1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* This file implements TNC functions for committing */ 24 25 #include <linux/random.h> 26 #include "ubifs.h" 27 28 /** 29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit. 30 * @c: UBIFS file-system description object 31 * @idx: buffer in which to place new index node 32 * @znode: znode from which to make new index node 33 * @lnum: LEB number where new index node will be written 34 * @offs: offset where new index node will be written 35 * @len: length of new index node 36 */ 37 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, 38 struct ubifs_znode *znode, int lnum, int offs, int len) 39 { 40 struct ubifs_znode *zp; 41 int i, err; 42 43 /* Make index node */ 44 idx->ch.node_type = UBIFS_IDX_NODE; 45 idx->child_cnt = cpu_to_le16(znode->child_cnt); 46 idx->level = cpu_to_le16(znode->level); 47 for (i = 0; i < znode->child_cnt; i++) { 48 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 49 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 50 51 key_write_idx(c, &zbr->key, &br->key); 52 br->lnum = cpu_to_le32(zbr->lnum); 53 br->offs = cpu_to_le32(zbr->offs); 54 br->len = cpu_to_le32(zbr->len); 55 if (!zbr->lnum || !zbr->len) { 56 ubifs_err("bad ref in znode"); 57 ubifs_dump_znode(c, znode); 58 if (zbr->znode) 59 ubifs_dump_znode(c, zbr->znode); 60 } 61 } 62 ubifs_prepare_node(c, idx, len, 0); 63 64 znode->lnum = lnum; 65 znode->offs = offs; 66 znode->len = len; 67 68 err = insert_old_idx_znode(c, znode); 69 70 /* Update the parent */ 71 zp = znode->parent; 72 if (zp) { 73 struct ubifs_zbranch *zbr; 74 75 zbr = &zp->zbranch[znode->iip]; 76 zbr->lnum = lnum; 77 zbr->offs = offs; 78 zbr->len = len; 79 } else { 80 c->zroot.lnum = lnum; 81 c->zroot.offs = offs; 82 c->zroot.len = len; 83 } 84 c->calc_idx_sz += ALIGN(len, 8); 85 86 atomic_long_dec(&c->dirty_zn_cnt); 87 88 ubifs_assert(ubifs_zn_dirty(znode)); 89 ubifs_assert(ubifs_zn_cow(znode)); 90 91 /* 92 * Note, unlike 'write_index()' we do not add memory barriers here 93 * because this function is called with @c->tnc_mutex locked. 94 */ 95 __clear_bit(DIRTY_ZNODE, &znode->flags); 96 __clear_bit(COW_ZNODE, &znode->flags); 97 98 return err; 99 } 100 101 /** 102 * fill_gap - make index nodes in gaps in dirty index LEBs. 103 * @c: UBIFS file-system description object 104 * @lnum: LEB number that gap appears in 105 * @gap_start: offset of start of gap 106 * @gap_end: offset of end of gap 107 * @dirt: adds dirty space to this 108 * 109 * This function returns the number of index nodes written into the gap. 110 */ 111 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, 112 int *dirt) 113 { 114 int len, gap_remains, gap_pos, written, pad_len; 115 116 ubifs_assert((gap_start & 7) == 0); 117 ubifs_assert((gap_end & 7) == 0); 118 ubifs_assert(gap_end >= gap_start); 119 120 gap_remains = gap_end - gap_start; 121 if (!gap_remains) 122 return 0; 123 gap_pos = gap_start; 124 written = 0; 125 while (c->enext) { 126 len = ubifs_idx_node_sz(c, c->enext->child_cnt); 127 if (len < gap_remains) { 128 struct ubifs_znode *znode = c->enext; 129 const int alen = ALIGN(len, 8); 130 int err; 131 132 ubifs_assert(alen <= gap_remains); 133 err = make_idx_node(c, c->ileb_buf + gap_pos, znode, 134 lnum, gap_pos, len); 135 if (err) 136 return err; 137 gap_remains -= alen; 138 gap_pos += alen; 139 c->enext = znode->cnext; 140 if (c->enext == c->cnext) 141 c->enext = NULL; 142 written += 1; 143 } else 144 break; 145 } 146 if (gap_end == c->leb_size) { 147 c->ileb_len = ALIGN(gap_pos, c->min_io_size); 148 /* Pad to end of min_io_size */ 149 pad_len = c->ileb_len - gap_pos; 150 } else 151 /* Pad to end of gap */ 152 pad_len = gap_remains; 153 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", 154 lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); 155 ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); 156 *dirt += pad_len; 157 return written; 158 } 159 160 /** 161 * find_old_idx - find an index node obsoleted since the last commit start. 162 * @c: UBIFS file-system description object 163 * @lnum: LEB number of obsoleted index node 164 * @offs: offset of obsoleted index node 165 * 166 * Returns %1 if found and %0 otherwise. 167 */ 168 static int find_old_idx(struct ubifs_info *c, int lnum, int offs) 169 { 170 struct ubifs_old_idx *o; 171 struct rb_node *p; 172 173 p = c->old_idx.rb_node; 174 while (p) { 175 o = rb_entry(p, struct ubifs_old_idx, rb); 176 if (lnum < o->lnum) 177 p = p->rb_left; 178 else if (lnum > o->lnum) 179 p = p->rb_right; 180 else if (offs < o->offs) 181 p = p->rb_left; 182 else if (offs > o->offs) 183 p = p->rb_right; 184 else 185 return 1; 186 } 187 return 0; 188 } 189 190 /** 191 * is_idx_node_in_use - determine if an index node can be overwritten. 192 * @c: UBIFS file-system description object 193 * @key: key of index node 194 * @level: index node level 195 * @lnum: LEB number of index node 196 * @offs: offset of index node 197 * 198 * If @key / @lnum / @offs identify an index node that was not part of the old 199 * index, then this function returns %0 (obsolete). Else if the index node was 200 * part of the old index but is now dirty %1 is returned, else if it is clean %2 201 * is returned. A negative error code is returned on failure. 202 */ 203 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, 204 int level, int lnum, int offs) 205 { 206 int ret; 207 208 ret = is_idx_node_in_tnc(c, key, level, lnum, offs); 209 if (ret < 0) 210 return ret; /* Error code */ 211 if (ret == 0) 212 if (find_old_idx(c, lnum, offs)) 213 return 1; 214 return ret; 215 } 216 217 /** 218 * layout_leb_in_gaps - layout index nodes using in-the-gaps method. 219 * @c: UBIFS file-system description object 220 * @p: return LEB number here 221 * 222 * This function lays out new index nodes for dirty znodes using in-the-gaps 223 * method of TNC commit. 224 * This function merely puts the next znode into the next gap, making no attempt 225 * to try to maximise the number of znodes that fit. 226 * This function returns the number of index nodes written into the gaps, or a 227 * negative error code on failure. 228 */ 229 static int layout_leb_in_gaps(struct ubifs_info *c, int *p) 230 { 231 struct ubifs_scan_leb *sleb; 232 struct ubifs_scan_node *snod; 233 int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; 234 235 tot_written = 0; 236 /* Get an index LEB with lots of obsolete index nodes */ 237 lnum = ubifs_find_dirty_idx_leb(c); 238 if (lnum < 0) 239 /* 240 * There also may be dirt in the index head that could be 241 * filled, however we do not check there at present. 242 */ 243 return lnum; /* Error code */ 244 *p = lnum; 245 dbg_gc("LEB %d", lnum); 246 /* 247 * Scan the index LEB. We use the generic scan for this even though 248 * it is more comprehensive and less efficient than is needed for this 249 * purpose. 250 */ 251 sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0); 252 c->ileb_len = 0; 253 if (IS_ERR(sleb)) 254 return PTR_ERR(sleb); 255 gap_start = 0; 256 list_for_each_entry(snod, &sleb->nodes, list) { 257 struct ubifs_idx_node *idx; 258 int in_use, level; 259 260 ubifs_assert(snod->type == UBIFS_IDX_NODE); 261 idx = snod->node; 262 key_read(c, ubifs_idx_key(c, idx), &snod->key); 263 level = le16_to_cpu(idx->level); 264 /* Determine if the index node is in use (not obsolete) */ 265 in_use = is_idx_node_in_use(c, &snod->key, level, lnum, 266 snod->offs); 267 if (in_use < 0) { 268 ubifs_scan_destroy(sleb); 269 return in_use; /* Error code */ 270 } 271 if (in_use) { 272 if (in_use == 1) 273 dirt += ALIGN(snod->len, 8); 274 /* 275 * The obsolete index nodes form gaps that can be 276 * overwritten. This gap has ended because we have 277 * found an index node that is still in use 278 * i.e. not obsolete 279 */ 280 gap_end = snod->offs; 281 /* Try to fill gap */ 282 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 283 if (written < 0) { 284 ubifs_scan_destroy(sleb); 285 return written; /* Error code */ 286 } 287 tot_written += written; 288 gap_start = ALIGN(snod->offs + snod->len, 8); 289 } 290 } 291 ubifs_scan_destroy(sleb); 292 c->ileb_len = c->leb_size; 293 gap_end = c->leb_size; 294 /* Try to fill gap */ 295 written = fill_gap(c, lnum, gap_start, gap_end, &dirt); 296 if (written < 0) 297 return written; /* Error code */ 298 tot_written += written; 299 if (tot_written == 0) { 300 struct ubifs_lprops lp; 301 302 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 303 err = ubifs_read_one_lp(c, lnum, &lp); 304 if (err) 305 return err; 306 if (lp.free == c->leb_size) { 307 /* 308 * We must have snatched this LEB from the idx_gc list 309 * so we need to correct the free and dirty space. 310 */ 311 err = ubifs_change_one_lp(c, lnum, 312 c->leb_size - c->ileb_len, 313 dirt, 0, 0, 0); 314 if (err) 315 return err; 316 } 317 return 0; 318 } 319 err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, 320 0, 0, 0); 321 if (err) 322 return err; 323 err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len); 324 if (err) 325 return err; 326 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); 327 return tot_written; 328 } 329 330 /** 331 * get_leb_cnt - calculate the number of empty LEBs needed to commit. 332 * @c: UBIFS file-system description object 333 * @cnt: number of znodes to commit 334 * 335 * This function returns the number of empty LEBs needed to commit @cnt znodes 336 * to the current index head. The number is not exact and may be more than 337 * needed. 338 */ 339 static int get_leb_cnt(struct ubifs_info *c, int cnt) 340 { 341 int d; 342 343 /* Assume maximum index node size (i.e. overestimate space needed) */ 344 cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; 345 if (cnt < 0) 346 cnt = 0; 347 d = c->leb_size / c->max_idx_node_sz; 348 return DIV_ROUND_UP(cnt, d); 349 } 350 351 /** 352 * layout_in_gaps - in-the-gaps method of committing TNC. 353 * @c: UBIFS file-system description object 354 * @cnt: number of dirty znodes to commit. 355 * 356 * This function lays out new index nodes for dirty znodes using in-the-gaps 357 * method of TNC commit. 358 * 359 * This function returns %0 on success and a negative error code on failure. 360 */ 361 static int layout_in_gaps(struct ubifs_info *c, int cnt) 362 { 363 int err, leb_needed_cnt, written, *p; 364 365 dbg_gc("%d znodes to write", cnt); 366 367 c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS); 368 if (!c->gap_lebs) 369 return -ENOMEM; 370 371 p = c->gap_lebs; 372 do { 373 ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs); 374 written = layout_leb_in_gaps(c, p); 375 if (written < 0) { 376 err = written; 377 if (err != -ENOSPC) { 378 kfree(c->gap_lebs); 379 c->gap_lebs = NULL; 380 return err; 381 } 382 if (!dbg_is_chk_index(c)) { 383 /* 384 * Do not print scary warnings if the debugging 385 * option which forces in-the-gaps is enabled. 386 */ 387 ubifs_warn("out of space"); 388 ubifs_dump_budg(c, &c->bi); 389 ubifs_dump_lprops(c); 390 } 391 /* Try to commit anyway */ 392 break; 393 } 394 p++; 395 cnt -= written; 396 leb_needed_cnt = get_leb_cnt(c, cnt); 397 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, 398 leb_needed_cnt, c->ileb_cnt); 399 } while (leb_needed_cnt > c->ileb_cnt); 400 401 *p = -1; 402 return 0; 403 } 404 405 /** 406 * layout_in_empty_space - layout index nodes in empty space. 407 * @c: UBIFS file-system description object 408 * 409 * This function lays out new index nodes for dirty znodes using empty LEBs. 410 * 411 * This function returns %0 on success and a negative error code on failure. 412 */ 413 static int layout_in_empty_space(struct ubifs_info *c) 414 { 415 struct ubifs_znode *znode, *cnext, *zp; 416 int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; 417 int wlen, blen, err; 418 419 cnext = c->enext; 420 if (!cnext) 421 return 0; 422 423 lnum = c->ihead_lnum; 424 buf_offs = c->ihead_offs; 425 426 buf_len = ubifs_idx_node_sz(c, c->fanout); 427 buf_len = ALIGN(buf_len, c->min_io_size); 428 used = 0; 429 avail = buf_len; 430 431 /* Ensure there is enough room for first write */ 432 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 433 if (buf_offs + next_len > c->leb_size) 434 lnum = -1; 435 436 while (1) { 437 znode = cnext; 438 439 len = ubifs_idx_node_sz(c, znode->child_cnt); 440 441 /* Determine the index node position */ 442 if (lnum == -1) { 443 if (c->ileb_nxt >= c->ileb_cnt) { 444 ubifs_err("out of space"); 445 return -ENOSPC; 446 } 447 lnum = c->ilebs[c->ileb_nxt++]; 448 buf_offs = 0; 449 used = 0; 450 avail = buf_len; 451 } 452 453 offs = buf_offs + used; 454 455 znode->lnum = lnum; 456 znode->offs = offs; 457 znode->len = len; 458 459 /* Update the parent */ 460 zp = znode->parent; 461 if (zp) { 462 struct ubifs_zbranch *zbr; 463 int i; 464 465 i = znode->iip; 466 zbr = &zp->zbranch[i]; 467 zbr->lnum = lnum; 468 zbr->offs = offs; 469 zbr->len = len; 470 } else { 471 c->zroot.lnum = lnum; 472 c->zroot.offs = offs; 473 c->zroot.len = len; 474 } 475 c->calc_idx_sz += ALIGN(len, 8); 476 477 /* 478 * Once lprops is updated, we can decrease the dirty znode count 479 * but it is easier to just do it here. 480 */ 481 atomic_long_dec(&c->dirty_zn_cnt); 482 483 /* 484 * Calculate the next index node length to see if there is 485 * enough room for it 486 */ 487 cnext = znode->cnext; 488 if (cnext == c->cnext) 489 next_len = 0; 490 else 491 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 492 493 /* Update buffer positions */ 494 wlen = used + len; 495 used += ALIGN(len, 8); 496 avail -= ALIGN(len, 8); 497 498 if (next_len != 0 && 499 buf_offs + used + next_len <= c->leb_size && 500 avail > 0) 501 continue; 502 503 if (avail <= 0 && next_len && 504 buf_offs + used + next_len <= c->leb_size) 505 blen = buf_len; 506 else 507 blen = ALIGN(wlen, c->min_io_size); 508 509 /* The buffer is full or there are no more znodes to do */ 510 buf_offs += blen; 511 if (next_len) { 512 if (buf_offs + next_len > c->leb_size) { 513 err = ubifs_update_one_lp(c, lnum, 514 c->leb_size - buf_offs, blen - used, 515 0, 0); 516 if (err) 517 return err; 518 lnum = -1; 519 } 520 used -= blen; 521 if (used < 0) 522 used = 0; 523 avail = buf_len - used; 524 continue; 525 } 526 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, 527 blen - used, 0, 0); 528 if (err) 529 return err; 530 break; 531 } 532 533 c->dbg->new_ihead_lnum = lnum; 534 c->dbg->new_ihead_offs = buf_offs; 535 536 return 0; 537 } 538 539 /** 540 * layout_commit - determine positions of index nodes to commit. 541 * @c: UBIFS file-system description object 542 * @no_space: indicates that insufficient empty LEBs were allocated 543 * @cnt: number of znodes to commit 544 * 545 * Calculate and update the positions of index nodes to commit. If there were 546 * an insufficient number of empty LEBs allocated, then index nodes are placed 547 * into the gaps created by obsolete index nodes in non-empty index LEBs. For 548 * this purpose, an obsolete index node is one that was not in the index as at 549 * the end of the last commit. To write "in-the-gaps" requires that those index 550 * LEBs are updated atomically in-place. 551 */ 552 static int layout_commit(struct ubifs_info *c, int no_space, int cnt) 553 { 554 int err; 555 556 if (no_space) { 557 err = layout_in_gaps(c, cnt); 558 if (err) 559 return err; 560 } 561 err = layout_in_empty_space(c); 562 return err; 563 } 564 565 /** 566 * find_first_dirty - find first dirty znode. 567 * @znode: znode to begin searching from 568 */ 569 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) 570 { 571 int i, cont; 572 573 if (!znode) 574 return NULL; 575 576 while (1) { 577 if (znode->level == 0) { 578 if (ubifs_zn_dirty(znode)) 579 return znode; 580 return NULL; 581 } 582 cont = 0; 583 for (i = 0; i < znode->child_cnt; i++) { 584 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 585 586 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { 587 znode = zbr->znode; 588 cont = 1; 589 break; 590 } 591 } 592 if (!cont) { 593 if (ubifs_zn_dirty(znode)) 594 return znode; 595 return NULL; 596 } 597 } 598 } 599 600 /** 601 * find_next_dirty - find next dirty znode. 602 * @znode: znode to begin searching from 603 */ 604 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) 605 { 606 int n = znode->iip + 1; 607 608 znode = znode->parent; 609 if (!znode) 610 return NULL; 611 for (; n < znode->child_cnt; n++) { 612 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 613 614 if (zbr->znode && ubifs_zn_dirty(zbr->znode)) 615 return find_first_dirty(zbr->znode); 616 } 617 return znode; 618 } 619 620 /** 621 * get_znodes_to_commit - create list of dirty znodes to commit. 622 * @c: UBIFS file-system description object 623 * 624 * This function returns the number of znodes to commit. 625 */ 626 static int get_znodes_to_commit(struct ubifs_info *c) 627 { 628 struct ubifs_znode *znode, *cnext; 629 int cnt = 0; 630 631 c->cnext = find_first_dirty(c->zroot.znode); 632 znode = c->enext = c->cnext; 633 if (!znode) { 634 dbg_cmt("no znodes to commit"); 635 return 0; 636 } 637 cnt += 1; 638 while (1) { 639 ubifs_assert(!ubifs_zn_cow(znode)); 640 __set_bit(COW_ZNODE, &znode->flags); 641 znode->alt = 0; 642 cnext = find_next_dirty(znode); 643 if (!cnext) { 644 znode->cnext = c->cnext; 645 break; 646 } 647 znode->cnext = cnext; 648 znode = cnext; 649 cnt += 1; 650 } 651 dbg_cmt("committing %d znodes", cnt); 652 ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt)); 653 return cnt; 654 } 655 656 /** 657 * alloc_idx_lebs - allocate empty LEBs to be used to commit. 658 * @c: UBIFS file-system description object 659 * @cnt: number of znodes to commit 660 * 661 * This function returns %-ENOSPC if it cannot allocate a sufficient number of 662 * empty LEBs. %0 is returned on success, otherwise a negative error code 663 * is returned. 664 */ 665 static int alloc_idx_lebs(struct ubifs_info *c, int cnt) 666 { 667 int i, leb_cnt, lnum; 668 669 c->ileb_cnt = 0; 670 c->ileb_nxt = 0; 671 leb_cnt = get_leb_cnt(c, cnt); 672 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); 673 if (!leb_cnt) 674 return 0; 675 c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS); 676 if (!c->ilebs) 677 return -ENOMEM; 678 for (i = 0; i < leb_cnt; i++) { 679 lnum = ubifs_find_free_leb_for_idx(c); 680 if (lnum < 0) 681 return lnum; 682 c->ilebs[c->ileb_cnt++] = lnum; 683 dbg_cmt("LEB %d", lnum); 684 } 685 if (dbg_is_chk_index(c) && !(prandom_u32() & 7)) 686 return -ENOSPC; 687 return 0; 688 } 689 690 /** 691 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. 692 * @c: UBIFS file-system description object 693 * 694 * It is possible that we allocate more empty LEBs for the commit than we need. 695 * This functions frees the surplus. 696 * 697 * This function returns %0 on success and a negative error code on failure. 698 */ 699 static int free_unused_idx_lebs(struct ubifs_info *c) 700 { 701 int i, err = 0, lnum, er; 702 703 for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { 704 lnum = c->ilebs[i]; 705 dbg_cmt("LEB %d", lnum); 706 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 707 LPROPS_INDEX | LPROPS_TAKEN, 0); 708 if (!err) 709 err = er; 710 } 711 return err; 712 } 713 714 /** 715 * free_idx_lebs - free unused LEBs after commit end. 716 * @c: UBIFS file-system description object 717 * 718 * This function returns %0 on success and a negative error code on failure. 719 */ 720 static int free_idx_lebs(struct ubifs_info *c) 721 { 722 int err; 723 724 err = free_unused_idx_lebs(c); 725 kfree(c->ilebs); 726 c->ilebs = NULL; 727 return err; 728 } 729 730 /** 731 * ubifs_tnc_start_commit - start TNC commit. 732 * @c: UBIFS file-system description object 733 * @zroot: new index root position is returned here 734 * 735 * This function prepares the list of indexing nodes to commit and lays out 736 * their positions on flash. If there is not enough free space it uses the 737 * in-gap commit method. Returns zero in case of success and a negative error 738 * code in case of failure. 739 */ 740 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) 741 { 742 int err = 0, cnt; 743 744 mutex_lock(&c->tnc_mutex); 745 err = dbg_check_tnc(c, 1); 746 if (err) 747 goto out; 748 cnt = get_znodes_to_commit(c); 749 if (cnt != 0) { 750 int no_space = 0; 751 752 err = alloc_idx_lebs(c, cnt); 753 if (err == -ENOSPC) 754 no_space = 1; 755 else if (err) 756 goto out_free; 757 err = layout_commit(c, no_space, cnt); 758 if (err) 759 goto out_free; 760 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); 761 err = free_unused_idx_lebs(c); 762 if (err) 763 goto out; 764 } 765 destroy_old_idx(c); 766 memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); 767 768 err = ubifs_save_dirty_idx_lnums(c); 769 if (err) 770 goto out; 771 772 spin_lock(&c->space_lock); 773 /* 774 * Although we have not finished committing yet, update size of the 775 * committed index ('c->bi.old_idx_sz') and zero out the index growth 776 * budget. It is OK to do this now, because we've reserved all the 777 * space which is needed to commit the index, and it is save for the 778 * budgeting subsystem to assume the index is already committed, 779 * even though it is not. 780 */ 781 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 782 c->bi.old_idx_sz = c->calc_idx_sz; 783 c->bi.uncommitted_idx = 0; 784 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 785 spin_unlock(&c->space_lock); 786 mutex_unlock(&c->tnc_mutex); 787 788 dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); 789 dbg_cmt("size of index %llu", c->calc_idx_sz); 790 return err; 791 792 out_free: 793 free_idx_lebs(c); 794 out: 795 mutex_unlock(&c->tnc_mutex); 796 return err; 797 } 798 799 /** 800 * write_index - write index nodes. 801 * @c: UBIFS file-system description object 802 * 803 * This function writes the index nodes whose positions were laid out in the 804 * layout_in_empty_space function. 805 */ 806 static int write_index(struct ubifs_info *c) 807 { 808 struct ubifs_idx_node *idx; 809 struct ubifs_znode *znode, *cnext; 810 int i, lnum, offs, len, next_len, buf_len, buf_offs, used; 811 int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; 812 813 cnext = c->enext; 814 if (!cnext) 815 return 0; 816 817 /* 818 * Always write index nodes to the index head so that index nodes and 819 * other types of nodes are never mixed in the same erase block. 820 */ 821 lnum = c->ihead_lnum; 822 buf_offs = c->ihead_offs; 823 824 /* Allocate commit buffer */ 825 buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); 826 used = 0; 827 avail = buf_len; 828 829 /* Ensure there is enough room for first write */ 830 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 831 if (buf_offs + next_len > c->leb_size) { 832 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, 833 LPROPS_TAKEN); 834 if (err) 835 return err; 836 lnum = -1; 837 } 838 839 while (1) { 840 cond_resched(); 841 842 znode = cnext; 843 idx = c->cbuf + used; 844 845 /* Make index node */ 846 idx->ch.node_type = UBIFS_IDX_NODE; 847 idx->child_cnt = cpu_to_le16(znode->child_cnt); 848 idx->level = cpu_to_le16(znode->level); 849 for (i = 0; i < znode->child_cnt; i++) { 850 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 851 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 852 853 key_write_idx(c, &zbr->key, &br->key); 854 br->lnum = cpu_to_le32(zbr->lnum); 855 br->offs = cpu_to_le32(zbr->offs); 856 br->len = cpu_to_le32(zbr->len); 857 if (!zbr->lnum || !zbr->len) { 858 ubifs_err("bad ref in znode"); 859 ubifs_dump_znode(c, znode); 860 if (zbr->znode) 861 ubifs_dump_znode(c, zbr->znode); 862 } 863 } 864 len = ubifs_idx_node_sz(c, znode->child_cnt); 865 ubifs_prepare_node(c, idx, len, 0); 866 867 /* Determine the index node position */ 868 if (lnum == -1) { 869 lnum = c->ilebs[lnum_pos++]; 870 buf_offs = 0; 871 used = 0; 872 avail = buf_len; 873 } 874 offs = buf_offs + used; 875 876 if (lnum != znode->lnum || offs != znode->offs || 877 len != znode->len) { 878 ubifs_err("inconsistent znode posn"); 879 return -EINVAL; 880 } 881 882 /* Grab some stuff from znode while we still can */ 883 cnext = znode->cnext; 884 885 ubifs_assert(ubifs_zn_dirty(znode)); 886 ubifs_assert(ubifs_zn_cow(znode)); 887 888 /* 889 * It is important that other threads should see %DIRTY_ZNODE 890 * flag cleared before %COW_ZNODE. Specifically, it matters in 891 * the 'dirty_cow_znode()' function. This is the reason for the 892 * first barrier. Also, we want the bit changes to be seen to 893 * other threads ASAP, to avoid unnecesarry copying, which is 894 * the reason for the second barrier. 895 */ 896 clear_bit(DIRTY_ZNODE, &znode->flags); 897 smp_mb__before_atomic(); 898 clear_bit(COW_ZNODE, &znode->flags); 899 smp_mb__after_atomic(); 900 901 /* 902 * We have marked the znode as clean but have not updated the 903 * @c->clean_zn_cnt counter. If this znode becomes dirty again 904 * before 'free_obsolete_znodes()' is called, then 905 * @c->clean_zn_cnt will be decremented before it gets 906 * incremented (resulting in 2 decrements for the same znode). 907 * This means that @c->clean_zn_cnt may become negative for a 908 * while. 909 * 910 * Q: why we cannot increment @c->clean_zn_cnt? 911 * A: because we do not have the @c->tnc_mutex locked, and the 912 * following code would be racy and buggy: 913 * 914 * if (!ubifs_zn_obsolete(znode)) { 915 * atomic_long_inc(&c->clean_zn_cnt); 916 * atomic_long_inc(&ubifs_clean_zn_cnt); 917 * } 918 * 919 * Thus, we just delay the @c->clean_zn_cnt update until we 920 * have the mutex locked. 921 */ 922 923 /* Do not access znode from this point on */ 924 925 /* Update buffer positions */ 926 wlen = used + len; 927 used += ALIGN(len, 8); 928 avail -= ALIGN(len, 8); 929 930 /* 931 * Calculate the next index node length to see if there is 932 * enough room for it 933 */ 934 if (cnext == c->cnext) 935 next_len = 0; 936 else 937 next_len = ubifs_idx_node_sz(c, cnext->child_cnt); 938 939 nxt_offs = buf_offs + used + next_len; 940 if (next_len && nxt_offs <= c->leb_size) { 941 if (avail > 0) 942 continue; 943 else 944 blen = buf_len; 945 } else { 946 wlen = ALIGN(wlen, 8); 947 blen = ALIGN(wlen, c->min_io_size); 948 ubifs_pad(c, c->cbuf + wlen, blen - wlen); 949 } 950 951 /* The buffer is full or there are no more znodes to do */ 952 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen); 953 if (err) 954 return err; 955 buf_offs += blen; 956 if (next_len) { 957 if (nxt_offs > c->leb_size) { 958 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 959 0, LPROPS_TAKEN); 960 if (err) 961 return err; 962 lnum = -1; 963 } 964 used -= blen; 965 if (used < 0) 966 used = 0; 967 avail = buf_len - used; 968 memmove(c->cbuf, c->cbuf + blen, used); 969 continue; 970 } 971 break; 972 } 973 974 if (lnum != c->dbg->new_ihead_lnum || 975 buf_offs != c->dbg->new_ihead_offs) { 976 ubifs_err("inconsistent ihead"); 977 return -EINVAL; 978 } 979 980 c->ihead_lnum = lnum; 981 c->ihead_offs = buf_offs; 982 983 return 0; 984 } 985 986 /** 987 * free_obsolete_znodes - free obsolete znodes. 988 * @c: UBIFS file-system description object 989 * 990 * At the end of commit end, obsolete znodes are freed. 991 */ 992 static void free_obsolete_znodes(struct ubifs_info *c) 993 { 994 struct ubifs_znode *znode, *cnext; 995 996 cnext = c->cnext; 997 do { 998 znode = cnext; 999 cnext = znode->cnext; 1000 if (ubifs_zn_obsolete(znode)) 1001 kfree(znode); 1002 else { 1003 znode->cnext = NULL; 1004 atomic_long_inc(&c->clean_zn_cnt); 1005 atomic_long_inc(&ubifs_clean_zn_cnt); 1006 } 1007 } while (cnext != c->cnext); 1008 } 1009 1010 /** 1011 * return_gap_lebs - return LEBs used by the in-gap commit method. 1012 * @c: UBIFS file-system description object 1013 * 1014 * This function clears the "taken" flag for the LEBs which were used by the 1015 * "commit in-the-gaps" method. 1016 */ 1017 static int return_gap_lebs(struct ubifs_info *c) 1018 { 1019 int *p, err; 1020 1021 if (!c->gap_lebs) 1022 return 0; 1023 1024 dbg_cmt(""); 1025 for (p = c->gap_lebs; *p != -1; p++) { 1026 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, 1027 LPROPS_TAKEN, 0); 1028 if (err) 1029 return err; 1030 } 1031 1032 kfree(c->gap_lebs); 1033 c->gap_lebs = NULL; 1034 return 0; 1035 } 1036 1037 /** 1038 * ubifs_tnc_end_commit - update the TNC for commit end. 1039 * @c: UBIFS file-system description object 1040 * 1041 * Write the dirty znodes. 1042 */ 1043 int ubifs_tnc_end_commit(struct ubifs_info *c) 1044 { 1045 int err; 1046 1047 if (!c->cnext) 1048 return 0; 1049 1050 err = return_gap_lebs(c); 1051 if (err) 1052 return err; 1053 1054 err = write_index(c); 1055 if (err) 1056 return err; 1057 1058 mutex_lock(&c->tnc_mutex); 1059 1060 dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); 1061 1062 free_obsolete_znodes(c); 1063 1064 c->cnext = NULL; 1065 kfree(c->ilebs); 1066 c->ilebs = NULL; 1067 1068 mutex_unlock(&c->tnc_mutex); 1069 1070 return 0; 1071 } 1072