xref: /linux/fs/udf/balloc.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * balloc.c
4  *
5  * PURPOSE
6  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1999-2001 Ben Fennema
10  *  (C) 1999 Stelias Computing Inc
11  *
12  * HISTORY
13  *
14  *  02/24/99 blf  Created.
15  *
16  */
17 
18 #include "udfdecl.h"
19 
20 #include <linux/bitops.h>
21 
22 #include "udf_i.h"
23 #include "udf_sb.h"
24 
25 #define udf_clear_bit	__test_and_clear_bit_le
26 #define udf_set_bit	__test_and_set_bit_le
27 #define udf_test_bit	test_bit_le
28 #define udf_find_next_one_bit	find_next_bit_le
29 
30 static int read_block_bitmap(struct super_block *sb,
31 			     struct udf_bitmap *bitmap, unsigned int block,
32 			     unsigned long bitmap_nr)
33 {
34 	struct buffer_head *bh = NULL;
35 	int i;
36 	int max_bits, off, count;
37 	struct kernel_lb_addr loc;
38 
39 	loc.logicalBlockNum = bitmap->s_extPosition;
40 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
41 
42 	bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
43 	bitmap->s_block_bitmap[bitmap_nr] = bh;
44 	if (!bh)
45 		return -EIO;
46 
47 	/* Check consistency of Space Bitmap buffer. */
48 	max_bits = sb->s_blocksize * 8;
49 	if (!bitmap_nr) {
50 		off = sizeof(struct spaceBitmapDesc) << 3;
51 		count = min(max_bits - off, bitmap->s_nr_groups);
52 	} else {
53 		/*
54 		 * Rough check if bitmap number is too big to have any bitmap
55  		 * blocks reserved.
56 		 */
57 		if (bitmap_nr >
58 		    (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
59 			return 0;
60 		off = 0;
61 		count = bitmap->s_nr_groups - bitmap_nr * max_bits +
62 				(sizeof(struct spaceBitmapDesc) << 3);
63 		count = min(count, max_bits);
64 	}
65 
66 	for (i = 0; i < count; i++)
67 		if (udf_test_bit(i + off, bh->b_data))
68 			return -EFSCORRUPTED;
69 	return 0;
70 }
71 
72 static int __load_block_bitmap(struct super_block *sb,
73 			       struct udf_bitmap *bitmap,
74 			       unsigned int block_group)
75 {
76 	int retval = 0;
77 	int nr_groups = bitmap->s_nr_groups;
78 
79 	if (block_group >= nr_groups) {
80 		udf_debug("block_group (%u) > nr_groups (%d)\n",
81 			  block_group, nr_groups);
82 	}
83 
84 	if (bitmap->s_block_bitmap[block_group])
85 		return block_group;
86 
87 	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
88 	if (retval < 0)
89 		return retval;
90 
91 	return block_group;
92 }
93 
94 static inline int load_block_bitmap(struct super_block *sb,
95 				    struct udf_bitmap *bitmap,
96 				    unsigned int block_group)
97 {
98 	int slot;
99 
100 	slot = __load_block_bitmap(sb, bitmap, block_group);
101 
102 	if (slot < 0)
103 		return slot;
104 
105 	if (!bitmap->s_block_bitmap[slot])
106 		return -EIO;
107 
108 	return slot;
109 }
110 
111 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
112 {
113 	struct udf_sb_info *sbi = UDF_SB(sb);
114 	struct logicalVolIntegrityDesc *lvid;
115 
116 	if (!sbi->s_lvid_bh)
117 		return;
118 
119 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
120 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
121 	udf_updated_lvid(sb);
122 }
123 
124 static void udf_bitmap_free_blocks(struct super_block *sb,
125 				   struct udf_bitmap *bitmap,
126 				   struct kernel_lb_addr *bloc,
127 				   uint32_t offset,
128 				   uint32_t count)
129 {
130 	struct udf_sb_info *sbi = UDF_SB(sb);
131 	struct buffer_head *bh = NULL;
132 	struct udf_part_map *partmap;
133 	unsigned long block;
134 	unsigned long block_group;
135 	unsigned long bit;
136 	unsigned long i;
137 	int bitmap_nr;
138 	unsigned long overflow;
139 
140 	mutex_lock(&sbi->s_alloc_mutex);
141 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
142 	if (bloc->logicalBlockNum + count < count ||
143 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
144 		udf_debug("%u < %d || %u + %u > %u\n",
145 			  bloc->logicalBlockNum, 0,
146 			  bloc->logicalBlockNum, count,
147 			  partmap->s_partition_len);
148 		goto error_return;
149 	}
150 
151 	block = bloc->logicalBlockNum + offset +
152 		(sizeof(struct spaceBitmapDesc) << 3);
153 
154 	do {
155 		overflow = 0;
156 		block_group = block >> (sb->s_blocksize_bits + 3);
157 		bit = block % (sb->s_blocksize << 3);
158 
159 		/*
160 		* Check to see if we are freeing blocks across a group boundary.
161 		*/
162 		if (bit + count > (sb->s_blocksize << 3)) {
163 			overflow = bit + count - (sb->s_blocksize << 3);
164 			count -= overflow;
165 		}
166 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
167 		if (bitmap_nr < 0)
168 			goto error_return;
169 
170 		bh = bitmap->s_block_bitmap[bitmap_nr];
171 		for (i = 0; i < count; i++) {
172 			if (udf_set_bit(bit + i, bh->b_data)) {
173 				udf_debug("bit %lu already set\n", bit + i);
174 				udf_debug("byte=%2x\n",
175 					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
176 			}
177 		}
178 		udf_add_free_space(sb, sbi->s_partition, count);
179 		mark_buffer_dirty(bh);
180 		if (overflow) {
181 			block += count;
182 			count = overflow;
183 		}
184 	} while (overflow);
185 
186 error_return:
187 	mutex_unlock(&sbi->s_alloc_mutex);
188 }
189 
190 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
191 				      struct udf_bitmap *bitmap,
192 				      uint16_t partition, uint32_t first_block,
193 				      uint32_t block_count)
194 {
195 	struct udf_sb_info *sbi = UDF_SB(sb);
196 	int alloc_count = 0;
197 	int bit, block, block_group;
198 	int bitmap_nr;
199 	struct buffer_head *bh;
200 	__u32 part_len;
201 
202 	mutex_lock(&sbi->s_alloc_mutex);
203 	part_len = sbi->s_partmaps[partition].s_partition_len;
204 	if (first_block >= part_len)
205 		goto out;
206 
207 	if (first_block + block_count > part_len)
208 		block_count = part_len - first_block;
209 
210 	do {
211 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
212 		block_group = block >> (sb->s_blocksize_bits + 3);
213 
214 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
215 		if (bitmap_nr < 0)
216 			goto out;
217 		bh = bitmap->s_block_bitmap[bitmap_nr];
218 
219 		bit = block % (sb->s_blocksize << 3);
220 
221 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
222 			if (!udf_clear_bit(bit, bh->b_data))
223 				goto out;
224 			block_count--;
225 			alloc_count++;
226 			bit++;
227 			block++;
228 		}
229 		mark_buffer_dirty(bh);
230 	} while (block_count > 0);
231 
232 out:
233 	udf_add_free_space(sb, partition, -alloc_count);
234 	mutex_unlock(&sbi->s_alloc_mutex);
235 	return alloc_count;
236 }
237 
238 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
239 				struct udf_bitmap *bitmap, uint16_t partition,
240 				uint32_t goal, int *err)
241 {
242 	struct udf_sb_info *sbi = UDF_SB(sb);
243 	int newbit, bit = 0;
244 	udf_pblk_t block;
245 	int block_group, group_start;
246 	int end_goal, nr_groups, bitmap_nr, i;
247 	struct buffer_head *bh = NULL;
248 	char *ptr;
249 	udf_pblk_t newblock = 0;
250 
251 	*err = -ENOSPC;
252 	mutex_lock(&sbi->s_alloc_mutex);
253 
254 repeat:
255 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
256 		goal = 0;
257 
258 	nr_groups = bitmap->s_nr_groups;
259 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
260 	block_group = block >> (sb->s_blocksize_bits + 3);
261 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
262 
263 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
264 	if (bitmap_nr < 0)
265 		goto error_return;
266 	bh = bitmap->s_block_bitmap[bitmap_nr];
267 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
268 		      sb->s_blocksize - group_start);
269 
270 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
271 		bit = block % (sb->s_blocksize << 3);
272 		if (udf_test_bit(bit, bh->b_data))
273 			goto got_block;
274 
275 		end_goal = (bit + 63) & ~63;
276 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
277 		if (bit < end_goal)
278 			goto got_block;
279 
280 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
281 			      sb->s_blocksize - ((bit + 7) >> 3));
282 		newbit = (ptr - ((char *)bh->b_data)) << 3;
283 		if (newbit < sb->s_blocksize << 3) {
284 			bit = newbit;
285 			goto search_back;
286 		}
287 
288 		newbit = udf_find_next_one_bit(bh->b_data,
289 					       sb->s_blocksize << 3, bit);
290 		if (newbit < sb->s_blocksize << 3) {
291 			bit = newbit;
292 			goto got_block;
293 		}
294 	}
295 
296 	for (i = 0; i < (nr_groups * 2); i++) {
297 		block_group++;
298 		if (block_group >= nr_groups)
299 			block_group = 0;
300 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
301 
302 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
303 		if (bitmap_nr < 0)
304 			goto error_return;
305 		bh = bitmap->s_block_bitmap[bitmap_nr];
306 		if (i < nr_groups) {
307 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
308 				      sb->s_blocksize - group_start);
309 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
310 				bit = (ptr - ((char *)bh->b_data)) << 3;
311 				break;
312 			}
313 		} else {
314 			bit = udf_find_next_one_bit(bh->b_data,
315 						    sb->s_blocksize << 3,
316 						    group_start << 3);
317 			if (bit < sb->s_blocksize << 3)
318 				break;
319 		}
320 	}
321 	if (i >= (nr_groups * 2)) {
322 		mutex_unlock(&sbi->s_alloc_mutex);
323 		return newblock;
324 	}
325 	if (bit < sb->s_blocksize << 3)
326 		goto search_back;
327 	else
328 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
329 					    group_start << 3);
330 	if (bit >= sb->s_blocksize << 3) {
331 		mutex_unlock(&sbi->s_alloc_mutex);
332 		return 0;
333 	}
334 
335 search_back:
336 	i = 0;
337 	while (i < 7 && bit > (group_start << 3) &&
338 	       udf_test_bit(bit - 1, bh->b_data)) {
339 		++i;
340 		--bit;
341 	}
342 
343 got_block:
344 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
345 		(sizeof(struct spaceBitmapDesc) << 3);
346 
347 	if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
348 		/*
349 		 * Ran off the end of the bitmap, and bits following are
350 		 * non-compliant (not all zero)
351 		 */
352 		udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
353 			" as free, partition length is %u)\n", partition,
354 			newblock, sbi->s_partmaps[partition].s_partition_len);
355 		goto error_return;
356 	}
357 
358 	if (!udf_clear_bit(bit, bh->b_data)) {
359 		udf_debug("bit already cleared for block %d\n", bit);
360 		goto repeat;
361 	}
362 
363 	mark_buffer_dirty(bh);
364 
365 	udf_add_free_space(sb, partition, -1);
366 	mutex_unlock(&sbi->s_alloc_mutex);
367 	*err = 0;
368 	return newblock;
369 
370 error_return:
371 	*err = -EIO;
372 	mutex_unlock(&sbi->s_alloc_mutex);
373 	return 0;
374 }
375 
376 static void udf_table_free_blocks(struct super_block *sb,
377 				  struct inode *table,
378 				  struct kernel_lb_addr *bloc,
379 				  uint32_t offset,
380 				  uint32_t count)
381 {
382 	struct udf_sb_info *sbi = UDF_SB(sb);
383 	struct udf_part_map *partmap;
384 	uint32_t start, end;
385 	uint32_t elen;
386 	struct kernel_lb_addr eloc;
387 	struct extent_position oepos, epos;
388 	int8_t etype;
389 	struct udf_inode_info *iinfo;
390 
391 	mutex_lock(&sbi->s_alloc_mutex);
392 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
393 	if (bloc->logicalBlockNum + count < count ||
394 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
395 		udf_debug("%u < %d || %u + %u > %u\n",
396 			  bloc->logicalBlockNum, 0,
397 			  bloc->logicalBlockNum, count,
398 			  partmap->s_partition_len);
399 		goto error_return;
400 	}
401 
402 	iinfo = UDF_I(table);
403 	udf_add_free_space(sb, sbi->s_partition, count);
404 
405 	start = bloc->logicalBlockNum + offset;
406 	end = bloc->logicalBlockNum + offset + count - 1;
407 
408 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
409 	elen = 0;
410 	epos.block = oepos.block = iinfo->i_location;
411 	epos.bh = oepos.bh = NULL;
412 
413 	while (count &&
414 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
415 		if (((eloc.logicalBlockNum +
416 			(elen >> sb->s_blocksize_bits)) == start)) {
417 			if ((0x3FFFFFFF - elen) <
418 					(count << sb->s_blocksize_bits)) {
419 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
420 							sb->s_blocksize_bits);
421 				count -= tmp;
422 				start += tmp;
423 				elen = (etype << 30) |
424 					(0x40000000 - sb->s_blocksize);
425 			} else {
426 				elen = (etype << 30) |
427 					(elen +
428 					(count << sb->s_blocksize_bits));
429 				start += count;
430 				count = 0;
431 			}
432 			udf_write_aext(table, &oepos, &eloc, elen, 1);
433 		} else if (eloc.logicalBlockNum == (end + 1)) {
434 			if ((0x3FFFFFFF - elen) <
435 					(count << sb->s_blocksize_bits)) {
436 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
437 						sb->s_blocksize_bits);
438 				count -= tmp;
439 				end -= tmp;
440 				eloc.logicalBlockNum -= tmp;
441 				elen = (etype << 30) |
442 					(0x40000000 - sb->s_blocksize);
443 			} else {
444 				eloc.logicalBlockNum = start;
445 				elen = (etype << 30) |
446 					(elen +
447 					(count << sb->s_blocksize_bits));
448 				end -= count;
449 				count = 0;
450 			}
451 			udf_write_aext(table, &oepos, &eloc, elen, 1);
452 		}
453 
454 		if (epos.bh != oepos.bh) {
455 			oepos.block = epos.block;
456 			brelse(oepos.bh);
457 			get_bh(epos.bh);
458 			oepos.bh = epos.bh;
459 			oepos.offset = 0;
460 		} else {
461 			oepos.offset = epos.offset;
462 		}
463 	}
464 
465 	if (count) {
466 		/*
467 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
468 		 * allocate a new block, and since we hold the super block
469 		 * lock already very bad things would happen :)
470 		 *
471 		 * We copy the behavior of udf_add_aext, but instead of
472 		 * trying to allocate a new block close to the existing one,
473 		 * we just steal a block from the extent we are trying to add.
474 		 *
475 		 * It would be nice if the blocks were close together, but it
476 		 * isn't required.
477 		 */
478 
479 		int adsize;
480 
481 		eloc.logicalBlockNum = start;
482 		elen = EXT_RECORDED_ALLOCATED |
483 			(count << sb->s_blocksize_bits);
484 
485 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
486 			adsize = sizeof(struct short_ad);
487 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
488 			adsize = sizeof(struct long_ad);
489 		else {
490 			brelse(oepos.bh);
491 			brelse(epos.bh);
492 			goto error_return;
493 		}
494 
495 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
496 			/* Steal a block from the extent being free'd */
497 			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
498 						&epos);
499 
500 			eloc.logicalBlockNum++;
501 			elen -= sb->s_blocksize;
502 		}
503 
504 		/* It's possible that stealing the block emptied the extent */
505 		if (elen)
506 			__udf_add_aext(table, &epos, &eloc, elen, 1);
507 	}
508 
509 	brelse(epos.bh);
510 	brelse(oepos.bh);
511 
512 error_return:
513 	mutex_unlock(&sbi->s_alloc_mutex);
514 	return;
515 }
516 
517 static int udf_table_prealloc_blocks(struct super_block *sb,
518 				     struct inode *table, uint16_t partition,
519 				     uint32_t first_block, uint32_t block_count)
520 {
521 	struct udf_sb_info *sbi = UDF_SB(sb);
522 	int alloc_count = 0;
523 	uint32_t elen, adsize;
524 	struct kernel_lb_addr eloc;
525 	struct extent_position epos;
526 	int8_t etype = -1;
527 	struct udf_inode_info *iinfo;
528 
529 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
530 		return 0;
531 
532 	iinfo = UDF_I(table);
533 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
534 		adsize = sizeof(struct short_ad);
535 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
536 		adsize = sizeof(struct long_ad);
537 	else
538 		return 0;
539 
540 	mutex_lock(&sbi->s_alloc_mutex);
541 	epos.offset = sizeof(struct unallocSpaceEntry);
542 	epos.block = iinfo->i_location;
543 	epos.bh = NULL;
544 	eloc.logicalBlockNum = 0xFFFFFFFF;
545 
546 	while (first_block != eloc.logicalBlockNum &&
547 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
548 		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
549 			  eloc.logicalBlockNum, elen, first_block);
550 		; /* empty loop body */
551 	}
552 
553 	if (first_block == eloc.logicalBlockNum) {
554 		epos.offset -= adsize;
555 
556 		alloc_count = (elen >> sb->s_blocksize_bits);
557 		if (alloc_count > block_count) {
558 			alloc_count = block_count;
559 			eloc.logicalBlockNum += alloc_count;
560 			elen -= (alloc_count << sb->s_blocksize_bits);
561 			udf_write_aext(table, &epos, &eloc,
562 					(etype << 30) | elen, 1);
563 		} else
564 			udf_delete_aext(table, epos);
565 	} else {
566 		alloc_count = 0;
567 	}
568 
569 	brelse(epos.bh);
570 
571 	if (alloc_count)
572 		udf_add_free_space(sb, partition, -alloc_count);
573 	mutex_unlock(&sbi->s_alloc_mutex);
574 	return alloc_count;
575 }
576 
577 static udf_pblk_t udf_table_new_block(struct super_block *sb,
578 			       struct inode *table, uint16_t partition,
579 			       uint32_t goal, int *err)
580 {
581 	struct udf_sb_info *sbi = UDF_SB(sb);
582 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
583 	udf_pblk_t newblock = 0;
584 	uint32_t adsize;
585 	uint32_t elen, goal_elen = 0;
586 	struct kernel_lb_addr eloc, goal_eloc;
587 	struct extent_position epos, goal_epos;
588 	int8_t etype;
589 	struct udf_inode_info *iinfo = UDF_I(table);
590 
591 	*err = -ENOSPC;
592 
593 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
594 		adsize = sizeof(struct short_ad);
595 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
596 		adsize = sizeof(struct long_ad);
597 	else
598 		return newblock;
599 
600 	mutex_lock(&sbi->s_alloc_mutex);
601 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
602 		goal = 0;
603 
604 	/* We search for the closest matching block to goal. If we find
605 	   a exact hit, we stop. Otherwise we keep going till we run out
606 	   of extents. We store the buffer_head, bloc, and extoffset
607 	   of the current closest match and use that when we are done.
608 	 */
609 	epos.offset = sizeof(struct unallocSpaceEntry);
610 	epos.block = iinfo->i_location;
611 	epos.bh = goal_epos.bh = NULL;
612 
613 	while (spread &&
614 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
615 		if (goal >= eloc.logicalBlockNum) {
616 			if (goal < eloc.logicalBlockNum +
617 					(elen >> sb->s_blocksize_bits))
618 				nspread = 0;
619 			else
620 				nspread = goal - eloc.logicalBlockNum -
621 					(elen >> sb->s_blocksize_bits);
622 		} else {
623 			nspread = eloc.logicalBlockNum - goal;
624 		}
625 
626 		if (nspread < spread) {
627 			spread = nspread;
628 			if (goal_epos.bh != epos.bh) {
629 				brelse(goal_epos.bh);
630 				goal_epos.bh = epos.bh;
631 				get_bh(goal_epos.bh);
632 			}
633 			goal_epos.block = epos.block;
634 			goal_epos.offset = epos.offset - adsize;
635 			goal_eloc = eloc;
636 			goal_elen = (etype << 30) | elen;
637 		}
638 	}
639 
640 	brelse(epos.bh);
641 
642 	if (spread == 0xFFFFFFFF) {
643 		brelse(goal_epos.bh);
644 		mutex_unlock(&sbi->s_alloc_mutex);
645 		return 0;
646 	}
647 
648 	/* Only allocate blocks from the beginning of the extent.
649 	   That way, we only delete (empty) extents, never have to insert an
650 	   extent because of splitting */
651 	/* This works, but very poorly.... */
652 
653 	newblock = goal_eloc.logicalBlockNum;
654 	goal_eloc.logicalBlockNum++;
655 	goal_elen -= sb->s_blocksize;
656 
657 	if (goal_elen)
658 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
659 	else
660 		udf_delete_aext(table, goal_epos);
661 	brelse(goal_epos.bh);
662 
663 	udf_add_free_space(sb, partition, -1);
664 
665 	mutex_unlock(&sbi->s_alloc_mutex);
666 	*err = 0;
667 	return newblock;
668 }
669 
670 void udf_free_blocks(struct super_block *sb, struct inode *inode,
671 		     struct kernel_lb_addr *bloc, uint32_t offset,
672 		     uint32_t count)
673 {
674 	uint16_t partition = bloc->partitionReferenceNum;
675 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
676 
677 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
678 		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
679 				       bloc, offset, count);
680 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
681 		udf_table_free_blocks(sb, map->s_uspace.s_table,
682 				      bloc, offset, count);
683 	}
684 
685 	if (inode) {
686 		inode_sub_bytes(inode,
687 				((sector_t)count) << sb->s_blocksize_bits);
688 	}
689 }
690 
691 inline int udf_prealloc_blocks(struct super_block *sb,
692 			       struct inode *inode,
693 			       uint16_t partition, uint32_t first_block,
694 			       uint32_t block_count)
695 {
696 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
697 	int allocated;
698 
699 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
700 		allocated = udf_bitmap_prealloc_blocks(sb,
701 						       map->s_uspace.s_bitmap,
702 						       partition, first_block,
703 						       block_count);
704 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
705 		allocated = udf_table_prealloc_blocks(sb,
706 						      map->s_uspace.s_table,
707 						      partition, first_block,
708 						      block_count);
709 	else
710 		return 0;
711 
712 	if (inode && allocated > 0)
713 		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
714 	return allocated;
715 }
716 
717 inline udf_pblk_t udf_new_block(struct super_block *sb,
718 			 struct inode *inode,
719 			 uint16_t partition, uint32_t goal, int *err)
720 {
721 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
722 	udf_pblk_t block;
723 
724 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
725 		block = udf_bitmap_new_block(sb,
726 					     map->s_uspace.s_bitmap,
727 					     partition, goal, err);
728 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
729 		block = udf_table_new_block(sb,
730 					    map->s_uspace.s_table,
731 					    partition, goal, err);
732 	else {
733 		*err = -EIO;
734 		return 0;
735 	}
736 	if (inode && block)
737 		inode_add_bytes(inode, sb->s_blocksize);
738 	return block;
739 }
740