xref: /linux/fs/ubifs/tnc.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 /*
38  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
39  * @NAME_LESS: name corresponding to the first argument is less than second
40  * @NAME_MATCHES: names match
41  * @NAME_GREATER: name corresponding to the second argument is greater than
42  *                first
43  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
44  *
45  * These constants were introduce to improve readability.
46  */
47 enum {
48 	NAME_LESS    = 0,
49 	NAME_MATCHES = 1,
50 	NAME_GREATER = 2,
51 	NOT_ON_MEDIA = 3,
52 };
53 
54 /**
55  * insert_old_idx - record an index node obsoleted since the last commit start.
56  * @c: UBIFS file-system description object
57  * @lnum: LEB number of obsoleted index node
58  * @offs: offset of obsoleted index node
59  *
60  * Returns %0 on success, and a negative error code on failure.
61  *
62  * For recovery, there must always be a complete intact version of the index on
63  * flash at all times. That is called the "old index". It is the index as at the
64  * time of the last successful commit. Many of the index nodes in the old index
65  * may be dirty, but they must not be erased until the next successful commit
66  * (at which point that index becomes the old index).
67  *
68  * That means that the garbage collection and the in-the-gaps method of
69  * committing must be able to determine if an index node is in the old index.
70  * Most of the old index nodes can be found by looking up the TNC using the
71  * 'lookup_znode()' function. However, some of the old index nodes may have
72  * been deleted from the current index or may have been changed so much that
73  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
74  * That is what this function does. The RB-tree is ordered by LEB number and
75  * offset because they uniquely identify the old index node.
76  */
77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
78 {
79 	struct ubifs_old_idx *old_idx, *o;
80 	struct rb_node **p, *parent = NULL;
81 
82 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
83 	if (unlikely(!old_idx))
84 		return -ENOMEM;
85 	old_idx->lnum = lnum;
86 	old_idx->offs = offs;
87 
88 	p = &c->old_idx.rb_node;
89 	while (*p) {
90 		parent = *p;
91 		o = rb_entry(parent, struct ubifs_old_idx, rb);
92 		if (lnum < o->lnum)
93 			p = &(*p)->rb_left;
94 		else if (lnum > o->lnum)
95 			p = &(*p)->rb_right;
96 		else if (offs < o->offs)
97 			p = &(*p)->rb_left;
98 		else if (offs > o->offs)
99 			p = &(*p)->rb_right;
100 		else {
101 			ubifs_err("old idx added twice!");
102 			kfree(old_idx);
103 			return 0;
104 		}
105 	}
106 	rb_link_node(&old_idx->rb, parent, p);
107 	rb_insert_color(&old_idx->rb, &c->old_idx);
108 	return 0;
109 }
110 
111 /**
112  * insert_old_idx_znode - record a znode obsoleted since last commit start.
113  * @c: UBIFS file-system description object
114  * @znode: znode of obsoleted index node
115  *
116  * Returns %0 on success, and a negative error code on failure.
117  */
118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119 {
120 	if (znode->parent) {
121 		struct ubifs_zbranch *zbr;
122 
123 		zbr = &znode->parent->zbranch[znode->iip];
124 		if (zbr->len)
125 			return insert_old_idx(c, zbr->lnum, zbr->offs);
126 	} else
127 		if (c->zroot.len)
128 			return insert_old_idx(c, c->zroot.lnum,
129 					      c->zroot.offs);
130 	return 0;
131 }
132 
133 /**
134  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135  * @c: UBIFS file-system description object
136  * @znode: znode of obsoleted index node
137  *
138  * Returns %0 on success, and a negative error code on failure.
139  */
140 static int ins_clr_old_idx_znode(struct ubifs_info *c,
141 				 struct ubifs_znode *znode)
142 {
143 	int err;
144 
145 	if (znode->parent) {
146 		struct ubifs_zbranch *zbr;
147 
148 		zbr = &znode->parent->zbranch[znode->iip];
149 		if (zbr->len) {
150 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
151 			if (err)
152 				return err;
153 			zbr->lnum = 0;
154 			zbr->offs = 0;
155 			zbr->len = 0;
156 		}
157 	} else
158 		if (c->zroot.len) {
159 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160 			if (err)
161 				return err;
162 			c->zroot.lnum = 0;
163 			c->zroot.offs = 0;
164 			c->zroot.len = 0;
165 		}
166 	return 0;
167 }
168 
169 /**
170  * destroy_old_idx - destroy the old_idx RB-tree.
171  * @c: UBIFS file-system description object
172  *
173  * During start commit, the old_idx RB-tree is used to avoid overwriting index
174  * nodes that were in the index last commit but have since been deleted.  This
175  * is necessary for recovery i.e. the old index must be kept intact until the
176  * new index is successfully written.  The old-idx RB-tree is used for the
177  * in-the-gaps method of writing index nodes and is destroyed every commit.
178  */
179 void destroy_old_idx(struct ubifs_info *c)
180 {
181 	struct rb_node *this = c->old_idx.rb_node;
182 	struct ubifs_old_idx *old_idx;
183 
184 	while (this) {
185 		if (this->rb_left) {
186 			this = this->rb_left;
187 			continue;
188 		} else if (this->rb_right) {
189 			this = this->rb_right;
190 			continue;
191 		}
192 		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
193 		this = rb_parent(this);
194 		if (this) {
195 			if (this->rb_left == &old_idx->rb)
196 				this->rb_left = NULL;
197 			else
198 				this->rb_right = NULL;
199 		}
200 		kfree(old_idx);
201 	}
202 	c->old_idx = RB_ROOT;
203 }
204 
205 /**
206  * copy_znode - copy a dirty znode.
207  * @c: UBIFS file-system description object
208  * @znode: znode to copy
209  *
210  * A dirty znode being committed may not be changed, so it is copied.
211  */
212 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
213 				      struct ubifs_znode *znode)
214 {
215 	struct ubifs_znode *zn;
216 
217 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
218 	if (unlikely(!zn))
219 		return ERR_PTR(-ENOMEM);
220 
221 	memcpy(zn, znode, c->max_znode_sz);
222 	zn->cnext = NULL;
223 	__set_bit(DIRTY_ZNODE, &zn->flags);
224 	__clear_bit(COW_ZNODE, &zn->flags);
225 
226 	ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
227 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
228 
229 	if (znode->level != 0) {
230 		int i;
231 		const int n = zn->child_cnt;
232 
233 		/* The children now have new parent */
234 		for (i = 0; i < n; i++) {
235 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
236 
237 			if (zbr->znode)
238 				zbr->znode->parent = zn;
239 		}
240 	}
241 
242 	atomic_long_inc(&c->dirty_zn_cnt);
243 	return zn;
244 }
245 
246 /**
247  * add_idx_dirt - add dirt due to a dirty znode.
248  * @c: UBIFS file-system description object
249  * @lnum: LEB number of index node
250  * @dirt: size of index node
251  *
252  * This function updates lprops dirty space and the new size of the index.
253  */
254 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
255 {
256 	c->calc_idx_sz -= ALIGN(dirt, 8);
257 	return ubifs_add_dirt(c, lnum, dirt);
258 }
259 
260 /**
261  * dirty_cow_znode - ensure a znode is not being committed.
262  * @c: UBIFS file-system description object
263  * @zbr: branch of znode to check
264  *
265  * Returns dirtied znode on success or negative error code on failure.
266  */
267 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
268 					   struct ubifs_zbranch *zbr)
269 {
270 	struct ubifs_znode *znode = zbr->znode;
271 	struct ubifs_znode *zn;
272 	int err;
273 
274 	if (!test_bit(COW_ZNODE, &znode->flags)) {
275 		/* znode is not being committed */
276 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
277 			atomic_long_inc(&c->dirty_zn_cnt);
278 			atomic_long_dec(&c->clean_zn_cnt);
279 			atomic_long_dec(&ubifs_clean_zn_cnt);
280 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
281 			if (unlikely(err))
282 				return ERR_PTR(err);
283 		}
284 		return znode;
285 	}
286 
287 	zn = copy_znode(c, znode);
288 	if (IS_ERR(zn))
289 		return zn;
290 
291 	if (zbr->len) {
292 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
293 		if (unlikely(err))
294 			return ERR_PTR(err);
295 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
296 	} else
297 		err = 0;
298 
299 	zbr->znode = zn;
300 	zbr->lnum = 0;
301 	zbr->offs = 0;
302 	zbr->len = 0;
303 
304 	if (unlikely(err))
305 		return ERR_PTR(err);
306 	return zn;
307 }
308 
309 /**
310  * lnc_add - add a leaf node to the leaf node cache.
311  * @c: UBIFS file-system description object
312  * @zbr: zbranch of leaf node
313  * @node: leaf node
314  *
315  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
316  * purpose of the leaf node cache is to save re-reading the same leaf node over
317  * and over again. Most things are cached by VFS, however the file system must
318  * cache directory entries for readdir and for resolving hash collisions. The
319  * present implementation of the leaf node cache is extremely simple, and
320  * allows for error returns that are not used but that may be needed if a more
321  * complex implementation is created.
322  *
323  * Note, this function does not add the @node object to LNC directly, but
324  * allocates a copy of the object and adds the copy to LNC. The reason for this
325  * is that @node has been allocated outside of the TNC subsystem and will be
326  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
327  * may be changed at any time, e.g. freed by the shrinker.
328  */
329 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
330 		   const void *node)
331 {
332 	int err;
333 	void *lnc_node;
334 	const struct ubifs_dent_node *dent = node;
335 
336 	ubifs_assert(!zbr->leaf);
337 	ubifs_assert(zbr->len != 0);
338 	ubifs_assert(is_hash_key(c, &zbr->key));
339 
340 	err = ubifs_validate_entry(c, dent);
341 	if (err) {
342 		dbg_dump_stack();
343 		dbg_dump_node(c, dent);
344 		return err;
345 	}
346 
347 	lnc_node = kmalloc(zbr->len, GFP_NOFS);
348 	if (!lnc_node)
349 		/* We don't have to have the cache, so no error */
350 		return 0;
351 
352 	memcpy(lnc_node, node, zbr->len);
353 	zbr->leaf = lnc_node;
354 	return 0;
355 }
356 
357  /**
358  * lnc_add_directly - add a leaf node to the leaf-node-cache.
359  * @c: UBIFS file-system description object
360  * @zbr: zbranch of leaf node
361  * @node: leaf node
362  *
363  * This function is similar to 'lnc_add()', but it does not create a copy of
364  * @node but inserts @node to TNC directly.
365  */
366 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
367 			    void *node)
368 {
369 	int err;
370 
371 	ubifs_assert(!zbr->leaf);
372 	ubifs_assert(zbr->len != 0);
373 
374 	err = ubifs_validate_entry(c, node);
375 	if (err) {
376 		dbg_dump_stack();
377 		dbg_dump_node(c, node);
378 		return err;
379 	}
380 
381 	zbr->leaf = node;
382 	return 0;
383 }
384 
385 /**
386  * lnc_free - remove a leaf node from the leaf node cache.
387  * @zbr: zbranch of leaf node
388  * @node: leaf node
389  */
390 static void lnc_free(struct ubifs_zbranch *zbr)
391 {
392 	if (!zbr->leaf)
393 		return;
394 	kfree(zbr->leaf);
395 	zbr->leaf = NULL;
396 }
397 
398 /**
399  * tnc_read_node_nm - read a "hashed" leaf node.
400  * @c: UBIFS file-system description object
401  * @zbr: key and position of the node
402  * @node: node is returned here
403  *
404  * This function reads a "hashed" node defined by @zbr from the leaf node cache
405  * (in it is there) or from the hash media, in which case the node is also
406  * added to LNC. Returns zero in case of success or a negative negative error
407  * code in case of failure.
408  */
409 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
410 			    void *node)
411 {
412 	int err;
413 
414 	ubifs_assert(is_hash_key(c, &zbr->key));
415 
416 	if (zbr->leaf) {
417 		/* Read from the leaf node cache */
418 		ubifs_assert(zbr->len != 0);
419 		memcpy(node, zbr->leaf, zbr->len);
420 		return 0;
421 	}
422 
423 	err = ubifs_tnc_read_node(c, zbr, node);
424 	if (err)
425 		return err;
426 
427 	/* Add the node to the leaf node cache */
428 	err = lnc_add(c, zbr, node);
429 	return err;
430 }
431 
432 /**
433  * try_read_node - read a node if it is a node.
434  * @c: UBIFS file-system description object
435  * @buf: buffer to read to
436  * @type: node type
437  * @len: node length (not aligned)
438  * @lnum: LEB number of node to read
439  * @offs: offset of node to read
440  *
441  * This function tries to read a node of known type and length, checks it and
442  * stores it in @buf. This function returns %1 if a node is present and %0 if
443  * a node is not present. A negative error code is returned for I/O errors.
444  * This function performs that same function as ubifs_read_node except that
445  * it does not require that there is actually a node present and instead
446  * the return code indicates if a node was read.
447  *
448  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
449  * is true (it is controlled by corresponding mount option). However, if
450  * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
451  * checked.
452  */
453 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
454 			 int len, int lnum, int offs)
455 {
456 	int err, node_len;
457 	struct ubifs_ch *ch = buf;
458 	uint32_t crc, node_crc;
459 
460 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
461 
462 	err = ubi_read(c->ubi, lnum, buf, offs, len);
463 	if (err) {
464 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
465 			  type, lnum, offs, err);
466 		return err;
467 	}
468 
469 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
470 		return 0;
471 
472 	if (ch->node_type != type)
473 		return 0;
474 
475 	node_len = le32_to_cpu(ch->len);
476 	if (node_len != len)
477 		return 0;
478 
479 	if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
480 		return 1;
481 
482 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
483 	node_crc = le32_to_cpu(ch->crc);
484 	if (crc != node_crc)
485 		return 0;
486 
487 	return 1;
488 }
489 
490 /**
491  * fallible_read_node - try to read a leaf node.
492  * @c: UBIFS file-system description object
493  * @key:  key of node to read
494  * @zbr:  position of node
495  * @node: node returned
496  *
497  * This function tries to read a node and returns %1 if the node is read, %0
498  * if the node is not present, and a negative error code in the case of error.
499  */
500 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
501 			      struct ubifs_zbranch *zbr, void *node)
502 {
503 	int ret;
504 
505 	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
506 
507 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
508 			    zbr->offs);
509 	if (ret == 1) {
510 		union ubifs_key node_key;
511 		struct ubifs_dent_node *dent = node;
512 
513 		/* All nodes have key in the same place */
514 		key_read(c, &dent->key, &node_key);
515 		if (keys_cmp(c, key, &node_key) != 0)
516 			ret = 0;
517 	}
518 	if (ret == 0 && c->replaying)
519 		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
520 			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
521 	return ret;
522 }
523 
524 /**
525  * matches_name - determine if a direntry or xattr entry matches a given name.
526  * @c: UBIFS file-system description object
527  * @zbr: zbranch of dent
528  * @nm: name to match
529  *
530  * This function checks if xentry/direntry referred by zbranch @zbr matches name
531  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
532  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
533  * of failure, a negative error code is returned.
534  */
535 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
536 			const struct qstr *nm)
537 {
538 	struct ubifs_dent_node *dent;
539 	int nlen, err;
540 
541 	/* If possible, match against the dent in the leaf node cache */
542 	if (!zbr->leaf) {
543 		dent = kmalloc(zbr->len, GFP_NOFS);
544 		if (!dent)
545 			return -ENOMEM;
546 
547 		err = ubifs_tnc_read_node(c, zbr, dent);
548 		if (err)
549 			goto out_free;
550 
551 		/* Add the node to the leaf node cache */
552 		err = lnc_add_directly(c, zbr, dent);
553 		if (err)
554 			goto out_free;
555 	} else
556 		dent = zbr->leaf;
557 
558 	nlen = le16_to_cpu(dent->nlen);
559 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
560 	if (err == 0) {
561 		if (nlen == nm->len)
562 			return NAME_MATCHES;
563 		else if (nlen < nm->len)
564 			return NAME_LESS;
565 		else
566 			return NAME_GREATER;
567 	} else if (err < 0)
568 		return NAME_LESS;
569 	else
570 		return NAME_GREATER;
571 
572 out_free:
573 	kfree(dent);
574 	return err;
575 }
576 
577 /**
578  * get_znode - get a TNC znode that may not be loaded yet.
579  * @c: UBIFS file-system description object
580  * @znode: parent znode
581  * @n: znode branch slot number
582  *
583  * This function returns the znode or a negative error code.
584  */
585 static struct ubifs_znode *get_znode(struct ubifs_info *c,
586 				     struct ubifs_znode *znode, int n)
587 {
588 	struct ubifs_zbranch *zbr;
589 
590 	zbr = &znode->zbranch[n];
591 	if (zbr->znode)
592 		znode = zbr->znode;
593 	else
594 		znode = ubifs_load_znode(c, zbr, znode, n);
595 	return znode;
596 }
597 
598 /**
599  * tnc_next - find next TNC entry.
600  * @c: UBIFS file-system description object
601  * @zn: znode is passed and returned here
602  * @n: znode branch slot number is passed and returned here
603  *
604  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
605  * no next entry, or a negative error code otherwise.
606  */
607 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
608 {
609 	struct ubifs_znode *znode = *zn;
610 	int nn = *n;
611 
612 	nn += 1;
613 	if (nn < znode->child_cnt) {
614 		*n = nn;
615 		return 0;
616 	}
617 	while (1) {
618 		struct ubifs_znode *zp;
619 
620 		zp = znode->parent;
621 		if (!zp)
622 			return -ENOENT;
623 		nn = znode->iip + 1;
624 		znode = zp;
625 		if (nn < znode->child_cnt) {
626 			znode = get_znode(c, znode, nn);
627 			if (IS_ERR(znode))
628 				return PTR_ERR(znode);
629 			while (znode->level != 0) {
630 				znode = get_znode(c, znode, 0);
631 				if (IS_ERR(znode))
632 					return PTR_ERR(znode);
633 			}
634 			nn = 0;
635 			break;
636 		}
637 	}
638 	*zn = znode;
639 	*n = nn;
640 	return 0;
641 }
642 
643 /**
644  * tnc_prev - find previous TNC entry.
645  * @c: UBIFS file-system description object
646  * @zn: znode is returned here
647  * @n: znode branch slot number is passed and returned here
648  *
649  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
650  * there is no next entry, or a negative error code otherwise.
651  */
652 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
653 {
654 	struct ubifs_znode *znode = *zn;
655 	int nn = *n;
656 
657 	if (nn > 0) {
658 		*n = nn - 1;
659 		return 0;
660 	}
661 	while (1) {
662 		struct ubifs_znode *zp;
663 
664 		zp = znode->parent;
665 		if (!zp)
666 			return -ENOENT;
667 		nn = znode->iip - 1;
668 		znode = zp;
669 		if (nn >= 0) {
670 			znode = get_znode(c, znode, nn);
671 			if (IS_ERR(znode))
672 				return PTR_ERR(znode);
673 			while (znode->level != 0) {
674 				nn = znode->child_cnt - 1;
675 				znode = get_znode(c, znode, nn);
676 				if (IS_ERR(znode))
677 					return PTR_ERR(znode);
678 			}
679 			nn = znode->child_cnt - 1;
680 			break;
681 		}
682 	}
683 	*zn = znode;
684 	*n = nn;
685 	return 0;
686 }
687 
688 /**
689  * resolve_collision - resolve a collision.
690  * @c: UBIFS file-system description object
691  * @key: key of a directory or extended attribute entry
692  * @zn: znode is returned here
693  * @n: zbranch number is passed and returned here
694  * @nm: name of the entry
695  *
696  * This function is called for "hashed" keys to make sure that the found key
697  * really corresponds to the looked up node (directory or extended attribute
698  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
699  * %0 is returned if @nm is not found and @zn and @n are set to the previous
700  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
701  * This means that @n may be set to %-1 if the leftmost key in @zn is the
702  * previous one. A negative error code is returned on failures.
703  */
704 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
705 			     struct ubifs_znode **zn, int *n,
706 			     const struct qstr *nm)
707 {
708 	int err;
709 
710 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
711 	if (unlikely(err < 0))
712 		return err;
713 	if (err == NAME_MATCHES)
714 		return 1;
715 
716 	if (err == NAME_GREATER) {
717 		/* Look left */
718 		while (1) {
719 			err = tnc_prev(c, zn, n);
720 			if (err == -ENOENT) {
721 				ubifs_assert(*n == 0);
722 				*n = -1;
723 				return 0;
724 			}
725 			if (err < 0)
726 				return err;
727 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
728 				/*
729 				 * We have found the branch after which we would
730 				 * like to insert, but inserting in this znode
731 				 * may still be wrong. Consider the following 3
732 				 * znodes, in the case where we are resolving a
733 				 * collision with Key2.
734 				 *
735 				 *                  znode zp
736 				 *            ----------------------
737 				 * level 1     |  Key0  |  Key1  |
738 				 *            -----------------------
739 				 *                 |            |
740 				 *       znode za  |            |  znode zb
741 				 *          ------------      ------------
742 				 * level 0  |  Key0  |        |  Key2  |
743 				 *          ------------      ------------
744 				 *
745 				 * The lookup finds Key2 in znode zb. Lets say
746 				 * there is no match and the name is greater so
747 				 * we look left. When we find Key0, we end up
748 				 * here. If we return now, we will insert into
749 				 * znode za at slot n = 1.  But that is invalid
750 				 * according to the parent's keys.  Key2 must
751 				 * be inserted into znode zb.
752 				 *
753 				 * Note, this problem is not relevant for the
754 				 * case when we go right, because
755 				 * 'tnc_insert()' would correct the parent key.
756 				 */
757 				if (*n == (*zn)->child_cnt - 1) {
758 					err = tnc_next(c, zn, n);
759 					if (err) {
760 						/* Should be impossible */
761 						ubifs_assert(0);
762 						if (err == -ENOENT)
763 							err = -EINVAL;
764 						return err;
765 					}
766 					ubifs_assert(*n == 0);
767 					*n = -1;
768 				}
769 				return 0;
770 			}
771 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
772 			if (err < 0)
773 				return err;
774 			if (err == NAME_LESS)
775 				return 0;
776 			if (err == NAME_MATCHES)
777 				return 1;
778 			ubifs_assert(err == NAME_GREATER);
779 		}
780 	} else {
781 		int nn = *n;
782 		struct ubifs_znode *znode = *zn;
783 
784 		/* Look right */
785 		while (1) {
786 			err = tnc_next(c, &znode, &nn);
787 			if (err == -ENOENT)
788 				return 0;
789 			if (err < 0)
790 				return err;
791 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
792 				return 0;
793 			err = matches_name(c, &znode->zbranch[nn], nm);
794 			if (err < 0)
795 				return err;
796 			if (err == NAME_GREATER)
797 				return 0;
798 			*zn = znode;
799 			*n = nn;
800 			if (err == NAME_MATCHES)
801 				return 1;
802 			ubifs_assert(err == NAME_LESS);
803 		}
804 	}
805 }
806 
807 /**
808  * fallible_matches_name - determine if a dent matches a given name.
809  * @c: UBIFS file-system description object
810  * @zbr: zbranch of dent
811  * @nm: name to match
812  *
813  * This is a "fallible" version of 'matches_name()' function which does not
814  * panic if the direntry/xentry referred by @zbr does not exist on the media.
815  *
816  * This function checks if xentry/direntry referred by zbranch @zbr matches name
817  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
818  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
819  * if xentry/direntry referred by @zbr does not exist on the media. A negative
820  * error code is returned in case of failure.
821  */
822 static int fallible_matches_name(struct ubifs_info *c,
823 				 struct ubifs_zbranch *zbr,
824 				 const struct qstr *nm)
825 {
826 	struct ubifs_dent_node *dent;
827 	int nlen, err;
828 
829 	/* If possible, match against the dent in the leaf node cache */
830 	if (!zbr->leaf) {
831 		dent = kmalloc(zbr->len, GFP_NOFS);
832 		if (!dent)
833 			return -ENOMEM;
834 
835 		err = fallible_read_node(c, &zbr->key, zbr, dent);
836 		if (err < 0)
837 			goto out_free;
838 		if (err == 0) {
839 			/* The node was not present */
840 			err = NOT_ON_MEDIA;
841 			goto out_free;
842 		}
843 		ubifs_assert(err == 1);
844 
845 		err = lnc_add_directly(c, zbr, dent);
846 		if (err)
847 			goto out_free;
848 	} else
849 		dent = zbr->leaf;
850 
851 	nlen = le16_to_cpu(dent->nlen);
852 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
853 	if (err == 0) {
854 		if (nlen == nm->len)
855 			return NAME_MATCHES;
856 		else if (nlen < nm->len)
857 			return NAME_LESS;
858 		else
859 			return NAME_GREATER;
860 	} else if (err < 0)
861 		return NAME_LESS;
862 	else
863 		return NAME_GREATER;
864 
865 out_free:
866 	kfree(dent);
867 	return err;
868 }
869 
870 /**
871  * fallible_resolve_collision - resolve a collision even if nodes are missing.
872  * @c: UBIFS file-system description object
873  * @key: key
874  * @zn: znode is returned here
875  * @n: branch number is passed and returned here
876  * @nm: name of directory entry
877  * @adding: indicates caller is adding a key to the TNC
878  *
879  * This is a "fallible" version of the 'resolve_collision()' function which
880  * does not panic if one of the nodes referred to by TNC does not exist on the
881  * media. This may happen when replaying the journal if a deleted node was
882  * Garbage-collected and the commit was not done. A branch that refers to a node
883  * that is not present is called a dangling branch. The following are the return
884  * codes for this function:
885  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
886  *    branch;
887  *  o if we are @adding and @nm was not found, %0 is returned;
888  *  o if we are not @adding and @nm was not found, but a dangling branch was
889  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
890  *  o a negative error code is returned in case of failure.
891  */
892 static int fallible_resolve_collision(struct ubifs_info *c,
893 				      const union ubifs_key *key,
894 				      struct ubifs_znode **zn, int *n,
895 				      const struct qstr *nm, int adding)
896 {
897 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
898 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
899 
900 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
901 	if (unlikely(cmp < 0))
902 		return cmp;
903 	if (cmp == NAME_MATCHES)
904 		return 1;
905 	if (cmp == NOT_ON_MEDIA) {
906 		o_znode = znode;
907 		o_n = nn;
908 		/*
909 		 * We are unlucky and hit a dangling branch straight away.
910 		 * Now we do not really know where to go to find the needed
911 		 * branch - to the left or to the right. Well, let's try left.
912 		 */
913 		unsure = 1;
914 	} else if (!adding)
915 		unsure = 1; /* Remove a dangling branch wherever it is */
916 
917 	if (cmp == NAME_GREATER || unsure) {
918 		/* Look left */
919 		while (1) {
920 			err = tnc_prev(c, zn, n);
921 			if (err == -ENOENT) {
922 				ubifs_assert(*n == 0);
923 				*n = -1;
924 				break;
925 			}
926 			if (err < 0)
927 				return err;
928 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
929 				/* See comments in 'resolve_collision()' */
930 				if (*n == (*zn)->child_cnt - 1) {
931 					err = tnc_next(c, zn, n);
932 					if (err) {
933 						/* Should be impossible */
934 						ubifs_assert(0);
935 						if (err == -ENOENT)
936 							err = -EINVAL;
937 						return err;
938 					}
939 					ubifs_assert(*n == 0);
940 					*n = -1;
941 				}
942 				break;
943 			}
944 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
945 			if (err < 0)
946 				return err;
947 			if (err == NAME_MATCHES)
948 				return 1;
949 			if (err == NOT_ON_MEDIA) {
950 				o_znode = *zn;
951 				o_n = *n;
952 				continue;
953 			}
954 			if (!adding)
955 				continue;
956 			if (err == NAME_LESS)
957 				break;
958 			else
959 				unsure = 0;
960 		}
961 	}
962 
963 	if (cmp == NAME_LESS || unsure) {
964 		/* Look right */
965 		*zn = znode;
966 		*n = nn;
967 		while (1) {
968 			err = tnc_next(c, &znode, &nn);
969 			if (err == -ENOENT)
970 				break;
971 			if (err < 0)
972 				return err;
973 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
974 				break;
975 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
976 			if (err < 0)
977 				return err;
978 			if (err == NAME_GREATER)
979 				break;
980 			*zn = znode;
981 			*n = nn;
982 			if (err == NAME_MATCHES)
983 				return 1;
984 			if (err == NOT_ON_MEDIA) {
985 				o_znode = znode;
986 				o_n = nn;
987 			}
988 		}
989 	}
990 
991 	/* Never match a dangling branch when adding */
992 	if (adding || !o_znode)
993 		return 0;
994 
995 	dbg_mnt("dangling match LEB %d:%d len %d %s",
996 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
997 		o_znode->zbranch[o_n].len, DBGKEY(key));
998 	*zn = o_znode;
999 	*n = o_n;
1000 	return 1;
1001 }
1002 
1003 /**
1004  * matches_position - determine if a zbranch matches a given position.
1005  * @zbr: zbranch of dent
1006  * @lnum: LEB number of dent to match
1007  * @offs: offset of dent to match
1008  *
1009  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1010  */
1011 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1012 {
1013 	if (zbr->lnum == lnum && zbr->offs == offs)
1014 		return 1;
1015 	else
1016 		return 0;
1017 }
1018 
1019 /**
1020  * resolve_collision_directly - resolve a collision directly.
1021  * @c: UBIFS file-system description object
1022  * @key: key of directory entry
1023  * @zn: znode is passed and returned here
1024  * @n: zbranch number is passed and returned here
1025  * @lnum: LEB number of dent node to match
1026  * @offs: offset of dent node to match
1027  *
1028  * This function is used for "hashed" keys to make sure the found directory or
1029  * extended attribute entry node is what was looked for. It is used when the
1030  * flash address of the right node is known (@lnum:@offs) which makes it much
1031  * easier to resolve collisions (no need to read entries and match full
1032  * names). This function returns %1 and sets @zn and @n if the collision is
1033  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1034  * previous directory entry. Otherwise a negative error code is returned.
1035  */
1036 static int resolve_collision_directly(struct ubifs_info *c,
1037 				      const union ubifs_key *key,
1038 				      struct ubifs_znode **zn, int *n,
1039 				      int lnum, int offs)
1040 {
1041 	struct ubifs_znode *znode;
1042 	int nn, err;
1043 
1044 	znode = *zn;
1045 	nn = *n;
1046 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1047 		return 1;
1048 
1049 	/* Look left */
1050 	while (1) {
1051 		err = tnc_prev(c, &znode, &nn);
1052 		if (err == -ENOENT)
1053 			break;
1054 		if (err < 0)
1055 			return err;
1056 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1057 			break;
1058 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1059 			*zn = znode;
1060 			*n = nn;
1061 			return 1;
1062 		}
1063 	}
1064 
1065 	/* Look right */
1066 	znode = *zn;
1067 	nn = *n;
1068 	while (1) {
1069 		err = tnc_next(c, &znode, &nn);
1070 		if (err == -ENOENT)
1071 			return 0;
1072 		if (err < 0)
1073 			return err;
1074 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1075 			return 0;
1076 		*zn = znode;
1077 		*n = nn;
1078 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1079 			return 1;
1080 	}
1081 }
1082 
1083 /**
1084  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1085  * @c: UBIFS file-system description object
1086  * @znode: znode to dirty
1087  *
1088  * If we do not have a unique key that resides in a znode, then we cannot
1089  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1090  * This function records the path back to the last dirty ancestor, and then
1091  * dirties the znodes on that path.
1092  */
1093 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1094 					       struct ubifs_znode *znode)
1095 {
1096 	struct ubifs_znode *zp;
1097 	int *path = c->bottom_up_buf, p = 0;
1098 
1099 	ubifs_assert(c->zroot.znode);
1100 	ubifs_assert(znode);
1101 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1102 		kfree(c->bottom_up_buf);
1103 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1104 					   GFP_NOFS);
1105 		if (!c->bottom_up_buf)
1106 			return ERR_PTR(-ENOMEM);
1107 		path = c->bottom_up_buf;
1108 	}
1109 	if (c->zroot.znode->level) {
1110 		/* Go up until parent is dirty */
1111 		while (1) {
1112 			int n;
1113 
1114 			zp = znode->parent;
1115 			if (!zp)
1116 				break;
1117 			n = znode->iip;
1118 			ubifs_assert(p < c->zroot.znode->level);
1119 			path[p++] = n;
1120 			if (!zp->cnext && ubifs_zn_dirty(znode))
1121 				break;
1122 			znode = zp;
1123 		}
1124 	}
1125 
1126 	/* Come back down, dirtying as we go */
1127 	while (1) {
1128 		struct ubifs_zbranch *zbr;
1129 
1130 		zp = znode->parent;
1131 		if (zp) {
1132 			ubifs_assert(path[p - 1] >= 0);
1133 			ubifs_assert(path[p - 1] < zp->child_cnt);
1134 			zbr = &zp->zbranch[path[--p]];
1135 			znode = dirty_cow_znode(c, zbr);
1136 		} else {
1137 			ubifs_assert(znode == c->zroot.znode);
1138 			znode = dirty_cow_znode(c, &c->zroot);
1139 		}
1140 		if (IS_ERR(znode) || !p)
1141 			break;
1142 		ubifs_assert(path[p - 1] >= 0);
1143 		ubifs_assert(path[p - 1] < znode->child_cnt);
1144 		znode = znode->zbranch[path[p - 1]].znode;
1145 	}
1146 
1147 	return znode;
1148 }
1149 
1150 /**
1151  * ubifs_lookup_level0 - search for zero-level znode.
1152  * @c: UBIFS file-system description object
1153  * @key:  key to lookup
1154  * @zn: znode is returned here
1155  * @n: znode branch slot number is returned here
1156  *
1157  * This function looks up the TNC tree and search for zero-level znode which
1158  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1159  * cases:
1160  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1161  *     is returned and slot number of the matched branch is stored in @n;
1162  *   o not exact match, which means that zero-level znode does not contain
1163  *     @key, then %0 is returned and slot number of the closest branch is stored
1164  *     in @n;
1165  *   o @key is so small that it is even less than the lowest key of the
1166  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1167  *
1168  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1169  * function reads corresponding indexing nodes and inserts them to TNC. In
1170  * case of failure, a negative error code is returned.
1171  */
1172 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1173 			struct ubifs_znode **zn, int *n)
1174 {
1175 	int err, exact;
1176 	struct ubifs_znode *znode;
1177 	unsigned long time = get_seconds();
1178 
1179 	dbg_tnc("search key %s", DBGKEY(key));
1180 
1181 	znode = c->zroot.znode;
1182 	if (unlikely(!znode)) {
1183 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1184 		if (IS_ERR(znode))
1185 			return PTR_ERR(znode);
1186 	}
1187 
1188 	znode->time = time;
1189 
1190 	while (1) {
1191 		struct ubifs_zbranch *zbr;
1192 
1193 		exact = ubifs_search_zbranch(c, znode, key, n);
1194 
1195 		if (znode->level == 0)
1196 			break;
1197 
1198 		if (*n < 0)
1199 			*n = 0;
1200 		zbr = &znode->zbranch[*n];
1201 
1202 		if (zbr->znode) {
1203 			znode->time = time;
1204 			znode = zbr->znode;
1205 			continue;
1206 		}
1207 
1208 		/* znode is not in TNC cache, load it from the media */
1209 		znode = ubifs_load_znode(c, zbr, znode, *n);
1210 		if (IS_ERR(znode))
1211 			return PTR_ERR(znode);
1212 	}
1213 
1214 	*zn = znode;
1215 	if (exact || !is_hash_key(c, key) || *n != -1) {
1216 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1217 		return exact;
1218 	}
1219 
1220 	/*
1221 	 * Here is a tricky place. We have not found the key and this is a
1222 	 * "hashed" key, which may collide. The rest of the code deals with
1223 	 * situations like this:
1224 	 *
1225 	 *                  | 3 | 5 |
1226 	 *                  /       \
1227 	 *          | 3 | 5 |      | 6 | 7 | (x)
1228 	 *
1229 	 * Or more a complex example:
1230 	 *
1231 	 *                | 1 | 5 |
1232 	 *                /       \
1233 	 *       | 1 | 3 |         | 5 | 8 |
1234 	 *              \           /
1235 	 *          | 5 | 5 |   | 6 | 7 | (x)
1236 	 *
1237 	 * In the examples, if we are looking for key "5", we may reach nodes
1238 	 * marked with "(x)". In this case what we have do is to look at the
1239 	 * left and see if there is "5" key there. If there is, we have to
1240 	 * return it.
1241 	 *
1242 	 * Note, this whole situation is possible because we allow to have
1243 	 * elements which are equivalent to the next key in the parent in the
1244 	 * children of current znode. For example, this happens if we split a
1245 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1246 	 * like this:
1247 	 *                      | 3 | 5 |
1248 	 *                       /     \
1249 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1250 	 *                              ^
1251 	 * And this becomes what is at the first "picture" after key "5" marked
1252 	 * with "^" is removed. What could be done is we could prohibit
1253 	 * splitting in the middle of the colliding sequence. Also, when
1254 	 * removing the leftmost key, we would have to correct the key of the
1255 	 * parent node, which would introduce additional complications. Namely,
1256 	 * if we changed the leftmost key of the parent znode, the garbage
1257 	 * collector would be unable to find it (GC is doing this when GC'ing
1258 	 * indexing LEBs). Although we already have an additional RB-tree where
1259 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1260 	 * after the commit. But anyway, this does not look easy to implement
1261 	 * so we did not try this.
1262 	 */
1263 	err = tnc_prev(c, &znode, n);
1264 	if (err == -ENOENT) {
1265 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1266 		*n = -1;
1267 		return 0;
1268 	}
1269 	if (unlikely(err < 0))
1270 		return err;
1271 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1272 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1273 		*n = -1;
1274 		return 0;
1275 	}
1276 
1277 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1278 	*zn = znode;
1279 	return 1;
1280 }
1281 
1282 /**
1283  * lookup_level0_dirty - search for zero-level znode dirtying.
1284  * @c: UBIFS file-system description object
1285  * @key:  key to lookup
1286  * @zn: znode is returned here
1287  * @n: znode branch slot number is returned here
1288  *
1289  * This function looks up the TNC tree and search for zero-level znode which
1290  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1291  * cases:
1292  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1293  *     is returned and slot number of the matched branch is stored in @n;
1294  *   o not exact match, which means that zero-level znode does not contain @key
1295  *     then %0 is returned and slot number of the closed branch is stored in
1296  *     @n;
1297  *   o @key is so small that it is even less than the lowest key of the
1298  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1299  *
1300  * Additionally all znodes in the path from the root to the located zero-level
1301  * znode are marked as dirty.
1302  *
1303  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1304  * function reads corresponding indexing nodes and inserts them to TNC. In
1305  * case of failure, a negative error code is returned.
1306  */
1307 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1308 			       struct ubifs_znode **zn, int *n)
1309 {
1310 	int err, exact;
1311 	struct ubifs_znode *znode;
1312 	unsigned long time = get_seconds();
1313 
1314 	dbg_tnc("search and dirty key %s", DBGKEY(key));
1315 
1316 	znode = c->zroot.znode;
1317 	if (unlikely(!znode)) {
1318 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1319 		if (IS_ERR(znode))
1320 			return PTR_ERR(znode);
1321 	}
1322 
1323 	znode = dirty_cow_znode(c, &c->zroot);
1324 	if (IS_ERR(znode))
1325 		return PTR_ERR(znode);
1326 
1327 	znode->time = time;
1328 
1329 	while (1) {
1330 		struct ubifs_zbranch *zbr;
1331 
1332 		exact = ubifs_search_zbranch(c, znode, key, n);
1333 
1334 		if (znode->level == 0)
1335 			break;
1336 
1337 		if (*n < 0)
1338 			*n = 0;
1339 		zbr = &znode->zbranch[*n];
1340 
1341 		if (zbr->znode) {
1342 			znode->time = time;
1343 			znode = dirty_cow_znode(c, zbr);
1344 			if (IS_ERR(znode))
1345 				return PTR_ERR(znode);
1346 			continue;
1347 		}
1348 
1349 		/* znode is not in TNC cache, load it from the media */
1350 		znode = ubifs_load_znode(c, zbr, znode, *n);
1351 		if (IS_ERR(znode))
1352 			return PTR_ERR(znode);
1353 		znode = dirty_cow_znode(c, zbr);
1354 		if (IS_ERR(znode))
1355 			return PTR_ERR(znode);
1356 	}
1357 
1358 	*zn = znode;
1359 	if (exact || !is_hash_key(c, key) || *n != -1) {
1360 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1361 		return exact;
1362 	}
1363 
1364 	/*
1365 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1366 	 * code.
1367 	 */
1368 	err = tnc_prev(c, &znode, n);
1369 	if (err == -ENOENT) {
1370 		*n = -1;
1371 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1372 		return 0;
1373 	}
1374 	if (unlikely(err < 0))
1375 		return err;
1376 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1377 		*n = -1;
1378 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1379 		return 0;
1380 	}
1381 
1382 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1383 		znode = dirty_cow_bottom_up(c, znode);
1384 		if (IS_ERR(znode))
1385 			return PTR_ERR(znode);
1386 	}
1387 
1388 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1389 	*zn = znode;
1390 	return 1;
1391 }
1392 
1393 /**
1394  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1395  * @c: UBIFS file-system description object
1396  * @lnum: LEB number
1397  * @gc_seq1: garbage collection sequence number
1398  *
1399  * This function determines if @lnum may have been garbage collected since
1400  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1401  * %0 is returned.
1402  */
1403 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1404 {
1405 	int gc_seq2, gced_lnum;
1406 
1407 	gced_lnum = c->gced_lnum;
1408 	smp_rmb();
1409 	gc_seq2 = c->gc_seq;
1410 	/* Same seq means no GC */
1411 	if (gc_seq1 == gc_seq2)
1412 		return 0;
1413 	/* Different by more than 1 means we don't know */
1414 	if (gc_seq1 + 1 != gc_seq2)
1415 		return 1;
1416 	/*
1417 	 * We have seen the sequence number has increased by 1. Now we need to
1418 	 * be sure we read the right LEB number, so read it again.
1419 	 */
1420 	smp_rmb();
1421 	if (gced_lnum != c->gced_lnum)
1422 		return 1;
1423 	/* Finally we can check lnum */
1424 	if (gced_lnum == lnum)
1425 		return 1;
1426 	return 0;
1427 }
1428 
1429 /**
1430  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1431  * @c: UBIFS file-system description object
1432  * @key: node key to lookup
1433  * @node: the node is returned here
1434  * @lnum: LEB number is returned here
1435  * @offs: offset is returned here
1436  *
1437  * This function looks up and reads node with key @key. The caller has to make
1438  * sure the @node buffer is large enough to fit the node. Returns zero in case
1439  * of success, %-ENOENT if the node was not found, and a negative error code in
1440  * case of failure. The node location can be returned in @lnum and @offs.
1441  */
1442 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1443 		     void *node, int *lnum, int *offs)
1444 {
1445 	int found, n, err, safely = 0, gc_seq1;
1446 	struct ubifs_znode *znode;
1447 	struct ubifs_zbranch zbr, *zt;
1448 
1449 again:
1450 	mutex_lock(&c->tnc_mutex);
1451 	found = ubifs_lookup_level0(c, key, &znode, &n);
1452 	if (!found) {
1453 		err = -ENOENT;
1454 		goto out;
1455 	} else if (found < 0) {
1456 		err = found;
1457 		goto out;
1458 	}
1459 	zt = &znode->zbranch[n];
1460 	if (lnum) {
1461 		*lnum = zt->lnum;
1462 		*offs = zt->offs;
1463 	}
1464 	if (is_hash_key(c, key)) {
1465 		/*
1466 		 * In this case the leaf node cache gets used, so we pass the
1467 		 * address of the zbranch and keep the mutex locked
1468 		 */
1469 		err = tnc_read_node_nm(c, zt, node);
1470 		goto out;
1471 	}
1472 	if (safely) {
1473 		err = ubifs_tnc_read_node(c, zt, node);
1474 		goto out;
1475 	}
1476 	/* Drop the TNC mutex prematurely and race with garbage collection */
1477 	zbr = znode->zbranch[n];
1478 	gc_seq1 = c->gc_seq;
1479 	mutex_unlock(&c->tnc_mutex);
1480 
1481 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1482 		/* We do not GC journal heads */
1483 		err = ubifs_tnc_read_node(c, &zbr, node);
1484 		return err;
1485 	}
1486 
1487 	err = fallible_read_node(c, key, &zbr, node);
1488 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1489 		/*
1490 		 * The node may have been GC'ed out from under us so try again
1491 		 * while keeping the TNC mutex locked.
1492 		 */
1493 		safely = 1;
1494 		goto again;
1495 	}
1496 	return 0;
1497 
1498 out:
1499 	mutex_unlock(&c->tnc_mutex);
1500 	return err;
1501 }
1502 
1503 /**
1504  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1505  * @c: UBIFS file-system description object
1506  * @bu: bulk-read parameters and results
1507  *
1508  * Lookup consecutive data node keys for the same inode that reside
1509  * consecutively in the same LEB. This function returns zero in case of success
1510  * and a negative error code in case of failure.
1511  *
1512  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1513  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1514  * maximum possible amount of nodes for bulk-read.
1515  */
1516 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1517 {
1518 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1519 	int uninitialized_var(len);
1520 	unsigned int block = key_block(c, &bu->key);
1521 	struct ubifs_znode *znode;
1522 
1523 	bu->cnt = 0;
1524 	bu->blk_cnt = 0;
1525 	bu->eof = 0;
1526 
1527 	mutex_lock(&c->tnc_mutex);
1528 	/* Find first key */
1529 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1530 	if (err < 0)
1531 		goto out;
1532 	if (err) {
1533 		/* Key found */
1534 		len = znode->zbranch[n].len;
1535 		/* The buffer must be big enough for at least 1 node */
1536 		if (len > bu->buf_len) {
1537 			err = -EINVAL;
1538 			goto out;
1539 		}
1540 		/* Add this key */
1541 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1542 		bu->blk_cnt += 1;
1543 		lnum = znode->zbranch[n].lnum;
1544 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1545 	}
1546 	while (1) {
1547 		struct ubifs_zbranch *zbr;
1548 		union ubifs_key *key;
1549 		unsigned int next_block;
1550 
1551 		/* Find next key */
1552 		err = tnc_next(c, &znode, &n);
1553 		if (err)
1554 			goto out;
1555 		zbr = &znode->zbranch[n];
1556 		key = &zbr->key;
1557 		/* See if there is another data key for this file */
1558 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1559 		    key_type(c, key) != UBIFS_DATA_KEY) {
1560 			err = -ENOENT;
1561 			goto out;
1562 		}
1563 		if (lnum < 0) {
1564 			/* First key found */
1565 			lnum = zbr->lnum;
1566 			offs = ALIGN(zbr->offs + zbr->len, 8);
1567 			len = zbr->len;
1568 			if (len > bu->buf_len) {
1569 				err = -EINVAL;
1570 				goto out;
1571 			}
1572 		} else {
1573 			/*
1574 			 * The data nodes must be in consecutive positions in
1575 			 * the same LEB.
1576 			 */
1577 			if (zbr->lnum != lnum || zbr->offs != offs)
1578 				goto out;
1579 			offs += ALIGN(zbr->len, 8);
1580 			len = ALIGN(len, 8) + zbr->len;
1581 			/* Must not exceed buffer length */
1582 			if (len > bu->buf_len)
1583 				goto out;
1584 		}
1585 		/* Allow for holes */
1586 		next_block = key_block(c, key);
1587 		bu->blk_cnt += (next_block - block - 1);
1588 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1589 			goto out;
1590 		block = next_block;
1591 		/* Add this key */
1592 		bu->zbranch[bu->cnt++] = *zbr;
1593 		bu->blk_cnt += 1;
1594 		/* See if we have room for more */
1595 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1596 			goto out;
1597 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1598 			goto out;
1599 	}
1600 out:
1601 	if (err == -ENOENT) {
1602 		bu->eof = 1;
1603 		err = 0;
1604 	}
1605 	bu->gc_seq = c->gc_seq;
1606 	mutex_unlock(&c->tnc_mutex);
1607 	if (err)
1608 		return err;
1609 	/*
1610 	 * An enormous hole could cause bulk-read to encompass too many
1611 	 * page cache pages, so limit the number here.
1612 	 */
1613 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1614 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1615 	/*
1616 	 * Ensure that bulk-read covers a whole number of page cache
1617 	 * pages.
1618 	 */
1619 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1620 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1621 		return 0;
1622 	if (bu->eof) {
1623 		/* At the end of file we can round up */
1624 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1625 		return 0;
1626 	}
1627 	/* Exclude data nodes that do not make up a whole page cache page */
1628 	block = key_block(c, &bu->key) + bu->blk_cnt;
1629 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1630 	while (bu->cnt) {
1631 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1632 			break;
1633 		bu->cnt -= 1;
1634 	}
1635 	return 0;
1636 }
1637 
1638 /**
1639  * read_wbuf - bulk-read from a LEB with a wbuf.
1640  * @wbuf: wbuf that may overlap the read
1641  * @buf: buffer into which to read
1642  * @len: read length
1643  * @lnum: LEB number from which to read
1644  * @offs: offset from which to read
1645  *
1646  * This functions returns %0 on success or a negative error code on failure.
1647  */
1648 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1649 		     int offs)
1650 {
1651 	const struct ubifs_info *c = wbuf->c;
1652 	int rlen, overlap;
1653 
1654 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1655 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1656 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1657 	ubifs_assert(offs + len <= c->leb_size);
1658 
1659 	spin_lock(&wbuf->lock);
1660 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1661 	if (!overlap) {
1662 		/* We may safely unlock the write-buffer and read the data */
1663 		spin_unlock(&wbuf->lock);
1664 		return ubi_read(c->ubi, lnum, buf, offs, len);
1665 	}
1666 
1667 	/* Don't read under wbuf */
1668 	rlen = wbuf->offs - offs;
1669 	if (rlen < 0)
1670 		rlen = 0;
1671 
1672 	/* Copy the rest from the write-buffer */
1673 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1674 	spin_unlock(&wbuf->lock);
1675 
1676 	if (rlen > 0)
1677 		/* Read everything that goes before write-buffer */
1678 		return ubi_read(c->ubi, lnum, buf, offs, rlen);
1679 
1680 	return 0;
1681 }
1682 
1683 /**
1684  * validate_data_node - validate data nodes for bulk-read.
1685  * @c: UBIFS file-system description object
1686  * @buf: buffer containing data node to validate
1687  * @zbr: zbranch of data node to validate
1688  *
1689  * This functions returns %0 on success or a negative error code on failure.
1690  */
1691 static int validate_data_node(struct ubifs_info *c, void *buf,
1692 			      struct ubifs_zbranch *zbr)
1693 {
1694 	union ubifs_key key1;
1695 	struct ubifs_ch *ch = buf;
1696 	int err, len;
1697 
1698 	if (ch->node_type != UBIFS_DATA_NODE) {
1699 		ubifs_err("bad node type (%d but expected %d)",
1700 			  ch->node_type, UBIFS_DATA_NODE);
1701 		goto out_err;
1702 	}
1703 
1704 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1705 	if (err) {
1706 		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1707 		goto out;
1708 	}
1709 
1710 	len = le32_to_cpu(ch->len);
1711 	if (len != zbr->len) {
1712 		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1713 		goto out_err;
1714 	}
1715 
1716 	/* Make sure the key of the read node is correct */
1717 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1718 	if (!keys_eq(c, &zbr->key, &key1)) {
1719 		ubifs_err("bad key in node at LEB %d:%d",
1720 			  zbr->lnum, zbr->offs);
1721 		dbg_tnc("looked for key %s found node's key %s",
1722 			DBGKEY(&zbr->key), DBGKEY1(&key1));
1723 		goto out_err;
1724 	}
1725 
1726 	return 0;
1727 
1728 out_err:
1729 	err = -EINVAL;
1730 out:
1731 	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1732 	dbg_dump_node(c, buf);
1733 	dbg_dump_stack();
1734 	return err;
1735 }
1736 
1737 /**
1738  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1739  * @c: UBIFS file-system description object
1740  * @bu: bulk-read parameters and results
1741  *
1742  * This functions reads and validates the data nodes that were identified by the
1743  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1744  * -EAGAIN to indicate a race with GC, or another negative error code on
1745  * failure.
1746  */
1747 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1748 {
1749 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1750 	struct ubifs_wbuf *wbuf;
1751 	void *buf;
1752 
1753 	len = bu->zbranch[bu->cnt - 1].offs;
1754 	len += bu->zbranch[bu->cnt - 1].len - offs;
1755 	if (len > bu->buf_len) {
1756 		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1757 		return -EINVAL;
1758 	}
1759 
1760 	/* Do the read */
1761 	wbuf = ubifs_get_wbuf(c, lnum);
1762 	if (wbuf)
1763 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1764 	else
1765 		err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1766 
1767 	/* Check for a race with GC */
1768 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1769 		return -EAGAIN;
1770 
1771 	if (err && err != -EBADMSG) {
1772 		ubifs_err("failed to read from LEB %d:%d, error %d",
1773 			  lnum, offs, err);
1774 		dbg_dump_stack();
1775 		dbg_tnc("key %s", DBGKEY(&bu->key));
1776 		return err;
1777 	}
1778 
1779 	/* Validate the nodes read */
1780 	buf = bu->buf;
1781 	for (i = 0; i < bu->cnt; i++) {
1782 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1783 		if (err)
1784 			return err;
1785 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 /**
1792  * do_lookup_nm- look up a "hashed" node.
1793  * @c: UBIFS file-system description object
1794  * @key: node key to lookup
1795  * @node: the node is returned here
1796  * @nm: node name
1797  *
1798  * This function look up and reads a node which contains name hash in the key.
1799  * Since the hash may have collisions, there may be many nodes with the same
1800  * key, so we have to sequentially look to all of them until the needed one is
1801  * found. This function returns zero in case of success, %-ENOENT if the node
1802  * was not found, and a negative error code in case of failure.
1803  */
1804 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1805 			void *node, const struct qstr *nm)
1806 {
1807 	int found, n, err;
1808 	struct ubifs_znode *znode;
1809 
1810 	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1811 	mutex_lock(&c->tnc_mutex);
1812 	found = ubifs_lookup_level0(c, key, &znode, &n);
1813 	if (!found) {
1814 		err = -ENOENT;
1815 		goto out_unlock;
1816 	} else if (found < 0) {
1817 		err = found;
1818 		goto out_unlock;
1819 	}
1820 
1821 	ubifs_assert(n >= 0);
1822 
1823 	err = resolve_collision(c, key, &znode, &n, nm);
1824 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1825 	if (unlikely(err < 0))
1826 		goto out_unlock;
1827 	if (err == 0) {
1828 		err = -ENOENT;
1829 		goto out_unlock;
1830 	}
1831 
1832 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1833 
1834 out_unlock:
1835 	mutex_unlock(&c->tnc_mutex);
1836 	return err;
1837 }
1838 
1839 /**
1840  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1841  * @c: UBIFS file-system description object
1842  * @key: node key to lookup
1843  * @node: the node is returned here
1844  * @nm: node name
1845  *
1846  * This function look up and reads a node which contains name hash in the key.
1847  * Since the hash may have collisions, there may be many nodes with the same
1848  * key, so we have to sequentially look to all of them until the needed one is
1849  * found. This function returns zero in case of success, %-ENOENT if the node
1850  * was not found, and a negative error code in case of failure.
1851  */
1852 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1853 			void *node, const struct qstr *nm)
1854 {
1855 	int err, len;
1856 	const struct ubifs_dent_node *dent = node;
1857 
1858 	/*
1859 	 * We assume that in most of the cases there are no name collisions and
1860 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1861 	 */
1862 	err = ubifs_tnc_lookup(c, key, node);
1863 	if (err)
1864 		return err;
1865 
1866 	len = le16_to_cpu(dent->nlen);
1867 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1868 		return 0;
1869 
1870 	/*
1871 	 * Unluckily, there are hash collisions and we have to iterate over
1872 	 * them look at each direntry with colliding name hash sequentially.
1873 	 */
1874 	return do_lookup_nm(c, key, node, nm);
1875 }
1876 
1877 /**
1878  * correct_parent_keys - correct parent znodes' keys.
1879  * @c: UBIFS file-system description object
1880  * @znode: znode to correct parent znodes for
1881  *
1882  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1883  * zbranch changes, keys of parent znodes have to be corrected. This helper
1884  * function is called in such situations and corrects the keys if needed.
1885  */
1886 static void correct_parent_keys(const struct ubifs_info *c,
1887 				struct ubifs_znode *znode)
1888 {
1889 	union ubifs_key *key, *key1;
1890 
1891 	ubifs_assert(znode->parent);
1892 	ubifs_assert(znode->iip == 0);
1893 
1894 	key = &znode->zbranch[0].key;
1895 	key1 = &znode->parent->zbranch[0].key;
1896 
1897 	while (keys_cmp(c, key, key1) < 0) {
1898 		key_copy(c, key, key1);
1899 		znode = znode->parent;
1900 		znode->alt = 1;
1901 		if (!znode->parent || znode->iip)
1902 			break;
1903 		key1 = &znode->parent->zbranch[0].key;
1904 	}
1905 }
1906 
1907 /**
1908  * insert_zbranch - insert a zbranch into a znode.
1909  * @znode: znode into which to insert
1910  * @zbr: zbranch to insert
1911  * @n: slot number to insert to
1912  *
1913  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1914  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1915  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1916  * slot, zbranches starting from @n have to be moved right.
1917  */
1918 static void insert_zbranch(struct ubifs_znode *znode,
1919 			   const struct ubifs_zbranch *zbr, int n)
1920 {
1921 	int i;
1922 
1923 	ubifs_assert(ubifs_zn_dirty(znode));
1924 
1925 	if (znode->level) {
1926 		for (i = znode->child_cnt; i > n; i--) {
1927 			znode->zbranch[i] = znode->zbranch[i - 1];
1928 			if (znode->zbranch[i].znode)
1929 				znode->zbranch[i].znode->iip = i;
1930 		}
1931 		if (zbr->znode)
1932 			zbr->znode->iip = n;
1933 	} else
1934 		for (i = znode->child_cnt; i > n; i--)
1935 			znode->zbranch[i] = znode->zbranch[i - 1];
1936 
1937 	znode->zbranch[n] = *zbr;
1938 	znode->child_cnt += 1;
1939 
1940 	/*
1941 	 * After inserting at slot zero, the lower bound of the key range of
1942 	 * this znode may have changed. If this znode is subsequently split
1943 	 * then the upper bound of the key range may change, and furthermore
1944 	 * it could change to be lower than the original lower bound. If that
1945 	 * happens, then it will no longer be possible to find this znode in the
1946 	 * TNC using the key from the index node on flash. That is bad because
1947 	 * if it is not found, we will assume it is obsolete and may overwrite
1948 	 * it. Then if there is an unclean unmount, we will start using the
1949 	 * old index which will be broken.
1950 	 *
1951 	 * So we first mark znodes that have insertions at slot zero, and then
1952 	 * if they are split we add their lnum/offs to the old_idx tree.
1953 	 */
1954 	if (n == 0)
1955 		znode->alt = 1;
1956 }
1957 
1958 /**
1959  * tnc_insert - insert a node into TNC.
1960  * @c: UBIFS file-system description object
1961  * @znode: znode to insert into
1962  * @zbr: branch to insert
1963  * @n: slot number to insert new zbranch to
1964  *
1965  * This function inserts a new node described by @zbr into znode @znode. If
1966  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1967  * are splat as well if needed. Returns zero in case of success or a negative
1968  * error code in case of failure.
1969  */
1970 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1971 		      struct ubifs_zbranch *zbr, int n)
1972 {
1973 	struct ubifs_znode *zn, *zi, *zp;
1974 	int i, keep, move, appending = 0;
1975 	union ubifs_key *key = &zbr->key, *key1;
1976 
1977 	ubifs_assert(n >= 0 && n <= c->fanout);
1978 
1979 	/* Implement naive insert for now */
1980 again:
1981 	zp = znode->parent;
1982 	if (znode->child_cnt < c->fanout) {
1983 		ubifs_assert(n != c->fanout);
1984 		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1985 			DBGKEY(key));
1986 
1987 		insert_zbranch(znode, zbr, n);
1988 
1989 		/* Ensure parent's key is correct */
1990 		if (n == 0 && zp && znode->iip == 0)
1991 			correct_parent_keys(c, znode);
1992 
1993 		return 0;
1994 	}
1995 
1996 	/*
1997 	 * Unfortunately, @znode does not have more empty slots and we have to
1998 	 * split it.
1999 	 */
2000 	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
2001 
2002 	if (znode->alt)
2003 		/*
2004 		 * We can no longer be sure of finding this znode by key, so we
2005 		 * record it in the old_idx tree.
2006 		 */
2007 		ins_clr_old_idx_znode(c, znode);
2008 
2009 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2010 	if (!zn)
2011 		return -ENOMEM;
2012 	zn->parent = zp;
2013 	zn->level = znode->level;
2014 
2015 	/* Decide where to split */
2016 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2017 		/* Try not to split consecutive data keys */
2018 		if (n == c->fanout) {
2019 			key1 = &znode->zbranch[n - 1].key;
2020 			if (key_inum(c, key1) == key_inum(c, key) &&
2021 			    key_type(c, key1) == UBIFS_DATA_KEY)
2022 				appending = 1;
2023 		} else
2024 			goto check_split;
2025 	} else if (appending && n != c->fanout) {
2026 		/* Try not to split consecutive data keys */
2027 		appending = 0;
2028 check_split:
2029 		if (n >= (c->fanout + 1) / 2) {
2030 			key1 = &znode->zbranch[0].key;
2031 			if (key_inum(c, key1) == key_inum(c, key) &&
2032 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2033 				key1 = &znode->zbranch[n].key;
2034 				if (key_inum(c, key1) != key_inum(c, key) ||
2035 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2036 					keep = n;
2037 					move = c->fanout - keep;
2038 					zi = znode;
2039 					goto do_split;
2040 				}
2041 			}
2042 		}
2043 	}
2044 
2045 	if (appending) {
2046 		keep = c->fanout;
2047 		move = 0;
2048 	} else {
2049 		keep = (c->fanout + 1) / 2;
2050 		move = c->fanout - keep;
2051 	}
2052 
2053 	/*
2054 	 * Although we don't at present, we could look at the neighbors and see
2055 	 * if we can move some zbranches there.
2056 	 */
2057 
2058 	if (n < keep) {
2059 		/* Insert into existing znode */
2060 		zi = znode;
2061 		move += 1;
2062 		keep -= 1;
2063 	} else {
2064 		/* Insert into new znode */
2065 		zi = zn;
2066 		n -= keep;
2067 		/* Re-parent */
2068 		if (zn->level != 0)
2069 			zbr->znode->parent = zn;
2070 	}
2071 
2072 do_split:
2073 
2074 	__set_bit(DIRTY_ZNODE, &zn->flags);
2075 	atomic_long_inc(&c->dirty_zn_cnt);
2076 
2077 	zn->child_cnt = move;
2078 	znode->child_cnt = keep;
2079 
2080 	dbg_tnc("moving %d, keeping %d", move, keep);
2081 
2082 	/* Move zbranch */
2083 	for (i = 0; i < move; i++) {
2084 		zn->zbranch[i] = znode->zbranch[keep + i];
2085 		/* Re-parent */
2086 		if (zn->level != 0)
2087 			if (zn->zbranch[i].znode) {
2088 				zn->zbranch[i].znode->parent = zn;
2089 				zn->zbranch[i].znode->iip = i;
2090 			}
2091 	}
2092 
2093 	/* Insert new key and branch */
2094 	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2095 
2096 	insert_zbranch(zi, zbr, n);
2097 
2098 	/* Insert new znode (produced by spitting) into the parent */
2099 	if (zp) {
2100 		if (n == 0 && zi == znode && znode->iip == 0)
2101 			correct_parent_keys(c, znode);
2102 
2103 		/* Locate insertion point */
2104 		n = znode->iip + 1;
2105 
2106 		/* Tail recursion */
2107 		zbr->key = zn->zbranch[0].key;
2108 		zbr->znode = zn;
2109 		zbr->lnum = 0;
2110 		zbr->offs = 0;
2111 		zbr->len = 0;
2112 		znode = zp;
2113 
2114 		goto again;
2115 	}
2116 
2117 	/* We have to split root znode */
2118 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2119 
2120 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2121 	if (!zi)
2122 		return -ENOMEM;
2123 
2124 	zi->child_cnt = 2;
2125 	zi->level = znode->level + 1;
2126 
2127 	__set_bit(DIRTY_ZNODE, &zi->flags);
2128 	atomic_long_inc(&c->dirty_zn_cnt);
2129 
2130 	zi->zbranch[0].key = znode->zbranch[0].key;
2131 	zi->zbranch[0].znode = znode;
2132 	zi->zbranch[0].lnum = c->zroot.lnum;
2133 	zi->zbranch[0].offs = c->zroot.offs;
2134 	zi->zbranch[0].len = c->zroot.len;
2135 	zi->zbranch[1].key = zn->zbranch[0].key;
2136 	zi->zbranch[1].znode = zn;
2137 
2138 	c->zroot.lnum = 0;
2139 	c->zroot.offs = 0;
2140 	c->zroot.len = 0;
2141 	c->zroot.znode = zi;
2142 
2143 	zn->parent = zi;
2144 	zn->iip = 1;
2145 	znode->parent = zi;
2146 	znode->iip = 0;
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  * ubifs_tnc_add - add a node to TNC.
2153  * @c: UBIFS file-system description object
2154  * @key: key to add
2155  * @lnum: LEB number of node
2156  * @offs: node offset
2157  * @len: node length
2158  *
2159  * This function adds a node with key @key to TNC. The node may be new or it may
2160  * obsolete some existing one. Returns %0 on success or negative error code on
2161  * failure.
2162  */
2163 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2164 		  int offs, int len)
2165 {
2166 	int found, n, err = 0;
2167 	struct ubifs_znode *znode;
2168 
2169 	mutex_lock(&c->tnc_mutex);
2170 	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2171 	found = lookup_level0_dirty(c, key, &znode, &n);
2172 	if (!found) {
2173 		struct ubifs_zbranch zbr;
2174 
2175 		zbr.znode = NULL;
2176 		zbr.lnum = lnum;
2177 		zbr.offs = offs;
2178 		zbr.len = len;
2179 		key_copy(c, key, &zbr.key);
2180 		err = tnc_insert(c, znode, &zbr, n + 1);
2181 	} else if (found == 1) {
2182 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2183 
2184 		lnc_free(zbr);
2185 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2186 		zbr->lnum = lnum;
2187 		zbr->offs = offs;
2188 		zbr->len = len;
2189 	} else
2190 		err = found;
2191 	if (!err)
2192 		err = dbg_check_tnc(c, 0);
2193 	mutex_unlock(&c->tnc_mutex);
2194 
2195 	return err;
2196 }
2197 
2198 /**
2199  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2200  * @c: UBIFS file-system description object
2201  * @key: key to add
2202  * @old_lnum: LEB number of old node
2203  * @old_offs: old node offset
2204  * @lnum: LEB number of node
2205  * @offs: node offset
2206  * @len: node length
2207  *
2208  * This function replaces a node with key @key in the TNC only if the old node
2209  * is found.  This function is called by garbage collection when node are moved.
2210  * Returns %0 on success or negative error code on failure.
2211  */
2212 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2213 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2214 {
2215 	int found, n, err = 0;
2216 	struct ubifs_znode *znode;
2217 
2218 	mutex_lock(&c->tnc_mutex);
2219 	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2220 		old_offs, lnum, offs, len, DBGKEY(key));
2221 	found = lookup_level0_dirty(c, key, &znode, &n);
2222 	if (found < 0) {
2223 		err = found;
2224 		goto out_unlock;
2225 	}
2226 
2227 	if (found == 1) {
2228 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2229 
2230 		found = 0;
2231 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2232 			lnc_free(zbr);
2233 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2234 			if (err)
2235 				goto out_unlock;
2236 			zbr->lnum = lnum;
2237 			zbr->offs = offs;
2238 			zbr->len = len;
2239 			found = 1;
2240 		} else if (is_hash_key(c, key)) {
2241 			found = resolve_collision_directly(c, key, &znode, &n,
2242 							   old_lnum, old_offs);
2243 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2244 				found, znode, n, old_lnum, old_offs);
2245 			if (found < 0) {
2246 				err = found;
2247 				goto out_unlock;
2248 			}
2249 
2250 			if (found) {
2251 				/* Ensure the znode is dirtied */
2252 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2253 					znode = dirty_cow_bottom_up(c, znode);
2254 					if (IS_ERR(znode)) {
2255 						err = PTR_ERR(znode);
2256 						goto out_unlock;
2257 					}
2258 				}
2259 				zbr = &znode->zbranch[n];
2260 				lnc_free(zbr);
2261 				err = ubifs_add_dirt(c, zbr->lnum,
2262 						     zbr->len);
2263 				if (err)
2264 					goto out_unlock;
2265 				zbr->lnum = lnum;
2266 				zbr->offs = offs;
2267 				zbr->len = len;
2268 			}
2269 		}
2270 	}
2271 
2272 	if (!found)
2273 		err = ubifs_add_dirt(c, lnum, len);
2274 
2275 	if (!err)
2276 		err = dbg_check_tnc(c, 0);
2277 
2278 out_unlock:
2279 	mutex_unlock(&c->tnc_mutex);
2280 	return err;
2281 }
2282 
2283 /**
2284  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2285  * @c: UBIFS file-system description object
2286  * @key: key to add
2287  * @lnum: LEB number of node
2288  * @offs: node offset
2289  * @len: node length
2290  * @nm: node name
2291  *
2292  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2293  * may have collisions, like directory entry keys.
2294  */
2295 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2296 		     int lnum, int offs, int len, const struct qstr *nm)
2297 {
2298 	int found, n, err = 0;
2299 	struct ubifs_znode *znode;
2300 
2301 	mutex_lock(&c->tnc_mutex);
2302 	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2303 		DBGKEY(key));
2304 	found = lookup_level0_dirty(c, key, &znode, &n);
2305 	if (found < 0) {
2306 		err = found;
2307 		goto out_unlock;
2308 	}
2309 
2310 	if (found == 1) {
2311 		if (c->replaying)
2312 			found = fallible_resolve_collision(c, key, &znode, &n,
2313 							   nm, 1);
2314 		else
2315 			found = resolve_collision(c, key, &znode, &n, nm);
2316 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2317 		if (found < 0) {
2318 			err = found;
2319 			goto out_unlock;
2320 		}
2321 
2322 		/* Ensure the znode is dirtied */
2323 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2324 			znode = dirty_cow_bottom_up(c, znode);
2325 			if (IS_ERR(znode)) {
2326 				err = PTR_ERR(znode);
2327 				goto out_unlock;
2328 			}
2329 		}
2330 
2331 		if (found == 1) {
2332 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2333 
2334 			lnc_free(zbr);
2335 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2336 			zbr->lnum = lnum;
2337 			zbr->offs = offs;
2338 			zbr->len = len;
2339 			goto out_unlock;
2340 		}
2341 	}
2342 
2343 	if (!found) {
2344 		struct ubifs_zbranch zbr;
2345 
2346 		zbr.znode = NULL;
2347 		zbr.lnum = lnum;
2348 		zbr.offs = offs;
2349 		zbr.len = len;
2350 		key_copy(c, key, &zbr.key);
2351 		err = tnc_insert(c, znode, &zbr, n + 1);
2352 		if (err)
2353 			goto out_unlock;
2354 		if (c->replaying) {
2355 			/*
2356 			 * We did not find it in the index so there may be a
2357 			 * dangling branch still in the index. So we remove it
2358 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2359 			 * an unmatchable name.
2360 			 */
2361 			struct qstr noname = { .len = 0, .name = "" };
2362 
2363 			err = dbg_check_tnc(c, 0);
2364 			mutex_unlock(&c->tnc_mutex);
2365 			if (err)
2366 				return err;
2367 			return ubifs_tnc_remove_nm(c, key, &noname);
2368 		}
2369 	}
2370 
2371 out_unlock:
2372 	if (!err)
2373 		err = dbg_check_tnc(c, 0);
2374 	mutex_unlock(&c->tnc_mutex);
2375 	return err;
2376 }
2377 
2378 /**
2379  * tnc_delete - delete a znode form TNC.
2380  * @c: UBIFS file-system description object
2381  * @znode: znode to delete from
2382  * @n: zbranch slot number to delete
2383  *
2384  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2385  * case of success and a negative error code in case of failure.
2386  */
2387 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2388 {
2389 	struct ubifs_zbranch *zbr;
2390 	struct ubifs_znode *zp;
2391 	int i, err;
2392 
2393 	/* Delete without merge for now */
2394 	ubifs_assert(znode->level == 0);
2395 	ubifs_assert(n >= 0 && n < c->fanout);
2396 	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2397 
2398 	zbr = &znode->zbranch[n];
2399 	lnc_free(zbr);
2400 
2401 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2402 	if (err) {
2403 		dbg_dump_znode(c, znode);
2404 		return err;
2405 	}
2406 
2407 	/* We do not "gap" zbranch slots */
2408 	for (i = n; i < znode->child_cnt - 1; i++)
2409 		znode->zbranch[i] = znode->zbranch[i + 1];
2410 	znode->child_cnt -= 1;
2411 
2412 	if (znode->child_cnt > 0)
2413 		return 0;
2414 
2415 	/*
2416 	 * This was the last zbranch, we have to delete this znode from the
2417 	 * parent.
2418 	 */
2419 
2420 	do {
2421 		ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2422 		ubifs_assert(ubifs_zn_dirty(znode));
2423 
2424 		zp = znode->parent;
2425 		n = znode->iip;
2426 
2427 		atomic_long_dec(&c->dirty_zn_cnt);
2428 
2429 		err = insert_old_idx_znode(c, znode);
2430 		if (err)
2431 			return err;
2432 
2433 		if (znode->cnext) {
2434 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2435 			atomic_long_inc(&c->clean_zn_cnt);
2436 			atomic_long_inc(&ubifs_clean_zn_cnt);
2437 		} else
2438 			kfree(znode);
2439 		znode = zp;
2440 	} while (znode->child_cnt == 1); /* while removing last child */
2441 
2442 	/* Remove from znode, entry n - 1 */
2443 	znode->child_cnt -= 1;
2444 	ubifs_assert(znode->level != 0);
2445 	for (i = n; i < znode->child_cnt; i++) {
2446 		znode->zbranch[i] = znode->zbranch[i + 1];
2447 		if (znode->zbranch[i].znode)
2448 			znode->zbranch[i].znode->iip = i;
2449 	}
2450 
2451 	/*
2452 	 * If this is the root and it has only 1 child then
2453 	 * collapse the tree.
2454 	 */
2455 	if (!znode->parent) {
2456 		while (znode->child_cnt == 1 && znode->level != 0) {
2457 			zp = znode;
2458 			zbr = &znode->zbranch[0];
2459 			znode = get_znode(c, znode, 0);
2460 			if (IS_ERR(znode))
2461 				return PTR_ERR(znode);
2462 			znode = dirty_cow_znode(c, zbr);
2463 			if (IS_ERR(znode))
2464 				return PTR_ERR(znode);
2465 			znode->parent = NULL;
2466 			znode->iip = 0;
2467 			if (c->zroot.len) {
2468 				err = insert_old_idx(c, c->zroot.lnum,
2469 						     c->zroot.offs);
2470 				if (err)
2471 					return err;
2472 			}
2473 			c->zroot.lnum = zbr->lnum;
2474 			c->zroot.offs = zbr->offs;
2475 			c->zroot.len = zbr->len;
2476 			c->zroot.znode = znode;
2477 			ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2478 				     &zp->flags));
2479 			ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2480 			atomic_long_dec(&c->dirty_zn_cnt);
2481 
2482 			if (zp->cnext) {
2483 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2484 				atomic_long_inc(&c->clean_zn_cnt);
2485 				atomic_long_inc(&ubifs_clean_zn_cnt);
2486 			} else
2487 				kfree(zp);
2488 		}
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 /**
2495  * ubifs_tnc_remove - remove an index entry of a node.
2496  * @c: UBIFS file-system description object
2497  * @key: key of node
2498  *
2499  * Returns %0 on success or negative error code on failure.
2500  */
2501 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2502 {
2503 	int found, n, err = 0;
2504 	struct ubifs_znode *znode;
2505 
2506 	mutex_lock(&c->tnc_mutex);
2507 	dbg_tnc("key %s", DBGKEY(key));
2508 	found = lookup_level0_dirty(c, key, &znode, &n);
2509 	if (found < 0) {
2510 		err = found;
2511 		goto out_unlock;
2512 	}
2513 	if (found == 1)
2514 		err = tnc_delete(c, znode, n);
2515 	if (!err)
2516 		err = dbg_check_tnc(c, 0);
2517 
2518 out_unlock:
2519 	mutex_unlock(&c->tnc_mutex);
2520 	return err;
2521 }
2522 
2523 /**
2524  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2525  * @c: UBIFS file-system description object
2526  * @key: key of node
2527  * @nm: directory entry name
2528  *
2529  * Returns %0 on success or negative error code on failure.
2530  */
2531 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2532 			const struct qstr *nm)
2533 {
2534 	int n, err;
2535 	struct ubifs_znode *znode;
2536 
2537 	mutex_lock(&c->tnc_mutex);
2538 	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2539 	err = lookup_level0_dirty(c, key, &znode, &n);
2540 	if (err < 0)
2541 		goto out_unlock;
2542 
2543 	if (err) {
2544 		if (c->replaying)
2545 			err = fallible_resolve_collision(c, key, &znode, &n,
2546 							 nm, 0);
2547 		else
2548 			err = resolve_collision(c, key, &znode, &n, nm);
2549 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2550 		if (err < 0)
2551 			goto out_unlock;
2552 		if (err) {
2553 			/* Ensure the znode is dirtied */
2554 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2555 				    znode = dirty_cow_bottom_up(c, znode);
2556 				    if (IS_ERR(znode)) {
2557 					    err = PTR_ERR(znode);
2558 					    goto out_unlock;
2559 				    }
2560 			}
2561 			err = tnc_delete(c, znode, n);
2562 		}
2563 	}
2564 
2565 out_unlock:
2566 	if (!err)
2567 		err = dbg_check_tnc(c, 0);
2568 	mutex_unlock(&c->tnc_mutex);
2569 	return err;
2570 }
2571 
2572 /**
2573  * key_in_range - determine if a key falls within a range of keys.
2574  * @c: UBIFS file-system description object
2575  * @key: key to check
2576  * @from_key: lowest key in range
2577  * @to_key: highest key in range
2578  *
2579  * This function returns %1 if the key is in range and %0 otherwise.
2580  */
2581 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2582 			union ubifs_key *from_key, union ubifs_key *to_key)
2583 {
2584 	if (keys_cmp(c, key, from_key) < 0)
2585 		return 0;
2586 	if (keys_cmp(c, key, to_key) > 0)
2587 		return 0;
2588 	return 1;
2589 }
2590 
2591 /**
2592  * ubifs_tnc_remove_range - remove index entries in range.
2593  * @c: UBIFS file-system description object
2594  * @from_key: lowest key to remove
2595  * @to_key: highest key to remove
2596  *
2597  * This function removes index entries starting at @from_key and ending at
2598  * @to_key.  This function returns zero in case of success and a negative error
2599  * code in case of failure.
2600  */
2601 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2602 			   union ubifs_key *to_key)
2603 {
2604 	int i, n, k, err = 0;
2605 	struct ubifs_znode *znode;
2606 	union ubifs_key *key;
2607 
2608 	mutex_lock(&c->tnc_mutex);
2609 	while (1) {
2610 		/* Find first level 0 znode that contains keys to remove */
2611 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2612 		if (err < 0)
2613 			goto out_unlock;
2614 
2615 		if (err)
2616 			key = from_key;
2617 		else {
2618 			err = tnc_next(c, &znode, &n);
2619 			if (err == -ENOENT) {
2620 				err = 0;
2621 				goto out_unlock;
2622 			}
2623 			if (err < 0)
2624 				goto out_unlock;
2625 			key = &znode->zbranch[n].key;
2626 			if (!key_in_range(c, key, from_key, to_key)) {
2627 				err = 0;
2628 				goto out_unlock;
2629 			}
2630 		}
2631 
2632 		/* Ensure the znode is dirtied */
2633 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2634 			znode = dirty_cow_bottom_up(c, znode);
2635 			if (IS_ERR(znode)) {
2636 				err = PTR_ERR(znode);
2637 				goto out_unlock;
2638 			}
2639 		}
2640 
2641 		/* Remove all keys in range except the first */
2642 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2643 			key = &znode->zbranch[i].key;
2644 			if (!key_in_range(c, key, from_key, to_key))
2645 				break;
2646 			lnc_free(&znode->zbranch[i]);
2647 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2648 					     znode->zbranch[i].len);
2649 			if (err) {
2650 				dbg_dump_znode(c, znode);
2651 				goto out_unlock;
2652 			}
2653 			dbg_tnc("removing %s", DBGKEY(key));
2654 		}
2655 		if (k) {
2656 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2657 				znode->zbranch[i - k] = znode->zbranch[i];
2658 			znode->child_cnt -= k;
2659 		}
2660 
2661 		/* Now delete the first */
2662 		err = tnc_delete(c, znode, n);
2663 		if (err)
2664 			goto out_unlock;
2665 	}
2666 
2667 out_unlock:
2668 	if (!err)
2669 		err = dbg_check_tnc(c, 0);
2670 	mutex_unlock(&c->tnc_mutex);
2671 	return err;
2672 }
2673 
2674 /**
2675  * ubifs_tnc_remove_ino - remove an inode from TNC.
2676  * @c: UBIFS file-system description object
2677  * @inum: inode number to remove
2678  *
2679  * This function remove inode @inum and all the extended attributes associated
2680  * with the anode from TNC and returns zero in case of success or a negative
2681  * error code in case of failure.
2682  */
2683 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2684 {
2685 	union ubifs_key key1, key2;
2686 	struct ubifs_dent_node *xent, *pxent = NULL;
2687 	struct qstr nm = { .name = NULL };
2688 
2689 	dbg_tnc("ino %lu", (unsigned long)inum);
2690 
2691 	/*
2692 	 * Walk all extended attribute entries and remove them together with
2693 	 * corresponding extended attribute inodes.
2694 	 */
2695 	lowest_xent_key(c, &key1, inum);
2696 	while (1) {
2697 		ino_t xattr_inum;
2698 		int err;
2699 
2700 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2701 		if (IS_ERR(xent)) {
2702 			err = PTR_ERR(xent);
2703 			if (err == -ENOENT)
2704 				break;
2705 			return err;
2706 		}
2707 
2708 		xattr_inum = le64_to_cpu(xent->inum);
2709 		dbg_tnc("xent '%s', ino %lu", xent->name,
2710 			(unsigned long)xattr_inum);
2711 
2712 		nm.name = xent->name;
2713 		nm.len = le16_to_cpu(xent->nlen);
2714 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2715 		if (err) {
2716 			kfree(xent);
2717 			return err;
2718 		}
2719 
2720 		lowest_ino_key(c, &key1, xattr_inum);
2721 		highest_ino_key(c, &key2, xattr_inum);
2722 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2723 		if (err) {
2724 			kfree(xent);
2725 			return err;
2726 		}
2727 
2728 		kfree(pxent);
2729 		pxent = xent;
2730 		key_read(c, &xent->key, &key1);
2731 	}
2732 
2733 	kfree(pxent);
2734 	lowest_ino_key(c, &key1, inum);
2735 	highest_ino_key(c, &key2, inum);
2736 
2737 	return ubifs_tnc_remove_range(c, &key1, &key2);
2738 }
2739 
2740 /**
2741  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2742  * @c: UBIFS file-system description object
2743  * @key: key of last entry
2744  * @nm: name of last entry found or %NULL
2745  *
2746  * This function finds and reads the next directory or extended attribute entry
2747  * after the given key (@key) if there is one. @nm is used to resolve
2748  * collisions.
2749  *
2750  * If the name of the current entry is not known and only the key is known,
2751  * @nm->name has to be %NULL. In this case the semantics of this function is a
2752  * little bit different and it returns the entry corresponding to this key, not
2753  * the next one. If the key was not found, the closest "right" entry is
2754  * returned.
2755  *
2756  * If the fist entry has to be found, @key has to contain the lowest possible
2757  * key value for this inode and @name has to be %NULL.
2758  *
2759  * This function returns the found directory or extended attribute entry node
2760  * in case of success, %-ENOENT is returned if no entry was found, and a
2761  * negative error code is returned in case of failure.
2762  */
2763 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2764 					   union ubifs_key *key,
2765 					   const struct qstr *nm)
2766 {
2767 	int n, err, type = key_type(c, key);
2768 	struct ubifs_znode *znode;
2769 	struct ubifs_dent_node *dent;
2770 	struct ubifs_zbranch *zbr;
2771 	union ubifs_key *dkey;
2772 
2773 	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2774 	ubifs_assert(is_hash_key(c, key));
2775 
2776 	mutex_lock(&c->tnc_mutex);
2777 	err = ubifs_lookup_level0(c, key, &znode, &n);
2778 	if (unlikely(err < 0))
2779 		goto out_unlock;
2780 
2781 	if (nm->name) {
2782 		if (err) {
2783 			/* Handle collisions */
2784 			err = resolve_collision(c, key, &znode, &n, nm);
2785 			dbg_tnc("rc returned %d, znode %p, n %d",
2786 				err, znode, n);
2787 			if (unlikely(err < 0))
2788 				goto out_unlock;
2789 		}
2790 
2791 		/* Now find next entry */
2792 		err = tnc_next(c, &znode, &n);
2793 		if (unlikely(err))
2794 			goto out_unlock;
2795 	} else {
2796 		/*
2797 		 * The full name of the entry was not given, in which case the
2798 		 * behavior of this function is a little different and it
2799 		 * returns current entry, not the next one.
2800 		 */
2801 		if (!err) {
2802 			/*
2803 			 * However, the given key does not exist in the TNC
2804 			 * tree and @znode/@n variables contain the closest
2805 			 * "preceding" element. Switch to the next one.
2806 			 */
2807 			err = tnc_next(c, &znode, &n);
2808 			if (err)
2809 				goto out_unlock;
2810 		}
2811 	}
2812 
2813 	zbr = &znode->zbranch[n];
2814 	dent = kmalloc(zbr->len, GFP_NOFS);
2815 	if (unlikely(!dent)) {
2816 		err = -ENOMEM;
2817 		goto out_unlock;
2818 	}
2819 
2820 	/*
2821 	 * The above 'tnc_next()' call could lead us to the next inode, check
2822 	 * this.
2823 	 */
2824 	dkey = &zbr->key;
2825 	if (key_inum(c, dkey) != key_inum(c, key) ||
2826 	    key_type(c, dkey) != type) {
2827 		err = -ENOENT;
2828 		goto out_free;
2829 	}
2830 
2831 	err = tnc_read_node_nm(c, zbr, dent);
2832 	if (unlikely(err))
2833 		goto out_free;
2834 
2835 	mutex_unlock(&c->tnc_mutex);
2836 	return dent;
2837 
2838 out_free:
2839 	kfree(dent);
2840 out_unlock:
2841 	mutex_unlock(&c->tnc_mutex);
2842 	return ERR_PTR(err);
2843 }
2844 
2845 /**
2846  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2847  * @c: UBIFS file-system description object
2848  *
2849  * Destroy left-over obsolete znodes from a failed commit.
2850  */
2851 static void tnc_destroy_cnext(struct ubifs_info *c)
2852 {
2853 	struct ubifs_znode *cnext;
2854 
2855 	if (!c->cnext)
2856 		return;
2857 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2858 	cnext = c->cnext;
2859 	do {
2860 		struct ubifs_znode *znode = cnext;
2861 
2862 		cnext = cnext->cnext;
2863 		if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2864 			kfree(znode);
2865 	} while (cnext && cnext != c->cnext);
2866 }
2867 
2868 /**
2869  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2870  * @c: UBIFS file-system description object
2871  */
2872 void ubifs_tnc_close(struct ubifs_info *c)
2873 {
2874 	long clean_freed;
2875 
2876 	tnc_destroy_cnext(c);
2877 	if (c->zroot.znode) {
2878 		clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2879 		atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2880 	}
2881 	kfree(c->gap_lebs);
2882 	kfree(c->ilebs);
2883 	destroy_old_idx(c);
2884 }
2885 
2886 /**
2887  * left_znode - get the znode to the left.
2888  * @c: UBIFS file-system description object
2889  * @znode: znode
2890  *
2891  * This function returns a pointer to the znode to the left of @znode or NULL if
2892  * there is not one. A negative error code is returned on failure.
2893  */
2894 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2895 				      struct ubifs_znode *znode)
2896 {
2897 	int level = znode->level;
2898 
2899 	while (1) {
2900 		int n = znode->iip - 1;
2901 
2902 		/* Go up until we can go left */
2903 		znode = znode->parent;
2904 		if (!znode)
2905 			return NULL;
2906 		if (n >= 0) {
2907 			/* Now go down the rightmost branch to 'level' */
2908 			znode = get_znode(c, znode, n);
2909 			if (IS_ERR(znode))
2910 				return znode;
2911 			while (znode->level != level) {
2912 				n = znode->child_cnt - 1;
2913 				znode = get_znode(c, znode, n);
2914 				if (IS_ERR(znode))
2915 					return znode;
2916 			}
2917 			break;
2918 		}
2919 	}
2920 	return znode;
2921 }
2922 
2923 /**
2924  * right_znode - get the znode to the right.
2925  * @c: UBIFS file-system description object
2926  * @znode: znode
2927  *
2928  * This function returns a pointer to the znode to the right of @znode or NULL
2929  * if there is not one. A negative error code is returned on failure.
2930  */
2931 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2932 				       struct ubifs_znode *znode)
2933 {
2934 	int level = znode->level;
2935 
2936 	while (1) {
2937 		int n = znode->iip + 1;
2938 
2939 		/* Go up until we can go right */
2940 		znode = znode->parent;
2941 		if (!znode)
2942 			return NULL;
2943 		if (n < znode->child_cnt) {
2944 			/* Now go down the leftmost branch to 'level' */
2945 			znode = get_znode(c, znode, n);
2946 			if (IS_ERR(znode))
2947 				return znode;
2948 			while (znode->level != level) {
2949 				znode = get_znode(c, znode, 0);
2950 				if (IS_ERR(znode))
2951 					return znode;
2952 			}
2953 			break;
2954 		}
2955 	}
2956 	return znode;
2957 }
2958 
2959 /**
2960  * lookup_znode - find a particular indexing node from TNC.
2961  * @c: UBIFS file-system description object
2962  * @key: index node key to lookup
2963  * @level: index node level
2964  * @lnum: index node LEB number
2965  * @offs: index node offset
2966  *
2967  * This function searches an indexing node by its first key @key and its
2968  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2969  * nodes it traverses to TNC. This function is called fro indexing nodes which
2970  * were found on the media by scanning, for example when garbage-collecting or
2971  * when doing in-the-gaps commit. This means that the indexing node which is
2972  * looked for does not have to have exactly the same leftmost key @key, because
2973  * the leftmost key may have been changed, in which case TNC will contain a
2974  * dirty znode which still refers the same @lnum:@offs. This function is clever
2975  * enough to recognize such indexing nodes.
2976  *
2977  * Note, if a znode was deleted or changed too much, then this function will
2978  * not find it. For situations like this UBIFS has the old index RB-tree
2979  * (indexed by @lnum:@offs).
2980  *
2981  * This function returns a pointer to the znode found or %NULL if it is not
2982  * found. A negative error code is returned on failure.
2983  */
2984 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2985 					union ubifs_key *key, int level,
2986 					int lnum, int offs)
2987 {
2988 	struct ubifs_znode *znode, *zn;
2989 	int n, nn;
2990 
2991 	/*
2992 	 * The arguments have probably been read off flash, so don't assume
2993 	 * they are valid.
2994 	 */
2995 	if (level < 0)
2996 		return ERR_PTR(-EINVAL);
2997 
2998 	/* Get the root znode */
2999 	znode = c->zroot.znode;
3000 	if (!znode) {
3001 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3002 		if (IS_ERR(znode))
3003 			return znode;
3004 	}
3005 	/* Check if it is the one we are looking for */
3006 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3007 		return znode;
3008 	/* Descend to the parent level i.e. (level + 1) */
3009 	if (level >= znode->level)
3010 		return NULL;
3011 	while (1) {
3012 		ubifs_search_zbranch(c, znode, key, &n);
3013 		if (n < 0) {
3014 			/*
3015 			 * We reached a znode where the leftmost key is greater
3016 			 * than the key we are searching for. This is the same
3017 			 * situation as the one described in a huge comment at
3018 			 * the end of the 'ubifs_lookup_level0()' function. And
3019 			 * for exactly the same reasons we have to try to look
3020 			 * left before giving up.
3021 			 */
3022 			znode = left_znode(c, znode);
3023 			if (!znode)
3024 				return NULL;
3025 			if (IS_ERR(znode))
3026 				return znode;
3027 			ubifs_search_zbranch(c, znode, key, &n);
3028 			ubifs_assert(n >= 0);
3029 		}
3030 		if (znode->level == level + 1)
3031 			break;
3032 		znode = get_znode(c, znode, n);
3033 		if (IS_ERR(znode))
3034 			return znode;
3035 	}
3036 	/* Check if the child is the one we are looking for */
3037 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3038 		return get_znode(c, znode, n);
3039 	/* If the key is unique, there is nowhere else to look */
3040 	if (!is_hash_key(c, key))
3041 		return NULL;
3042 	/*
3043 	 * The key is not unique and so may be also in the znodes to either
3044 	 * side.
3045 	 */
3046 	zn = znode;
3047 	nn = n;
3048 	/* Look left */
3049 	while (1) {
3050 		/* Move one branch to the left */
3051 		if (n)
3052 			n -= 1;
3053 		else {
3054 			znode = left_znode(c, znode);
3055 			if (!znode)
3056 				break;
3057 			if (IS_ERR(znode))
3058 				return znode;
3059 			n = znode->child_cnt - 1;
3060 		}
3061 		/* Check it */
3062 		if (znode->zbranch[n].lnum == lnum &&
3063 		    znode->zbranch[n].offs == offs)
3064 			return get_znode(c, znode, n);
3065 		/* Stop if the key is less than the one we are looking for */
3066 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3067 			break;
3068 	}
3069 	/* Back to the middle */
3070 	znode = zn;
3071 	n = nn;
3072 	/* Look right */
3073 	while (1) {
3074 		/* Move one branch to the right */
3075 		if (++n >= znode->child_cnt) {
3076 			znode = right_znode(c, znode);
3077 			if (!znode)
3078 				break;
3079 			if (IS_ERR(znode))
3080 				return znode;
3081 			n = 0;
3082 		}
3083 		/* Check it */
3084 		if (znode->zbranch[n].lnum == lnum &&
3085 		    znode->zbranch[n].offs == offs)
3086 			return get_znode(c, znode, n);
3087 		/* Stop if the key is greater than the one we are looking for */
3088 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3089 			break;
3090 	}
3091 	return NULL;
3092 }
3093 
3094 /**
3095  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3096  * @c: UBIFS file-system description object
3097  * @key: key of index node
3098  * @level: index node level
3099  * @lnum: LEB number of index node
3100  * @offs: offset of index node
3101  *
3102  * This function returns %0 if the index node is not referred to in the TNC, %1
3103  * if the index node is referred to in the TNC and the corresponding znode is
3104  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3105  * znode is clean, and a negative error code in case of failure.
3106  *
3107  * Note, the @key argument has to be the key of the first child. Also note,
3108  * this function relies on the fact that 0:0 is never a valid LEB number and
3109  * offset for a main-area node.
3110  */
3111 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3112 		       int lnum, int offs)
3113 {
3114 	struct ubifs_znode *znode;
3115 
3116 	znode = lookup_znode(c, key, level, lnum, offs);
3117 	if (!znode)
3118 		return 0;
3119 	if (IS_ERR(znode))
3120 		return PTR_ERR(znode);
3121 
3122 	return ubifs_zn_dirty(znode) ? 1 : 2;
3123 }
3124 
3125 /**
3126  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3127  * @c: UBIFS file-system description object
3128  * @key: node key
3129  * @lnum: node LEB number
3130  * @offs: node offset
3131  *
3132  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3133  * not, and a negative error code in case of failure.
3134  *
3135  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3136  * and offset for a main-area node.
3137  */
3138 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3139 			       int lnum, int offs)
3140 {
3141 	struct ubifs_zbranch *zbr;
3142 	struct ubifs_znode *znode, *zn;
3143 	int n, found, err, nn;
3144 	const int unique = !is_hash_key(c, key);
3145 
3146 	found = ubifs_lookup_level0(c, key, &znode, &n);
3147 	if (found < 0)
3148 		return found; /* Error code */
3149 	if (!found)
3150 		return 0;
3151 	zbr = &znode->zbranch[n];
3152 	if (lnum == zbr->lnum && offs == zbr->offs)
3153 		return 1; /* Found it */
3154 	if (unique)
3155 		return 0;
3156 	/*
3157 	 * Because the key is not unique, we have to look left
3158 	 * and right as well
3159 	 */
3160 	zn = znode;
3161 	nn = n;
3162 	/* Look left */
3163 	while (1) {
3164 		err = tnc_prev(c, &znode, &n);
3165 		if (err == -ENOENT)
3166 			break;
3167 		if (err)
3168 			return err;
3169 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3170 			break;
3171 		zbr = &znode->zbranch[n];
3172 		if (lnum == zbr->lnum && offs == zbr->offs)
3173 			return 1; /* Found it */
3174 	}
3175 	/* Look right */
3176 	znode = zn;
3177 	n = nn;
3178 	while (1) {
3179 		err = tnc_next(c, &znode, &n);
3180 		if (err) {
3181 			if (err == -ENOENT)
3182 				return 0;
3183 			return err;
3184 		}
3185 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3186 			break;
3187 		zbr = &znode->zbranch[n];
3188 		if (lnum == zbr->lnum && offs == zbr->offs)
3189 			return 1; /* Found it */
3190 	}
3191 	return 0;
3192 }
3193 
3194 /**
3195  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3196  * @c: UBIFS file-system description object
3197  * @key: node key
3198  * @level: index node level (if it is an index node)
3199  * @lnum: node LEB number
3200  * @offs: node offset
3201  * @is_idx: non-zero if the node is an index node
3202  *
3203  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3204  * negative error code in case of failure. For index nodes, @key has to be the
3205  * key of the first child. An index node is considered to be in the TNC only if
3206  * the corresponding znode is clean or has not been loaded.
3207  */
3208 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3209 		       int lnum, int offs, int is_idx)
3210 {
3211 	int err;
3212 
3213 	mutex_lock(&c->tnc_mutex);
3214 	if (is_idx) {
3215 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3216 		if (err < 0)
3217 			goto out_unlock;
3218 		if (err == 1)
3219 			/* The index node was found but it was dirty */
3220 			err = 0;
3221 		else if (err == 2)
3222 			/* The index node was found and it was clean */
3223 			err = 1;
3224 		else
3225 			BUG_ON(err != 0);
3226 	} else
3227 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3228 
3229 out_unlock:
3230 	mutex_unlock(&c->tnc_mutex);
3231 	return err;
3232 }
3233 
3234 /**
3235  * ubifs_dirty_idx_node - dirty an index node.
3236  * @c: UBIFS file-system description object
3237  * @key: index node key
3238  * @level: index node level
3239  * @lnum: index node LEB number
3240  * @offs: index node offset
3241  *
3242  * This function loads and dirties an index node so that it can be garbage
3243  * collected. The @key argument has to be the key of the first child. This
3244  * function relies on the fact that 0:0 is never a valid LEB number and offset
3245  * for a main-area node. Returns %0 on success and a negative error code on
3246  * failure.
3247  */
3248 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3249 			 int lnum, int offs)
3250 {
3251 	struct ubifs_znode *znode;
3252 	int err = 0;
3253 
3254 	mutex_lock(&c->tnc_mutex);
3255 	znode = lookup_znode(c, key, level, lnum, offs);
3256 	if (!znode)
3257 		goto out_unlock;
3258 	if (IS_ERR(znode)) {
3259 		err = PTR_ERR(znode);
3260 		goto out_unlock;
3261 	}
3262 	znode = dirty_cow_bottom_up(c, znode);
3263 	if (IS_ERR(znode)) {
3264 		err = PTR_ERR(znode);
3265 		goto out_unlock;
3266 	}
3267 
3268 out_unlock:
3269 	mutex_unlock(&c->tnc_mutex);
3270 	return err;
3271 }
3272 
3273 #ifdef CONFIG_UBIFS_FS_DEBUG
3274 
3275 /**
3276  * dbg_check_inode_size - check if inode size is correct.
3277  * @c: UBIFS file-system description object
3278  * @inum: inode number
3279  * @size: inode size
3280  *
3281  * This function makes sure that the inode size (@size) is correct and it does
3282  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3283  * if it has a data page beyond @size, and other negative error code in case of
3284  * other errors.
3285  */
3286 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3287 			 loff_t size)
3288 {
3289 	int err, n;
3290 	union ubifs_key from_key, to_key, *key;
3291 	struct ubifs_znode *znode;
3292 	unsigned int block;
3293 
3294 	if (!S_ISREG(inode->i_mode))
3295 		return 0;
3296 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
3297 		return 0;
3298 
3299 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3300 	data_key_init(c, &from_key, inode->i_ino, block);
3301 	highest_data_key(c, &to_key, inode->i_ino);
3302 
3303 	mutex_lock(&c->tnc_mutex);
3304 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3305 	if (err < 0)
3306 		goto out_unlock;
3307 
3308 	if (err) {
3309 		err = -EINVAL;
3310 		key = &from_key;
3311 		goto out_dump;
3312 	}
3313 
3314 	err = tnc_next(c, &znode, &n);
3315 	if (err == -ENOENT) {
3316 		err = 0;
3317 		goto out_unlock;
3318 	}
3319 	if (err < 0)
3320 		goto out_unlock;
3321 
3322 	ubifs_assert(err == 0);
3323 	key = &znode->zbranch[n].key;
3324 	if (!key_in_range(c, key, &from_key, &to_key))
3325 		goto out_unlock;
3326 
3327 out_dump:
3328 	block = key_block(c, key);
3329 	ubifs_err("inode %lu has size %lld, but there are data at offset %lld "
3330 		  "(data key %s)", (unsigned long)inode->i_ino, size,
3331 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key));
3332 	dbg_dump_inode(c, inode);
3333 	dbg_dump_stack();
3334 	err = -EINVAL;
3335 
3336 out_unlock:
3337 	mutex_unlock(&c->tnc_mutex);
3338 	return err;
3339 }
3340 
3341 #endif /* CONFIG_UBIFS_FS_DEBUG */
3342