1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * balloc.c 4 * 5 * PURPOSE 6 * Block allocation handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1999-2001 Ben Fennema 10 * (C) 1999 Stelias Computing Inc 11 * 12 * HISTORY 13 * 14 * 02/24/99 blf Created. 15 * 16 */ 17 18 #include "udfdecl.h" 19 20 #include <linux/bitops.h> 21 22 #include "udf_i.h" 23 #include "udf_sb.h" 24 25 #define udf_clear_bit __test_and_clear_bit_le 26 #define udf_set_bit __test_and_set_bit_le 27 #define udf_test_bit test_bit_le 28 #define udf_find_next_one_bit find_next_bit_le 29 30 static int read_block_bitmap(struct super_block *sb, 31 struct udf_bitmap *bitmap, unsigned int block, 32 unsigned long bitmap_nr) 33 { 34 struct buffer_head *bh = NULL; 35 int i; 36 int max_bits, off, count; 37 struct kernel_lb_addr loc; 38 39 loc.logicalBlockNum = bitmap->s_extPosition; 40 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 41 42 bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block)); 43 bitmap->s_block_bitmap[bitmap_nr] = bh; 44 if (!bh) 45 return -EIO; 46 47 /* Check consistency of Space Bitmap buffer. */ 48 max_bits = sb->s_blocksize * 8; 49 if (!bitmap_nr) { 50 off = sizeof(struct spaceBitmapDesc) << 3; 51 count = min(max_bits - off, bitmap->s_nr_groups); 52 } else { 53 /* 54 * Rough check if bitmap number is too big to have any bitmap 55 * blocks reserved. 56 */ 57 if (bitmap_nr > 58 (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2) 59 return 0; 60 off = 0; 61 count = bitmap->s_nr_groups - bitmap_nr * max_bits + 62 (sizeof(struct spaceBitmapDesc) << 3); 63 count = min(count, max_bits); 64 } 65 66 for (i = 0; i < count; i++) 67 if (udf_test_bit(i + off, bh->b_data)) 68 return -EFSCORRUPTED; 69 return 0; 70 } 71 72 static int __load_block_bitmap(struct super_block *sb, 73 struct udf_bitmap *bitmap, 74 unsigned int block_group) 75 { 76 int retval = 0; 77 int nr_groups = bitmap->s_nr_groups; 78 79 if (block_group >= nr_groups) { 80 udf_debug("block_group (%u) > nr_groups (%d)\n", 81 block_group, nr_groups); 82 } 83 84 if (bitmap->s_block_bitmap[block_group]) 85 return block_group; 86 87 retval = read_block_bitmap(sb, bitmap, block_group, block_group); 88 if (retval < 0) 89 return retval; 90 91 return block_group; 92 } 93 94 static inline int load_block_bitmap(struct super_block *sb, 95 struct udf_bitmap *bitmap, 96 unsigned int block_group) 97 { 98 int slot; 99 100 slot = __load_block_bitmap(sb, bitmap, block_group); 101 102 if (slot < 0) 103 return slot; 104 105 if (!bitmap->s_block_bitmap[slot]) 106 return -EIO; 107 108 return slot; 109 } 110 111 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt) 112 { 113 struct udf_sb_info *sbi = UDF_SB(sb); 114 struct logicalVolIntegrityDesc *lvid; 115 116 if (!sbi->s_lvid_bh) 117 return; 118 119 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 120 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt); 121 udf_updated_lvid(sb); 122 } 123 124 static void udf_bitmap_free_blocks(struct super_block *sb, 125 struct udf_bitmap *bitmap, 126 struct kernel_lb_addr *bloc, 127 uint32_t offset, 128 uint32_t count) 129 { 130 struct udf_sb_info *sbi = UDF_SB(sb); 131 struct buffer_head *bh = NULL; 132 struct udf_part_map *partmap; 133 unsigned long block; 134 unsigned long block_group; 135 unsigned long bit; 136 unsigned long i; 137 int bitmap_nr; 138 unsigned long overflow; 139 140 mutex_lock(&sbi->s_alloc_mutex); 141 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 142 if (bloc->logicalBlockNum + count < count || 143 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 144 udf_debug("%u < %d || %u + %u > %u\n", 145 bloc->logicalBlockNum, 0, 146 bloc->logicalBlockNum, count, 147 partmap->s_partition_len); 148 goto error_return; 149 } 150 151 block = bloc->logicalBlockNum + offset + 152 (sizeof(struct spaceBitmapDesc) << 3); 153 154 do { 155 overflow = 0; 156 block_group = block >> (sb->s_blocksize_bits + 3); 157 bit = block % (sb->s_blocksize << 3); 158 159 /* 160 * Check to see if we are freeing blocks across a group boundary. 161 */ 162 if (bit + count > (sb->s_blocksize << 3)) { 163 overflow = bit + count - (sb->s_blocksize << 3); 164 count -= overflow; 165 } 166 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 167 if (bitmap_nr < 0) 168 goto error_return; 169 170 bh = bitmap->s_block_bitmap[bitmap_nr]; 171 for (i = 0; i < count; i++) { 172 if (udf_set_bit(bit + i, bh->b_data)) { 173 udf_debug("bit %lu already set\n", bit + i); 174 udf_debug("byte=%2x\n", 175 ((__u8 *)bh->b_data)[(bit + i) >> 3]); 176 } 177 } 178 udf_add_free_space(sb, sbi->s_partition, count); 179 mark_buffer_dirty(bh); 180 if (overflow) { 181 block += count; 182 count = overflow; 183 } 184 } while (overflow); 185 186 error_return: 187 mutex_unlock(&sbi->s_alloc_mutex); 188 } 189 190 static int udf_bitmap_prealloc_blocks(struct super_block *sb, 191 struct udf_bitmap *bitmap, 192 uint16_t partition, uint32_t first_block, 193 uint32_t block_count) 194 { 195 struct udf_sb_info *sbi = UDF_SB(sb); 196 int alloc_count = 0; 197 int bit, block, block_group; 198 int bitmap_nr; 199 struct buffer_head *bh; 200 __u32 part_len; 201 202 mutex_lock(&sbi->s_alloc_mutex); 203 part_len = sbi->s_partmaps[partition].s_partition_len; 204 if (first_block >= part_len) 205 goto out; 206 207 if (first_block + block_count > part_len) 208 block_count = part_len - first_block; 209 210 do { 211 block = first_block + (sizeof(struct spaceBitmapDesc) << 3); 212 block_group = block >> (sb->s_blocksize_bits + 3); 213 214 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 215 if (bitmap_nr < 0) 216 goto out; 217 bh = bitmap->s_block_bitmap[bitmap_nr]; 218 219 bit = block % (sb->s_blocksize << 3); 220 221 while (bit < (sb->s_blocksize << 3) && block_count > 0) { 222 if (!udf_clear_bit(bit, bh->b_data)) 223 goto out; 224 block_count--; 225 alloc_count++; 226 bit++; 227 block++; 228 } 229 mark_buffer_dirty(bh); 230 } while (block_count > 0); 231 232 out: 233 udf_add_free_space(sb, partition, -alloc_count); 234 mutex_unlock(&sbi->s_alloc_mutex); 235 return alloc_count; 236 } 237 238 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb, 239 struct udf_bitmap *bitmap, uint16_t partition, 240 uint32_t goal, int *err) 241 { 242 struct udf_sb_info *sbi = UDF_SB(sb); 243 int newbit, bit = 0; 244 udf_pblk_t block; 245 int block_group, group_start; 246 int end_goal, nr_groups, bitmap_nr, i; 247 struct buffer_head *bh = NULL; 248 char *ptr; 249 udf_pblk_t newblock = 0; 250 251 *err = -ENOSPC; 252 mutex_lock(&sbi->s_alloc_mutex); 253 254 repeat: 255 if (goal >= sbi->s_partmaps[partition].s_partition_len) 256 goal = 0; 257 258 nr_groups = bitmap->s_nr_groups; 259 block = goal + (sizeof(struct spaceBitmapDesc) << 3); 260 block_group = block >> (sb->s_blocksize_bits + 3); 261 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 262 263 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 264 if (bitmap_nr < 0) 265 goto error_return; 266 bh = bitmap->s_block_bitmap[bitmap_nr]; 267 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 268 sb->s_blocksize - group_start); 269 270 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 271 bit = block % (sb->s_blocksize << 3); 272 if (udf_test_bit(bit, bh->b_data)) 273 goto got_block; 274 275 end_goal = (bit + 63) & ~63; 276 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); 277 if (bit < end_goal) 278 goto got_block; 279 280 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, 281 sb->s_blocksize - ((bit + 7) >> 3)); 282 newbit = (ptr - ((char *)bh->b_data)) << 3; 283 if (newbit < sb->s_blocksize << 3) { 284 bit = newbit; 285 goto search_back; 286 } 287 288 newbit = udf_find_next_one_bit(bh->b_data, 289 sb->s_blocksize << 3, bit); 290 if (newbit < sb->s_blocksize << 3) { 291 bit = newbit; 292 goto got_block; 293 } 294 } 295 296 for (i = 0; i < (nr_groups * 2); i++) { 297 block_group++; 298 if (block_group >= nr_groups) 299 block_group = 0; 300 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); 301 302 bitmap_nr = load_block_bitmap(sb, bitmap, block_group); 303 if (bitmap_nr < 0) 304 goto error_return; 305 bh = bitmap->s_block_bitmap[bitmap_nr]; 306 if (i < nr_groups) { 307 ptr = memscan((char *)bh->b_data + group_start, 0xFF, 308 sb->s_blocksize - group_start); 309 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { 310 bit = (ptr - ((char *)bh->b_data)) << 3; 311 break; 312 } 313 } else { 314 bit = udf_find_next_one_bit(bh->b_data, 315 sb->s_blocksize << 3, 316 group_start << 3); 317 if (bit < sb->s_blocksize << 3) 318 break; 319 } 320 } 321 if (i >= (nr_groups * 2)) { 322 mutex_unlock(&sbi->s_alloc_mutex); 323 return newblock; 324 } 325 if (bit < sb->s_blocksize << 3) 326 goto search_back; 327 else 328 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, 329 group_start << 3); 330 if (bit >= sb->s_blocksize << 3) { 331 mutex_unlock(&sbi->s_alloc_mutex); 332 return 0; 333 } 334 335 search_back: 336 i = 0; 337 while (i < 7 && bit > (group_start << 3) && 338 udf_test_bit(bit - 1, bh->b_data)) { 339 ++i; 340 --bit; 341 } 342 343 got_block: 344 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - 345 (sizeof(struct spaceBitmapDesc) << 3); 346 347 if (newblock >= sbi->s_partmaps[partition].s_partition_len) { 348 /* 349 * Ran off the end of the bitmap, and bits following are 350 * non-compliant (not all zero) 351 */ 352 udf_err(sb, "bitmap for partition %d corrupted (block %u marked" 353 " as free, partition length is %u)\n", partition, 354 newblock, sbi->s_partmaps[partition].s_partition_len); 355 goto error_return; 356 } 357 358 if (!udf_clear_bit(bit, bh->b_data)) { 359 udf_debug("bit already cleared for block %d\n", bit); 360 goto repeat; 361 } 362 363 mark_buffer_dirty(bh); 364 365 udf_add_free_space(sb, partition, -1); 366 mutex_unlock(&sbi->s_alloc_mutex); 367 *err = 0; 368 return newblock; 369 370 error_return: 371 *err = -EIO; 372 mutex_unlock(&sbi->s_alloc_mutex); 373 return 0; 374 } 375 376 static void udf_table_free_blocks(struct super_block *sb, 377 struct inode *table, 378 struct kernel_lb_addr *bloc, 379 uint32_t offset, 380 uint32_t count) 381 { 382 struct udf_sb_info *sbi = UDF_SB(sb); 383 struct udf_part_map *partmap; 384 uint32_t start, end; 385 uint32_t elen; 386 struct kernel_lb_addr eloc; 387 struct extent_position oepos, epos; 388 int8_t etype; 389 struct udf_inode_info *iinfo; 390 391 mutex_lock(&sbi->s_alloc_mutex); 392 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum]; 393 if (bloc->logicalBlockNum + count < count || 394 (bloc->logicalBlockNum + count) > partmap->s_partition_len) { 395 udf_debug("%u < %d || %u + %u > %u\n", 396 bloc->logicalBlockNum, 0, 397 bloc->logicalBlockNum, count, 398 partmap->s_partition_len); 399 goto error_return; 400 } 401 402 iinfo = UDF_I(table); 403 udf_add_free_space(sb, sbi->s_partition, count); 404 405 start = bloc->logicalBlockNum + offset; 406 end = bloc->logicalBlockNum + offset + count - 1; 407 408 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry); 409 elen = 0; 410 epos.block = oepos.block = iinfo->i_location; 411 epos.bh = oepos.bh = NULL; 412 413 while (count && 414 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 415 if (((eloc.logicalBlockNum + 416 (elen >> sb->s_blocksize_bits)) == start)) { 417 if ((0x3FFFFFFF - elen) < 418 (count << sb->s_blocksize_bits)) { 419 uint32_t tmp = ((0x3FFFFFFF - elen) >> 420 sb->s_blocksize_bits); 421 count -= tmp; 422 start += tmp; 423 elen = (etype << 30) | 424 (0x40000000 - sb->s_blocksize); 425 } else { 426 elen = (etype << 30) | 427 (elen + 428 (count << sb->s_blocksize_bits)); 429 start += count; 430 count = 0; 431 } 432 udf_write_aext(table, &oepos, &eloc, elen, 1); 433 } else if (eloc.logicalBlockNum == (end + 1)) { 434 if ((0x3FFFFFFF - elen) < 435 (count << sb->s_blocksize_bits)) { 436 uint32_t tmp = ((0x3FFFFFFF - elen) >> 437 sb->s_blocksize_bits); 438 count -= tmp; 439 end -= tmp; 440 eloc.logicalBlockNum -= tmp; 441 elen = (etype << 30) | 442 (0x40000000 - sb->s_blocksize); 443 } else { 444 eloc.logicalBlockNum = start; 445 elen = (etype << 30) | 446 (elen + 447 (count << sb->s_blocksize_bits)); 448 end -= count; 449 count = 0; 450 } 451 udf_write_aext(table, &oepos, &eloc, elen, 1); 452 } 453 454 if (epos.bh != oepos.bh) { 455 oepos.block = epos.block; 456 brelse(oepos.bh); 457 get_bh(epos.bh); 458 oepos.bh = epos.bh; 459 oepos.offset = 0; 460 } else { 461 oepos.offset = epos.offset; 462 } 463 } 464 465 if (count) { 466 /* 467 * NOTE: we CANNOT use udf_add_aext here, as it can try to 468 * allocate a new block, and since we hold the super block 469 * lock already very bad things would happen :) 470 * 471 * We copy the behavior of udf_add_aext, but instead of 472 * trying to allocate a new block close to the existing one, 473 * we just steal a block from the extent we are trying to add. 474 * 475 * It would be nice if the blocks were close together, but it 476 * isn't required. 477 */ 478 479 int adsize; 480 481 eloc.logicalBlockNum = start; 482 elen = EXT_RECORDED_ALLOCATED | 483 (count << sb->s_blocksize_bits); 484 485 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 486 adsize = sizeof(struct short_ad); 487 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 488 adsize = sizeof(struct long_ad); 489 else { 490 brelse(oepos.bh); 491 brelse(epos.bh); 492 goto error_return; 493 } 494 495 if (epos.offset + (2 * adsize) > sb->s_blocksize) { 496 /* Steal a block from the extent being free'd */ 497 udf_setup_indirect_aext(table, eloc.logicalBlockNum, 498 &epos); 499 500 eloc.logicalBlockNum++; 501 elen -= sb->s_blocksize; 502 } 503 504 /* It's possible that stealing the block emptied the extent */ 505 if (elen) 506 __udf_add_aext(table, &epos, &eloc, elen, 1); 507 } 508 509 brelse(epos.bh); 510 brelse(oepos.bh); 511 512 error_return: 513 mutex_unlock(&sbi->s_alloc_mutex); 514 return; 515 } 516 517 static int udf_table_prealloc_blocks(struct super_block *sb, 518 struct inode *table, uint16_t partition, 519 uint32_t first_block, uint32_t block_count) 520 { 521 struct udf_sb_info *sbi = UDF_SB(sb); 522 int alloc_count = 0; 523 uint32_t elen, adsize; 524 struct kernel_lb_addr eloc; 525 struct extent_position epos; 526 int8_t etype = -1; 527 struct udf_inode_info *iinfo; 528 529 if (first_block >= sbi->s_partmaps[partition].s_partition_len) 530 return 0; 531 532 iinfo = UDF_I(table); 533 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 534 adsize = sizeof(struct short_ad); 535 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 536 adsize = sizeof(struct long_ad); 537 else 538 return 0; 539 540 mutex_lock(&sbi->s_alloc_mutex); 541 epos.offset = sizeof(struct unallocSpaceEntry); 542 epos.block = iinfo->i_location; 543 epos.bh = NULL; 544 eloc.logicalBlockNum = 0xFFFFFFFF; 545 546 while (first_block != eloc.logicalBlockNum && 547 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 548 udf_debug("eloc=%u, elen=%u, first_block=%u\n", 549 eloc.logicalBlockNum, elen, first_block); 550 ; /* empty loop body */ 551 } 552 553 if (first_block == eloc.logicalBlockNum) { 554 epos.offset -= adsize; 555 556 alloc_count = (elen >> sb->s_blocksize_bits); 557 if (alloc_count > block_count) { 558 alloc_count = block_count; 559 eloc.logicalBlockNum += alloc_count; 560 elen -= (alloc_count << sb->s_blocksize_bits); 561 udf_write_aext(table, &epos, &eloc, 562 (etype << 30) | elen, 1); 563 } else 564 udf_delete_aext(table, epos); 565 } else { 566 alloc_count = 0; 567 } 568 569 brelse(epos.bh); 570 571 if (alloc_count) 572 udf_add_free_space(sb, partition, -alloc_count); 573 mutex_unlock(&sbi->s_alloc_mutex); 574 return alloc_count; 575 } 576 577 static udf_pblk_t udf_table_new_block(struct super_block *sb, 578 struct inode *table, uint16_t partition, 579 uint32_t goal, int *err) 580 { 581 struct udf_sb_info *sbi = UDF_SB(sb); 582 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; 583 udf_pblk_t newblock = 0; 584 uint32_t adsize; 585 uint32_t elen, goal_elen = 0; 586 struct kernel_lb_addr eloc, goal_eloc; 587 struct extent_position epos, goal_epos; 588 int8_t etype; 589 struct udf_inode_info *iinfo = UDF_I(table); 590 591 *err = -ENOSPC; 592 593 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 594 adsize = sizeof(struct short_ad); 595 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 596 adsize = sizeof(struct long_ad); 597 else 598 return newblock; 599 600 mutex_lock(&sbi->s_alloc_mutex); 601 if (goal >= sbi->s_partmaps[partition].s_partition_len) 602 goal = 0; 603 604 /* We search for the closest matching block to goal. If we find 605 a exact hit, we stop. Otherwise we keep going till we run out 606 of extents. We store the buffer_head, bloc, and extoffset 607 of the current closest match and use that when we are done. 608 */ 609 epos.offset = sizeof(struct unallocSpaceEntry); 610 epos.block = iinfo->i_location; 611 epos.bh = goal_epos.bh = NULL; 612 613 while (spread && 614 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { 615 if (goal >= eloc.logicalBlockNum) { 616 if (goal < eloc.logicalBlockNum + 617 (elen >> sb->s_blocksize_bits)) 618 nspread = 0; 619 else 620 nspread = goal - eloc.logicalBlockNum - 621 (elen >> sb->s_blocksize_bits); 622 } else { 623 nspread = eloc.logicalBlockNum - goal; 624 } 625 626 if (nspread < spread) { 627 spread = nspread; 628 if (goal_epos.bh != epos.bh) { 629 brelse(goal_epos.bh); 630 goal_epos.bh = epos.bh; 631 get_bh(goal_epos.bh); 632 } 633 goal_epos.block = epos.block; 634 goal_epos.offset = epos.offset - adsize; 635 goal_eloc = eloc; 636 goal_elen = (etype << 30) | elen; 637 } 638 } 639 640 brelse(epos.bh); 641 642 if (spread == 0xFFFFFFFF) { 643 brelse(goal_epos.bh); 644 mutex_unlock(&sbi->s_alloc_mutex); 645 return 0; 646 } 647 648 /* Only allocate blocks from the beginning of the extent. 649 That way, we only delete (empty) extents, never have to insert an 650 extent because of splitting */ 651 /* This works, but very poorly.... */ 652 653 newblock = goal_eloc.logicalBlockNum; 654 goal_eloc.logicalBlockNum++; 655 goal_elen -= sb->s_blocksize; 656 657 if (goal_elen) 658 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1); 659 else 660 udf_delete_aext(table, goal_epos); 661 brelse(goal_epos.bh); 662 663 udf_add_free_space(sb, partition, -1); 664 665 mutex_unlock(&sbi->s_alloc_mutex); 666 *err = 0; 667 return newblock; 668 } 669 670 void udf_free_blocks(struct super_block *sb, struct inode *inode, 671 struct kernel_lb_addr *bloc, uint32_t offset, 672 uint32_t count) 673 { 674 uint16_t partition = bloc->partitionReferenceNum; 675 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 676 677 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 678 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap, 679 bloc, offset, count); 680 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 681 udf_table_free_blocks(sb, map->s_uspace.s_table, 682 bloc, offset, count); 683 } 684 685 if (inode) { 686 inode_sub_bytes(inode, 687 ((sector_t)count) << sb->s_blocksize_bits); 688 } 689 } 690 691 inline int udf_prealloc_blocks(struct super_block *sb, 692 struct inode *inode, 693 uint16_t partition, uint32_t first_block, 694 uint32_t block_count) 695 { 696 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 697 int allocated; 698 699 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 700 allocated = udf_bitmap_prealloc_blocks(sb, 701 map->s_uspace.s_bitmap, 702 partition, first_block, 703 block_count); 704 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 705 allocated = udf_table_prealloc_blocks(sb, 706 map->s_uspace.s_table, 707 partition, first_block, 708 block_count); 709 else 710 return 0; 711 712 if (inode && allocated > 0) 713 inode_add_bytes(inode, allocated << sb->s_blocksize_bits); 714 return allocated; 715 } 716 717 inline udf_pblk_t udf_new_block(struct super_block *sb, 718 struct inode *inode, 719 uint16_t partition, uint32_t goal, int *err) 720 { 721 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 722 udf_pblk_t block; 723 724 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 725 block = udf_bitmap_new_block(sb, 726 map->s_uspace.s_bitmap, 727 partition, goal, err); 728 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 729 block = udf_table_new_block(sb, 730 map->s_uspace.s_table, 731 partition, goal, err); 732 else { 733 *err = -EIO; 734 return 0; 735 } 736 if (inode && block) 737 inode_add_bytes(inode, sb->s_blocksize); 738 return block; 739 } 740