 	struct buffer_head *bh = NULL;
165 	struct udf_part_map *partmap;
166 	unsigned long block;
167 	unsigned long block_group;
168 	unsigned long bit;
169 	unsigned long i;
170 	int bitmap_nr;
171 	unsigned long overflow;
172 
173 	mutex_lock(&sbi->s_alloc_mutex);
174 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
175 	if (bloc->logicalBlockNum < 0 ||
176 	    (bloc->logicalBlockNum + count) >
177 		partmap->s_partition_len) {
178 		udf_debug("%d < %d || %d + %d > %d\n",
179 			  bloc->logicalBlockNum, 0, bloc->logicalBlockNum,
180 			  count, partmap->s_partition_len);
181 		goto error_return;
182 	}
183 
184 	block = bloc->logicalBlockNum + offset +
185 		(sizeof(struct spaceBitmapDesc) << 3);
186 
187 	do {
188 		overflow = 0;
189 		block_group = block >> (sb->s_blocksize_bits + 3);
190 		bit = block % (sb->s_blocksize << 3);
191 
192 		/*
193 		* Check to see if we are freeing blocks across a group boundary.
194 		*/
195 		if (bit + count > (sb->s_blocksize << 3)) {
196 			overflow = bit + count - (sb->s_blocksize << 3);
197 			count -= overflow;
198 		}
199 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
200 		if (bitmap_nr < 0)
201 			goto error_return;
202 
203 		bh = bitmap->s_block_bitmap[bitmap_nr];
204 		for (i = 0; i < count; i++) {
205 			if (udf_set_bit(bit + i, bh->b_data)) {
206 				udf_debug("bit %ld already set\n", bit + i);
207 				udf_debug("byte=%2x\n",
208 					((char *)bh->b_data)[(bit + i) >> 3]);
209 			} else {
210 				if (inode)
211 					vfs_dq_free_block(inode, 1);
212 				udf_add_free_space(sb, sbi->s_partition, 1);
213 			}
214 		}
215 		mark_buffer_dirty(bh);
216 		if (overflow) {
217 			block += count;
218 			count = overflow;
219 		}
220 	} while (overflow);
221 
222 error_return:
223 	mutex_unlock(&sbi->s_alloc_mutex);
224 }
225 
226 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
227 				      struct inode *inode,
228 				      struct udf_bitmap *bitmap,
229 				      uint16_t partition, uint32_t first_block,
230 				      uint32_t block_count)
231 {
232 	struct udf_sb_info *sbi = UDF_SB(sb);
233 	int alloc_count = 0;
234 	int bit, block, block_group, group_start;
235 	int nr_groups, bitmap_nr;
236 	struct buffer_head *bh;
237 	__u32 part_len;
238 
239 	mutex_lock(&sbi->s_alloc_mutex);
240 	part_len = sbi->s_partmaps[partition].s_partition_len;
241 	if (first_block >= part_len)
242 		goto out;
243 
244 	if (first_block + block_count > part_len)
245 		block_count = part_len - first_block;
246 
247 	do {
248 		nr_groups = udf_compute_nr_groups(sb, partition);
249 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
250 		block_group = block >> (sb->s_blocksize_bits + 3);
251 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
252 
253 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
254 		if (bitmap_nr < 0)
255 			goto out;
256 		bh = bitmap->s_block_bitmap[bitmap_nr];
257 
258 		bit = block % (sb->s_blocksize << 3);
259 
260 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
261 			if (!udf_test_bit(bit, bh->b_data))
262 				goto out;
263 			else if (vfs_dq_prealloc_block(inode, 1))
264 				goto out;
265 			else if (!udf_clear_bit(bit, bh->b_data)) {
266 				udf_debug("bit already cleared for block %d\n", bit);
267 				vfs_dq_free_block(inode, 1);
268 				goto out;
269 			}
270 			block_count--;
271 			alloc_count++;
272 			bit++;
273 			block++;
274 		}
275 		mark_buffer_dirty(bh);
276 	} while (block_count > 0);
277 
278 out:
279 	udf_add_free_space(sb, partition, -alloc_count);
280 	mutex_unlock(&sbi->s_alloc_mutex);
281 	return alloc_count;
282 }
283 
284 static int udf_bitmap_new_block(struct super_block *sb,
285 				struct inode *inode,
286 				struct udf_bitmap *bitmap, uint16_t partition,
287 				uint32_t goal, int *err)
288 {
289 	struct udf_sb_info *sbi = UDF_SB(sb);
290 	int newbit, bit = 0, block, block_group, group_start;
291 	int end_goal, nr_groups, bitmap_nr, i;
292 	struct buffer_head *bh = NULL;
293 	char *ptr;
294 	int newblock = 0;
295 
296 	*err = -ENOSPC;
297 	mutex_lock(&sbi->s_alloc_mutex);
298 
299 repeat:
300 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
301 		goal = 0;
302 
303 	nr_groups = bitmap->s_nr_groups;
304 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
305 	block_group = block >> (sb->s_blocksize_bits + 3);
306 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
307 
308 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
309 	if (bitmap_nr < 0)
310 		goto error_return;
311 	bh = bitmap->s_block_bitmap[bitmap_nr];
312 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
313 		      sb->s_blocksize - group_start);
314 
315 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
316 		bit = block % (sb->s_blocksize << 3);
317 		if (udf_test_bit(bit, bh->b_data))
318 			goto got_block;
319 
320 		end_goal = (bit + 63) & ~63;
321 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
322 		if (bit < end_goal)
323 			goto got_block;
324 
325 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
326 			      sb->s_blocksize - ((bit + 7) >> 3));
327 		newbit = (ptr - ((char *)bh->b_data)) << 3;
328 		if (newbit < sb->s_blocksize << 3) {
329 			bit = newbit;
330 			goto search_back;
331 		}
332 
333 		newbit = udf_find_next_one_bit(bh->b_data,
334 					       sb->s_blocksize << 3, bit);
335 		if (newbit < sb->s_blocksize << 3) {
336 			bit = newbit;
337 			goto got_block;
338 		}
339 	}
340 
341 	for (i = 0; i < (nr_groups * 2); i++) {
342 		block_group++;
343 		if (block_group >= nr_groups)
344 			block_group = 0;
345 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
346 
347 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
348 		if (bitmap_nr < 0)
349 			goto error_return;
350 		bh = bitmap->s_block_bitmap[bitmap_nr];
351 		if (i < nr_groups) {
352 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
353 				      sb->s_blocksize - group_start);
354 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
355 				bit = (ptr - ((char *)bh->b_data)) << 3;
356 				break;
357 			}
358 		} else {
359 			bit = udf_find_next_one_bit((char *)bh->b_data,
360 						    sb->s_blocksize << 3,
361 						    group_start << 3);
362 			if (bit < sb->s_blocksize << 3)
363 				break;
364 		}
365 	}
366 	if (i >= (nr_groups * 2)) {
367 		mutex_unlock(&sbi->s_alloc_mutex);
368 		return newblock;
369 	}
370 	if (bit < sb->s_blocksize << 3)
371 		goto search_back;
372 	else
373 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
374 					    group_start << 3);
375 	if (bit >= sb->s_blocksize << 3) {
376 		mutex_unlock(&sbi->s_alloc_mutex);
377 		return 0;
378 	}
379 
380 search_back:
381 	i = 0;
382 	while (i < 7 && bit > (group_start << 3) &&
383 	       udf_test_bit(bit - 1, bh->b_data)) {
384 		++i;
385 		--bit;
386 	}
387 
388 got_block:
389 
390 	/*
391 	 * Check quota for allocation of this block.
392 	 */
393 	if (inode && vfs_dq_alloc_block(inode, 1)) {
394 		mutex_unlock(&sbi->s_alloc_mutex);
395 		*err = -EDQUOT;
396 		return 0;
397 	}
398 
399 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
400 		(sizeof(struct spaceBitmapDesc) << 3);
401 
402 	if (!udf_clear_bit(bit, bh->b_data)) {
403 		udf_debug("bit already cleared for block %d\n", bit);
404 		goto repeat;
405 	}
406 
407 	mark_buffer_dirty(bh);
408 
409 	udf_add_free_space(sb, partition, -1);
410 	mutex_unlock(&sbi->s_alloc_mutex);
411 	*err = 0;
412 	return newblock;
413 
414 error_return:
415 	*err = -EIO;
416 	mutex_unlock(&sbi->s_alloc_mutex);
417 	return 0;
418 }
419 
420 static void udf_table_free_blocks(struct super_block *sb,
421 				  struct inode *inode,
422 				  struct inode *table,
423 				  struct kernel_lb_addr *bloc,
424 				  uint32_t offset,
425 				  uint32_t count)
426 {
427 	struct udf_sb_info *sbi = UDF_SB(sb);
428 	struct udf_part_map *partmap;
429 	uint32_t start, end;
430 	uint32_t elen;
431 	struct kernel_lb_addr eloc;
432 	struct extent_position oepos, epos;
433 	int8_t etype;
434 	int i;
435 	struct udf_inode_info *iinfo;
436 
437 	mutex_lock(&sbi->s_alloc_mutex);
438 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
439 	if (bloc->logicalBlockNum < 0 ||
440 	    (bloc->logicalBlockNum + count) >
441 		partmap->s_partition_len) {
442 		udf_debug("%d < %d || %d + %d > %d\n",
443 			  bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
444 			  partmap->s_partition_len);
445 		goto error_return;
446 	}
447 
448 	iinfo = UDF_I(table);
449 	/* We do this up front - There are some error conditions that
450 	   could occure, but.. oh well */
451 	if (inode)
452 		vfs_dq_free_block(inode, count);
453 	udf_add_free_space(sb, sbi->s_partition, count);
454 
455 	start = bloc->logicalBlockNum + offset;
456 	end = bloc->logicalBlockNum + offset + count - 1;
457 
458 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
459 	elen = 0;
460 	epos.block = oepos.block = iinfo->i_location;
461 	epos.bh = oepos.bh = NULL;
462 
463 	while (count &&
464 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
465 		if (((eloc.logicalBlockNum +
466 			(elen >> sb->s_blocksize_bits)) == start)) {
467 			if ((0x3FFFFFFF - elen) <
468 					(count << sb->s_blocksize_bits)) {
469 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
470 							sb->s_blocksize_bits);
471 				count -= tmp;
472 				start += tmp;
473 				elen = (etype << 30) |
474 					(0x40000000 - sb->s_blocksize);
475 			} else {
476 				elen = (etype << 30) |
477 					(elen +
478 					(count << sb->s_blocksize_bits));
479 				start += count;
480 				count = 0;
481 			}
482 			udf_write_aext(table, &oepos, &eloc, elen, 1);
483 		} else if (eloc.logicalBlockNum == (end + 1)) {
484 			if ((0x3FFFFFFF - elen) <
485 					(count << sb->s_blocksize_bits)) {
486 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
487 						sb->s_blocksize_bits);
488 				count -= tmp;
489 				end -= tmp;
490 				eloc.logicalBlockNum -= tmp;
491 				elen = (etype << 30) |
492 					(0x40000000 - sb->s_blocksize);
493 			} else {
494 				eloc.logicalBlockNum = start;
495 				elen = (etype << 30) |
496 					(elen +
497 					(count << sb->s_blocksize_bits));
498 				end -= count;
499 				count = 0;
500 			}
501 			udf_write_aext(table, &oepos, &eloc, elen, 1);
502 		}
503 
504 		if (epos.bh != oepos.bh) {
505 			i = -1;
506 			oepos.block = epos.block;
507 			brelse(oepos.bh);
508 			get_bh(epos.bh);
509 			oepos.bh = epos.bh;
510 			oepos.offset = 0;
511 		} else {
512 			oepos.offset = epos.offset;
513 		}
514 	}
515 
516 	if (count) {
517 		/*
518 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
519 		 * allocate a new block, and since we hold the super block
520 		 * lock already very bad things would happen :)
521 		 *
522 		 * We copy the behavior of udf_add_aext, but instead of
523 		 * trying to allocate a new block close to the existing one,
524 		 * we just steal a block from the extent we are trying to add.
525 		 *
526 		 * It would be nice if the blocks were close together, but it
527 		 * isn't required.
528 		 */
529 
530 		int adsize;
531 		struct short_ad *sad = NULL;
532 		struct long_ad *lad = NULL;
533 		struct allocExtDesc *aed;
534 
535 		eloc.logicalBlockNum = start;
536 		elen = EXT_RECORDED_ALLOCATED |
537 			(count << sb->s_blocksize_bits);
538 
539 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
540 			adsize = sizeof(struct short_ad);
541 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
542 			adsize = sizeof(struct long_ad);
543 		else {
544 			brelse(oepos.bh);
545 			brelse(epos.bh);
546 			goto error_return;
547 		}
548 
549 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
550 			char *sptr, *dptr;
551 			int loffset;
552 
553 			brelse(oepos.bh);
554 			oepos = epos;
555 
556 			/* Steal a block from the extent being free'd */
557 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
558 			eloc.logicalBlockNum++;
559 			elen -= sb->s_blocksize;
560 
561 			epos.bh = udf_tread(sb,
562 					udf_get_lb_pblock(sb, &epos.block, 0));
563 			if (!epos.bh) {
564 				brelse(oepos.bh);
565 				goto error_return;
566 			}
567 			aed = (struct allocExtDesc *)(epos.bh->b_data);
568 			aed->previousAllocExtLocation =
569 				cpu_to_le32(oepos.block.logicalBlockNum);
570 			if (epos.offset + adsize > sb->s_blocksize) {
571 				loffset = epos.offset;
572 				aed->lengthAllocDescs = cpu_to_le32(adsize);
573 				sptr = iinfo->i_ext.i_data + epos.offset
574 								- adsize;
575 				dptr = epos.bh->b_data +
576 					sizeof(struct allocExtDesc);
577 				memcpy(dptr, sptr, adsize);
578 				epos.offset = sizeof(struct allocExtDesc) +
579 						adsize;
580 			} else {
581 				loffset = epos.offset + adsize;
582 				aed->lengthAllocDescs = cpu_to_le32(0);
583 				if (oepos.bh) {
584 					sptr = oepos.bh->b_data + epos.offset;
585 					aed = (struct allocExtDesc *)
586 						oepos.bh->b_data;
587 					le32_add_cpu(&aed->lengthAllocDescs,
588 							adsize);
589 				} else {
590 					sptr = iinfo->i_ext.i_data +
591 								epos.offset;
592 					iinfo->i_lenAlloc += adsize;
593 					mark_inode_dirty(table);
594 				}
595 				epos.offset = sizeof(struct allocExtDesc);
596 			}
597 			if (sbi->s_udfrev >= 0x0200)
598 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
599 					    3, 1, epos.block.logicalBlockNum,
600 					    sizeof(struct tag));
601 			else
602 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
603 					    2, 1, epos.block.logicalBlockNum,
604 					    sizeof(struct tag));
605 
606 			switch (iinfo->i_alloc_type) {
607 			case ICBTAG_FLAG_AD_SHORT:
608 				sad = (struct short_ad *)sptr;
609 				sad->extLength = cpu_to_le32(
610 					EXT_NEXT_EXTENT_ALLOCDECS |
611 					sb->s_blocksize);
612 				sad->extPosition =
613 					cpu_to_le32(epos.block.logicalBlockNum);
614 				break;
615 			case ICBTAG_FLAG_AD_LONG:
616 				lad = (struct long_ad *)sptr;
617 				lad->extLength = cpu_to_le32(
618 					EXT_NEXT_EXTENT_ALLOCDECS |
619 					sb->s_blocksize);
620 				lad->extLocation =
621 					cpu_to_lelb(epos.block);
622 				break;
623 			}
624 			if (oepos.bh) {
625 				udf_update_tag(oepos.bh->b_data, loffset);
626 				mark_buffer_dirty(oepos.bh);
627 			} else {
628 				mark_inode_dirty(table);
629 			}
630 		}
631 
632 		/* It's possible that stealing the block emptied the extent */
633 		if (elen) {
634 			udf_write_aext(table, &epos, &eloc, elen, 1);
635 
636 			if (!epos.bh) {
637 				iinfo->i_lenAlloc += adsize;
638 				mark_inode_dirty(table);
639 			} else {
640 				aed = (struct allocExtDesc *)epos.bh->b_data;
641 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
642 				udf_update_tag(epos.bh->b_data, epos.offset);
643 				mark_buffer_dirty(epos.bh);
644 			}
645 		}
646 	}
647 
648 	brelse(epos.bh);
649 	brelse(oepos.bh);
650 
651 error_return:
652 	mutex_unlock(&sbi->s_alloc_mutex);
653 	return;
654 }
655 
656 static int udf_table_prealloc_blocks(struct super_block *sb,
657 				     struct inode *inode,
658 				     struct inode *table, uint16_t partition,
659 				     uint32_t first_block, uint32_t block_count)
660 {
661 	struct udf_sb_info *sbi = UDF_SB(sb);
662 	int alloc_count = 0;
663 	uint32_t elen, adsize;
664 	struct kernel_lb_addr eloc;
665 	struct extent_position epos;
666 	int8_t etype = -1;
667 	struct udf_inode_info *iinfo;
668 
669 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
670 		return 0;
671 
672 	iinfo = UDF_I(table);
673 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
674 		adsize = sizeof(struct short_ad);
675 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
676 		adsize = sizeof(struct long_ad);
677 	else
678 		return 0;
679 
680 	mutex_lock(&sbi->s_alloc_mutex);
681 	epos.offset = sizeof(struct unallocSpaceEntry);
682 	epos.block = iinfo->i_location;
683 	epos.bh = NULL;
684 	eloc.logicalBlockNum = 0xFFFFFFFF;
685 
686 	while (first_block != eloc.logicalBlockNum &&
687 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
688 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
689 			  eloc.logicalBlockNum, elen, first_block);
690 		; /* empty loop body */
691 	}
692 
693 	if (first_block == eloc.logicalBlockNum) {
694 		epos.offset -= adsize;
695 
696 		alloc_count = (elen >> sb->s_blocksize_bits);
697 		if (inode && vfs_dq_prealloc_block(inode,
698 			alloc_count > block_count ? block_count : alloc_count))
699 			alloc_count = 0;
700 		else if (alloc_count > block_count) {
701 			alloc_count = block_count;
702 			eloc.logicalBlockNum += alloc_count;
703 			elen -= (alloc_count << sb->s_blocksize_bits);
704 			udf_write_aext(table, &epos, &eloc,
705 					(etype << 30) | elen, 1);
706 		} else
707 			udf_delete_aext(table, epos, eloc,
708 					(etype << 30) | elen);
709 	} else {
710 		alloc_count = 0;
711 	}
712 
713 	brelse(epos.bh);
714 
715 	if (alloc_count)
716 		udf_add_free_space(sb, partition, -alloc_count);
717 	mutex_unlock(&sbi->s_alloc_mutex);
718 	return alloc_count;
719 }
720 
721 static int udf_table_new_block(struct super_block *sb,
722 			       struct inode *inode,
723 			       struct inode *table, uint16_t partition,
724 			       uint32_t goal, int *err)
725 {
726 	struct udf_sb_info *sbi = UDF_SB(sb);
727 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
728 	uint32_t newblock = 0, adsize;
729 	uint32_t elen, goal_elen = 0;
730 	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
731 	struct extent_position epos, goal_epos;
732 	int8_t etype;
733 	struct udf_inode_info *iinfo = UDF_I(table);
734 
735 	*err = -ENOSPC;
736 
737 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
738 		adsize = sizeof(struct short_ad);
739 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
740 		adsize = sizeof(struct long_ad);
741 	else
742 		return newblock;
743 
744 	mutex_lock(&sbi->s_alloc_mutex);
745 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
746 		goal = 0;
747 
748 	/* We search for the closest matching block to goal. If we find
749 	   a exact hit, we stop. Otherwise we keep going till we run out
750 	   of extents. We store the buffer_head, bloc, and extoffset
751 	   of the current closest match and use that when we are done.
752 	 */
753 	epos.offset = sizeof(struct unallocSpaceEntry);
754 	epos.block = iinfo->i_location;
755 	epos.bh = goal_epos.bh = NULL;
756 
757 	while (spread &&
758 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
759 		if (goal >= eloc.logicalBlockNum) {
760 			if (goal < eloc.logicalBlockNum +
761 					(elen >> sb->s_blocksize_bits))
762 				nspread = 0;
763 			else
764 				nspread = goal - eloc.logicalBlockNum -
765 					(elen >> sb->s_blocksize_bits);
766 		} else {
767 			nspread = eloc.logicalBlockNum - goal;
768 		}
769 
770 		if (nspread < spread) {
771 			spread = nspread;
772 			if (goal_epos.bh != epos.bh) {
773 				brelse(goal_epos.bh);
774 				goal_epos.bh = epos.bh;
775 				get_bh(goal_epos.bh);
776 			}
777 			goal_epos.block = epos.block;
778 			goal_epos.offset = epos.offset - adsize;
779 			goal_eloc = eloc;
780 			goal_elen = (etype << 30) | elen;
781 		}
782 	}
783 
784 	brelse(epos.bh);
785 
786 	if (spread == 0xFFFFFFFF) {
787 		brelse(goal_epos.bh);
788 		mutex_unlock(&sbi->s_alloc_mutex);
789 		return 0;
790 	}
791 
792 	/* Only allocate blocks from the beginning of the extent.
793 	   That way, we only delete (empty) extents, never have to insert an
794 	   extent because of splitting */
795 	/* This works, but very poorly.... */
796 
797 	newblock = goal_eloc.logicalBlockNum;
798 	goal_eloc.logicalBlockNum++;
799 	goal_elen -= sb->s_blocksize;
800 
801 	if (inode && vfs_dq_alloc_block(inode, 1)) {
802 		brelse(goal_epos.bh);
803 		mutex_unlock(&sbi->s_alloc_mutex);
804 		*err = -EDQUOT;
805 		return 0;
806 	}
807 
808 	if (goal_elen)
809 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
810 	else
811 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
812 	brelse(goal_epos.bh);
813 
814 	udf_add_free_space(sb, partition, -1);
815 
816 	mutex_unlock(&sbi->s_alloc_mutex);
817 	*err = 0;
818 	return newblock;
819 }
820 
821 void udf_free_blocks(struct super_block *sb, struct inode *inode,
822 		     struct kernel_lb_addr *bloc, uint32_t offset,
823 		     uint32_t count)
824 {
825 	uint16_t partition = bloc->partitionReferenceNum;
826 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
827 
828 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
829 		udf_bitmap_free_blocks(sb, inode, map->s_uspace.s_bitmap,
830 				       bloc, offset, count);
831 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
832 		udf_table_free_blocks(sb, inode, map->s_uspace.s_table,
833 				      bloc, offset, count);
834 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
835 		udf_bitmap_free_blocks(sb, inode, map->s_fspace.s_bitmap,
836 				       bloc, offset, count);
837 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
838 		udf_table_free_blocks(sb, inode, map->s_fspace.s_table,
839 				      bloc, offset, count);
840 	}
841 }
842 
843 inline int udf_prealloc_blocks(struct super_block *sb,
844 			       struct inode *inode,
845 			       uint16_t partition, uint32_t first_block,
846 			       uint32_t block_count)
847 {
848 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
849 
850 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
851 		return udf_bitmap_prealloc_blocks(sb, inode,
852 						  map->s_uspace.s_bitmap,
853 						  partition, first_block,
854 						  block_count);
855 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
856 		return udf_table_prealloc_blocks(sb, inode,
857 						 map->s_uspace.s_table,
858 						 partition, first_block,
859 						 block_count);
860 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
861 		return udf_bitmap_prealloc_blocks(sb, inode,
862 						  map->s_fspace.s_bitmap,
863 						  partition, first_block,
864 						  block_count);
865 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
866 		return udf_table_prealloc_blocks(sb, inode,
867 						 map->s_fspace.s_table,
868 						 partition, first_block,
869 						 block_count);
870 	else
871 		return 0;
872 }
873 
874 inline int udf_new_block(struct super_block *sb,
875 			 struct inode *inode,
876 			 uint16_t partition, uint32_t goal, int *err)
877 {
878 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
879 
880 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
881 		return udf_bitmap_new_block(sb, inode,
882 					   map->s_uspace.s_bitmap,
883 					   partition, goal, err);
884 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
885 		return udf_table_new_block(sb, inode,
886 					   map->s_uspace.s_table,
887 					   partition, goal, err);
888 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
889 		return udf_bitmap_new_block(sb, inode,
890 					    map->s_fspace.s_bitmap,
891 					    partition, goal, err);
892 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
893 		return udf_table_new_block(sb, inode,
894 					   map->s_fspace.s_table,
895 					   partition, goal, err);
896 	else {
897 		*err = -EIO;
898 		return 0;
899 	}
900 }
901