xref: /linux/fs/ubifs/tnc_commit.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /* This file implements TNC functions for committing */
12 
13 #include <linux/random.h>
14 #include "ubifs.h"
15 
16 /**
17  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
18  * @c: UBIFS file-system description object
19  * @idx: buffer in which to place new index node
20  * @znode: znode from which to make new index node
21  * @lnum: LEB number where new index node will be written
22  * @offs: offset where new index node will be written
23  * @len: length of new index node
24  */
25 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
26 			 struct ubifs_znode *znode, int lnum, int offs, int len)
27 {
28 	struct ubifs_znode *zp;
29 	u8 hash[UBIFS_HASH_ARR_SZ];
30 	int i, err;
31 
32 	/* Make index node */
33 	idx->ch.node_type = UBIFS_IDX_NODE;
34 	idx->child_cnt = cpu_to_le16(znode->child_cnt);
35 	idx->level = cpu_to_le16(znode->level);
36 	for (i = 0; i < znode->child_cnt; i++) {
37 		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
38 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
39 
40 		key_write_idx(c, &zbr->key, &br->key);
41 		br->lnum = cpu_to_le32(zbr->lnum);
42 		br->offs = cpu_to_le32(zbr->offs);
43 		br->len = cpu_to_le32(zbr->len);
44 		ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
45 		if (!zbr->lnum || !zbr->len) {
46 			ubifs_err(c, "bad ref in znode");
47 			ubifs_dump_znode(c, znode);
48 			if (zbr->znode)
49 				ubifs_dump_znode(c, zbr->znode);
50 
51 			return -EINVAL;
52 		}
53 	}
54 	ubifs_prepare_node(c, idx, len, 0);
55 	ubifs_node_calc_hash(c, idx, hash);
56 
57 	znode->lnum = lnum;
58 	znode->offs = offs;
59 	znode->len = len;
60 
61 	err = insert_old_idx_znode(c, znode);
62 
63 	/* Update the parent */
64 	zp = znode->parent;
65 	if (zp) {
66 		struct ubifs_zbranch *zbr;
67 
68 		zbr = &zp->zbranch[znode->iip];
69 		zbr->lnum = lnum;
70 		zbr->offs = offs;
71 		zbr->len = len;
72 		ubifs_copy_hash(c, hash, zbr->hash);
73 	} else {
74 		c->zroot.lnum = lnum;
75 		c->zroot.offs = offs;
76 		c->zroot.len = len;
77 		ubifs_copy_hash(c, hash, c->zroot.hash);
78 	}
79 	c->calc_idx_sz += ALIGN(len, 8);
80 
81 	atomic_long_dec(&c->dirty_zn_cnt);
82 
83 	ubifs_assert(c, ubifs_zn_dirty(znode));
84 	ubifs_assert(c, ubifs_zn_cow(znode));
85 
86 	/*
87 	 * Note, unlike 'write_index()' we do not add memory barriers here
88 	 * because this function is called with @c->tnc_mutex locked.
89 	 */
90 	__clear_bit(DIRTY_ZNODE, &znode->flags);
91 	__clear_bit(COW_ZNODE, &znode->flags);
92 
93 	return err;
94 }
95 
96 /**
97  * fill_gap - make index nodes in gaps in dirty index LEBs.
98  * @c: UBIFS file-system description object
99  * @lnum: LEB number that gap appears in
100  * @gap_start: offset of start of gap
101  * @gap_end: offset of end of gap
102  * @dirt: adds dirty space to this
103  *
104  * This function returns the number of index nodes written into the gap.
105  */
106 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
107 		    int *dirt)
108 {
109 	int len, gap_remains, gap_pos, written, pad_len;
110 
111 	ubifs_assert(c, (gap_start & 7) == 0);
112 	ubifs_assert(c, (gap_end & 7) == 0);
113 	ubifs_assert(c, gap_end >= gap_start);
114 
115 	gap_remains = gap_end - gap_start;
116 	if (!gap_remains)
117 		return 0;
118 	gap_pos = gap_start;
119 	written = 0;
120 	while (c->enext) {
121 		len = ubifs_idx_node_sz(c, c->enext->child_cnt);
122 		if (len < gap_remains) {
123 			struct ubifs_znode *znode = c->enext;
124 			const int alen = ALIGN(len, 8);
125 			int err;
126 
127 			ubifs_assert(c, alen <= gap_remains);
128 			err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
129 					    lnum, gap_pos, len);
130 			if (err)
131 				return err;
132 			gap_remains -= alen;
133 			gap_pos += alen;
134 			c->enext = znode->cnext;
135 			if (c->enext == c->cnext)
136 				c->enext = NULL;
137 			written += 1;
138 		} else
139 			break;
140 	}
141 	if (gap_end == c->leb_size) {
142 		c->ileb_len = ALIGN(gap_pos, c->min_io_size);
143 		/* Pad to end of min_io_size */
144 		pad_len = c->ileb_len - gap_pos;
145 	} else
146 		/* Pad to end of gap */
147 		pad_len = gap_remains;
148 	dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
149 	       lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
150 	ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
151 	*dirt += pad_len;
152 	return written;
153 }
154 
155 /**
156  * find_old_idx - find an index node obsoleted since the last commit start.
157  * @c: UBIFS file-system description object
158  * @lnum: LEB number of obsoleted index node
159  * @offs: offset of obsoleted index node
160  *
161  * Returns %1 if found and %0 otherwise.
162  */
163 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
164 {
165 	struct ubifs_old_idx *o;
166 	struct rb_node *p;
167 
168 	p = c->old_idx.rb_node;
169 	while (p) {
170 		o = rb_entry(p, struct ubifs_old_idx, rb);
171 		if (lnum < o->lnum)
172 			p = p->rb_left;
173 		else if (lnum > o->lnum)
174 			p = p->rb_right;
175 		else if (offs < o->offs)
176 			p = p->rb_left;
177 		else if (offs > o->offs)
178 			p = p->rb_right;
179 		else
180 			return 1;
181 	}
182 	return 0;
183 }
184 
185 /**
186  * is_idx_node_in_use - determine if an index node can be overwritten.
187  * @c: UBIFS file-system description object
188  * @key: key of index node
189  * @level: index node level
190  * @lnum: LEB number of index node
191  * @offs: offset of index node
192  *
193  * If @key / @lnum / @offs identify an index node that was not part of the old
194  * index, then this function returns %0 (obsolete).  Else if the index node was
195  * part of the old index but is now dirty %1 is returned, else if it is clean %2
196  * is returned. A negative error code is returned on failure.
197  */
198 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
199 			      int level, int lnum, int offs)
200 {
201 	int ret;
202 
203 	ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
204 	if (ret < 0)
205 		return ret; /* Error code */
206 	if (ret == 0)
207 		if (find_old_idx(c, lnum, offs))
208 			return 1;
209 	return ret;
210 }
211 
212 /**
213  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
214  * @c: UBIFS file-system description object
215  * @p: return LEB number here
216  *
217  * This function lays out new index nodes for dirty znodes using in-the-gaps
218  * method of TNC commit.
219  * This function merely puts the next znode into the next gap, making no attempt
220  * to try to maximise the number of znodes that fit.
221  * This function returns the number of index nodes written into the gaps, or a
222  * negative error code on failure.
223  */
224 static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
225 {
226 	struct ubifs_scan_leb *sleb;
227 	struct ubifs_scan_node *snod;
228 	int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
229 
230 	tot_written = 0;
231 	/* Get an index LEB with lots of obsolete index nodes */
232 	lnum = ubifs_find_dirty_idx_leb(c);
233 	if (lnum < 0)
234 		/*
235 		 * There also may be dirt in the index head that could be
236 		 * filled, however we do not check there at present.
237 		 */
238 		return lnum; /* Error code */
239 	*p = lnum;
240 	dbg_gc("LEB %d", lnum);
241 	/*
242 	 * Scan the index LEB.  We use the generic scan for this even though
243 	 * it is more comprehensive and less efficient than is needed for this
244 	 * purpose.
245 	 */
246 	sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
247 	c->ileb_len = 0;
248 	if (IS_ERR(sleb))
249 		return PTR_ERR(sleb);
250 	gap_start = 0;
251 	list_for_each_entry(snod, &sleb->nodes, list) {
252 		struct ubifs_idx_node *idx;
253 		int in_use, level;
254 
255 		ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
256 		idx = snod->node;
257 		key_read(c, ubifs_idx_key(c, idx), &snod->key);
258 		level = le16_to_cpu(idx->level);
259 		/* Determine if the index node is in use (not obsolete) */
260 		in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
261 					    snod->offs);
262 		if (in_use < 0) {
263 			ubifs_scan_destroy(sleb);
264 			return in_use; /* Error code */
265 		}
266 		if (in_use) {
267 			if (in_use == 1)
268 				dirt += ALIGN(snod->len, 8);
269 			/*
270 			 * The obsolete index nodes form gaps that can be
271 			 * overwritten.  This gap has ended because we have
272 			 * found an index node that is still in use
273 			 * i.e. not obsolete
274 			 */
275 			gap_end = snod->offs;
276 			/* Try to fill gap */
277 			written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
278 			if (written < 0) {
279 				ubifs_scan_destroy(sleb);
280 				return written; /* Error code */
281 			}
282 			tot_written += written;
283 			gap_start = ALIGN(snod->offs + snod->len, 8);
284 		}
285 	}
286 	ubifs_scan_destroy(sleb);
287 	c->ileb_len = c->leb_size;
288 	gap_end = c->leb_size;
289 	/* Try to fill gap */
290 	written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
291 	if (written < 0)
292 		return written; /* Error code */
293 	tot_written += written;
294 	if (tot_written == 0) {
295 		struct ubifs_lprops lp;
296 
297 		dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
298 		err = ubifs_read_one_lp(c, lnum, &lp);
299 		if (err)
300 			return err;
301 		if (lp.free == c->leb_size) {
302 			/*
303 			 * We must have snatched this LEB from the idx_gc list
304 			 * so we need to correct the free and dirty space.
305 			 */
306 			err = ubifs_change_one_lp(c, lnum,
307 						  c->leb_size - c->ileb_len,
308 						  dirt, 0, 0, 0);
309 			if (err)
310 				return err;
311 		}
312 		return 0;
313 	}
314 	err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
315 				  0, 0, 0);
316 	if (err)
317 		return err;
318 	err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
319 	if (err)
320 		return err;
321 	dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
322 	return tot_written;
323 }
324 
325 /**
326  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
327  * @c: UBIFS file-system description object
328  * @cnt: number of znodes to commit
329  *
330  * This function returns the number of empty LEBs needed to commit @cnt znodes
331  * to the current index head.  The number is not exact and may be more than
332  * needed.
333  */
334 static int get_leb_cnt(struct ubifs_info *c, int cnt)
335 {
336 	int d;
337 
338 	/* Assume maximum index node size (i.e. overestimate space needed) */
339 	cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
340 	if (cnt < 0)
341 		cnt = 0;
342 	d = c->leb_size / c->max_idx_node_sz;
343 	return DIV_ROUND_UP(cnt, d);
344 }
345 
346 /**
347  * layout_in_gaps - in-the-gaps method of committing TNC.
348  * @c: UBIFS file-system description object
349  * @cnt: number of dirty znodes to commit.
350  *
351  * This function lays out new index nodes for dirty znodes using in-the-gaps
352  * method of TNC commit.
353  *
354  * This function returns %0 on success and a negative error code on failure.
355  */
356 static int layout_in_gaps(struct ubifs_info *c, int cnt)
357 {
358 	int err, leb_needed_cnt, written, *p;
359 
360 	dbg_gc("%d znodes to write", cnt);
361 
362 	c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
363 				    GFP_NOFS);
364 	if (!c->gap_lebs)
365 		return -ENOMEM;
366 
367 	p = c->gap_lebs;
368 	do {
369 		ubifs_assert(c, p < c->gap_lebs + c->lst.idx_lebs);
370 		written = layout_leb_in_gaps(c, p);
371 		if (written < 0) {
372 			err = written;
373 			if (err != -ENOSPC) {
374 				kfree(c->gap_lebs);
375 				c->gap_lebs = NULL;
376 				return err;
377 			}
378 			if (!dbg_is_chk_index(c)) {
379 				/*
380 				 * Do not print scary warnings if the debugging
381 				 * option which forces in-the-gaps is enabled.
382 				 */
383 				ubifs_warn(c, "out of space");
384 				ubifs_dump_budg(c, &c->bi);
385 				ubifs_dump_lprops(c);
386 			}
387 			/* Try to commit anyway */
388 			break;
389 		}
390 		p++;
391 		cnt -= written;
392 		leb_needed_cnt = get_leb_cnt(c, cnt);
393 		dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
394 		       leb_needed_cnt, c->ileb_cnt);
395 	} while (leb_needed_cnt > c->ileb_cnt);
396 
397 	*p = -1;
398 	return 0;
399 }
400 
401 /**
402  * layout_in_empty_space - layout index nodes in empty space.
403  * @c: UBIFS file-system description object
404  *
405  * This function lays out new index nodes for dirty znodes using empty LEBs.
406  *
407  * This function returns %0 on success and a negative error code on failure.
408  */
409 static int layout_in_empty_space(struct ubifs_info *c)
410 {
411 	struct ubifs_znode *znode, *cnext, *zp;
412 	int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
413 	int wlen, blen, err;
414 
415 	cnext = c->enext;
416 	if (!cnext)
417 		return 0;
418 
419 	lnum = c->ihead_lnum;
420 	buf_offs = c->ihead_offs;
421 
422 	buf_len = ubifs_idx_node_sz(c, c->fanout);
423 	buf_len = ALIGN(buf_len, c->min_io_size);
424 	used = 0;
425 	avail = buf_len;
426 
427 	/* Ensure there is enough room for first write */
428 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
429 	if (buf_offs + next_len > c->leb_size)
430 		lnum = -1;
431 
432 	while (1) {
433 		znode = cnext;
434 
435 		len = ubifs_idx_node_sz(c, znode->child_cnt);
436 
437 		/* Determine the index node position */
438 		if (lnum == -1) {
439 			if (c->ileb_nxt >= c->ileb_cnt) {
440 				ubifs_err(c, "out of space");
441 				return -ENOSPC;
442 			}
443 			lnum = c->ilebs[c->ileb_nxt++];
444 			buf_offs = 0;
445 			used = 0;
446 			avail = buf_len;
447 		}
448 
449 		offs = buf_offs + used;
450 
451 		znode->lnum = lnum;
452 		znode->offs = offs;
453 		znode->len = len;
454 
455 		/* Update the parent */
456 		zp = znode->parent;
457 		if (zp) {
458 			struct ubifs_zbranch *zbr;
459 			int i;
460 
461 			i = znode->iip;
462 			zbr = &zp->zbranch[i];
463 			zbr->lnum = lnum;
464 			zbr->offs = offs;
465 			zbr->len = len;
466 		} else {
467 			c->zroot.lnum = lnum;
468 			c->zroot.offs = offs;
469 			c->zroot.len = len;
470 		}
471 		c->calc_idx_sz += ALIGN(len, 8);
472 
473 		/*
474 		 * Once lprops is updated, we can decrease the dirty znode count
475 		 * but it is easier to just do it here.
476 		 */
477 		atomic_long_dec(&c->dirty_zn_cnt);
478 
479 		/*
480 		 * Calculate the next index node length to see if there is
481 		 * enough room for it
482 		 */
483 		cnext = znode->cnext;
484 		if (cnext == c->cnext)
485 			next_len = 0;
486 		else
487 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
488 
489 		/* Update buffer positions */
490 		wlen = used + len;
491 		used += ALIGN(len, 8);
492 		avail -= ALIGN(len, 8);
493 
494 		if (next_len != 0 &&
495 		    buf_offs + used + next_len <= c->leb_size &&
496 		    avail > 0)
497 			continue;
498 
499 		if (avail <= 0 && next_len &&
500 		    buf_offs + used + next_len <= c->leb_size)
501 			blen = buf_len;
502 		else
503 			blen = ALIGN(wlen, c->min_io_size);
504 
505 		/* The buffer is full or there are no more znodes to do */
506 		buf_offs += blen;
507 		if (next_len) {
508 			if (buf_offs + next_len > c->leb_size) {
509 				err = ubifs_update_one_lp(c, lnum,
510 					c->leb_size - buf_offs, blen - used,
511 					0, 0);
512 				if (err)
513 					return err;
514 				lnum = -1;
515 			}
516 			used -= blen;
517 			if (used < 0)
518 				used = 0;
519 			avail = buf_len - used;
520 			continue;
521 		}
522 		err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
523 					  blen - used, 0, 0);
524 		if (err)
525 			return err;
526 		break;
527 	}
528 
529 	c->dbg->new_ihead_lnum = lnum;
530 	c->dbg->new_ihead_offs = buf_offs;
531 
532 	return 0;
533 }
534 
535 /**
536  * layout_commit - determine positions of index nodes to commit.
537  * @c: UBIFS file-system description object
538  * @no_space: indicates that insufficient empty LEBs were allocated
539  * @cnt: number of znodes to commit
540  *
541  * Calculate and update the positions of index nodes to commit.  If there were
542  * an insufficient number of empty LEBs allocated, then index nodes are placed
543  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
544  * this purpose, an obsolete index node is one that was not in the index as at
545  * the end of the last commit.  To write "in-the-gaps" requires that those index
546  * LEBs are updated atomically in-place.
547  */
548 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
549 {
550 	int err;
551 
552 	if (no_space) {
553 		err = layout_in_gaps(c, cnt);
554 		if (err)
555 			return err;
556 	}
557 	err = layout_in_empty_space(c);
558 	return err;
559 }
560 
561 /**
562  * find_first_dirty - find first dirty znode.
563  * @znode: znode to begin searching from
564  */
565 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
566 {
567 	int i, cont;
568 
569 	if (!znode)
570 		return NULL;
571 
572 	while (1) {
573 		if (znode->level == 0) {
574 			if (ubifs_zn_dirty(znode))
575 				return znode;
576 			return NULL;
577 		}
578 		cont = 0;
579 		for (i = 0; i < znode->child_cnt; i++) {
580 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
581 
582 			if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
583 				znode = zbr->znode;
584 				cont = 1;
585 				break;
586 			}
587 		}
588 		if (!cont) {
589 			if (ubifs_zn_dirty(znode))
590 				return znode;
591 			return NULL;
592 		}
593 	}
594 }
595 
596 /**
597  * find_next_dirty - find next dirty znode.
598  * @znode: znode to begin searching from
599  */
600 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
601 {
602 	int n = znode->iip + 1;
603 
604 	znode = znode->parent;
605 	if (!znode)
606 		return NULL;
607 	for (; n < znode->child_cnt; n++) {
608 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
609 
610 		if (zbr->znode && ubifs_zn_dirty(zbr->znode))
611 			return find_first_dirty(zbr->znode);
612 	}
613 	return znode;
614 }
615 
616 /**
617  * get_znodes_to_commit - create list of dirty znodes to commit.
618  * @c: UBIFS file-system description object
619  *
620  * This function returns the number of znodes to commit.
621  */
622 static int get_znodes_to_commit(struct ubifs_info *c)
623 {
624 	struct ubifs_znode *znode, *cnext;
625 	int cnt = 0;
626 
627 	c->cnext = find_first_dirty(c->zroot.znode);
628 	znode = c->enext = c->cnext;
629 	if (!znode) {
630 		dbg_cmt("no znodes to commit");
631 		return 0;
632 	}
633 	cnt += 1;
634 	while (1) {
635 		ubifs_assert(c, !ubifs_zn_cow(znode));
636 		__set_bit(COW_ZNODE, &znode->flags);
637 		znode->alt = 0;
638 		cnext = find_next_dirty(znode);
639 		if (!cnext) {
640 			znode->cnext = c->cnext;
641 			break;
642 		}
643 		znode->cparent = znode->parent;
644 		znode->ciip = znode->iip;
645 		znode->cnext = cnext;
646 		znode = cnext;
647 		cnt += 1;
648 	}
649 	dbg_cmt("committing %d znodes", cnt);
650 	ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
651 	return cnt;
652 }
653 
654 /**
655  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
656  * @c: UBIFS file-system description object
657  * @cnt: number of znodes to commit
658  *
659  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
660  * empty LEBs.  %0 is returned on success, otherwise a negative error code
661  * is returned.
662  */
663 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
664 {
665 	int i, leb_cnt, lnum;
666 
667 	c->ileb_cnt = 0;
668 	c->ileb_nxt = 0;
669 	leb_cnt = get_leb_cnt(c, cnt);
670 	dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
671 	if (!leb_cnt)
672 		return 0;
673 	c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
674 	if (!c->ilebs)
675 		return -ENOMEM;
676 	for (i = 0; i < leb_cnt; i++) {
677 		lnum = ubifs_find_free_leb_for_idx(c);
678 		if (lnum < 0)
679 			return lnum;
680 		c->ilebs[c->ileb_cnt++] = lnum;
681 		dbg_cmt("LEB %d", lnum);
682 	}
683 	if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
684 		return -ENOSPC;
685 	return 0;
686 }
687 
688 /**
689  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
690  * @c: UBIFS file-system description object
691  *
692  * It is possible that we allocate more empty LEBs for the commit than we need.
693  * This functions frees the surplus.
694  *
695  * This function returns %0 on success and a negative error code on failure.
696  */
697 static int free_unused_idx_lebs(struct ubifs_info *c)
698 {
699 	int i, err = 0, lnum, er;
700 
701 	for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
702 		lnum = c->ilebs[i];
703 		dbg_cmt("LEB %d", lnum);
704 		er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
705 					 LPROPS_INDEX | LPROPS_TAKEN, 0);
706 		if (!err)
707 			err = er;
708 	}
709 	return err;
710 }
711 
712 /**
713  * free_idx_lebs - free unused LEBs after commit end.
714  * @c: UBIFS file-system description object
715  *
716  * This function returns %0 on success and a negative error code on failure.
717  */
718 static int free_idx_lebs(struct ubifs_info *c)
719 {
720 	int err;
721 
722 	err = free_unused_idx_lebs(c);
723 	kfree(c->ilebs);
724 	c->ilebs = NULL;
725 	return err;
726 }
727 
728 /**
729  * ubifs_tnc_start_commit - start TNC commit.
730  * @c: UBIFS file-system description object
731  * @zroot: new index root position is returned here
732  *
733  * This function prepares the list of indexing nodes to commit and lays out
734  * their positions on flash. If there is not enough free space it uses the
735  * in-gap commit method. Returns zero in case of success and a negative error
736  * code in case of failure.
737  */
738 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
739 {
740 	int err = 0, cnt;
741 
742 	mutex_lock(&c->tnc_mutex);
743 	err = dbg_check_tnc(c, 1);
744 	if (err)
745 		goto out;
746 	cnt = get_znodes_to_commit(c);
747 	if (cnt != 0) {
748 		int no_space = 0;
749 
750 		err = alloc_idx_lebs(c, cnt);
751 		if (err == -ENOSPC)
752 			no_space = 1;
753 		else if (err)
754 			goto out_free;
755 		err = layout_commit(c, no_space, cnt);
756 		if (err)
757 			goto out_free;
758 		ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
759 		err = free_unused_idx_lebs(c);
760 		if (err)
761 			goto out;
762 	}
763 	destroy_old_idx(c);
764 	memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
765 
766 	err = ubifs_save_dirty_idx_lnums(c);
767 	if (err)
768 		goto out;
769 
770 	spin_lock(&c->space_lock);
771 	/*
772 	 * Although we have not finished committing yet, update size of the
773 	 * committed index ('c->bi.old_idx_sz') and zero out the index growth
774 	 * budget. It is OK to do this now, because we've reserved all the
775 	 * space which is needed to commit the index, and it is save for the
776 	 * budgeting subsystem to assume the index is already committed,
777 	 * even though it is not.
778 	 */
779 	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
780 	c->bi.old_idx_sz = c->calc_idx_sz;
781 	c->bi.uncommitted_idx = 0;
782 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
783 	spin_unlock(&c->space_lock);
784 	mutex_unlock(&c->tnc_mutex);
785 
786 	dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
787 	dbg_cmt("size of index %llu", c->calc_idx_sz);
788 	return err;
789 
790 out_free:
791 	free_idx_lebs(c);
792 out:
793 	mutex_unlock(&c->tnc_mutex);
794 	return err;
795 }
796 
797 /**
798  * write_index - write index nodes.
799  * @c: UBIFS file-system description object
800  *
801  * This function writes the index nodes whose positions were laid out in the
802  * layout_in_empty_space function.
803  */
804 static int write_index(struct ubifs_info *c)
805 {
806 	struct ubifs_idx_node *idx;
807 	struct ubifs_znode *znode, *cnext;
808 	int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
809 	int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
810 
811 	cnext = c->enext;
812 	if (!cnext)
813 		return 0;
814 
815 	/*
816 	 * Always write index nodes to the index head so that index nodes and
817 	 * other types of nodes are never mixed in the same erase block.
818 	 */
819 	lnum = c->ihead_lnum;
820 	buf_offs = c->ihead_offs;
821 
822 	/* Allocate commit buffer */
823 	buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
824 	used = 0;
825 	avail = buf_len;
826 
827 	/* Ensure there is enough room for first write */
828 	next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
829 	if (buf_offs + next_len > c->leb_size) {
830 		err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
831 					  LPROPS_TAKEN);
832 		if (err)
833 			return err;
834 		lnum = -1;
835 	}
836 
837 	while (1) {
838 		u8 hash[UBIFS_HASH_ARR_SZ];
839 
840 		cond_resched();
841 
842 		znode = cnext;
843 		idx = c->cbuf + used;
844 
845 		/* Make index node */
846 		idx->ch.node_type = UBIFS_IDX_NODE;
847 		idx->child_cnt = cpu_to_le16(znode->child_cnt);
848 		idx->level = cpu_to_le16(znode->level);
849 		for (i = 0; i < znode->child_cnt; i++) {
850 			struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
851 			struct ubifs_zbranch *zbr = &znode->zbranch[i];
852 
853 			key_write_idx(c, &zbr->key, &br->key);
854 			br->lnum = cpu_to_le32(zbr->lnum);
855 			br->offs = cpu_to_le32(zbr->offs);
856 			br->len = cpu_to_le32(zbr->len);
857 			ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
858 			if (!zbr->lnum || !zbr->len) {
859 				ubifs_err(c, "bad ref in znode");
860 				ubifs_dump_znode(c, znode);
861 				if (zbr->znode)
862 					ubifs_dump_znode(c, zbr->znode);
863 
864 				return -EINVAL;
865 			}
866 		}
867 		len = ubifs_idx_node_sz(c, znode->child_cnt);
868 		ubifs_prepare_node(c, idx, len, 0);
869 		ubifs_node_calc_hash(c, idx, hash);
870 
871 		mutex_lock(&c->tnc_mutex);
872 
873 		if (znode->cparent)
874 			ubifs_copy_hash(c, hash,
875 					znode->cparent->zbranch[znode->ciip].hash);
876 
877 		if (znode->parent) {
878 			if (!ubifs_zn_obsolete(znode))
879 				ubifs_copy_hash(c, hash,
880 					znode->parent->zbranch[znode->iip].hash);
881 		} else {
882 			ubifs_copy_hash(c, hash, c->zroot.hash);
883 		}
884 
885 		mutex_unlock(&c->tnc_mutex);
886 
887 		/* Determine the index node position */
888 		if (lnum == -1) {
889 			lnum = c->ilebs[lnum_pos++];
890 			buf_offs = 0;
891 			used = 0;
892 			avail = buf_len;
893 		}
894 		offs = buf_offs + used;
895 
896 		if (lnum != znode->lnum || offs != znode->offs ||
897 		    len != znode->len) {
898 			ubifs_err(c, "inconsistent znode posn");
899 			return -EINVAL;
900 		}
901 
902 		/* Grab some stuff from znode while we still can */
903 		cnext = znode->cnext;
904 
905 		ubifs_assert(c, ubifs_zn_dirty(znode));
906 		ubifs_assert(c, ubifs_zn_cow(znode));
907 
908 		/*
909 		 * It is important that other threads should see %DIRTY_ZNODE
910 		 * flag cleared before %COW_ZNODE. Specifically, it matters in
911 		 * the 'dirty_cow_znode()' function. This is the reason for the
912 		 * first barrier. Also, we want the bit changes to be seen to
913 		 * other threads ASAP, to avoid unnecesarry copying, which is
914 		 * the reason for the second barrier.
915 		 */
916 		clear_bit(DIRTY_ZNODE, &znode->flags);
917 		smp_mb__before_atomic();
918 		clear_bit(COW_ZNODE, &znode->flags);
919 		smp_mb__after_atomic();
920 
921 		/*
922 		 * We have marked the znode as clean but have not updated the
923 		 * @c->clean_zn_cnt counter. If this znode becomes dirty again
924 		 * before 'free_obsolete_znodes()' is called, then
925 		 * @c->clean_zn_cnt will be decremented before it gets
926 		 * incremented (resulting in 2 decrements for the same znode).
927 		 * This means that @c->clean_zn_cnt may become negative for a
928 		 * while.
929 		 *
930 		 * Q: why we cannot increment @c->clean_zn_cnt?
931 		 * A: because we do not have the @c->tnc_mutex locked, and the
932 		 *    following code would be racy and buggy:
933 		 *
934 		 *    if (!ubifs_zn_obsolete(znode)) {
935 		 *            atomic_long_inc(&c->clean_zn_cnt);
936 		 *            atomic_long_inc(&ubifs_clean_zn_cnt);
937 		 *    }
938 		 *
939 		 *    Thus, we just delay the @c->clean_zn_cnt update until we
940 		 *    have the mutex locked.
941 		 */
942 
943 		/* Do not access znode from this point on */
944 
945 		/* Update buffer positions */
946 		wlen = used + len;
947 		used += ALIGN(len, 8);
948 		avail -= ALIGN(len, 8);
949 
950 		/*
951 		 * Calculate the next index node length to see if there is
952 		 * enough room for it
953 		 */
954 		if (cnext == c->cnext)
955 			next_len = 0;
956 		else
957 			next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
958 
959 		nxt_offs = buf_offs + used + next_len;
960 		if (next_len && nxt_offs <= c->leb_size) {
961 			if (avail > 0)
962 				continue;
963 			else
964 				blen = buf_len;
965 		} else {
966 			wlen = ALIGN(wlen, 8);
967 			blen = ALIGN(wlen, c->min_io_size);
968 			ubifs_pad(c, c->cbuf + wlen, blen - wlen);
969 		}
970 
971 		/* The buffer is full or there are no more znodes to do */
972 		err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
973 		if (err)
974 			return err;
975 		buf_offs += blen;
976 		if (next_len) {
977 			if (nxt_offs > c->leb_size) {
978 				err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
979 							  0, LPROPS_TAKEN);
980 				if (err)
981 					return err;
982 				lnum = -1;
983 			}
984 			used -= blen;
985 			if (used < 0)
986 				used = 0;
987 			avail = buf_len - used;
988 			memmove(c->cbuf, c->cbuf + blen, used);
989 			continue;
990 		}
991 		break;
992 	}
993 
994 	if (lnum != c->dbg->new_ihead_lnum ||
995 	    buf_offs != c->dbg->new_ihead_offs) {
996 		ubifs_err(c, "inconsistent ihead");
997 		return -EINVAL;
998 	}
999 
1000 	c->ihead_lnum = lnum;
1001 	c->ihead_offs = buf_offs;
1002 
1003 	return 0;
1004 }
1005 
1006 /**
1007  * free_obsolete_znodes - free obsolete znodes.
1008  * @c: UBIFS file-system description object
1009  *
1010  * At the end of commit end, obsolete znodes are freed.
1011  */
1012 static void free_obsolete_znodes(struct ubifs_info *c)
1013 {
1014 	struct ubifs_znode *znode, *cnext;
1015 
1016 	cnext = c->cnext;
1017 	do {
1018 		znode = cnext;
1019 		cnext = znode->cnext;
1020 		if (ubifs_zn_obsolete(znode))
1021 			kfree(znode);
1022 		else {
1023 			znode->cnext = NULL;
1024 			atomic_long_inc(&c->clean_zn_cnt);
1025 			atomic_long_inc(&ubifs_clean_zn_cnt);
1026 		}
1027 	} while (cnext != c->cnext);
1028 }
1029 
1030 /**
1031  * return_gap_lebs - return LEBs used by the in-gap commit method.
1032  * @c: UBIFS file-system description object
1033  *
1034  * This function clears the "taken" flag for the LEBs which were used by the
1035  * "commit in-the-gaps" method.
1036  */
1037 static int return_gap_lebs(struct ubifs_info *c)
1038 {
1039 	int *p, err;
1040 
1041 	if (!c->gap_lebs)
1042 		return 0;
1043 
1044 	dbg_cmt("");
1045 	for (p = c->gap_lebs; *p != -1; p++) {
1046 		err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1047 					  LPROPS_TAKEN, 0);
1048 		if (err)
1049 			return err;
1050 	}
1051 
1052 	kfree(c->gap_lebs);
1053 	c->gap_lebs = NULL;
1054 	return 0;
1055 }
1056 
1057 /**
1058  * ubifs_tnc_end_commit - update the TNC for commit end.
1059  * @c: UBIFS file-system description object
1060  *
1061  * Write the dirty znodes.
1062  */
1063 int ubifs_tnc_end_commit(struct ubifs_info *c)
1064 {
1065 	int err;
1066 
1067 	if (!c->cnext)
1068 		return 0;
1069 
1070 	err = return_gap_lebs(c);
1071 	if (err)
1072 		return err;
1073 
1074 	err = write_index(c);
1075 	if (err)
1076 		return err;
1077 
1078 	mutex_lock(&c->tnc_mutex);
1079 
1080 	dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1081 
1082 	free_obsolete_znodes(c);
1083 
1084 	c->cnext = NULL;
1085 	kfree(c->ilebs);
1086 	c->ilebs = NULL;
1087 
1088 	mutex_unlock(&c->tnc_mutex);
1089 
1090 	return 0;
1091 }
1092