1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* This file implements TNC functions for committing */ 24 25 #include <linux/random.h> 26 #include "ubifs.h" 27 28 /** 29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit. 30 * @c: UBIFS file-system description object 31 * @idx: buffer in which to place new index node 32 * @znode: znode from which to make new index node 33 * @lnum: LEB number where new index node will be written 34 * @offs: offset where new index node will be written 35 * @len: length of new index node 36 */ 37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, 38 struct ubifs_znode *znode, int lnum, int offs, int len) 39 { 40 struct ubifs_znode *zp; 41 int i, err; 42 43 /* Make index node */ 44 idx->ch.node_type = UBIFS_IDX_NODE; 45 idx->child_cnt = cpu_to_le16(znode->child_cnt); 46 idx->level = cpu_to_le16(znode->level); 47 for (i = 0; i < znode->child_cnt; i++) { 48 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 49 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 50 51 key_write_idx(c, &zbr->key, &br->key); 52 br->lnum = cpu_to_le32(zbr->lnum); 53 br->offs = cpu_to_le32(zbr->offs); 54 br->len = cpu_to_le32(zbr->len); 55 if (!zbr->lnum || !zbr->len) { 56 ubifs_err("bad ref in znode"); 57 ubifs_dump_znode(c, znode); 58 if (zbr->znode) 59 ubifs_dump_znode(c, zbr->znode); 60 } 61 } 62 ubifs_prepare_node(c, idx, len, 0); 63 64 znode->lnum = lnum; 65 znode->offs = offs; 66 znode->len = len; 67 68 err = insert_old_idx_znode(c, znode); 69 70 /* Update the parent */ 71 zp = znode->parent; 72 if (zp) { 73 struct ubifs_zbranch *zbr; 74 75 zbr = &zp->zbranch[znode->iip]; 76 zbr->lnum = lnum; 77 zbr->offs = offs; 78 zbr->len = len; 79 } else { 80 c->zroot.lnum = lnum; 81 c->zroot.offs = offs; 82 c->zroot.len = len; 83 } 84 c->calc_idx_sz += ALIGN(len, 8); 85 86 atomic_long_dec(&c->dirty_zn_cnt); 87 88 ubifs_assert(ubifs_zn_dirty(znode)); 89 ubifs_assert(ubifs_zn_cow(znode)); 90 91 /* 92 * Note, unlike 'write_index()' we do not add memory barriers here 93 * because this function is called with @c->tnc_mutex locked. 94 */ 95 __clear_bit(DIRTY_ZNODE, &znode->flags); 96 __clear_bit(COW_ZNODE, &znode->flags); 97 98 return err; 99 } 100 101 /** 102 * fill_gap - make index nodes in gaps in dirty index LEBs. 103 * @c: UBIFS file-system description object 104 * @lnum: LEB number that gap appears in 105 * @gap_start: offset of start of gap 106 * @gap_end: offset of end of gap 107 * @dirt: adds dirty space to this 108 * 109 * This function returns the number of index nodes written into the gap. 110 */ 111 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, 112 int *dirt) 113 { 114 int len, gap_remains, gap_pos, written, pad_len; 115 116 ubifs_assert((gap_start & 7) == 0); 117 ubifs_assert((gap_end & 7) == 0); 118 ubifs_assert(gap_end >= gap_start); 119 120 gap_remains = gap_end - gap_start; 121 if (!gap_remains) 122 return 0; 123 gap_pos = gap_start; 124 written = 0; 125 while (c->enext) { 126 len = ubifs_idx_node_sz(c, c->enext->child_cnt); 127 if (len < gap_remains) { 128 struct ubifs_znode *znode = c->enext; 129 const int alen = ALIGN(len, 8); 130 int err; 131 132 ubifs_assert(alen <= gap_remains); 133 err = make_idx_node(c, c->ileb_buf + gap_pos, znode, 134 lnum, gap_pos, len); 135 if (err) 136 return err; 137 gap_remains -= alen; 138 gap_pos += alen; 139 c->enext = znode->cnext; 140 if (c->enext == c->cnext) 141 c->enext = NULL; 142 written += 1; 143 } else 144 break; 145 } 146 if (gap_end == c->leb_size) { 147 c->ileb_len = ALIGN(gap_pos, c->min_io_size); 148 /* Pad to end of min_io_size */ 149 pad_len = c->ileb_len - gap_pos; 150 } else 151 /* Pad to end of gap */ 152 pad_len = gap_remains; 153 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", 154 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); 155 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); 156 *dirt += pad_len; 157 return written; 158 } 159 160 /** 161 * find_old_idx - find an index node obsoleted since the last commit start. 162 * @c: UBIFS file-system description object 163 * @lnum: LEB number of obsoleted index node 164 * @offs: offset of obsoleted index node 165 * 166 * Returns %1 if found and %0 otherwise. 167 */ 168 static int find_old_idx(struct ubifs_info *c, int lnum, int offs) 169 { 170 struct ubifs_old_idx *o; 171 struct rb_node *p; 172 173 p = c->old_idx.rb_node; 174 while (p) { 175 o = rb_entry(p, struct ubifs_old_idx, rb); 176 if (lnum < o->lnum) 177 p = p->rb_left; 178 else if (lnum > o->lnum) 179 p = p->rb_right; 180 else if (offs < o->offs) 181 p = p->rb_left; 182 else if (offs > o->offs) 183 p = p->rb_right; 184 else 185 return 1; 186 } 187 return 0; 188 } 189 190 /** 191 * is_idx_node_in_use - determine if an index node can be overwritten. 192 * @c: UBIFS file-system description object 193 * @key: key of index node 194 * @level: index node level 195 * @lnum: LEB number of index node 196 * @offs: offset of index node 197 * 198 * If @key / @lnum / @offs identify an index node that was not part of the old 199 * index, then this function returns %0 (obsolete). Else if the index node was 200 * part of the old index but is now dirty %1 is returned, else if it is clean %2 201 * is returned. A negative error code is returned on failure. 202 */ 203 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, 204 int level, int lnum, int offs) 205 { 206 int ret; 207 208 ret = is_idx_node_in_tnc(c, key, level, lnum, offs); 209 if (ret < 0) 210 return ret; /* Error code */ 211 if (ret == 0) 212 if (find_old_idx(c, lnum, offs)) 213 return 1; 214 return ret; 215 } 216 217 /** 218 * layout_leb_in_gaps - layout index nodes using in-the-gaps method. 219 * @c: UBIFS file-system description object 220 * @p: return LEB number here 221 * 222 * This function lays out new index nodes for dirty znodes using in-the-gaps 223 * method of TNC commit. 224 * This function merely puts the next znode into the next gap, making no attempt 225 * to try to maximise the number of znodes that fit. 226 * This function returns the number of index nodes written into the gaps, or a 227 * negative error code on failure. 228 */ 229 static int layout_leb_in_gaps(struct ubifs_info *c, int *p) 230 { 231 struct ubifs_scan_leb *sleb; 232 struct ubifs_scan_node *snod; 233 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; 234 235 tot_written = 0; 236 /* Get an index LEB with lots of obsolete index nodes */ 237 lnum = ubifs_find_dirty_idx_leb(c); 238 if (lnum < 0) 239 /* 240 * There also may be dirt in the index head that could be 241 * filled, however we do not check there at present. 242 */ 243 return lnum; /* Error code */ 244 *p = lnum; 245 dbg_gc("LEB %d", lnum); 246 /* 247 * Scan the index LEB. We use the generic scan for this even though 248 * it is more comprehensive and less efficient than is needed for this 249 * purpose. 250 */ 251 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0); 252 c->ileb_len = 0; 253 if (IS_ERR(sleb)) 254 return PTR_ERR(sleb); 255 gap_start = 0; 256 list_for_each_entry(snod, &sleb->nodes, list) { 257 struct ubifs_idx_node *idx; 258 int in_use, level; 259 260 ubifs_assert(snod->type == UBIFS_IDX_NODE); 261 idx = snod->node; 262 key_read(c, ubifs_idx_key(c, idx), &snod->key); 263 level = le16_to_cpu(idx->level); 264 /* Determine if the index node is in use (not obsolete) */ 265 in_use = is_idx_node_in_use(c, &snod->key, level, lnum, 266 snod->offs); 267 if (in_use < 0) { 268 ubifs_scan_destroy(sleb); 269 return in_use; /* Error code */ 270 } 271 if (in_use) { 272 if (in_use == 1) 273 dirt += ALIGN(snod->len, 8); 274 /* 275 * The obsolete index nodes form gaps that can be 276 * overwritten. This gap has ended because we have 277 * found an index node that is still in use 278 * i.e. not obsolete 279 */ 280 gap_end = snod->offs; 281 /* Try to fill gap */ 282 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 283 if (written < 0) { 284 ubifs_scan_destroy(sleb); 285 return written; /* Error code */ 286 } 287 tot_written += written; 288 gap_start = ALIGN(snod->offs + snod->len, 8); 289 } 290 } 291 ubifs_scan_destroy(sleb); 292 c->ileb_len = c->leb_size; 293 gap_end = c->leb_size; 294 /* Try to fill gap */ 295 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 296 if (written < 0) 297 return written; /* Error code */ 298 tot_written += written; 299 if (tot_written == 0) { 300 struct ubifs_lprops lp; 301 302 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 303 err = ubifs_read_one_lp(c, lnum, &lp); 304 if (err) 305 return err; 306 if (lp.free == c->leb_size) { 307 /* 308 * We must have snatched this LEB from the idx_gc list 309 * so we need to correct the free and dirty space. 310 */ 311 err = ubifs_change_one_lp(c, lnum, 312 c->leb_size - c->ileb_len, 313 dirt, 0, 0, 0); 314 if (err) 315 return err; 316 } 317 return 0; 318 } 319 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 320 0, 0, 0); 321 if (err) 322 return err; 323 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len); 324 if (err) 325 return err; 326 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 327 return tot_written; 328 } 329 330 /** 331 * get_leb_cnt - calculate the number of empty LEBs needed to commit. 332 * @c: UBIFS file-system description object 333 * @cnt: number of znodes to commit 334 * 335 * This function returns the number of empty LEBs needed to commit @cnt znodes 336 * to the current index head. The number is not exact and may be more than 337 * needed. 338 */ 339 static int get_leb_cnt(struct ubifs_info *c, int cnt) 340 { 341 int d; 342 343 /* Assume maximum index node size (i.e. overestimate space needed) */ 344 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; 345 if (cnt < 0) 346 cnt = 0; 347 d = c->leb_size / c->max_idx_node_sz; 348 return DIV_ROUND_UP(cnt, d); 349 } 350 351 /** 352 * layout_in_gaps - in-the-gaps method of committing TNC. 353 * @c: UBIFS file-system description object 354 * @cnt: number of dirty znodes to commit. 355 * 356 * This function lays out new index nodes for dirty znodes using in-the-gaps 357 * method of TNC commit. 358 * 359 * This function returns %0 on success and a negative error code on failure. 360 */ 361 static int layout_in_gaps(struct ubifs_info *c, int cnt) 362 { 363 int err, leb_needed_cnt, written, *p; 364 365 dbg_gc("%d znodes to write", cnt); 366 367 c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS); 368 if (!c->gap_lebs) 369 return -ENOMEM; 370 371 p = c->gap_lebs; 372 do { 373 ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs); 374 written = layout_leb_in_gaps(c, p); 375 if (written < 0) { 376 err = written; 377 if (err != -ENOSPC) { 378 kfree(c->gap_lebs); 379 c->gap_lebs = NULL; 380 return err; 381 } 382 if (!dbg_is_chk_index(c)) { 383 /* 384 * Do not print scary warnings if the debugging 385 * option which forces in-the-gaps is enabled. 386 */ 387 ubifs_warn("out of space"); 388 ubifs_dump_budg(c, &c->bi); 389 ubifs_dump_lprops(c); 390 } 391 /* Try to commit anyway */ 392 err = 0; 393 break; 394 } 395 p++; 396 cnt -= written; 397 leb_needed_cnt = get_leb_cnt(c, cnt); 398 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, 399 leb_needed_cnt, c->ileb_cnt); 400 } while (leb_needed_cnt > c->ileb_cnt); 401 402 *p = -1; 403 return 0; 404 } 405 406 /** 407 * layout_in_empty_space - layout index nodes in empty space. 408 * @c: UBIFS file-system description object 409 * 410 * This function lays out new index nodes for dirty znodes using empty LEBs. 411 * 412 * This function returns %0 on success and a negative error code on failure. 413 */ 414 static int layout_in_empty_space(struct ubifs_info *c) 415 { 416 struct ubifs_znode *znode, *cnext, *zp; 417 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; 418 int wlen, blen, err; 419 420 cnext = c->enext; 421 if (!cnext) 422 return 0; 423 424 lnum = c->ihead_lnum; 425 buf_offs = c->ihead_offs; 426 427 buf_len = ubifs_idx_node_sz(c, c->fanout); 428 buf_len = ALIGN(buf_len, c->min_io_size); 429 used = 0; 430 avail = buf_len; 431 432 /* Ensure there is enough room for first write */ 433 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 434 if (buf_offs + next_len > c->leb_size) 435 lnum = -1; 436 437 while (1) { 438 znode = cnext; 439 440 len = ubifs_idx_node_sz(c, znode->child_cnt); 441 442 /* Determine the index node position */ 443 if (lnum == -1) { 444 if (c->ileb_nxt >= c->ileb_cnt) { 445 ubifs_err("out of space"); 446 return -ENOSPC; 447 } 448 lnum = c->ilebs[c->ileb_nxt++]; 449 buf_offs = 0; 450 used = 0; 451 avail = buf_len; 452 } 453 454 offs = buf_offs + used; 455 456 znode->lnum = lnum; 457 znode->offs = offs; 458 znode->len = len; 459 460 /* Update the parent */ 461 zp = znode->parent; 462 if (zp) { 463 struct ubifs_zbranch *zbr; 464 int i; 465 466 i = znode->iip; 467 zbr = &zp->zbranch[i]; 468 zbr->lnum = lnum; 469 zbr->offs = offs; 470 zbr->len = len; 471 } else { 472 c->zroot.lnum = lnum; 473 c->zroot.offs = offs; 474 c->zroot.len = len; 475 } 476 c->calc_idx_sz += ALIGN(len, 8); 477 478 /* 479 * Once lprops is updated, we can decrease the dirty znode count 480 * but it is easier to just do it here. 481 */ 482 atomic_long_dec(&c->dirty_zn_cnt); 483 484 /* 485 * Calculate the next index node length to see if there is 486 * enough room for it 487 */ 488 cnext = znode->cnext; 489 if (cnext == c->cnext) 490 next_len = 0; 491 else 492 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 493 494 /* Update buffer positions */ 495 wlen = used + len; 496 used += ALIGN(len, 8); 497 avail -= ALIGN(len, 8); 498 499 if (next_len != 0 && 500 buf_offs + used + next_len <= c->leb_size && 501 avail > 0) 502 continue; 503 504 if (avail <= 0 && next_len && 505 buf_offs + used + next_len <= c->leb_size) 506 blen = buf_len; 507 else 508 blen = ALIGN(wlen, c->min_io_size); 509 510 /* The buffer is full or there are no more znodes to do */ 511 buf_offs += blen; 512 if (next_len) { 513 if (buf_offs + next_len > c->leb_size) { 514 err = ubifs_update_one_lp(c, lnum, 515 c->leb_size - buf_offs, blen - used, 516 0, 0); 517 if (err) 518 return err; 519 lnum = -1; 520 } 521 used -= blen; 522 if (used < 0) 523 used = 0; 524 avail = buf_len - used; 525 continue; 526 } 527 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, 528 blen - used, 0, 0); 529 if (err) 530 return err; 531 break; 532 } 533 534 c->dbg->new_ihead_lnum = lnum; 535 c->dbg->new_ihead_offs = buf_offs; 536 537 return 0; 538 } 539 540 /** 541 * layout_commit - determine positions of index nodes to commit. 542 * @c: UBIFS file-system description object 543 * @no_space: indicates that insufficient empty LEBs were allocated 544 * @cnt: number of znodes to commit 545 * 546 * Calculate and update the positions of index nodes to commit. If there were 547 * an insufficient number of empty LEBs allocated, then index nodes are placed 548 * into the gaps created by obsolete index nodes in non-empty index LEBs. For 549 * this purpose, an obsolete index node is one that was not in the index as at 550 * the end of the last commit. To write "in-the-gaps" requires that those index 551 * LEBs are updated atomically in-place. 552 */ 553 static int layout_commit(struct ubifs_info *c, int no_space, int cnt) 554 { 555 int err; 556 557 if (no_space) { 558 err = layout_in_gaps(c, cnt); 559 if (err) 560 return err; 561 } 562 err = layout_in_empty_space(c); 563 return err; 564 } 565 566 /** 567 * find_first_dirty - find first dirty znode. 568 * @znode: znode to begin searching from 569 */ 570 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) 571 { 572 int i, cont; 573 574 if (!znode) 575 return NULL; 576 577 while (1) { 578 if (znode->level == 0) { 579 if (ubifs_zn_dirty(znode)) 580 return znode; 581 return NULL; 582 } 583 cont = 0; 584 for (i = 0; i < znode->child_cnt; i++) { 585 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 586 587 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { 588 znode = zbr->znode; 589 cont = 1; 590 break; 591 } 592 } 593 if (!cont) { 594 if (ubifs_zn_dirty(znode)) 595 return znode; 596 return NULL; 597 } 598 } 599 } 600 601 /** 602 * find_next_dirty - find next dirty znode. 603 * @znode: znode to begin searching from 604 */ 605 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) 606 { 607 int n = znode->iip + 1; 608 609 znode = znode->parent; 610 if (!znode) 611 return NULL; 612 for (; n < znode->child_cnt; n++) { 613 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 614 615 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) 616 return find_first_dirty(zbr->znode); 617 } 618 return znode; 619 } 620 621 /** 622 * get_znodes_to_commit - create list of dirty znodes to commit. 623 * @c: UBIFS file-system description object 624 * 625 * This function returns the number of znodes to commit. 626 */ 627 static int get_znodes_to_commit(struct ubifs_info *c) 628 { 629 struct ubifs_znode *znode, *cnext; 630 int cnt = 0; 631 632 c->cnext = find_first_dirty(c->zroot.znode); 633 znode = c->enext = c->cnext; 634 if (!znode) { 635 dbg_cmt("no znodes to commit"); 636 return 0; 637 } 638 cnt += 1; 639 while (1) { 640 ubifs_assert(!ubifs_zn_cow(znode)); 641 __set_bit(COW_ZNODE, &znode->flags); 642 znode->alt = 0; 643 cnext = find_next_dirty(znode); 644 if (!cnext) { 645 znode->cnext = c->cnext; 646 break; 647 } 648 znode->cnext = cnext; 649 znode = cnext; 650 cnt += 1; 651 } 652 dbg_cmt("committing %d znodes", cnt); 653 ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt)); 654 return cnt; 655 } 656 657 /** 658 * alloc_idx_lebs - allocate empty LEBs to be used to commit. 659 * @c: UBIFS file-system description object 660 * @cnt: number of znodes to commit 661 * 662 * This function returns %-ENOSPC if it cannot allocate a sufficient number of 663 * empty LEBs. %0 is returned on success, otherwise a negative error code 664 * is returned. 665 */ 666 static int alloc_idx_lebs(struct ubifs_info *c, int cnt) 667 { 668 int i, leb_cnt, lnum; 669 670 c->ileb_cnt = 0; 671 c->ileb_nxt = 0; 672 leb_cnt = get_leb_cnt(c, cnt); 673 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); 674 if (!leb_cnt) 675 return 0; 676 c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS); 677 if (!c->ilebs) 678 return -ENOMEM; 679 for (i = 0; i < leb_cnt; i++) { 680 lnum = ubifs_find_free_leb_for_idx(c); 681 if (lnum < 0) 682 return lnum; 683 c->ilebs[c->ileb_cnt++] = lnum; 684 dbg_cmt("LEB %d", lnum); 685 } 686 if (dbg_is_chk_index(c) && !(prandom_u32() & 7)) 687 return -ENOSPC; 688 return 0; 689 } 690 691 /** 692 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. 693 * @c: UBIFS file-system description object 694 * 695 * It is possible that we allocate more empty LEBs for the commit than we need. 696 * This functions frees the surplus. 697 * 698 * This function returns %0 on success and a negative error code on failure. 699 */ 700 static int free_unused_idx_lebs(struct ubifs_info *c) 701 { 702 int i, err = 0, lnum, er; 703 704 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { 705 lnum = c->ilebs[i]; 706 dbg_cmt("LEB %d", lnum); 707 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 708 LPROPS_INDEX | LPROPS_TAKEN, 0); 709 if (!err) 710 err = er; 711 } 712 return err; 713 } 714 715 /** 716 * free_idx_lebs - free unused LEBs after commit end. 717 * @c: UBIFS file-system description object 718 * 719 * This function returns %0 on success and a negative error code on failure. 720 */ 721 static int free_idx_lebs(struct ubifs_info *c) 722 { 723 int err; 724 725 err = free_unused_idx_lebs(c); 726 kfree(c->ilebs); 727 c->ilebs = NULL; 728 return err; 729 } 730 731 /** 732 * ubifs_tnc_start_commit - start TNC commit. 733 * @c: UBIFS file-system description object 734 * @zroot: new index root position is returned here 735 * 736 * This function prepares the list of indexing nodes to commit and lays out 737 * their positions on flash. If there is not enough free space it uses the 738 * in-gap commit method. Returns zero in case of success and a negative error 739 * code in case of failure. 740 */ 741 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) 742 { 743 int err = 0, cnt; 744 745 mutex_lock(&c->tnc_mutex); 746 err = dbg_check_tnc(c, 1); 747 if (err) 748 goto out; 749 cnt = get_znodes_to_commit(c); 750 if (cnt != 0) { 751 int no_space = 0; 752 753 err = alloc_idx_lebs(c, cnt); 754 if (err == -ENOSPC) 755 no_space = 1; 756 else if (err) 757 goto out_free; 758 err = layout_commit(c, no_space, cnt); 759 if (err) 760 goto out_free; 761 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); 762 err = free_unused_idx_lebs(c); 763 if (err) 764 goto out; 765 } 766 destroy_old_idx(c); 767 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); 768 769 err = ubifs_save_dirty_idx_lnums(c); 770 if (err) 771 goto out; 772 773 spin_lock(&c->space_lock); 774 /* 775 * Although we have not finished committing yet, update size of the 776 * committed index ('c->bi.old_idx_sz') and zero out the index growth 777 * budget. It is OK to do this now, because we've reserved all the 778 * space which is needed to commit the index, and it is save for the 779 * budgeting subsystem to assume the index is already committed, 780 * even though it is not. 781 */ 782 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 783 c->bi.old_idx_sz = c->calc_idx_sz; 784 c->bi.uncommitted_idx = 0; 785 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 786 spin_unlock(&c->space_lock); 787 mutex_unlock(&c->tnc_mutex); 788 789 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); 790 dbg_cmt("size of index %llu", c->calc_idx_sz); 791 return err; 792 793 out_free: 794 free_idx_lebs(c); 795 out: 796 mutex_unlock(&c->tnc_mutex); 797 return err; 798 } 799 800 /** 801 * write_index - write index nodes. 802 * @c: UBIFS file-system description object 803 * 804 * This function writes the index nodes whose positions were laid out in the 805 * layout_in_empty_space function. 806 */ 807 static int write_index(struct ubifs_info *c) 808 { 809 struct ubifs_idx_node *idx; 810 struct ubifs_znode *znode, *cnext; 811 int i, lnum, offs, len, next_len, buf_len, buf_offs, used; 812 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; 813 814 cnext = c->enext; 815 if (!cnext) 816 return 0; 817 818 /* 819 * Always write index nodes to the index head so that index nodes and 820 * other types of nodes are never mixed in the same erase block. 821 */ 822 lnum = c->ihead_lnum; 823 buf_offs = c->ihead_offs; 824 825 /* Allocate commit buffer */ 826 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); 827 used = 0; 828 avail = buf_len; 829 830 /* Ensure there is enough room for first write */ 831 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 832 if (buf_offs + next_len > c->leb_size) { 833 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, 834 LPROPS_TAKEN); 835 if (err) 836 return err; 837 lnum = -1; 838 } 839 840 while (1) { 841 cond_resched(); 842 843 znode = cnext; 844 idx = c->cbuf + used; 845 846 /* Make index node */ 847 idx->ch.node_type = UBIFS_IDX_NODE; 848 idx->child_cnt = cpu_to_le16(znode->child_cnt); 849 idx->level = cpu_to_le16(znode->level); 850 for (i = 0; i < znode->child_cnt; i++) { 851 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 852 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 853 854 key_write_idx(c, &zbr->key, &br->key); 855 br->lnum = cpu_to_le32(zbr->lnum); 856 br->offs = cpu_to_le32(zbr->offs); 857 br->len = cpu_to_le32(zbr->len); 858 if (!zbr->lnum || !zbr->len) { 859 ubifs_err("bad ref in znode"); 860 ubifs_dump_znode(c, znode); 861 if (zbr->znode) 862 ubifs_dump_znode(c, zbr->znode); 863 } 864 } 865 len = ubifs_idx_node_sz(c, znode->child_cnt); 866 ubifs_prepare_node(c, idx, len, 0); 867 868 /* Determine the index node position */ 869 if (lnum == -1) { 870 lnum = c->ilebs[lnum_pos++]; 871 buf_offs = 0; 872 used = 0; 873 avail = buf_len; 874 } 875 offs = buf_offs + used; 876 877 if (lnum != znode->lnum || offs != znode->offs || 878 len != znode->len) { 879 ubifs_err("inconsistent znode posn"); 880 return -EINVAL; 881 } 882 883 /* Grab some stuff from znode while we still can */ 884 cnext = znode->cnext; 885 886 ubifs_assert(ubifs_zn_dirty(znode)); 887 ubifs_assert(ubifs_zn_cow(znode)); 888 889 /* 890 * It is important that other threads should see %DIRTY_ZNODE 891 * flag cleared before %COW_ZNODE. Specifically, it matters in 892 * the 'dirty_cow_znode()' function. This is the reason for the 893 * first barrier. Also, we want the bit changes to be seen to 894 * other threads ASAP, to avoid unnecesarry copying, which is 895 * the reason for the second barrier. 896 */ 897 clear_bit(DIRTY_ZNODE, &znode->flags); 898 smp_mb__before_clear_bit(); 899 clear_bit(COW_ZNODE, &znode->flags); 900 smp_mb__after_clear_bit(); 901 902 /* 903 * We have marked the znode as clean but have not updated the 904 * @c->clean_zn_cnt counter. If this znode becomes dirty again 905 * before 'free_obsolete_znodes()' is called, then 906 * @c->clean_zn_cnt will be decremented before it gets 907 * incremented (resulting in 2 decrements for the same znode). 908 * This means that @c->clean_zn_cnt may become negative for a 909 * while. 910 * 911 * Q: why we cannot increment @c->clean_zn_cnt? 912 * A: because we do not have the @c->tnc_mutex locked, and the 913 * following code would be racy and buggy: 914 * 915 * if (!ubifs_zn_obsolete(znode)) { 916 * atomic_long_inc(&c->clean_zn_cnt); 917 * atomic_long_inc(&ubifs_clean_zn_cnt); 918 * } 919 * 920 * Thus, we just delay the @c->clean_zn_cnt update until we 921 * have the mutex locked. 922 */ 923 924 /* Do not access znode from this point on */ 925 926 /* Update buffer positions */ 927 wlen = used + len; 928 used += ALIGN(len, 8); 929 avail -= ALIGN(len, 8); 930 931 /* 932 * Calculate the next index node length to see if there is 933 * enough room for it 934 */ 935 if (cnext == c->cnext) 936 next_len = 0; 937 else 938 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 939 940 nxt_offs = buf_offs + used + next_len; 941 if (next_len && nxt_offs <= c->leb_size) { 942 if (avail > 0) 943 continue; 944 else 945 blen = buf_len; 946 } else { 947 wlen = ALIGN(wlen, 8); 948 blen = ALIGN(wlen, c->min_io_size); 949 ubifs_pad(c, c->cbuf + wlen, blen - wlen); 950 } 951 952 /* The buffer is full or there are no more znodes to do */ 953 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen); 954 if (err) 955 return err; 956 buf_offs += blen; 957 if (next_len) { 958 if (nxt_offs > c->leb_size) { 959 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 960 0, LPROPS_TAKEN); 961 if (err) 962 return err; 963 lnum = -1; 964 } 965 used -= blen; 966 if (used < 0) 967 used = 0; 968 avail = buf_len - used; 969 memmove(c->cbuf, c->cbuf + blen, used); 970 continue; 971 } 972 break; 973 } 974 975 if (lnum != c->dbg->new_ihead_lnum || 976 buf_offs != c->dbg->new_ihead_offs) { 977 ubifs_err("inconsistent ihead"); 978 return -EINVAL; 979 } 980 981 c->ihead_lnum = lnum; 982 c->ihead_offs = buf_offs; 983 984 return 0; 985 } 986 987 /** 988 * free_obsolete_znodes - free obsolete znodes. 989 * @c: UBIFS file-system description object 990 * 991 * At the end of commit end, obsolete znodes are freed. 992 */ 993 static void free_obsolete_znodes(struct ubifs_info *c) 994 { 995 struct ubifs_znode *znode, *cnext; 996 997 cnext = c->cnext; 998 do { 999 znode = cnext; 1000 cnext = znode->cnext; 1001 if (ubifs_zn_obsolete(znode)) 1002 kfree(znode); 1003 else { 1004 znode->cnext = NULL; 1005 atomic_long_inc(&c->clean_zn_cnt); 1006 atomic_long_inc(&ubifs_clean_zn_cnt); 1007 } 1008 } while (cnext != c->cnext); 1009 } 1010 1011 /** 1012 * return_gap_lebs - return LEBs used by the in-gap commit method. 1013 * @c: UBIFS file-system description object 1014 * 1015 * This function clears the "taken" flag for the LEBs which were used by the 1016 * "commit in-the-gaps" method. 1017 */ 1018 static int return_gap_lebs(struct ubifs_info *c) 1019 { 1020 int *p, err; 1021 1022 if (!c->gap_lebs) 1023 return 0; 1024 1025 dbg_cmt(""); 1026 for (p = c->gap_lebs; *p != -1; p++) { 1027 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, 1028 LPROPS_TAKEN, 0); 1029 if (err) 1030 return err; 1031 } 1032 1033 kfree(c->gap_lebs); 1034 c->gap_lebs = NULL; 1035 return 0; 1036 } 1037 1038 /** 1039 * ubifs_tnc_end_commit - update the TNC for commit end. 1040 * @c: UBIFS file-system description object 1041 * 1042 * Write the dirty znodes. 1043 */ 1044 int ubifs_tnc_end_commit(struct ubifs_info *c) 1045 { 1046 int err; 1047 1048 if (!c->cnext) 1049 return 0; 1050 1051 err = return_gap_lebs(c); 1052 if (err) 1053 return err; 1054 1055 err = write_index(c); 1056 if (err) 1057 return err; 1058 1059 mutex_lock(&c->tnc_mutex); 1060 1061 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); 1062 1063 free_obsolete_znodes(c); 1064 1065 c->cnext = NULL; 1066 kfree(c->ilebs); 1067 c->ilebs = NULL; 1068 1069 mutex_unlock(&c->tnc_mutex); 1070 1071 return 0; 1072 } 1073