1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 38 int len, int lnum, int offs); 39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 40 struct ubifs_zbranch *zbr, void *node); 41 42 /* 43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 44 * @NAME_LESS: name corresponding to the first argument is less than second 45 * @NAME_MATCHES: names match 46 * @NAME_GREATER: name corresponding to the second argument is greater than 47 * first 48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 49 * 50 * These constants were introduce to improve readability. 51 */ 52 enum { 53 NAME_LESS = 0, 54 NAME_MATCHES = 1, 55 NAME_GREATER = 2, 56 NOT_ON_MEDIA = 3, 57 }; 58 59 /** 60 * insert_old_idx - record an index node obsoleted since the last commit start. 61 * @c: UBIFS file-system description object 62 * @lnum: LEB number of obsoleted index node 63 * @offs: offset of obsoleted index node 64 * 65 * Returns %0 on success, and a negative error code on failure. 66 * 67 * For recovery, there must always be a complete intact version of the index on 68 * flash at all times. That is called the "old index". It is the index as at the 69 * time of the last successful commit. Many of the index nodes in the old index 70 * may be dirty, but they must not be erased until the next successful commit 71 * (at which point that index becomes the old index). 72 * 73 * That means that the garbage collection and the in-the-gaps method of 74 * committing must be able to determine if an index node is in the old index. 75 * Most of the old index nodes can be found by looking up the TNC using the 76 * 'lookup_znode()' function. However, some of the old index nodes may have 77 * been deleted from the current index or may have been changed so much that 78 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 79 * That is what this function does. The RB-tree is ordered by LEB number and 80 * offset because they uniquely identify the old index node. 81 */ 82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 83 { 84 struct ubifs_old_idx *old_idx, *o; 85 struct rb_node **p, *parent = NULL; 86 87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 88 if (unlikely(!old_idx)) 89 return -ENOMEM; 90 old_idx->lnum = lnum; 91 old_idx->offs = offs; 92 93 p = &c->old_idx.rb_node; 94 while (*p) { 95 parent = *p; 96 o = rb_entry(parent, struct ubifs_old_idx, rb); 97 if (lnum < o->lnum) 98 p = &(*p)->rb_left; 99 else if (lnum > o->lnum) 100 p = &(*p)->rb_right; 101 else if (offs < o->offs) 102 p = &(*p)->rb_left; 103 else if (offs > o->offs) 104 p = &(*p)->rb_right; 105 else { 106 ubifs_err(c, "old idx added twice!"); 107 kfree(old_idx); 108 return 0; 109 } 110 } 111 rb_link_node(&old_idx->rb, parent, p); 112 rb_insert_color(&old_idx->rb, &c->old_idx); 113 return 0; 114 } 115 116 /** 117 * insert_old_idx_znode - record a znode obsoleted since last commit start. 118 * @c: UBIFS file-system description object 119 * @znode: znode of obsoleted index node 120 * 121 * Returns %0 on success, and a negative error code on failure. 122 */ 123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 124 { 125 if (znode->parent) { 126 struct ubifs_zbranch *zbr; 127 128 zbr = &znode->parent->zbranch[znode->iip]; 129 if (zbr->len) 130 return insert_old_idx(c, zbr->lnum, zbr->offs); 131 } else 132 if (c->zroot.len) 133 return insert_old_idx(c, c->zroot.lnum, 134 c->zroot.offs); 135 return 0; 136 } 137 138 /** 139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 140 * @c: UBIFS file-system description object 141 * @znode: znode of obsoleted index node 142 * 143 * Returns %0 on success, and a negative error code on failure. 144 */ 145 static int ins_clr_old_idx_znode(struct ubifs_info *c, 146 struct ubifs_znode *znode) 147 { 148 int err; 149 150 if (znode->parent) { 151 struct ubifs_zbranch *zbr; 152 153 zbr = &znode->parent->zbranch[znode->iip]; 154 if (zbr->len) { 155 err = insert_old_idx(c, zbr->lnum, zbr->offs); 156 if (err) 157 return err; 158 zbr->lnum = 0; 159 zbr->offs = 0; 160 zbr->len = 0; 161 } 162 } else 163 if (c->zroot.len) { 164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 165 if (err) 166 return err; 167 c->zroot.lnum = 0; 168 c->zroot.offs = 0; 169 c->zroot.len = 0; 170 } 171 return 0; 172 } 173 174 /** 175 * destroy_old_idx - destroy the old_idx RB-tree. 176 * @c: UBIFS file-system description object 177 * 178 * During start commit, the old_idx RB-tree is used to avoid overwriting index 179 * nodes that were in the index last commit but have since been deleted. This 180 * is necessary for recovery i.e. the old index must be kept intact until the 181 * new index is successfully written. The old-idx RB-tree is used for the 182 * in-the-gaps method of writing index nodes and is destroyed every commit. 183 */ 184 void destroy_old_idx(struct ubifs_info *c) 185 { 186 struct ubifs_old_idx *old_idx, *n; 187 188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 189 kfree(old_idx); 190 191 c->old_idx = RB_ROOT; 192 } 193 194 /** 195 * copy_znode - copy a dirty znode. 196 * @c: UBIFS file-system description object 197 * @znode: znode to copy 198 * 199 * A dirty znode being committed may not be changed, so it is copied. 200 */ 201 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 202 struct ubifs_znode *znode) 203 { 204 struct ubifs_znode *zn; 205 206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 207 if (unlikely(!zn)) 208 return ERR_PTR(-ENOMEM); 209 210 zn->cnext = NULL; 211 __set_bit(DIRTY_ZNODE, &zn->flags); 212 __clear_bit(COW_ZNODE, &zn->flags); 213 214 ubifs_assert(!ubifs_zn_obsolete(znode)); 215 __set_bit(OBSOLETE_ZNODE, &znode->flags); 216 217 if (znode->level != 0) { 218 int i; 219 const int n = zn->child_cnt; 220 221 /* The children now have new parent */ 222 for (i = 0; i < n; i++) { 223 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 224 225 if (zbr->znode) 226 zbr->znode->parent = zn; 227 } 228 } 229 230 atomic_long_inc(&c->dirty_zn_cnt); 231 return zn; 232 } 233 234 /** 235 * add_idx_dirt - add dirt due to a dirty znode. 236 * @c: UBIFS file-system description object 237 * @lnum: LEB number of index node 238 * @dirt: size of index node 239 * 240 * This function updates lprops dirty space and the new size of the index. 241 */ 242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 243 { 244 c->calc_idx_sz -= ALIGN(dirt, 8); 245 return ubifs_add_dirt(c, lnum, dirt); 246 } 247 248 /** 249 * dirty_cow_znode - ensure a znode is not being committed. 250 * @c: UBIFS file-system description object 251 * @zbr: branch of znode to check 252 * 253 * Returns dirtied znode on success or negative error code on failure. 254 */ 255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 256 struct ubifs_zbranch *zbr) 257 { 258 struct ubifs_znode *znode = zbr->znode; 259 struct ubifs_znode *zn; 260 int err; 261 262 if (!ubifs_zn_cow(znode)) { 263 /* znode is not being committed */ 264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 265 atomic_long_inc(&c->dirty_zn_cnt); 266 atomic_long_dec(&c->clean_zn_cnt); 267 atomic_long_dec(&ubifs_clean_zn_cnt); 268 err = add_idx_dirt(c, zbr->lnum, zbr->len); 269 if (unlikely(err)) 270 return ERR_PTR(err); 271 } 272 return znode; 273 } 274 275 zn = copy_znode(c, znode); 276 if (IS_ERR(zn)) 277 return zn; 278 279 if (zbr->len) { 280 err = insert_old_idx(c, zbr->lnum, zbr->offs); 281 if (unlikely(err)) 282 return ERR_PTR(err); 283 err = add_idx_dirt(c, zbr->lnum, zbr->len); 284 } else 285 err = 0; 286 287 zbr->znode = zn; 288 zbr->lnum = 0; 289 zbr->offs = 0; 290 zbr->len = 0; 291 292 if (unlikely(err)) 293 return ERR_PTR(err); 294 return zn; 295 } 296 297 /** 298 * lnc_add - add a leaf node to the leaf node cache. 299 * @c: UBIFS file-system description object 300 * @zbr: zbranch of leaf node 301 * @node: leaf node 302 * 303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 304 * purpose of the leaf node cache is to save re-reading the same leaf node over 305 * and over again. Most things are cached by VFS, however the file system must 306 * cache directory entries for readdir and for resolving hash collisions. The 307 * present implementation of the leaf node cache is extremely simple, and 308 * allows for error returns that are not used but that may be needed if a more 309 * complex implementation is created. 310 * 311 * Note, this function does not add the @node object to LNC directly, but 312 * allocates a copy of the object and adds the copy to LNC. The reason for this 313 * is that @node has been allocated outside of the TNC subsystem and will be 314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 315 * may be changed at any time, e.g. freed by the shrinker. 316 */ 317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 318 const void *node) 319 { 320 int err; 321 void *lnc_node; 322 const struct ubifs_dent_node *dent = node; 323 324 ubifs_assert(!zbr->leaf); 325 ubifs_assert(zbr->len != 0); 326 ubifs_assert(is_hash_key(c, &zbr->key)); 327 328 err = ubifs_validate_entry(c, dent); 329 if (err) { 330 dump_stack(); 331 ubifs_dump_node(c, dent); 332 return err; 333 } 334 335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 336 if (!lnc_node) 337 /* We don't have to have the cache, so no error */ 338 return 0; 339 340 zbr->leaf = lnc_node; 341 return 0; 342 } 343 344 /** 345 * lnc_add_directly - add a leaf node to the leaf-node-cache. 346 * @c: UBIFS file-system description object 347 * @zbr: zbranch of leaf node 348 * @node: leaf node 349 * 350 * This function is similar to 'lnc_add()', but it does not create a copy of 351 * @node but inserts @node to TNC directly. 352 */ 353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 354 void *node) 355 { 356 int err; 357 358 ubifs_assert(!zbr->leaf); 359 ubifs_assert(zbr->len != 0); 360 361 err = ubifs_validate_entry(c, node); 362 if (err) { 363 dump_stack(); 364 ubifs_dump_node(c, node); 365 return err; 366 } 367 368 zbr->leaf = node; 369 return 0; 370 } 371 372 /** 373 * lnc_free - remove a leaf node from the leaf node cache. 374 * @zbr: zbranch of leaf node 375 * @node: leaf node 376 */ 377 static void lnc_free(struct ubifs_zbranch *zbr) 378 { 379 if (!zbr->leaf) 380 return; 381 kfree(zbr->leaf); 382 zbr->leaf = NULL; 383 } 384 385 /** 386 * tnc_read_hashed_node - read a "hashed" leaf node. 387 * @c: UBIFS file-system description object 388 * @zbr: key and position of the node 389 * @node: node is returned here 390 * 391 * This function reads a "hashed" node defined by @zbr from the leaf node cache 392 * (in it is there) or from the hash media, in which case the node is also 393 * added to LNC. Returns zero in case of success or a negative negative error 394 * code in case of failure. 395 */ 396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 397 void *node) 398 { 399 int err; 400 401 ubifs_assert(is_hash_key(c, &zbr->key)); 402 403 if (zbr->leaf) { 404 /* Read from the leaf node cache */ 405 ubifs_assert(zbr->len != 0); 406 memcpy(node, zbr->leaf, zbr->len); 407 return 0; 408 } 409 410 if (c->replaying) { 411 err = fallible_read_node(c, &zbr->key, zbr, node); 412 /* 413 * When the node was not found, return -ENOENT, 0 otherwise. 414 * Negative return codes stay as-is. 415 */ 416 if (err == 0) 417 err = -ENOENT; 418 else if (err == 1) 419 err = 0; 420 } else { 421 err = ubifs_tnc_read_node(c, zbr, node); 422 } 423 if (err) 424 return err; 425 426 /* Add the node to the leaf node cache */ 427 err = lnc_add(c, zbr, node); 428 return err; 429 } 430 431 /** 432 * try_read_node - read a node if it is a node. 433 * @c: UBIFS file-system description object 434 * @buf: buffer to read to 435 * @type: node type 436 * @len: node length (not aligned) 437 * @lnum: LEB number of node to read 438 * @offs: offset of node to read 439 * 440 * This function tries to read a node of known type and length, checks it and 441 * stores it in @buf. This function returns %1 if a node is present and %0 if 442 * a node is not present. A negative error code is returned for I/O errors. 443 * This function performs that same function as ubifs_read_node except that 444 * it does not require that there is actually a node present and instead 445 * the return code indicates if a node was read. 446 * 447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 448 * is true (it is controlled by corresponding mount option). However, if 449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 451 * because during mounting or re-mounting from R/O mode to R/W mode we may read 452 * journal nodes (when replying the journal or doing the recovery) and the 453 * journal nodes may potentially be corrupted, so checking is required. 454 */ 455 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 456 int len, int lnum, int offs) 457 { 458 int err, node_len; 459 struct ubifs_ch *ch = buf; 460 uint32_t crc, node_crc; 461 462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 463 464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 465 if (err) { 466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 467 type, lnum, offs, err); 468 return err; 469 } 470 471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 472 return 0; 473 474 if (ch->node_type != type) 475 return 0; 476 477 node_len = le32_to_cpu(ch->len); 478 if (node_len != len) 479 return 0; 480 481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 482 !c->remounting_rw) 483 return 1; 484 485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 486 node_crc = le32_to_cpu(ch->crc); 487 if (crc != node_crc) 488 return 0; 489 490 return 1; 491 } 492 493 /** 494 * fallible_read_node - try to read a leaf node. 495 * @c: UBIFS file-system description object 496 * @key: key of node to read 497 * @zbr: position of node 498 * @node: node returned 499 * 500 * This function tries to read a node and returns %1 if the node is read, %0 501 * if the node is not present, and a negative error code in the case of error. 502 */ 503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 504 struct ubifs_zbranch *zbr, void *node) 505 { 506 int ret; 507 508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 509 510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 511 zbr->offs); 512 if (ret == 1) { 513 union ubifs_key node_key; 514 struct ubifs_dent_node *dent = node; 515 516 /* All nodes have key in the same place */ 517 key_read(c, &dent->key, &node_key); 518 if (keys_cmp(c, key, &node_key) != 0) 519 ret = 0; 520 } 521 if (ret == 0 && c->replaying) 522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 523 zbr->lnum, zbr->offs, zbr->len); 524 return ret; 525 } 526 527 /** 528 * matches_name - determine if a direntry or xattr entry matches a given name. 529 * @c: UBIFS file-system description object 530 * @zbr: zbranch of dent 531 * @nm: name to match 532 * 533 * This function checks if xentry/direntry referred by zbranch @zbr matches name 534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 536 * of failure, a negative error code is returned. 537 */ 538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 539 const struct fscrypt_name *nm) 540 { 541 struct ubifs_dent_node *dent; 542 int nlen, err; 543 544 /* If possible, match against the dent in the leaf node cache */ 545 if (!zbr->leaf) { 546 dent = kmalloc(zbr->len, GFP_NOFS); 547 if (!dent) 548 return -ENOMEM; 549 550 err = ubifs_tnc_read_node(c, zbr, dent); 551 if (err) 552 goto out_free; 553 554 /* Add the node to the leaf node cache */ 555 err = lnc_add_directly(c, zbr, dent); 556 if (err) 557 goto out_free; 558 } else 559 dent = zbr->leaf; 560 561 nlen = le16_to_cpu(dent->nlen); 562 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 563 if (err == 0) { 564 if (nlen == fname_len(nm)) 565 return NAME_MATCHES; 566 else if (nlen < fname_len(nm)) 567 return NAME_LESS; 568 else 569 return NAME_GREATER; 570 } else if (err < 0) 571 return NAME_LESS; 572 else 573 return NAME_GREATER; 574 575 out_free: 576 kfree(dent); 577 return err; 578 } 579 580 /** 581 * get_znode - get a TNC znode that may not be loaded yet. 582 * @c: UBIFS file-system description object 583 * @znode: parent znode 584 * @n: znode branch slot number 585 * 586 * This function returns the znode or a negative error code. 587 */ 588 static struct ubifs_znode *get_znode(struct ubifs_info *c, 589 struct ubifs_znode *znode, int n) 590 { 591 struct ubifs_zbranch *zbr; 592 593 zbr = &znode->zbranch[n]; 594 if (zbr->znode) 595 znode = zbr->znode; 596 else 597 znode = ubifs_load_znode(c, zbr, znode, n); 598 return znode; 599 } 600 601 /** 602 * tnc_next - find next TNC entry. 603 * @c: UBIFS file-system description object 604 * @zn: znode is passed and returned here 605 * @n: znode branch slot number is passed and returned here 606 * 607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 608 * no next entry, or a negative error code otherwise. 609 */ 610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 611 { 612 struct ubifs_znode *znode = *zn; 613 int nn = *n; 614 615 nn += 1; 616 if (nn < znode->child_cnt) { 617 *n = nn; 618 return 0; 619 } 620 while (1) { 621 struct ubifs_znode *zp; 622 623 zp = znode->parent; 624 if (!zp) 625 return -ENOENT; 626 nn = znode->iip + 1; 627 znode = zp; 628 if (nn < znode->child_cnt) { 629 znode = get_znode(c, znode, nn); 630 if (IS_ERR(znode)) 631 return PTR_ERR(znode); 632 while (znode->level != 0) { 633 znode = get_znode(c, znode, 0); 634 if (IS_ERR(znode)) 635 return PTR_ERR(znode); 636 } 637 nn = 0; 638 break; 639 } 640 } 641 *zn = znode; 642 *n = nn; 643 return 0; 644 } 645 646 /** 647 * tnc_prev - find previous TNC entry. 648 * @c: UBIFS file-system description object 649 * @zn: znode is returned here 650 * @n: znode branch slot number is passed and returned here 651 * 652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 653 * there is no next entry, or a negative error code otherwise. 654 */ 655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 656 { 657 struct ubifs_znode *znode = *zn; 658 int nn = *n; 659 660 if (nn > 0) { 661 *n = nn - 1; 662 return 0; 663 } 664 while (1) { 665 struct ubifs_znode *zp; 666 667 zp = znode->parent; 668 if (!zp) 669 return -ENOENT; 670 nn = znode->iip - 1; 671 znode = zp; 672 if (nn >= 0) { 673 znode = get_znode(c, znode, nn); 674 if (IS_ERR(znode)) 675 return PTR_ERR(znode); 676 while (znode->level != 0) { 677 nn = znode->child_cnt - 1; 678 znode = get_znode(c, znode, nn); 679 if (IS_ERR(znode)) 680 return PTR_ERR(znode); 681 } 682 nn = znode->child_cnt - 1; 683 break; 684 } 685 } 686 *zn = znode; 687 *n = nn; 688 return 0; 689 } 690 691 /** 692 * resolve_collision - resolve a collision. 693 * @c: UBIFS file-system description object 694 * @key: key of a directory or extended attribute entry 695 * @zn: znode is returned here 696 * @n: zbranch number is passed and returned here 697 * @nm: name of the entry 698 * 699 * This function is called for "hashed" keys to make sure that the found key 700 * really corresponds to the looked up node (directory or extended attribute 701 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 702 * %0 is returned if @nm is not found and @zn and @n are set to the previous 703 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 704 * This means that @n may be set to %-1 if the leftmost key in @zn is the 705 * previous one. A negative error code is returned on failures. 706 */ 707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 708 struct ubifs_znode **zn, int *n, 709 const struct fscrypt_name *nm) 710 { 711 int err; 712 713 err = matches_name(c, &(*zn)->zbranch[*n], nm); 714 if (unlikely(err < 0)) 715 return err; 716 if (err == NAME_MATCHES) 717 return 1; 718 719 if (err == NAME_GREATER) { 720 /* Look left */ 721 while (1) { 722 err = tnc_prev(c, zn, n); 723 if (err == -ENOENT) { 724 ubifs_assert(*n == 0); 725 *n = -1; 726 return 0; 727 } 728 if (err < 0) 729 return err; 730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 731 /* 732 * We have found the branch after which we would 733 * like to insert, but inserting in this znode 734 * may still be wrong. Consider the following 3 735 * znodes, in the case where we are resolving a 736 * collision with Key2. 737 * 738 * znode zp 739 * ---------------------- 740 * level 1 | Key0 | Key1 | 741 * ----------------------- 742 * | | 743 * znode za | | znode zb 744 * ------------ ------------ 745 * level 0 | Key0 | | Key2 | 746 * ------------ ------------ 747 * 748 * The lookup finds Key2 in znode zb. Lets say 749 * there is no match and the name is greater so 750 * we look left. When we find Key0, we end up 751 * here. If we return now, we will insert into 752 * znode za at slot n = 1. But that is invalid 753 * according to the parent's keys. Key2 must 754 * be inserted into znode zb. 755 * 756 * Note, this problem is not relevant for the 757 * case when we go right, because 758 * 'tnc_insert()' would correct the parent key. 759 */ 760 if (*n == (*zn)->child_cnt - 1) { 761 err = tnc_next(c, zn, n); 762 if (err) { 763 /* Should be impossible */ 764 ubifs_assert(0); 765 if (err == -ENOENT) 766 err = -EINVAL; 767 return err; 768 } 769 ubifs_assert(*n == 0); 770 *n = -1; 771 } 772 return 0; 773 } 774 err = matches_name(c, &(*zn)->zbranch[*n], nm); 775 if (err < 0) 776 return err; 777 if (err == NAME_LESS) 778 return 0; 779 if (err == NAME_MATCHES) 780 return 1; 781 ubifs_assert(err == NAME_GREATER); 782 } 783 } else { 784 int nn = *n; 785 struct ubifs_znode *znode = *zn; 786 787 /* Look right */ 788 while (1) { 789 err = tnc_next(c, &znode, &nn); 790 if (err == -ENOENT) 791 return 0; 792 if (err < 0) 793 return err; 794 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 795 return 0; 796 err = matches_name(c, &znode->zbranch[nn], nm); 797 if (err < 0) 798 return err; 799 if (err == NAME_GREATER) 800 return 0; 801 *zn = znode; 802 *n = nn; 803 if (err == NAME_MATCHES) 804 return 1; 805 ubifs_assert(err == NAME_LESS); 806 } 807 } 808 } 809 810 /** 811 * fallible_matches_name - determine if a dent matches a given name. 812 * @c: UBIFS file-system description object 813 * @zbr: zbranch of dent 814 * @nm: name to match 815 * 816 * This is a "fallible" version of 'matches_name()' function which does not 817 * panic if the direntry/xentry referred by @zbr does not exist on the media. 818 * 819 * This function checks if xentry/direntry referred by zbranch @zbr matches name 820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 822 * if xentry/direntry referred by @zbr does not exist on the media. A negative 823 * error code is returned in case of failure. 824 */ 825 static int fallible_matches_name(struct ubifs_info *c, 826 struct ubifs_zbranch *zbr, 827 const struct fscrypt_name *nm) 828 { 829 struct ubifs_dent_node *dent; 830 int nlen, err; 831 832 /* If possible, match against the dent in the leaf node cache */ 833 if (!zbr->leaf) { 834 dent = kmalloc(zbr->len, GFP_NOFS); 835 if (!dent) 836 return -ENOMEM; 837 838 err = fallible_read_node(c, &zbr->key, zbr, dent); 839 if (err < 0) 840 goto out_free; 841 if (err == 0) { 842 /* The node was not present */ 843 err = NOT_ON_MEDIA; 844 goto out_free; 845 } 846 ubifs_assert(err == 1); 847 848 err = lnc_add_directly(c, zbr, dent); 849 if (err) 850 goto out_free; 851 } else 852 dent = zbr->leaf; 853 854 nlen = le16_to_cpu(dent->nlen); 855 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 856 if (err == 0) { 857 if (nlen == fname_len(nm)) 858 return NAME_MATCHES; 859 else if (nlen < fname_len(nm)) 860 return NAME_LESS; 861 else 862 return NAME_GREATER; 863 } else if (err < 0) 864 return NAME_LESS; 865 else 866 return NAME_GREATER; 867 868 out_free: 869 kfree(dent); 870 return err; 871 } 872 873 /** 874 * fallible_resolve_collision - resolve a collision even if nodes are missing. 875 * @c: UBIFS file-system description object 876 * @key: key 877 * @zn: znode is returned here 878 * @n: branch number is passed and returned here 879 * @nm: name of directory entry 880 * @adding: indicates caller is adding a key to the TNC 881 * 882 * This is a "fallible" version of the 'resolve_collision()' function which 883 * does not panic if one of the nodes referred to by TNC does not exist on the 884 * media. This may happen when replaying the journal if a deleted node was 885 * Garbage-collected and the commit was not done. A branch that refers to a node 886 * that is not present is called a dangling branch. The following are the return 887 * codes for this function: 888 * o if @nm was found, %1 is returned and @zn and @n are set to the found 889 * branch; 890 * o if we are @adding and @nm was not found, %0 is returned; 891 * o if we are not @adding and @nm was not found, but a dangling branch was 892 * found, then %1 is returned and @zn and @n are set to the dangling branch; 893 * o a negative error code is returned in case of failure. 894 */ 895 static int fallible_resolve_collision(struct ubifs_info *c, 896 const union ubifs_key *key, 897 struct ubifs_znode **zn, int *n, 898 const struct fscrypt_name *nm, 899 int adding) 900 { 901 struct ubifs_znode *o_znode = NULL, *znode = *zn; 902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 903 904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 905 if (unlikely(cmp < 0)) 906 return cmp; 907 if (cmp == NAME_MATCHES) 908 return 1; 909 if (cmp == NOT_ON_MEDIA) { 910 o_znode = znode; 911 o_n = nn; 912 /* 913 * We are unlucky and hit a dangling branch straight away. 914 * Now we do not really know where to go to find the needed 915 * branch - to the left or to the right. Well, let's try left. 916 */ 917 unsure = 1; 918 } else if (!adding) 919 unsure = 1; /* Remove a dangling branch wherever it is */ 920 921 if (cmp == NAME_GREATER || unsure) { 922 /* Look left */ 923 while (1) { 924 err = tnc_prev(c, zn, n); 925 if (err == -ENOENT) { 926 ubifs_assert(*n == 0); 927 *n = -1; 928 break; 929 } 930 if (err < 0) 931 return err; 932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 933 /* See comments in 'resolve_collision()' */ 934 if (*n == (*zn)->child_cnt - 1) { 935 err = tnc_next(c, zn, n); 936 if (err) { 937 /* Should be impossible */ 938 ubifs_assert(0); 939 if (err == -ENOENT) 940 err = -EINVAL; 941 return err; 942 } 943 ubifs_assert(*n == 0); 944 *n = -1; 945 } 946 break; 947 } 948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 949 if (err < 0) 950 return err; 951 if (err == NAME_MATCHES) 952 return 1; 953 if (err == NOT_ON_MEDIA) { 954 o_znode = *zn; 955 o_n = *n; 956 continue; 957 } 958 if (!adding) 959 continue; 960 if (err == NAME_LESS) 961 break; 962 else 963 unsure = 0; 964 } 965 } 966 967 if (cmp == NAME_LESS || unsure) { 968 /* Look right */ 969 *zn = znode; 970 *n = nn; 971 while (1) { 972 err = tnc_next(c, &znode, &nn); 973 if (err == -ENOENT) 974 break; 975 if (err < 0) 976 return err; 977 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 978 break; 979 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 980 if (err < 0) 981 return err; 982 if (err == NAME_GREATER) 983 break; 984 *zn = znode; 985 *n = nn; 986 if (err == NAME_MATCHES) 987 return 1; 988 if (err == NOT_ON_MEDIA) { 989 o_znode = znode; 990 o_n = nn; 991 } 992 } 993 } 994 995 /* Never match a dangling branch when adding */ 996 if (adding || !o_znode) 997 return 0; 998 999 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 1000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 1001 o_znode->zbranch[o_n].len); 1002 *zn = o_znode; 1003 *n = o_n; 1004 return 1; 1005 } 1006 1007 /** 1008 * matches_position - determine if a zbranch matches a given position. 1009 * @zbr: zbranch of dent 1010 * @lnum: LEB number of dent to match 1011 * @offs: offset of dent to match 1012 * 1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1014 */ 1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1016 { 1017 if (zbr->lnum == lnum && zbr->offs == offs) 1018 return 1; 1019 else 1020 return 0; 1021 } 1022 1023 /** 1024 * resolve_collision_directly - resolve a collision directly. 1025 * @c: UBIFS file-system description object 1026 * @key: key of directory entry 1027 * @zn: znode is passed and returned here 1028 * @n: zbranch number is passed and returned here 1029 * @lnum: LEB number of dent node to match 1030 * @offs: offset of dent node to match 1031 * 1032 * This function is used for "hashed" keys to make sure the found directory or 1033 * extended attribute entry node is what was looked for. It is used when the 1034 * flash address of the right node is known (@lnum:@offs) which makes it much 1035 * easier to resolve collisions (no need to read entries and match full 1036 * names). This function returns %1 and sets @zn and @n if the collision is 1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1038 * previous directory entry. Otherwise a negative error code is returned. 1039 */ 1040 static int resolve_collision_directly(struct ubifs_info *c, 1041 const union ubifs_key *key, 1042 struct ubifs_znode **zn, int *n, 1043 int lnum, int offs) 1044 { 1045 struct ubifs_znode *znode; 1046 int nn, err; 1047 1048 znode = *zn; 1049 nn = *n; 1050 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1051 return 1; 1052 1053 /* Look left */ 1054 while (1) { 1055 err = tnc_prev(c, &znode, &nn); 1056 if (err == -ENOENT) 1057 break; 1058 if (err < 0) 1059 return err; 1060 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1061 break; 1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1063 *zn = znode; 1064 *n = nn; 1065 return 1; 1066 } 1067 } 1068 1069 /* Look right */ 1070 znode = *zn; 1071 nn = *n; 1072 while (1) { 1073 err = tnc_next(c, &znode, &nn); 1074 if (err == -ENOENT) 1075 return 0; 1076 if (err < 0) 1077 return err; 1078 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1079 return 0; 1080 *zn = znode; 1081 *n = nn; 1082 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1083 return 1; 1084 } 1085 } 1086 1087 /** 1088 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1089 * @c: UBIFS file-system description object 1090 * @znode: znode to dirty 1091 * 1092 * If we do not have a unique key that resides in a znode, then we cannot 1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1094 * This function records the path back to the last dirty ancestor, and then 1095 * dirties the znodes on that path. 1096 */ 1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1098 struct ubifs_znode *znode) 1099 { 1100 struct ubifs_znode *zp; 1101 int *path = c->bottom_up_buf, p = 0; 1102 1103 ubifs_assert(c->zroot.znode); 1104 ubifs_assert(znode); 1105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1106 kfree(c->bottom_up_buf); 1107 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level, 1108 sizeof(int), 1109 GFP_NOFS); 1110 if (!c->bottom_up_buf) 1111 return ERR_PTR(-ENOMEM); 1112 path = c->bottom_up_buf; 1113 } 1114 if (c->zroot.znode->level) { 1115 /* Go up until parent is dirty */ 1116 while (1) { 1117 int n; 1118 1119 zp = znode->parent; 1120 if (!zp) 1121 break; 1122 n = znode->iip; 1123 ubifs_assert(p < c->zroot.znode->level); 1124 path[p++] = n; 1125 if (!zp->cnext && ubifs_zn_dirty(znode)) 1126 break; 1127 znode = zp; 1128 } 1129 } 1130 1131 /* Come back down, dirtying as we go */ 1132 while (1) { 1133 struct ubifs_zbranch *zbr; 1134 1135 zp = znode->parent; 1136 if (zp) { 1137 ubifs_assert(path[p - 1] >= 0); 1138 ubifs_assert(path[p - 1] < zp->child_cnt); 1139 zbr = &zp->zbranch[path[--p]]; 1140 znode = dirty_cow_znode(c, zbr); 1141 } else { 1142 ubifs_assert(znode == c->zroot.znode); 1143 znode = dirty_cow_znode(c, &c->zroot); 1144 } 1145 if (IS_ERR(znode) || !p) 1146 break; 1147 ubifs_assert(path[p - 1] >= 0); 1148 ubifs_assert(path[p - 1] < znode->child_cnt); 1149 znode = znode->zbranch[path[p - 1]].znode; 1150 } 1151 1152 return znode; 1153 } 1154 1155 /** 1156 * ubifs_lookup_level0 - search for zero-level znode. 1157 * @c: UBIFS file-system description object 1158 * @key: key to lookup 1159 * @zn: znode is returned here 1160 * @n: znode branch slot number is returned here 1161 * 1162 * This function looks up the TNC tree and search for zero-level znode which 1163 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1164 * cases: 1165 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1166 * is returned and slot number of the matched branch is stored in @n; 1167 * o not exact match, which means that zero-level znode does not contain 1168 * @key, then %0 is returned and slot number of the closest branch is stored 1169 * in @n; 1170 * o @key is so small that it is even less than the lowest key of the 1171 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1172 * 1173 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1174 * function reads corresponding indexing nodes and inserts them to TNC. In 1175 * case of failure, a negative error code is returned. 1176 */ 1177 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1178 struct ubifs_znode **zn, int *n) 1179 { 1180 int err, exact; 1181 struct ubifs_znode *znode; 1182 unsigned long time = get_seconds(); 1183 1184 dbg_tnck(key, "search key "); 1185 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1186 1187 znode = c->zroot.znode; 1188 if (unlikely(!znode)) { 1189 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1190 if (IS_ERR(znode)) 1191 return PTR_ERR(znode); 1192 } 1193 1194 znode->time = time; 1195 1196 while (1) { 1197 struct ubifs_zbranch *zbr; 1198 1199 exact = ubifs_search_zbranch(c, znode, key, n); 1200 1201 if (znode->level == 0) 1202 break; 1203 1204 if (*n < 0) 1205 *n = 0; 1206 zbr = &znode->zbranch[*n]; 1207 1208 if (zbr->znode) { 1209 znode->time = time; 1210 znode = zbr->znode; 1211 continue; 1212 } 1213 1214 /* znode is not in TNC cache, load it from the media */ 1215 znode = ubifs_load_znode(c, zbr, znode, *n); 1216 if (IS_ERR(znode)) 1217 return PTR_ERR(znode); 1218 } 1219 1220 *zn = znode; 1221 if (exact || !is_hash_key(c, key) || *n != -1) { 1222 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1223 return exact; 1224 } 1225 1226 /* 1227 * Here is a tricky place. We have not found the key and this is a 1228 * "hashed" key, which may collide. The rest of the code deals with 1229 * situations like this: 1230 * 1231 * | 3 | 5 | 1232 * / \ 1233 * | 3 | 5 | | 6 | 7 | (x) 1234 * 1235 * Or more a complex example: 1236 * 1237 * | 1 | 5 | 1238 * / \ 1239 * | 1 | 3 | | 5 | 8 | 1240 * \ / 1241 * | 5 | 5 | | 6 | 7 | (x) 1242 * 1243 * In the examples, if we are looking for key "5", we may reach nodes 1244 * marked with "(x)". In this case what we have do is to look at the 1245 * left and see if there is "5" key there. If there is, we have to 1246 * return it. 1247 * 1248 * Note, this whole situation is possible because we allow to have 1249 * elements which are equivalent to the next key in the parent in the 1250 * children of current znode. For example, this happens if we split a 1251 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1252 * like this: 1253 * | 3 | 5 | 1254 * / \ 1255 * | 3 | 5 | | 5 | 6 | 7 | 1256 * ^ 1257 * And this becomes what is at the first "picture" after key "5" marked 1258 * with "^" is removed. What could be done is we could prohibit 1259 * splitting in the middle of the colliding sequence. Also, when 1260 * removing the leftmost key, we would have to correct the key of the 1261 * parent node, which would introduce additional complications. Namely, 1262 * if we changed the leftmost key of the parent znode, the garbage 1263 * collector would be unable to find it (GC is doing this when GC'ing 1264 * indexing LEBs). Although we already have an additional RB-tree where 1265 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1266 * after the commit. But anyway, this does not look easy to implement 1267 * so we did not try this. 1268 */ 1269 err = tnc_prev(c, &znode, n); 1270 if (err == -ENOENT) { 1271 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1272 *n = -1; 1273 return 0; 1274 } 1275 if (unlikely(err < 0)) 1276 return err; 1277 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1278 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1279 *n = -1; 1280 return 0; 1281 } 1282 1283 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1284 *zn = znode; 1285 return 1; 1286 } 1287 1288 /** 1289 * lookup_level0_dirty - search for zero-level znode dirtying. 1290 * @c: UBIFS file-system description object 1291 * @key: key to lookup 1292 * @zn: znode is returned here 1293 * @n: znode branch slot number is returned here 1294 * 1295 * This function looks up the TNC tree and search for zero-level znode which 1296 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1297 * cases: 1298 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1299 * is returned and slot number of the matched branch is stored in @n; 1300 * o not exact match, which means that zero-level znode does not contain @key 1301 * then %0 is returned and slot number of the closed branch is stored in 1302 * @n; 1303 * o @key is so small that it is even less than the lowest key of the 1304 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1305 * 1306 * Additionally all znodes in the path from the root to the located zero-level 1307 * znode are marked as dirty. 1308 * 1309 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1310 * function reads corresponding indexing nodes and inserts them to TNC. In 1311 * case of failure, a negative error code is returned. 1312 */ 1313 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1314 struct ubifs_znode **zn, int *n) 1315 { 1316 int err, exact; 1317 struct ubifs_znode *znode; 1318 unsigned long time = get_seconds(); 1319 1320 dbg_tnck(key, "search and dirty key "); 1321 1322 znode = c->zroot.znode; 1323 if (unlikely(!znode)) { 1324 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1325 if (IS_ERR(znode)) 1326 return PTR_ERR(znode); 1327 } 1328 1329 znode = dirty_cow_znode(c, &c->zroot); 1330 if (IS_ERR(znode)) 1331 return PTR_ERR(znode); 1332 1333 znode->time = time; 1334 1335 while (1) { 1336 struct ubifs_zbranch *zbr; 1337 1338 exact = ubifs_search_zbranch(c, znode, key, n); 1339 1340 if (znode->level == 0) 1341 break; 1342 1343 if (*n < 0) 1344 *n = 0; 1345 zbr = &znode->zbranch[*n]; 1346 1347 if (zbr->znode) { 1348 znode->time = time; 1349 znode = dirty_cow_znode(c, zbr); 1350 if (IS_ERR(znode)) 1351 return PTR_ERR(znode); 1352 continue; 1353 } 1354 1355 /* znode is not in TNC cache, load it from the media */ 1356 znode = ubifs_load_znode(c, zbr, znode, *n); 1357 if (IS_ERR(znode)) 1358 return PTR_ERR(znode); 1359 znode = dirty_cow_znode(c, zbr); 1360 if (IS_ERR(znode)) 1361 return PTR_ERR(znode); 1362 } 1363 1364 *zn = znode; 1365 if (exact || !is_hash_key(c, key) || *n != -1) { 1366 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1367 return exact; 1368 } 1369 1370 /* 1371 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1372 * code. 1373 */ 1374 err = tnc_prev(c, &znode, n); 1375 if (err == -ENOENT) { 1376 *n = -1; 1377 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1378 return 0; 1379 } 1380 if (unlikely(err < 0)) 1381 return err; 1382 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1383 *n = -1; 1384 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1385 return 0; 1386 } 1387 1388 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1389 znode = dirty_cow_bottom_up(c, znode); 1390 if (IS_ERR(znode)) 1391 return PTR_ERR(znode); 1392 } 1393 1394 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1395 *zn = znode; 1396 return 1; 1397 } 1398 1399 /** 1400 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1401 * @c: UBIFS file-system description object 1402 * @lnum: LEB number 1403 * @gc_seq1: garbage collection sequence number 1404 * 1405 * This function determines if @lnum may have been garbage collected since 1406 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1407 * %0 is returned. 1408 */ 1409 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1410 { 1411 int gc_seq2, gced_lnum; 1412 1413 gced_lnum = c->gced_lnum; 1414 smp_rmb(); 1415 gc_seq2 = c->gc_seq; 1416 /* Same seq means no GC */ 1417 if (gc_seq1 == gc_seq2) 1418 return 0; 1419 /* Different by more than 1 means we don't know */ 1420 if (gc_seq1 + 1 != gc_seq2) 1421 return 1; 1422 /* 1423 * We have seen the sequence number has increased by 1. Now we need to 1424 * be sure we read the right LEB number, so read it again. 1425 */ 1426 smp_rmb(); 1427 if (gced_lnum != c->gced_lnum) 1428 return 1; 1429 /* Finally we can check lnum */ 1430 if (gced_lnum == lnum) 1431 return 1; 1432 return 0; 1433 } 1434 1435 /** 1436 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1437 * @c: UBIFS file-system description object 1438 * @key: node key to lookup 1439 * @node: the node is returned here 1440 * @lnum: LEB number is returned here 1441 * @offs: offset is returned here 1442 * 1443 * This function looks up and reads node with key @key. The caller has to make 1444 * sure the @node buffer is large enough to fit the node. Returns zero in case 1445 * of success, %-ENOENT if the node was not found, and a negative error code in 1446 * case of failure. The node location can be returned in @lnum and @offs. 1447 */ 1448 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1449 void *node, int *lnum, int *offs) 1450 { 1451 int found, n, err, safely = 0, gc_seq1; 1452 struct ubifs_znode *znode; 1453 struct ubifs_zbranch zbr, *zt; 1454 1455 again: 1456 mutex_lock(&c->tnc_mutex); 1457 found = ubifs_lookup_level0(c, key, &znode, &n); 1458 if (!found) { 1459 err = -ENOENT; 1460 goto out; 1461 } else if (found < 0) { 1462 err = found; 1463 goto out; 1464 } 1465 zt = &znode->zbranch[n]; 1466 if (lnum) { 1467 *lnum = zt->lnum; 1468 *offs = zt->offs; 1469 } 1470 if (is_hash_key(c, key)) { 1471 /* 1472 * In this case the leaf node cache gets used, so we pass the 1473 * address of the zbranch and keep the mutex locked 1474 */ 1475 err = tnc_read_hashed_node(c, zt, node); 1476 goto out; 1477 } 1478 if (safely) { 1479 err = ubifs_tnc_read_node(c, zt, node); 1480 goto out; 1481 } 1482 /* Drop the TNC mutex prematurely and race with garbage collection */ 1483 zbr = znode->zbranch[n]; 1484 gc_seq1 = c->gc_seq; 1485 mutex_unlock(&c->tnc_mutex); 1486 1487 if (ubifs_get_wbuf(c, zbr.lnum)) { 1488 /* We do not GC journal heads */ 1489 err = ubifs_tnc_read_node(c, &zbr, node); 1490 return err; 1491 } 1492 1493 err = fallible_read_node(c, key, &zbr, node); 1494 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1495 /* 1496 * The node may have been GC'ed out from under us so try again 1497 * while keeping the TNC mutex locked. 1498 */ 1499 safely = 1; 1500 goto again; 1501 } 1502 return 0; 1503 1504 out: 1505 mutex_unlock(&c->tnc_mutex); 1506 return err; 1507 } 1508 1509 /** 1510 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1511 * @c: UBIFS file-system description object 1512 * @bu: bulk-read parameters and results 1513 * 1514 * Lookup consecutive data node keys for the same inode that reside 1515 * consecutively in the same LEB. This function returns zero in case of success 1516 * and a negative error code in case of failure. 1517 * 1518 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1519 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1520 * maximum possible amount of nodes for bulk-read. 1521 */ 1522 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1523 { 1524 int n, err = 0, lnum = -1, uninitialized_var(offs); 1525 int uninitialized_var(len); 1526 unsigned int block = key_block(c, &bu->key); 1527 struct ubifs_znode *znode; 1528 1529 bu->cnt = 0; 1530 bu->blk_cnt = 0; 1531 bu->eof = 0; 1532 1533 mutex_lock(&c->tnc_mutex); 1534 /* Find first key */ 1535 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1536 if (err < 0) 1537 goto out; 1538 if (err) { 1539 /* Key found */ 1540 len = znode->zbranch[n].len; 1541 /* The buffer must be big enough for at least 1 node */ 1542 if (len > bu->buf_len) { 1543 err = -EINVAL; 1544 goto out; 1545 } 1546 /* Add this key */ 1547 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1548 bu->blk_cnt += 1; 1549 lnum = znode->zbranch[n].lnum; 1550 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1551 } 1552 while (1) { 1553 struct ubifs_zbranch *zbr; 1554 union ubifs_key *key; 1555 unsigned int next_block; 1556 1557 /* Find next key */ 1558 err = tnc_next(c, &znode, &n); 1559 if (err) 1560 goto out; 1561 zbr = &znode->zbranch[n]; 1562 key = &zbr->key; 1563 /* See if there is another data key for this file */ 1564 if (key_inum(c, key) != key_inum(c, &bu->key) || 1565 key_type(c, key) != UBIFS_DATA_KEY) { 1566 err = -ENOENT; 1567 goto out; 1568 } 1569 if (lnum < 0) { 1570 /* First key found */ 1571 lnum = zbr->lnum; 1572 offs = ALIGN(zbr->offs + zbr->len, 8); 1573 len = zbr->len; 1574 if (len > bu->buf_len) { 1575 err = -EINVAL; 1576 goto out; 1577 } 1578 } else { 1579 /* 1580 * The data nodes must be in consecutive positions in 1581 * the same LEB. 1582 */ 1583 if (zbr->lnum != lnum || zbr->offs != offs) 1584 goto out; 1585 offs += ALIGN(zbr->len, 8); 1586 len = ALIGN(len, 8) + zbr->len; 1587 /* Must not exceed buffer length */ 1588 if (len > bu->buf_len) 1589 goto out; 1590 } 1591 /* Allow for holes */ 1592 next_block = key_block(c, key); 1593 bu->blk_cnt += (next_block - block - 1); 1594 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1595 goto out; 1596 block = next_block; 1597 /* Add this key */ 1598 bu->zbranch[bu->cnt++] = *zbr; 1599 bu->blk_cnt += 1; 1600 /* See if we have room for more */ 1601 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1602 goto out; 1603 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1604 goto out; 1605 } 1606 out: 1607 if (err == -ENOENT) { 1608 bu->eof = 1; 1609 err = 0; 1610 } 1611 bu->gc_seq = c->gc_seq; 1612 mutex_unlock(&c->tnc_mutex); 1613 if (err) 1614 return err; 1615 /* 1616 * An enormous hole could cause bulk-read to encompass too many 1617 * page cache pages, so limit the number here. 1618 */ 1619 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1620 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1621 /* 1622 * Ensure that bulk-read covers a whole number of page cache 1623 * pages. 1624 */ 1625 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1626 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1627 return 0; 1628 if (bu->eof) { 1629 /* At the end of file we can round up */ 1630 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1631 return 0; 1632 } 1633 /* Exclude data nodes that do not make up a whole page cache page */ 1634 block = key_block(c, &bu->key) + bu->blk_cnt; 1635 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1636 while (bu->cnt) { 1637 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1638 break; 1639 bu->cnt -= 1; 1640 } 1641 return 0; 1642 } 1643 1644 /** 1645 * read_wbuf - bulk-read from a LEB with a wbuf. 1646 * @wbuf: wbuf that may overlap the read 1647 * @buf: buffer into which to read 1648 * @len: read length 1649 * @lnum: LEB number from which to read 1650 * @offs: offset from which to read 1651 * 1652 * This functions returns %0 on success or a negative error code on failure. 1653 */ 1654 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1655 int offs) 1656 { 1657 const struct ubifs_info *c = wbuf->c; 1658 int rlen, overlap; 1659 1660 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1661 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1662 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1663 ubifs_assert(offs + len <= c->leb_size); 1664 1665 spin_lock(&wbuf->lock); 1666 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1667 if (!overlap) { 1668 /* We may safely unlock the write-buffer and read the data */ 1669 spin_unlock(&wbuf->lock); 1670 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1671 } 1672 1673 /* Don't read under wbuf */ 1674 rlen = wbuf->offs - offs; 1675 if (rlen < 0) 1676 rlen = 0; 1677 1678 /* Copy the rest from the write-buffer */ 1679 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1680 spin_unlock(&wbuf->lock); 1681 1682 if (rlen > 0) 1683 /* Read everything that goes before write-buffer */ 1684 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1685 1686 return 0; 1687 } 1688 1689 /** 1690 * validate_data_node - validate data nodes for bulk-read. 1691 * @c: UBIFS file-system description object 1692 * @buf: buffer containing data node to validate 1693 * @zbr: zbranch of data node to validate 1694 * 1695 * This functions returns %0 on success or a negative error code on failure. 1696 */ 1697 static int validate_data_node(struct ubifs_info *c, void *buf, 1698 struct ubifs_zbranch *zbr) 1699 { 1700 union ubifs_key key1; 1701 struct ubifs_ch *ch = buf; 1702 int err, len; 1703 1704 if (ch->node_type != UBIFS_DATA_NODE) { 1705 ubifs_err(c, "bad node type (%d but expected %d)", 1706 ch->node_type, UBIFS_DATA_NODE); 1707 goto out_err; 1708 } 1709 1710 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1711 if (err) { 1712 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1713 goto out; 1714 } 1715 1716 len = le32_to_cpu(ch->len); 1717 if (len != zbr->len) { 1718 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1719 goto out_err; 1720 } 1721 1722 /* Make sure the key of the read node is correct */ 1723 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1724 if (!keys_eq(c, &zbr->key, &key1)) { 1725 ubifs_err(c, "bad key in node at LEB %d:%d", 1726 zbr->lnum, zbr->offs); 1727 dbg_tnck(&zbr->key, "looked for key "); 1728 dbg_tnck(&key1, "found node's key "); 1729 goto out_err; 1730 } 1731 1732 return 0; 1733 1734 out_err: 1735 err = -EINVAL; 1736 out: 1737 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1738 ubifs_dump_node(c, buf); 1739 dump_stack(); 1740 return err; 1741 } 1742 1743 /** 1744 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1745 * @c: UBIFS file-system description object 1746 * @bu: bulk-read parameters and results 1747 * 1748 * This functions reads and validates the data nodes that were identified by the 1749 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1750 * -EAGAIN to indicate a race with GC, or another negative error code on 1751 * failure. 1752 */ 1753 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1754 { 1755 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1756 struct ubifs_wbuf *wbuf; 1757 void *buf; 1758 1759 len = bu->zbranch[bu->cnt - 1].offs; 1760 len += bu->zbranch[bu->cnt - 1].len - offs; 1761 if (len > bu->buf_len) { 1762 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1763 return -EINVAL; 1764 } 1765 1766 /* Do the read */ 1767 wbuf = ubifs_get_wbuf(c, lnum); 1768 if (wbuf) 1769 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1770 else 1771 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1772 1773 /* Check for a race with GC */ 1774 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1775 return -EAGAIN; 1776 1777 if (err && err != -EBADMSG) { 1778 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1779 lnum, offs, err); 1780 dump_stack(); 1781 dbg_tnck(&bu->key, "key "); 1782 return err; 1783 } 1784 1785 /* Validate the nodes read */ 1786 buf = bu->buf; 1787 for (i = 0; i < bu->cnt; i++) { 1788 err = validate_data_node(c, buf, &bu->zbranch[i]); 1789 if (err) 1790 return err; 1791 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1792 } 1793 1794 return 0; 1795 } 1796 1797 /** 1798 * do_lookup_nm- look up a "hashed" node. 1799 * @c: UBIFS file-system description object 1800 * @key: node key to lookup 1801 * @node: the node is returned here 1802 * @nm: node name 1803 * 1804 * This function looks up and reads a node which contains name hash in the key. 1805 * Since the hash may have collisions, there may be many nodes with the same 1806 * key, so we have to sequentially look to all of them until the needed one is 1807 * found. This function returns zero in case of success, %-ENOENT if the node 1808 * was not found, and a negative error code in case of failure. 1809 */ 1810 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1811 void *node, const struct fscrypt_name *nm) 1812 { 1813 int found, n, err; 1814 struct ubifs_znode *znode; 1815 1816 dbg_tnck(key, "key "); 1817 mutex_lock(&c->tnc_mutex); 1818 found = ubifs_lookup_level0(c, key, &znode, &n); 1819 if (!found) { 1820 err = -ENOENT; 1821 goto out_unlock; 1822 } else if (found < 0) { 1823 err = found; 1824 goto out_unlock; 1825 } 1826 1827 ubifs_assert(n >= 0); 1828 1829 err = resolve_collision(c, key, &znode, &n, nm); 1830 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1831 if (unlikely(err < 0)) 1832 goto out_unlock; 1833 if (err == 0) { 1834 err = -ENOENT; 1835 goto out_unlock; 1836 } 1837 1838 err = tnc_read_hashed_node(c, &znode->zbranch[n], node); 1839 1840 out_unlock: 1841 mutex_unlock(&c->tnc_mutex); 1842 return err; 1843 } 1844 1845 /** 1846 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1847 * @c: UBIFS file-system description object 1848 * @key: node key to lookup 1849 * @node: the node is returned here 1850 * @nm: node name 1851 * 1852 * This function looks up and reads a node which contains name hash in the key. 1853 * Since the hash may have collisions, there may be many nodes with the same 1854 * key, so we have to sequentially look to all of them until the needed one is 1855 * found. This function returns zero in case of success, %-ENOENT if the node 1856 * was not found, and a negative error code in case of failure. 1857 */ 1858 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1859 void *node, const struct fscrypt_name *nm) 1860 { 1861 int err, len; 1862 const struct ubifs_dent_node *dent = node; 1863 1864 /* 1865 * We assume that in most of the cases there are no name collisions and 1866 * 'ubifs_tnc_lookup()' returns us the right direntry. 1867 */ 1868 err = ubifs_tnc_lookup(c, key, node); 1869 if (err) 1870 return err; 1871 1872 len = le16_to_cpu(dent->nlen); 1873 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) 1874 return 0; 1875 1876 /* 1877 * Unluckily, there are hash collisions and we have to iterate over 1878 * them look at each direntry with colliding name hash sequentially. 1879 */ 1880 1881 return do_lookup_nm(c, key, node, nm); 1882 } 1883 1884 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, 1885 struct ubifs_dent_node *dent, uint32_t cookie, 1886 struct ubifs_znode **zn, int *n) 1887 { 1888 int err; 1889 struct ubifs_znode *znode = *zn; 1890 struct ubifs_zbranch *zbr; 1891 union ubifs_key *dkey; 1892 1893 for (;;) { 1894 zbr = &znode->zbranch[*n]; 1895 dkey = &zbr->key; 1896 1897 if (key_inum(c, dkey) != key_inum(c, key) || 1898 key_type(c, dkey) != key_type(c, key)) { 1899 return -ENOENT; 1900 } 1901 1902 err = tnc_read_hashed_node(c, zbr, dent); 1903 if (err) 1904 return err; 1905 1906 if (key_hash(c, key) == key_hash(c, dkey) && 1907 le32_to_cpu(dent->cookie) == cookie) { 1908 *zn = znode; 1909 return 0; 1910 } 1911 1912 err = tnc_next(c, &znode, n); 1913 if (err) 1914 return err; 1915 } 1916 } 1917 1918 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1919 struct ubifs_dent_node *dent, uint32_t cookie) 1920 { 1921 int n, err; 1922 struct ubifs_znode *znode; 1923 union ubifs_key start_key; 1924 1925 ubifs_assert(is_hash_key(c, key)); 1926 1927 lowest_dent_key(c, &start_key, key_inum(c, key)); 1928 1929 mutex_lock(&c->tnc_mutex); 1930 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 1931 if (unlikely(err < 0)) 1932 goto out_unlock; 1933 1934 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 1935 1936 out_unlock: 1937 mutex_unlock(&c->tnc_mutex); 1938 return err; 1939 } 1940 1941 /** 1942 * ubifs_tnc_lookup_dh - look up a "double hashed" node. 1943 * @c: UBIFS file-system description object 1944 * @key: node key to lookup 1945 * @node: the node is returned here 1946 * @cookie: node cookie for collision resolution 1947 * 1948 * This function looks up and reads a node which contains name hash in the key. 1949 * Since the hash may have collisions, there may be many nodes with the same 1950 * key, so we have to sequentially look to all of them until the needed one 1951 * with the same cookie value is found. 1952 * This function returns zero in case of success, %-ENOENT if the node 1953 * was not found, and a negative error code in case of failure. 1954 */ 1955 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1956 void *node, uint32_t cookie) 1957 { 1958 int err; 1959 const struct ubifs_dent_node *dent = node; 1960 1961 if (!c->double_hash) 1962 return -EOPNOTSUPP; 1963 1964 /* 1965 * We assume that in most of the cases there are no name collisions and 1966 * 'ubifs_tnc_lookup()' returns us the right direntry. 1967 */ 1968 err = ubifs_tnc_lookup(c, key, node); 1969 if (err) 1970 return err; 1971 1972 if (le32_to_cpu(dent->cookie) == cookie) 1973 return 0; 1974 1975 /* 1976 * Unluckily, there are hash collisions and we have to iterate over 1977 * them look at each direntry with colliding name hash sequentially. 1978 */ 1979 return do_lookup_dh(c, key, node, cookie); 1980 } 1981 1982 /** 1983 * correct_parent_keys - correct parent znodes' keys. 1984 * @c: UBIFS file-system description object 1985 * @znode: znode to correct parent znodes for 1986 * 1987 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1988 * zbranch changes, keys of parent znodes have to be corrected. This helper 1989 * function is called in such situations and corrects the keys if needed. 1990 */ 1991 static void correct_parent_keys(const struct ubifs_info *c, 1992 struct ubifs_znode *znode) 1993 { 1994 union ubifs_key *key, *key1; 1995 1996 ubifs_assert(znode->parent); 1997 ubifs_assert(znode->iip == 0); 1998 1999 key = &znode->zbranch[0].key; 2000 key1 = &znode->parent->zbranch[0].key; 2001 2002 while (keys_cmp(c, key, key1) < 0) { 2003 key_copy(c, key, key1); 2004 znode = znode->parent; 2005 znode->alt = 1; 2006 if (!znode->parent || znode->iip) 2007 break; 2008 key1 = &znode->parent->zbranch[0].key; 2009 } 2010 } 2011 2012 /** 2013 * insert_zbranch - insert a zbranch into a znode. 2014 * @znode: znode into which to insert 2015 * @zbr: zbranch to insert 2016 * @n: slot number to insert to 2017 * 2018 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 2019 * znode's array of zbranches and keeps zbranches consolidated, so when a new 2020 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 2021 * slot, zbranches starting from @n have to be moved right. 2022 */ 2023 static void insert_zbranch(struct ubifs_znode *znode, 2024 const struct ubifs_zbranch *zbr, int n) 2025 { 2026 int i; 2027 2028 ubifs_assert(ubifs_zn_dirty(znode)); 2029 2030 if (znode->level) { 2031 for (i = znode->child_cnt; i > n; i--) { 2032 znode->zbranch[i] = znode->zbranch[i - 1]; 2033 if (znode->zbranch[i].znode) 2034 znode->zbranch[i].znode->iip = i; 2035 } 2036 if (zbr->znode) 2037 zbr->znode->iip = n; 2038 } else 2039 for (i = znode->child_cnt; i > n; i--) 2040 znode->zbranch[i] = znode->zbranch[i - 1]; 2041 2042 znode->zbranch[n] = *zbr; 2043 znode->child_cnt += 1; 2044 2045 /* 2046 * After inserting at slot zero, the lower bound of the key range of 2047 * this znode may have changed. If this znode is subsequently split 2048 * then the upper bound of the key range may change, and furthermore 2049 * it could change to be lower than the original lower bound. If that 2050 * happens, then it will no longer be possible to find this znode in the 2051 * TNC using the key from the index node on flash. That is bad because 2052 * if it is not found, we will assume it is obsolete and may overwrite 2053 * it. Then if there is an unclean unmount, we will start using the 2054 * old index which will be broken. 2055 * 2056 * So we first mark znodes that have insertions at slot zero, and then 2057 * if they are split we add their lnum/offs to the old_idx tree. 2058 */ 2059 if (n == 0) 2060 znode->alt = 1; 2061 } 2062 2063 /** 2064 * tnc_insert - insert a node into TNC. 2065 * @c: UBIFS file-system description object 2066 * @znode: znode to insert into 2067 * @zbr: branch to insert 2068 * @n: slot number to insert new zbranch to 2069 * 2070 * This function inserts a new node described by @zbr into znode @znode. If 2071 * znode does not have a free slot for new zbranch, it is split. Parent znodes 2072 * are splat as well if needed. Returns zero in case of success or a negative 2073 * error code in case of failure. 2074 */ 2075 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 2076 struct ubifs_zbranch *zbr, int n) 2077 { 2078 struct ubifs_znode *zn, *zi, *zp; 2079 int i, keep, move, appending = 0; 2080 union ubifs_key *key = &zbr->key, *key1; 2081 2082 ubifs_assert(n >= 0 && n <= c->fanout); 2083 2084 /* Implement naive insert for now */ 2085 again: 2086 zp = znode->parent; 2087 if (znode->child_cnt < c->fanout) { 2088 ubifs_assert(n != c->fanout); 2089 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 2090 2091 insert_zbranch(znode, zbr, n); 2092 2093 /* Ensure parent's key is correct */ 2094 if (n == 0 && zp && znode->iip == 0) 2095 correct_parent_keys(c, znode); 2096 2097 return 0; 2098 } 2099 2100 /* 2101 * Unfortunately, @znode does not have more empty slots and we have to 2102 * split it. 2103 */ 2104 dbg_tnck(key, "splitting level %d, key ", znode->level); 2105 2106 if (znode->alt) 2107 /* 2108 * We can no longer be sure of finding this znode by key, so we 2109 * record it in the old_idx tree. 2110 */ 2111 ins_clr_old_idx_znode(c, znode); 2112 2113 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2114 if (!zn) 2115 return -ENOMEM; 2116 zn->parent = zp; 2117 zn->level = znode->level; 2118 2119 /* Decide where to split */ 2120 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2121 /* Try not to split consecutive data keys */ 2122 if (n == c->fanout) { 2123 key1 = &znode->zbranch[n - 1].key; 2124 if (key_inum(c, key1) == key_inum(c, key) && 2125 key_type(c, key1) == UBIFS_DATA_KEY) 2126 appending = 1; 2127 } else 2128 goto check_split; 2129 } else if (appending && n != c->fanout) { 2130 /* Try not to split consecutive data keys */ 2131 appending = 0; 2132 check_split: 2133 if (n >= (c->fanout + 1) / 2) { 2134 key1 = &znode->zbranch[0].key; 2135 if (key_inum(c, key1) == key_inum(c, key) && 2136 key_type(c, key1) == UBIFS_DATA_KEY) { 2137 key1 = &znode->zbranch[n].key; 2138 if (key_inum(c, key1) != key_inum(c, key) || 2139 key_type(c, key1) != UBIFS_DATA_KEY) { 2140 keep = n; 2141 move = c->fanout - keep; 2142 zi = znode; 2143 goto do_split; 2144 } 2145 } 2146 } 2147 } 2148 2149 if (appending) { 2150 keep = c->fanout; 2151 move = 0; 2152 } else { 2153 keep = (c->fanout + 1) / 2; 2154 move = c->fanout - keep; 2155 } 2156 2157 /* 2158 * Although we don't at present, we could look at the neighbors and see 2159 * if we can move some zbranches there. 2160 */ 2161 2162 if (n < keep) { 2163 /* Insert into existing znode */ 2164 zi = znode; 2165 move += 1; 2166 keep -= 1; 2167 } else { 2168 /* Insert into new znode */ 2169 zi = zn; 2170 n -= keep; 2171 /* Re-parent */ 2172 if (zn->level != 0) 2173 zbr->znode->parent = zn; 2174 } 2175 2176 do_split: 2177 2178 __set_bit(DIRTY_ZNODE, &zn->flags); 2179 atomic_long_inc(&c->dirty_zn_cnt); 2180 2181 zn->child_cnt = move; 2182 znode->child_cnt = keep; 2183 2184 dbg_tnc("moving %d, keeping %d", move, keep); 2185 2186 /* Move zbranch */ 2187 for (i = 0; i < move; i++) { 2188 zn->zbranch[i] = znode->zbranch[keep + i]; 2189 /* Re-parent */ 2190 if (zn->level != 0) 2191 if (zn->zbranch[i].znode) { 2192 zn->zbranch[i].znode->parent = zn; 2193 zn->zbranch[i].znode->iip = i; 2194 } 2195 } 2196 2197 /* Insert new key and branch */ 2198 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2199 2200 insert_zbranch(zi, zbr, n); 2201 2202 /* Insert new znode (produced by spitting) into the parent */ 2203 if (zp) { 2204 if (n == 0 && zi == znode && znode->iip == 0) 2205 correct_parent_keys(c, znode); 2206 2207 /* Locate insertion point */ 2208 n = znode->iip + 1; 2209 2210 /* Tail recursion */ 2211 zbr->key = zn->zbranch[0].key; 2212 zbr->znode = zn; 2213 zbr->lnum = 0; 2214 zbr->offs = 0; 2215 zbr->len = 0; 2216 znode = zp; 2217 2218 goto again; 2219 } 2220 2221 /* We have to split root znode */ 2222 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2223 2224 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2225 if (!zi) 2226 return -ENOMEM; 2227 2228 zi->child_cnt = 2; 2229 zi->level = znode->level + 1; 2230 2231 __set_bit(DIRTY_ZNODE, &zi->flags); 2232 atomic_long_inc(&c->dirty_zn_cnt); 2233 2234 zi->zbranch[0].key = znode->zbranch[0].key; 2235 zi->zbranch[0].znode = znode; 2236 zi->zbranch[0].lnum = c->zroot.lnum; 2237 zi->zbranch[0].offs = c->zroot.offs; 2238 zi->zbranch[0].len = c->zroot.len; 2239 zi->zbranch[1].key = zn->zbranch[0].key; 2240 zi->zbranch[1].znode = zn; 2241 2242 c->zroot.lnum = 0; 2243 c->zroot.offs = 0; 2244 c->zroot.len = 0; 2245 c->zroot.znode = zi; 2246 2247 zn->parent = zi; 2248 zn->iip = 1; 2249 znode->parent = zi; 2250 znode->iip = 0; 2251 2252 return 0; 2253 } 2254 2255 /** 2256 * ubifs_tnc_add - add a node to TNC. 2257 * @c: UBIFS file-system description object 2258 * @key: key to add 2259 * @lnum: LEB number of node 2260 * @offs: node offset 2261 * @len: node length 2262 * 2263 * This function adds a node with key @key to TNC. The node may be new or it may 2264 * obsolete some existing one. Returns %0 on success or negative error code on 2265 * failure. 2266 */ 2267 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2268 int offs, int len) 2269 { 2270 int found, n, err = 0; 2271 struct ubifs_znode *znode; 2272 2273 mutex_lock(&c->tnc_mutex); 2274 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2275 found = lookup_level0_dirty(c, key, &znode, &n); 2276 if (!found) { 2277 struct ubifs_zbranch zbr; 2278 2279 zbr.znode = NULL; 2280 zbr.lnum = lnum; 2281 zbr.offs = offs; 2282 zbr.len = len; 2283 key_copy(c, key, &zbr.key); 2284 err = tnc_insert(c, znode, &zbr, n + 1); 2285 } else if (found == 1) { 2286 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2287 2288 lnc_free(zbr); 2289 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2290 zbr->lnum = lnum; 2291 zbr->offs = offs; 2292 zbr->len = len; 2293 } else 2294 err = found; 2295 if (!err) 2296 err = dbg_check_tnc(c, 0); 2297 mutex_unlock(&c->tnc_mutex); 2298 2299 return err; 2300 } 2301 2302 /** 2303 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2304 * @c: UBIFS file-system description object 2305 * @key: key to add 2306 * @old_lnum: LEB number of old node 2307 * @old_offs: old node offset 2308 * @lnum: LEB number of node 2309 * @offs: node offset 2310 * @len: node length 2311 * 2312 * This function replaces a node with key @key in the TNC only if the old node 2313 * is found. This function is called by garbage collection when node are moved. 2314 * Returns %0 on success or negative error code on failure. 2315 */ 2316 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2317 int old_lnum, int old_offs, int lnum, int offs, int len) 2318 { 2319 int found, n, err = 0; 2320 struct ubifs_znode *znode; 2321 2322 mutex_lock(&c->tnc_mutex); 2323 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2324 old_offs, lnum, offs, len); 2325 found = lookup_level0_dirty(c, key, &znode, &n); 2326 if (found < 0) { 2327 err = found; 2328 goto out_unlock; 2329 } 2330 2331 if (found == 1) { 2332 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2333 2334 found = 0; 2335 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2336 lnc_free(zbr); 2337 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2338 if (err) 2339 goto out_unlock; 2340 zbr->lnum = lnum; 2341 zbr->offs = offs; 2342 zbr->len = len; 2343 found = 1; 2344 } else if (is_hash_key(c, key)) { 2345 found = resolve_collision_directly(c, key, &znode, &n, 2346 old_lnum, old_offs); 2347 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2348 found, znode, n, old_lnum, old_offs); 2349 if (found < 0) { 2350 err = found; 2351 goto out_unlock; 2352 } 2353 2354 if (found) { 2355 /* Ensure the znode is dirtied */ 2356 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2357 znode = dirty_cow_bottom_up(c, znode); 2358 if (IS_ERR(znode)) { 2359 err = PTR_ERR(znode); 2360 goto out_unlock; 2361 } 2362 } 2363 zbr = &znode->zbranch[n]; 2364 lnc_free(zbr); 2365 err = ubifs_add_dirt(c, zbr->lnum, 2366 zbr->len); 2367 if (err) 2368 goto out_unlock; 2369 zbr->lnum = lnum; 2370 zbr->offs = offs; 2371 zbr->len = len; 2372 } 2373 } 2374 } 2375 2376 if (!found) 2377 err = ubifs_add_dirt(c, lnum, len); 2378 2379 if (!err) 2380 err = dbg_check_tnc(c, 0); 2381 2382 out_unlock: 2383 mutex_unlock(&c->tnc_mutex); 2384 return err; 2385 } 2386 2387 /** 2388 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2389 * @c: UBIFS file-system description object 2390 * @key: key to add 2391 * @lnum: LEB number of node 2392 * @offs: node offset 2393 * @len: node length 2394 * @nm: node name 2395 * 2396 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2397 * may have collisions, like directory entry keys. 2398 */ 2399 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2400 int lnum, int offs, int len, 2401 const struct fscrypt_name *nm) 2402 { 2403 int found, n, err = 0; 2404 struct ubifs_znode *znode; 2405 2406 mutex_lock(&c->tnc_mutex); 2407 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); 2408 found = lookup_level0_dirty(c, key, &znode, &n); 2409 if (found < 0) { 2410 err = found; 2411 goto out_unlock; 2412 } 2413 2414 if (found == 1) { 2415 if (c->replaying) 2416 found = fallible_resolve_collision(c, key, &znode, &n, 2417 nm, 1); 2418 else 2419 found = resolve_collision(c, key, &znode, &n, nm); 2420 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2421 if (found < 0) { 2422 err = found; 2423 goto out_unlock; 2424 } 2425 2426 /* Ensure the znode is dirtied */ 2427 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2428 znode = dirty_cow_bottom_up(c, znode); 2429 if (IS_ERR(znode)) { 2430 err = PTR_ERR(znode); 2431 goto out_unlock; 2432 } 2433 } 2434 2435 if (found == 1) { 2436 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2437 2438 lnc_free(zbr); 2439 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2440 zbr->lnum = lnum; 2441 zbr->offs = offs; 2442 zbr->len = len; 2443 goto out_unlock; 2444 } 2445 } 2446 2447 if (!found) { 2448 struct ubifs_zbranch zbr; 2449 2450 zbr.znode = NULL; 2451 zbr.lnum = lnum; 2452 zbr.offs = offs; 2453 zbr.len = len; 2454 key_copy(c, key, &zbr.key); 2455 err = tnc_insert(c, znode, &zbr, n + 1); 2456 if (err) 2457 goto out_unlock; 2458 if (c->replaying) { 2459 /* 2460 * We did not find it in the index so there may be a 2461 * dangling branch still in the index. So we remove it 2462 * by passing 'ubifs_tnc_remove_nm()' the same key but 2463 * an unmatchable name. 2464 */ 2465 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; 2466 2467 err = dbg_check_tnc(c, 0); 2468 mutex_unlock(&c->tnc_mutex); 2469 if (err) 2470 return err; 2471 return ubifs_tnc_remove_nm(c, key, &noname); 2472 } 2473 } 2474 2475 out_unlock: 2476 if (!err) 2477 err = dbg_check_tnc(c, 0); 2478 mutex_unlock(&c->tnc_mutex); 2479 return err; 2480 } 2481 2482 /** 2483 * tnc_delete - delete a znode form TNC. 2484 * @c: UBIFS file-system description object 2485 * @znode: znode to delete from 2486 * @n: zbranch slot number to delete 2487 * 2488 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2489 * case of success and a negative error code in case of failure. 2490 */ 2491 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2492 { 2493 struct ubifs_zbranch *zbr; 2494 struct ubifs_znode *zp; 2495 int i, err; 2496 2497 /* Delete without merge for now */ 2498 ubifs_assert(znode->level == 0); 2499 ubifs_assert(n >= 0 && n < c->fanout); 2500 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2501 2502 zbr = &znode->zbranch[n]; 2503 lnc_free(zbr); 2504 2505 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2506 if (err) { 2507 ubifs_dump_znode(c, znode); 2508 return err; 2509 } 2510 2511 /* We do not "gap" zbranch slots */ 2512 for (i = n; i < znode->child_cnt - 1; i++) 2513 znode->zbranch[i] = znode->zbranch[i + 1]; 2514 znode->child_cnt -= 1; 2515 2516 if (znode->child_cnt > 0) 2517 return 0; 2518 2519 /* 2520 * This was the last zbranch, we have to delete this znode from the 2521 * parent. 2522 */ 2523 2524 do { 2525 ubifs_assert(!ubifs_zn_obsolete(znode)); 2526 ubifs_assert(ubifs_zn_dirty(znode)); 2527 2528 zp = znode->parent; 2529 n = znode->iip; 2530 2531 atomic_long_dec(&c->dirty_zn_cnt); 2532 2533 err = insert_old_idx_znode(c, znode); 2534 if (err) 2535 return err; 2536 2537 if (znode->cnext) { 2538 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2539 atomic_long_inc(&c->clean_zn_cnt); 2540 atomic_long_inc(&ubifs_clean_zn_cnt); 2541 } else 2542 kfree(znode); 2543 znode = zp; 2544 } while (znode->child_cnt == 1); /* while removing last child */ 2545 2546 /* Remove from znode, entry n - 1 */ 2547 znode->child_cnt -= 1; 2548 ubifs_assert(znode->level != 0); 2549 for (i = n; i < znode->child_cnt; i++) { 2550 znode->zbranch[i] = znode->zbranch[i + 1]; 2551 if (znode->zbranch[i].znode) 2552 znode->zbranch[i].znode->iip = i; 2553 } 2554 2555 /* 2556 * If this is the root and it has only 1 child then 2557 * collapse the tree. 2558 */ 2559 if (!znode->parent) { 2560 while (znode->child_cnt == 1 && znode->level != 0) { 2561 zp = znode; 2562 zbr = &znode->zbranch[0]; 2563 znode = get_znode(c, znode, 0); 2564 if (IS_ERR(znode)) 2565 return PTR_ERR(znode); 2566 znode = dirty_cow_znode(c, zbr); 2567 if (IS_ERR(znode)) 2568 return PTR_ERR(znode); 2569 znode->parent = NULL; 2570 znode->iip = 0; 2571 if (c->zroot.len) { 2572 err = insert_old_idx(c, c->zroot.lnum, 2573 c->zroot.offs); 2574 if (err) 2575 return err; 2576 } 2577 c->zroot.lnum = zbr->lnum; 2578 c->zroot.offs = zbr->offs; 2579 c->zroot.len = zbr->len; 2580 c->zroot.znode = znode; 2581 ubifs_assert(!ubifs_zn_obsolete(zp)); 2582 ubifs_assert(ubifs_zn_dirty(zp)); 2583 atomic_long_dec(&c->dirty_zn_cnt); 2584 2585 if (zp->cnext) { 2586 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2587 atomic_long_inc(&c->clean_zn_cnt); 2588 atomic_long_inc(&ubifs_clean_zn_cnt); 2589 } else 2590 kfree(zp); 2591 } 2592 } 2593 2594 return 0; 2595 } 2596 2597 /** 2598 * ubifs_tnc_remove - remove an index entry of a node. 2599 * @c: UBIFS file-system description object 2600 * @key: key of node 2601 * 2602 * Returns %0 on success or negative error code on failure. 2603 */ 2604 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2605 { 2606 int found, n, err = 0; 2607 struct ubifs_znode *znode; 2608 2609 mutex_lock(&c->tnc_mutex); 2610 dbg_tnck(key, "key "); 2611 found = lookup_level0_dirty(c, key, &znode, &n); 2612 if (found < 0) { 2613 err = found; 2614 goto out_unlock; 2615 } 2616 if (found == 1) 2617 err = tnc_delete(c, znode, n); 2618 if (!err) 2619 err = dbg_check_tnc(c, 0); 2620 2621 out_unlock: 2622 mutex_unlock(&c->tnc_mutex); 2623 return err; 2624 } 2625 2626 /** 2627 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2628 * @c: UBIFS file-system description object 2629 * @key: key of node 2630 * @nm: directory entry name 2631 * 2632 * Returns %0 on success or negative error code on failure. 2633 */ 2634 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2635 const struct fscrypt_name *nm) 2636 { 2637 int n, err; 2638 struct ubifs_znode *znode; 2639 2640 mutex_lock(&c->tnc_mutex); 2641 dbg_tnck(key, "key "); 2642 err = lookup_level0_dirty(c, key, &znode, &n); 2643 if (err < 0) 2644 goto out_unlock; 2645 2646 if (err) { 2647 if (c->replaying) 2648 err = fallible_resolve_collision(c, key, &znode, &n, 2649 nm, 0); 2650 else 2651 err = resolve_collision(c, key, &znode, &n, nm); 2652 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2653 if (err < 0) 2654 goto out_unlock; 2655 if (err) { 2656 /* Ensure the znode is dirtied */ 2657 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2658 znode = dirty_cow_bottom_up(c, znode); 2659 if (IS_ERR(znode)) { 2660 err = PTR_ERR(znode); 2661 goto out_unlock; 2662 } 2663 } 2664 err = tnc_delete(c, znode, n); 2665 } 2666 } 2667 2668 out_unlock: 2669 if (!err) 2670 err = dbg_check_tnc(c, 0); 2671 mutex_unlock(&c->tnc_mutex); 2672 return err; 2673 } 2674 2675 /** 2676 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. 2677 * @c: UBIFS file-system description object 2678 * @key: key of node 2679 * @cookie: node cookie for collision resolution 2680 * 2681 * Returns %0 on success or negative error code on failure. 2682 */ 2683 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 2684 uint32_t cookie) 2685 { 2686 int n, err; 2687 struct ubifs_znode *znode; 2688 struct ubifs_dent_node *dent; 2689 struct ubifs_zbranch *zbr; 2690 2691 if (!c->double_hash) 2692 return -EOPNOTSUPP; 2693 2694 mutex_lock(&c->tnc_mutex); 2695 err = lookup_level0_dirty(c, key, &znode, &n); 2696 if (err <= 0) 2697 goto out_unlock; 2698 2699 zbr = &znode->zbranch[n]; 2700 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 2701 if (!dent) { 2702 err = -ENOMEM; 2703 goto out_unlock; 2704 } 2705 2706 err = tnc_read_hashed_node(c, zbr, dent); 2707 if (err) 2708 goto out_free; 2709 2710 /* If the cookie does not match, we're facing a hash collision. */ 2711 if (le32_to_cpu(dent->cookie) != cookie) { 2712 union ubifs_key start_key; 2713 2714 lowest_dent_key(c, &start_key, key_inum(c, key)); 2715 2716 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 2717 if (unlikely(err < 0)) 2718 goto out_free; 2719 2720 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 2721 if (err) 2722 goto out_free; 2723 } 2724 2725 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2726 znode = dirty_cow_bottom_up(c, znode); 2727 if (IS_ERR(znode)) { 2728 err = PTR_ERR(znode); 2729 goto out_free; 2730 } 2731 } 2732 err = tnc_delete(c, znode, n); 2733 2734 out_free: 2735 kfree(dent); 2736 out_unlock: 2737 if (!err) 2738 err = dbg_check_tnc(c, 0); 2739 mutex_unlock(&c->tnc_mutex); 2740 return err; 2741 } 2742 2743 /** 2744 * key_in_range - determine if a key falls within a range of keys. 2745 * @c: UBIFS file-system description object 2746 * @key: key to check 2747 * @from_key: lowest key in range 2748 * @to_key: highest key in range 2749 * 2750 * This function returns %1 if the key is in range and %0 otherwise. 2751 */ 2752 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2753 union ubifs_key *from_key, union ubifs_key *to_key) 2754 { 2755 if (keys_cmp(c, key, from_key) < 0) 2756 return 0; 2757 if (keys_cmp(c, key, to_key) > 0) 2758 return 0; 2759 return 1; 2760 } 2761 2762 /** 2763 * ubifs_tnc_remove_range - remove index entries in range. 2764 * @c: UBIFS file-system description object 2765 * @from_key: lowest key to remove 2766 * @to_key: highest key to remove 2767 * 2768 * This function removes index entries starting at @from_key and ending at 2769 * @to_key. This function returns zero in case of success and a negative error 2770 * code in case of failure. 2771 */ 2772 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2773 union ubifs_key *to_key) 2774 { 2775 int i, n, k, err = 0; 2776 struct ubifs_znode *znode; 2777 union ubifs_key *key; 2778 2779 mutex_lock(&c->tnc_mutex); 2780 while (1) { 2781 /* Find first level 0 znode that contains keys to remove */ 2782 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2783 if (err < 0) 2784 goto out_unlock; 2785 2786 if (err) 2787 key = from_key; 2788 else { 2789 err = tnc_next(c, &znode, &n); 2790 if (err == -ENOENT) { 2791 err = 0; 2792 goto out_unlock; 2793 } 2794 if (err < 0) 2795 goto out_unlock; 2796 key = &znode->zbranch[n].key; 2797 if (!key_in_range(c, key, from_key, to_key)) { 2798 err = 0; 2799 goto out_unlock; 2800 } 2801 } 2802 2803 /* Ensure the znode is dirtied */ 2804 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2805 znode = dirty_cow_bottom_up(c, znode); 2806 if (IS_ERR(znode)) { 2807 err = PTR_ERR(znode); 2808 goto out_unlock; 2809 } 2810 } 2811 2812 /* Remove all keys in range except the first */ 2813 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2814 key = &znode->zbranch[i].key; 2815 if (!key_in_range(c, key, from_key, to_key)) 2816 break; 2817 lnc_free(&znode->zbranch[i]); 2818 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2819 znode->zbranch[i].len); 2820 if (err) { 2821 ubifs_dump_znode(c, znode); 2822 goto out_unlock; 2823 } 2824 dbg_tnck(key, "removing key "); 2825 } 2826 if (k) { 2827 for (i = n + 1 + k; i < znode->child_cnt; i++) 2828 znode->zbranch[i - k] = znode->zbranch[i]; 2829 znode->child_cnt -= k; 2830 } 2831 2832 /* Now delete the first */ 2833 err = tnc_delete(c, znode, n); 2834 if (err) 2835 goto out_unlock; 2836 } 2837 2838 out_unlock: 2839 if (!err) 2840 err = dbg_check_tnc(c, 0); 2841 mutex_unlock(&c->tnc_mutex); 2842 return err; 2843 } 2844 2845 /** 2846 * ubifs_tnc_remove_ino - remove an inode from TNC. 2847 * @c: UBIFS file-system description object 2848 * @inum: inode number to remove 2849 * 2850 * This function remove inode @inum and all the extended attributes associated 2851 * with the anode from TNC and returns zero in case of success or a negative 2852 * error code in case of failure. 2853 */ 2854 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2855 { 2856 union ubifs_key key1, key2; 2857 struct ubifs_dent_node *xent, *pxent = NULL; 2858 struct fscrypt_name nm = {0}; 2859 2860 dbg_tnc("ino %lu", (unsigned long)inum); 2861 2862 /* 2863 * Walk all extended attribute entries and remove them together with 2864 * corresponding extended attribute inodes. 2865 */ 2866 lowest_xent_key(c, &key1, inum); 2867 while (1) { 2868 ino_t xattr_inum; 2869 int err; 2870 2871 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2872 if (IS_ERR(xent)) { 2873 err = PTR_ERR(xent); 2874 if (err == -ENOENT) 2875 break; 2876 return err; 2877 } 2878 2879 xattr_inum = le64_to_cpu(xent->inum); 2880 dbg_tnc("xent '%s', ino %lu", xent->name, 2881 (unsigned long)xattr_inum); 2882 2883 ubifs_evict_xattr_inode(c, xattr_inum); 2884 2885 fname_name(&nm) = xent->name; 2886 fname_len(&nm) = le16_to_cpu(xent->nlen); 2887 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2888 if (err) { 2889 kfree(xent); 2890 return err; 2891 } 2892 2893 lowest_ino_key(c, &key1, xattr_inum); 2894 highest_ino_key(c, &key2, xattr_inum); 2895 err = ubifs_tnc_remove_range(c, &key1, &key2); 2896 if (err) { 2897 kfree(xent); 2898 return err; 2899 } 2900 2901 kfree(pxent); 2902 pxent = xent; 2903 key_read(c, &xent->key, &key1); 2904 } 2905 2906 kfree(pxent); 2907 lowest_ino_key(c, &key1, inum); 2908 highest_ino_key(c, &key2, inum); 2909 2910 return ubifs_tnc_remove_range(c, &key1, &key2); 2911 } 2912 2913 /** 2914 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2915 * @c: UBIFS file-system description object 2916 * @key: key of last entry 2917 * @nm: name of last entry found or %NULL 2918 * 2919 * This function finds and reads the next directory or extended attribute entry 2920 * after the given key (@key) if there is one. @nm is used to resolve 2921 * collisions. 2922 * 2923 * If the name of the current entry is not known and only the key is known, 2924 * @nm->name has to be %NULL. In this case the semantics of this function is a 2925 * little bit different and it returns the entry corresponding to this key, not 2926 * the next one. If the key was not found, the closest "right" entry is 2927 * returned. 2928 * 2929 * If the fist entry has to be found, @key has to contain the lowest possible 2930 * key value for this inode and @name has to be %NULL. 2931 * 2932 * This function returns the found directory or extended attribute entry node 2933 * in case of success, %-ENOENT is returned if no entry was found, and a 2934 * negative error code is returned in case of failure. 2935 */ 2936 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2937 union ubifs_key *key, 2938 const struct fscrypt_name *nm) 2939 { 2940 int n, err, type = key_type(c, key); 2941 struct ubifs_znode *znode; 2942 struct ubifs_dent_node *dent; 2943 struct ubifs_zbranch *zbr; 2944 union ubifs_key *dkey; 2945 2946 dbg_tnck(key, "key "); 2947 ubifs_assert(is_hash_key(c, key)); 2948 2949 mutex_lock(&c->tnc_mutex); 2950 err = ubifs_lookup_level0(c, key, &znode, &n); 2951 if (unlikely(err < 0)) 2952 goto out_unlock; 2953 2954 if (fname_len(nm) > 0) { 2955 if (err) { 2956 /* Handle collisions */ 2957 if (c->replaying) 2958 err = fallible_resolve_collision(c, key, &znode, &n, 2959 nm, 0); 2960 else 2961 err = resolve_collision(c, key, &znode, &n, nm); 2962 dbg_tnc("rc returned %d, znode %p, n %d", 2963 err, znode, n); 2964 if (unlikely(err < 0)) 2965 goto out_unlock; 2966 } 2967 2968 /* Now find next entry */ 2969 err = tnc_next(c, &znode, &n); 2970 if (unlikely(err)) 2971 goto out_unlock; 2972 } else { 2973 /* 2974 * The full name of the entry was not given, in which case the 2975 * behavior of this function is a little different and it 2976 * returns current entry, not the next one. 2977 */ 2978 if (!err) { 2979 /* 2980 * However, the given key does not exist in the TNC 2981 * tree and @znode/@n variables contain the closest 2982 * "preceding" element. Switch to the next one. 2983 */ 2984 err = tnc_next(c, &znode, &n); 2985 if (err) 2986 goto out_unlock; 2987 } 2988 } 2989 2990 zbr = &znode->zbranch[n]; 2991 dent = kmalloc(zbr->len, GFP_NOFS); 2992 if (unlikely(!dent)) { 2993 err = -ENOMEM; 2994 goto out_unlock; 2995 } 2996 2997 /* 2998 * The above 'tnc_next()' call could lead us to the next inode, check 2999 * this. 3000 */ 3001 dkey = &zbr->key; 3002 if (key_inum(c, dkey) != key_inum(c, key) || 3003 key_type(c, dkey) != type) { 3004 err = -ENOENT; 3005 goto out_free; 3006 } 3007 3008 err = tnc_read_hashed_node(c, zbr, dent); 3009 if (unlikely(err)) 3010 goto out_free; 3011 3012 mutex_unlock(&c->tnc_mutex); 3013 return dent; 3014 3015 out_free: 3016 kfree(dent); 3017 out_unlock: 3018 mutex_unlock(&c->tnc_mutex); 3019 return ERR_PTR(err); 3020 } 3021 3022 /** 3023 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 3024 * @c: UBIFS file-system description object 3025 * 3026 * Destroy left-over obsolete znodes from a failed commit. 3027 */ 3028 static void tnc_destroy_cnext(struct ubifs_info *c) 3029 { 3030 struct ubifs_znode *cnext; 3031 3032 if (!c->cnext) 3033 return; 3034 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 3035 cnext = c->cnext; 3036 do { 3037 struct ubifs_znode *znode = cnext; 3038 3039 cnext = cnext->cnext; 3040 if (ubifs_zn_obsolete(znode)) 3041 kfree(znode); 3042 } while (cnext && cnext != c->cnext); 3043 } 3044 3045 /** 3046 * ubifs_tnc_close - close TNC subsystem and free all related resources. 3047 * @c: UBIFS file-system description object 3048 */ 3049 void ubifs_tnc_close(struct ubifs_info *c) 3050 { 3051 tnc_destroy_cnext(c); 3052 if (c->zroot.znode) { 3053 long n, freed; 3054 3055 n = atomic_long_read(&c->clean_zn_cnt); 3056 freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 3057 ubifs_assert(freed == n); 3058 atomic_long_sub(n, &ubifs_clean_zn_cnt); 3059 } 3060 kfree(c->gap_lebs); 3061 kfree(c->ilebs); 3062 destroy_old_idx(c); 3063 } 3064 3065 /** 3066 * left_znode - get the znode to the left. 3067 * @c: UBIFS file-system description object 3068 * @znode: znode 3069 * 3070 * This function returns a pointer to the znode to the left of @znode or NULL if 3071 * there is not one. A negative error code is returned on failure. 3072 */ 3073 static struct ubifs_znode *left_znode(struct ubifs_info *c, 3074 struct ubifs_znode *znode) 3075 { 3076 int level = znode->level; 3077 3078 while (1) { 3079 int n = znode->iip - 1; 3080 3081 /* Go up until we can go left */ 3082 znode = znode->parent; 3083 if (!znode) 3084 return NULL; 3085 if (n >= 0) { 3086 /* Now go down the rightmost branch to 'level' */ 3087 znode = get_znode(c, znode, n); 3088 if (IS_ERR(znode)) 3089 return znode; 3090 while (znode->level != level) { 3091 n = znode->child_cnt - 1; 3092 znode = get_znode(c, znode, n); 3093 if (IS_ERR(znode)) 3094 return znode; 3095 } 3096 break; 3097 } 3098 } 3099 return znode; 3100 } 3101 3102 /** 3103 * right_znode - get the znode to the right. 3104 * @c: UBIFS file-system description object 3105 * @znode: znode 3106 * 3107 * This function returns a pointer to the znode to the right of @znode or NULL 3108 * if there is not one. A negative error code is returned on failure. 3109 */ 3110 static struct ubifs_znode *right_znode(struct ubifs_info *c, 3111 struct ubifs_znode *znode) 3112 { 3113 int level = znode->level; 3114 3115 while (1) { 3116 int n = znode->iip + 1; 3117 3118 /* Go up until we can go right */ 3119 znode = znode->parent; 3120 if (!znode) 3121 return NULL; 3122 if (n < znode->child_cnt) { 3123 /* Now go down the leftmost branch to 'level' */ 3124 znode = get_znode(c, znode, n); 3125 if (IS_ERR(znode)) 3126 return znode; 3127 while (znode->level != level) { 3128 znode = get_znode(c, znode, 0); 3129 if (IS_ERR(znode)) 3130 return znode; 3131 } 3132 break; 3133 } 3134 } 3135 return znode; 3136 } 3137 3138 /** 3139 * lookup_znode - find a particular indexing node from TNC. 3140 * @c: UBIFS file-system description object 3141 * @key: index node key to lookup 3142 * @level: index node level 3143 * @lnum: index node LEB number 3144 * @offs: index node offset 3145 * 3146 * This function searches an indexing node by its first key @key and its 3147 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 3148 * nodes it traverses to TNC. This function is called for indexing nodes which 3149 * were found on the media by scanning, for example when garbage-collecting or 3150 * when doing in-the-gaps commit. This means that the indexing node which is 3151 * looked for does not have to have exactly the same leftmost key @key, because 3152 * the leftmost key may have been changed, in which case TNC will contain a 3153 * dirty znode which still refers the same @lnum:@offs. This function is clever 3154 * enough to recognize such indexing nodes. 3155 * 3156 * Note, if a znode was deleted or changed too much, then this function will 3157 * not find it. For situations like this UBIFS has the old index RB-tree 3158 * (indexed by @lnum:@offs). 3159 * 3160 * This function returns a pointer to the znode found or %NULL if it is not 3161 * found. A negative error code is returned on failure. 3162 */ 3163 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 3164 union ubifs_key *key, int level, 3165 int lnum, int offs) 3166 { 3167 struct ubifs_znode *znode, *zn; 3168 int n, nn; 3169 3170 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 3171 3172 /* 3173 * The arguments have probably been read off flash, so don't assume 3174 * they are valid. 3175 */ 3176 if (level < 0) 3177 return ERR_PTR(-EINVAL); 3178 3179 /* Get the root znode */ 3180 znode = c->zroot.znode; 3181 if (!znode) { 3182 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3183 if (IS_ERR(znode)) 3184 return znode; 3185 } 3186 /* Check if it is the one we are looking for */ 3187 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3188 return znode; 3189 /* Descend to the parent level i.e. (level + 1) */ 3190 if (level >= znode->level) 3191 return NULL; 3192 while (1) { 3193 ubifs_search_zbranch(c, znode, key, &n); 3194 if (n < 0) { 3195 /* 3196 * We reached a znode where the leftmost key is greater 3197 * than the key we are searching for. This is the same 3198 * situation as the one described in a huge comment at 3199 * the end of the 'ubifs_lookup_level0()' function. And 3200 * for exactly the same reasons we have to try to look 3201 * left before giving up. 3202 */ 3203 znode = left_znode(c, znode); 3204 if (!znode) 3205 return NULL; 3206 if (IS_ERR(znode)) 3207 return znode; 3208 ubifs_search_zbranch(c, znode, key, &n); 3209 ubifs_assert(n >= 0); 3210 } 3211 if (znode->level == level + 1) 3212 break; 3213 znode = get_znode(c, znode, n); 3214 if (IS_ERR(znode)) 3215 return znode; 3216 } 3217 /* Check if the child is the one we are looking for */ 3218 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3219 return get_znode(c, znode, n); 3220 /* If the key is unique, there is nowhere else to look */ 3221 if (!is_hash_key(c, key)) 3222 return NULL; 3223 /* 3224 * The key is not unique and so may be also in the znodes to either 3225 * side. 3226 */ 3227 zn = znode; 3228 nn = n; 3229 /* Look left */ 3230 while (1) { 3231 /* Move one branch to the left */ 3232 if (n) 3233 n -= 1; 3234 else { 3235 znode = left_znode(c, znode); 3236 if (!znode) 3237 break; 3238 if (IS_ERR(znode)) 3239 return znode; 3240 n = znode->child_cnt - 1; 3241 } 3242 /* Check it */ 3243 if (znode->zbranch[n].lnum == lnum && 3244 znode->zbranch[n].offs == offs) 3245 return get_znode(c, znode, n); 3246 /* Stop if the key is less than the one we are looking for */ 3247 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3248 break; 3249 } 3250 /* Back to the middle */ 3251 znode = zn; 3252 n = nn; 3253 /* Look right */ 3254 while (1) { 3255 /* Move one branch to the right */ 3256 if (++n >= znode->child_cnt) { 3257 znode = right_znode(c, znode); 3258 if (!znode) 3259 break; 3260 if (IS_ERR(znode)) 3261 return znode; 3262 n = 0; 3263 } 3264 /* Check it */ 3265 if (znode->zbranch[n].lnum == lnum && 3266 znode->zbranch[n].offs == offs) 3267 return get_znode(c, znode, n); 3268 /* Stop if the key is greater than the one we are looking for */ 3269 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3270 break; 3271 } 3272 return NULL; 3273 } 3274 3275 /** 3276 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3277 * @c: UBIFS file-system description object 3278 * @key: key of index node 3279 * @level: index node level 3280 * @lnum: LEB number of index node 3281 * @offs: offset of index node 3282 * 3283 * This function returns %0 if the index node is not referred to in the TNC, %1 3284 * if the index node is referred to in the TNC and the corresponding znode is 3285 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3286 * znode is clean, and a negative error code in case of failure. 3287 * 3288 * Note, the @key argument has to be the key of the first child. Also note, 3289 * this function relies on the fact that 0:0 is never a valid LEB number and 3290 * offset for a main-area node. 3291 */ 3292 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3293 int lnum, int offs) 3294 { 3295 struct ubifs_znode *znode; 3296 3297 znode = lookup_znode(c, key, level, lnum, offs); 3298 if (!znode) 3299 return 0; 3300 if (IS_ERR(znode)) 3301 return PTR_ERR(znode); 3302 3303 return ubifs_zn_dirty(znode) ? 1 : 2; 3304 } 3305 3306 /** 3307 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3308 * @c: UBIFS file-system description object 3309 * @key: node key 3310 * @lnum: node LEB number 3311 * @offs: node offset 3312 * 3313 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3314 * not, and a negative error code in case of failure. 3315 * 3316 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3317 * and offset for a main-area node. 3318 */ 3319 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3320 int lnum, int offs) 3321 { 3322 struct ubifs_zbranch *zbr; 3323 struct ubifs_znode *znode, *zn; 3324 int n, found, err, nn; 3325 const int unique = !is_hash_key(c, key); 3326 3327 found = ubifs_lookup_level0(c, key, &znode, &n); 3328 if (found < 0) 3329 return found; /* Error code */ 3330 if (!found) 3331 return 0; 3332 zbr = &znode->zbranch[n]; 3333 if (lnum == zbr->lnum && offs == zbr->offs) 3334 return 1; /* Found it */ 3335 if (unique) 3336 return 0; 3337 /* 3338 * Because the key is not unique, we have to look left 3339 * and right as well 3340 */ 3341 zn = znode; 3342 nn = n; 3343 /* Look left */ 3344 while (1) { 3345 err = tnc_prev(c, &znode, &n); 3346 if (err == -ENOENT) 3347 break; 3348 if (err) 3349 return err; 3350 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3351 break; 3352 zbr = &znode->zbranch[n]; 3353 if (lnum == zbr->lnum && offs == zbr->offs) 3354 return 1; /* Found it */ 3355 } 3356 /* Look right */ 3357 znode = zn; 3358 n = nn; 3359 while (1) { 3360 err = tnc_next(c, &znode, &n); 3361 if (err) { 3362 if (err == -ENOENT) 3363 return 0; 3364 return err; 3365 } 3366 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3367 break; 3368 zbr = &znode->zbranch[n]; 3369 if (lnum == zbr->lnum && offs == zbr->offs) 3370 return 1; /* Found it */ 3371 } 3372 return 0; 3373 } 3374 3375 /** 3376 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3377 * @c: UBIFS file-system description object 3378 * @key: node key 3379 * @level: index node level (if it is an index node) 3380 * @lnum: node LEB number 3381 * @offs: node offset 3382 * @is_idx: non-zero if the node is an index node 3383 * 3384 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3385 * negative error code in case of failure. For index nodes, @key has to be the 3386 * key of the first child. An index node is considered to be in the TNC only if 3387 * the corresponding znode is clean or has not been loaded. 3388 */ 3389 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3390 int lnum, int offs, int is_idx) 3391 { 3392 int err; 3393 3394 mutex_lock(&c->tnc_mutex); 3395 if (is_idx) { 3396 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3397 if (err < 0) 3398 goto out_unlock; 3399 if (err == 1) 3400 /* The index node was found but it was dirty */ 3401 err = 0; 3402 else if (err == 2) 3403 /* The index node was found and it was clean */ 3404 err = 1; 3405 else 3406 BUG_ON(err != 0); 3407 } else 3408 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3409 3410 out_unlock: 3411 mutex_unlock(&c->tnc_mutex); 3412 return err; 3413 } 3414 3415 /** 3416 * ubifs_dirty_idx_node - dirty an index node. 3417 * @c: UBIFS file-system description object 3418 * @key: index node key 3419 * @level: index node level 3420 * @lnum: index node LEB number 3421 * @offs: index node offset 3422 * 3423 * This function loads and dirties an index node so that it can be garbage 3424 * collected. The @key argument has to be the key of the first child. This 3425 * function relies on the fact that 0:0 is never a valid LEB number and offset 3426 * for a main-area node. Returns %0 on success and a negative error code on 3427 * failure. 3428 */ 3429 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3430 int lnum, int offs) 3431 { 3432 struct ubifs_znode *znode; 3433 int err = 0; 3434 3435 mutex_lock(&c->tnc_mutex); 3436 znode = lookup_znode(c, key, level, lnum, offs); 3437 if (!znode) 3438 goto out_unlock; 3439 if (IS_ERR(znode)) { 3440 err = PTR_ERR(znode); 3441 goto out_unlock; 3442 } 3443 znode = dirty_cow_bottom_up(c, znode); 3444 if (IS_ERR(znode)) { 3445 err = PTR_ERR(znode); 3446 goto out_unlock; 3447 } 3448 3449 out_unlock: 3450 mutex_unlock(&c->tnc_mutex); 3451 return err; 3452 } 3453 3454 /** 3455 * dbg_check_inode_size - check if inode size is correct. 3456 * @c: UBIFS file-system description object 3457 * @inum: inode number 3458 * @size: inode size 3459 * 3460 * This function makes sure that the inode size (@size) is correct and it does 3461 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3462 * if it has a data page beyond @size, and other negative error code in case of 3463 * other errors. 3464 */ 3465 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3466 loff_t size) 3467 { 3468 int err, n; 3469 union ubifs_key from_key, to_key, *key; 3470 struct ubifs_znode *znode; 3471 unsigned int block; 3472 3473 if (!S_ISREG(inode->i_mode)) 3474 return 0; 3475 if (!dbg_is_chk_gen(c)) 3476 return 0; 3477 3478 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3479 data_key_init(c, &from_key, inode->i_ino, block); 3480 highest_data_key(c, &to_key, inode->i_ino); 3481 3482 mutex_lock(&c->tnc_mutex); 3483 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3484 if (err < 0) 3485 goto out_unlock; 3486 3487 if (err) { 3488 key = &from_key; 3489 goto out_dump; 3490 } 3491 3492 err = tnc_next(c, &znode, &n); 3493 if (err == -ENOENT) { 3494 err = 0; 3495 goto out_unlock; 3496 } 3497 if (err < 0) 3498 goto out_unlock; 3499 3500 ubifs_assert(err == 0); 3501 key = &znode->zbranch[n].key; 3502 if (!key_in_range(c, key, &from_key, &to_key)) 3503 goto out_unlock; 3504 3505 out_dump: 3506 block = key_block(c, key); 3507 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3508 (unsigned long)inode->i_ino, size, 3509 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3510 mutex_unlock(&c->tnc_mutex); 3511 ubifs_dump_inode(c, inode); 3512 dump_stack(); 3513 return -EINVAL; 3514 3515 out_unlock: 3516 mutex_unlock(&c->tnc_mutex); 3517 return err; 3518 } 3519