1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 /* 38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 39 * @NAME_LESS: name corresponding to the first argument is less than second 40 * @NAME_MATCHES: names match 41 * @NAME_GREATER: name corresponding to the second argument is greater than 42 * first 43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 44 * 45 * These constants were introduce to improve readability. 46 */ 47 enum { 48 NAME_LESS = 0, 49 NAME_MATCHES = 1, 50 NAME_GREATER = 2, 51 NOT_ON_MEDIA = 3, 52 }; 53 54 /** 55 * insert_old_idx - record an index node obsoleted since the last commit start. 56 * @c: UBIFS file-system description object 57 * @lnum: LEB number of obsoleted index node 58 * @offs: offset of obsoleted index node 59 * 60 * Returns %0 on success, and a negative error code on failure. 61 * 62 * For recovery, there must always be a complete intact version of the index on 63 * flash at all times. That is called the "old index". It is the index as at the 64 * time of the last successful commit. Many of the index nodes in the old index 65 * may be dirty, but they must not be erased until the next successful commit 66 * (at which point that index becomes the old index). 67 * 68 * That means that the garbage collection and the in-the-gaps method of 69 * committing must be able to determine if an index node is in the old index. 70 * Most of the old index nodes can be found by looking up the TNC using the 71 * 'lookup_znode()' function. However, some of the old index nodes may have 72 * been deleted from the current index or may have been changed so much that 73 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 74 * That is what this function does. The RB-tree is ordered by LEB number and 75 * offset because they uniquely identify the old index node. 76 */ 77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 78 { 79 struct ubifs_old_idx *old_idx, *o; 80 struct rb_node **p, *parent = NULL; 81 82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 83 if (unlikely(!old_idx)) 84 return -ENOMEM; 85 old_idx->lnum = lnum; 86 old_idx->offs = offs; 87 88 p = &c->old_idx.rb_node; 89 while (*p) { 90 parent = *p; 91 o = rb_entry(parent, struct ubifs_old_idx, rb); 92 if (lnum < o->lnum) 93 p = &(*p)->rb_left; 94 else if (lnum > o->lnum) 95 p = &(*p)->rb_right; 96 else if (offs < o->offs) 97 p = &(*p)->rb_left; 98 else if (offs > o->offs) 99 p = &(*p)->rb_right; 100 else { 101 ubifs_err("old idx added twice!"); 102 kfree(old_idx); 103 return 0; 104 } 105 } 106 rb_link_node(&old_idx->rb, parent, p); 107 rb_insert_color(&old_idx->rb, &c->old_idx); 108 return 0; 109 } 110 111 /** 112 * insert_old_idx_znode - record a znode obsoleted since last commit start. 113 * @c: UBIFS file-system description object 114 * @znode: znode of obsoleted index node 115 * 116 * Returns %0 on success, and a negative error code on failure. 117 */ 118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 119 { 120 if (znode->parent) { 121 struct ubifs_zbranch *zbr; 122 123 zbr = &znode->parent->zbranch[znode->iip]; 124 if (zbr->len) 125 return insert_old_idx(c, zbr->lnum, zbr->offs); 126 } else 127 if (c->zroot.len) 128 return insert_old_idx(c, c->zroot.lnum, 129 c->zroot.offs); 130 return 0; 131 } 132 133 /** 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 135 * @c: UBIFS file-system description object 136 * @znode: znode of obsoleted index node 137 * 138 * Returns %0 on success, and a negative error code on failure. 139 */ 140 static int ins_clr_old_idx_znode(struct ubifs_info *c, 141 struct ubifs_znode *znode) 142 { 143 int err; 144 145 if (znode->parent) { 146 struct ubifs_zbranch *zbr; 147 148 zbr = &znode->parent->zbranch[znode->iip]; 149 if (zbr->len) { 150 err = insert_old_idx(c, zbr->lnum, zbr->offs); 151 if (err) 152 return err; 153 zbr->lnum = 0; 154 zbr->offs = 0; 155 zbr->len = 0; 156 } 157 } else 158 if (c->zroot.len) { 159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 160 if (err) 161 return err; 162 c->zroot.lnum = 0; 163 c->zroot.offs = 0; 164 c->zroot.len = 0; 165 } 166 return 0; 167 } 168 169 /** 170 * destroy_old_idx - destroy the old_idx RB-tree. 171 * @c: UBIFS file-system description object 172 * 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index 174 * nodes that were in the index last commit but have since been deleted. This 175 * is necessary for recovery i.e. the old index must be kept intact until the 176 * new index is successfully written. The old-idx RB-tree is used for the 177 * in-the-gaps method of writing index nodes and is destroyed every commit. 178 */ 179 void destroy_old_idx(struct ubifs_info *c) 180 { 181 struct rb_node *this = c->old_idx.rb_node; 182 struct ubifs_old_idx *old_idx; 183 184 while (this) { 185 if (this->rb_left) { 186 this = this->rb_left; 187 continue; 188 } else if (this->rb_right) { 189 this = this->rb_right; 190 continue; 191 } 192 old_idx = rb_entry(this, struct ubifs_old_idx, rb); 193 this = rb_parent(this); 194 if (this) { 195 if (this->rb_left == &old_idx->rb) 196 this->rb_left = NULL; 197 else 198 this->rb_right = NULL; 199 } 200 kfree(old_idx); 201 } 202 c->old_idx = RB_ROOT; 203 } 204 205 /** 206 * copy_znode - copy a dirty znode. 207 * @c: UBIFS file-system description object 208 * @znode: znode to copy 209 * 210 * A dirty znode being committed may not be changed, so it is copied. 211 */ 212 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 213 struct ubifs_znode *znode) 214 { 215 struct ubifs_znode *zn; 216 217 zn = kmalloc(c->max_znode_sz, GFP_NOFS); 218 if (unlikely(!zn)) 219 return ERR_PTR(-ENOMEM); 220 221 memcpy(zn, znode, c->max_znode_sz); 222 zn->cnext = NULL; 223 __set_bit(DIRTY_ZNODE, &zn->flags); 224 __clear_bit(COW_ZNODE, &zn->flags); 225 226 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); 227 __set_bit(OBSOLETE_ZNODE, &znode->flags); 228 229 if (znode->level != 0) { 230 int i; 231 const int n = zn->child_cnt; 232 233 /* The children now have new parent */ 234 for (i = 0; i < n; i++) { 235 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 236 237 if (zbr->znode) 238 zbr->znode->parent = zn; 239 } 240 } 241 242 atomic_long_inc(&c->dirty_zn_cnt); 243 return zn; 244 } 245 246 /** 247 * add_idx_dirt - add dirt due to a dirty znode. 248 * @c: UBIFS file-system description object 249 * @lnum: LEB number of index node 250 * @dirt: size of index node 251 * 252 * This function updates lprops dirty space and the new size of the index. 253 */ 254 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 255 { 256 c->calc_idx_sz -= ALIGN(dirt, 8); 257 return ubifs_add_dirt(c, lnum, dirt); 258 } 259 260 /** 261 * dirty_cow_znode - ensure a znode is not being committed. 262 * @c: UBIFS file-system description object 263 * @zbr: branch of znode to check 264 * 265 * Returns dirtied znode on success or negative error code on failure. 266 */ 267 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 268 struct ubifs_zbranch *zbr) 269 { 270 struct ubifs_znode *znode = zbr->znode; 271 struct ubifs_znode *zn; 272 int err; 273 274 if (!test_bit(COW_ZNODE, &znode->flags)) { 275 /* znode is not being committed */ 276 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 277 atomic_long_inc(&c->dirty_zn_cnt); 278 atomic_long_dec(&c->clean_zn_cnt); 279 atomic_long_dec(&ubifs_clean_zn_cnt); 280 err = add_idx_dirt(c, zbr->lnum, zbr->len); 281 if (unlikely(err)) 282 return ERR_PTR(err); 283 } 284 return znode; 285 } 286 287 zn = copy_znode(c, znode); 288 if (IS_ERR(zn)) 289 return zn; 290 291 if (zbr->len) { 292 err = insert_old_idx(c, zbr->lnum, zbr->offs); 293 if (unlikely(err)) 294 return ERR_PTR(err); 295 err = add_idx_dirt(c, zbr->lnum, zbr->len); 296 } else 297 err = 0; 298 299 zbr->znode = zn; 300 zbr->lnum = 0; 301 zbr->offs = 0; 302 zbr->len = 0; 303 304 if (unlikely(err)) 305 return ERR_PTR(err); 306 return zn; 307 } 308 309 /** 310 * lnc_add - add a leaf node to the leaf node cache. 311 * @c: UBIFS file-system description object 312 * @zbr: zbranch of leaf node 313 * @node: leaf node 314 * 315 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 316 * purpose of the leaf node cache is to save re-reading the same leaf node over 317 * and over again. Most things are cached by VFS, however the file system must 318 * cache directory entries for readdir and for resolving hash collisions. The 319 * present implementation of the leaf node cache is extremely simple, and 320 * allows for error returns that are not used but that may be needed if a more 321 * complex implementation is created. 322 * 323 * Note, this function does not add the @node object to LNC directly, but 324 * allocates a copy of the object and adds the copy to LNC. The reason for this 325 * is that @node has been allocated outside of the TNC subsystem and will be 326 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 327 * may be changed at any time, e.g. freed by the shrinker. 328 */ 329 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 330 const void *node) 331 { 332 int err; 333 void *lnc_node; 334 const struct ubifs_dent_node *dent = node; 335 336 ubifs_assert(!zbr->leaf); 337 ubifs_assert(zbr->len != 0); 338 ubifs_assert(is_hash_key(c, &zbr->key)); 339 340 err = ubifs_validate_entry(c, dent); 341 if (err) { 342 dbg_dump_stack(); 343 dbg_dump_node(c, dent); 344 return err; 345 } 346 347 lnc_node = kmalloc(zbr->len, GFP_NOFS); 348 if (!lnc_node) 349 /* We don't have to have the cache, so no error */ 350 return 0; 351 352 memcpy(lnc_node, node, zbr->len); 353 zbr->leaf = lnc_node; 354 return 0; 355 } 356 357 /** 358 * lnc_add_directly - add a leaf node to the leaf-node-cache. 359 * @c: UBIFS file-system description object 360 * @zbr: zbranch of leaf node 361 * @node: leaf node 362 * 363 * This function is similar to 'lnc_add()', but it does not create a copy of 364 * @node but inserts @node to TNC directly. 365 */ 366 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 367 void *node) 368 { 369 int err; 370 371 ubifs_assert(!zbr->leaf); 372 ubifs_assert(zbr->len != 0); 373 374 err = ubifs_validate_entry(c, node); 375 if (err) { 376 dbg_dump_stack(); 377 dbg_dump_node(c, node); 378 return err; 379 } 380 381 zbr->leaf = node; 382 return 0; 383 } 384 385 /** 386 * lnc_free - remove a leaf node from the leaf node cache. 387 * @zbr: zbranch of leaf node 388 * @node: leaf node 389 */ 390 static void lnc_free(struct ubifs_zbranch *zbr) 391 { 392 if (!zbr->leaf) 393 return; 394 kfree(zbr->leaf); 395 zbr->leaf = NULL; 396 } 397 398 /** 399 * tnc_read_node_nm - read a "hashed" leaf node. 400 * @c: UBIFS file-system description object 401 * @zbr: key and position of the node 402 * @node: node is returned here 403 * 404 * This function reads a "hashed" node defined by @zbr from the leaf node cache 405 * (in it is there) or from the hash media, in which case the node is also 406 * added to LNC. Returns zero in case of success or a negative negative error 407 * code in case of failure. 408 */ 409 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 410 void *node) 411 { 412 int err; 413 414 ubifs_assert(is_hash_key(c, &zbr->key)); 415 416 if (zbr->leaf) { 417 /* Read from the leaf node cache */ 418 ubifs_assert(zbr->len != 0); 419 memcpy(node, zbr->leaf, zbr->len); 420 return 0; 421 } 422 423 err = ubifs_tnc_read_node(c, zbr, node); 424 if (err) 425 return err; 426 427 /* Add the node to the leaf node cache */ 428 err = lnc_add(c, zbr, node); 429 return err; 430 } 431 432 /** 433 * try_read_node - read a node if it is a node. 434 * @c: UBIFS file-system description object 435 * @buf: buffer to read to 436 * @type: node type 437 * @len: node length (not aligned) 438 * @lnum: LEB number of node to read 439 * @offs: offset of node to read 440 * 441 * This function tries to read a node of known type and length, checks it and 442 * stores it in @buf. This function returns %1 if a node is present and %0 if 443 * a node is not present. A negative error code is returned for I/O errors. 444 * This function performs that same function as ubifs_read_node except that 445 * it does not require that there is actually a node present and instead 446 * the return code indicates if a node was read. 447 * 448 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 449 * is true (it is controlled by corresponding mount option). However, if 450 * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always 451 * checked. 452 */ 453 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 454 int len, int lnum, int offs) 455 { 456 int err, node_len; 457 struct ubifs_ch *ch = buf; 458 uint32_t crc, node_crc; 459 460 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 461 462 err = ubi_read(c->ubi, lnum, buf, offs, len); 463 if (err) { 464 ubifs_err("cannot read node type %d from LEB %d:%d, error %d", 465 type, lnum, offs, err); 466 return err; 467 } 468 469 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 470 return 0; 471 472 if (ch->node_type != type) 473 return 0; 474 475 node_len = le32_to_cpu(ch->len); 476 if (node_len != len) 477 return 0; 478 479 if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc) 480 return 1; 481 482 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 483 node_crc = le32_to_cpu(ch->crc); 484 if (crc != node_crc) 485 return 0; 486 487 return 1; 488 } 489 490 /** 491 * fallible_read_node - try to read a leaf node. 492 * @c: UBIFS file-system description object 493 * @key: key of node to read 494 * @zbr: position of node 495 * @node: node returned 496 * 497 * This function tries to read a node and returns %1 if the node is read, %0 498 * if the node is not present, and a negative error code in the case of error. 499 */ 500 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 501 struct ubifs_zbranch *zbr, void *node) 502 { 503 int ret; 504 505 dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); 506 507 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 508 zbr->offs); 509 if (ret == 1) { 510 union ubifs_key node_key; 511 struct ubifs_dent_node *dent = node; 512 513 /* All nodes have key in the same place */ 514 key_read(c, &dent->key, &node_key); 515 if (keys_cmp(c, key, &node_key) != 0) 516 ret = 0; 517 } 518 if (ret == 0 && c->replaying) 519 dbg_mnt("dangling branch LEB %d:%d len %d, key %s", 520 zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); 521 return ret; 522 } 523 524 /** 525 * matches_name - determine if a direntry or xattr entry matches a given name. 526 * @c: UBIFS file-system description object 527 * @zbr: zbranch of dent 528 * @nm: name to match 529 * 530 * This function checks if xentry/direntry referred by zbranch @zbr matches name 531 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 532 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 533 * of failure, a negative error code is returned. 534 */ 535 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 536 const struct qstr *nm) 537 { 538 struct ubifs_dent_node *dent; 539 int nlen, err; 540 541 /* If possible, match against the dent in the leaf node cache */ 542 if (!zbr->leaf) { 543 dent = kmalloc(zbr->len, GFP_NOFS); 544 if (!dent) 545 return -ENOMEM; 546 547 err = ubifs_tnc_read_node(c, zbr, dent); 548 if (err) 549 goto out_free; 550 551 /* Add the node to the leaf node cache */ 552 err = lnc_add_directly(c, zbr, dent); 553 if (err) 554 goto out_free; 555 } else 556 dent = zbr->leaf; 557 558 nlen = le16_to_cpu(dent->nlen); 559 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 560 if (err == 0) { 561 if (nlen == nm->len) 562 return NAME_MATCHES; 563 else if (nlen < nm->len) 564 return NAME_LESS; 565 else 566 return NAME_GREATER; 567 } else if (err < 0) 568 return NAME_LESS; 569 else 570 return NAME_GREATER; 571 572 out_free: 573 kfree(dent); 574 return err; 575 } 576 577 /** 578 * get_znode - get a TNC znode that may not be loaded yet. 579 * @c: UBIFS file-system description object 580 * @znode: parent znode 581 * @n: znode branch slot number 582 * 583 * This function returns the znode or a negative error code. 584 */ 585 static struct ubifs_znode *get_znode(struct ubifs_info *c, 586 struct ubifs_znode *znode, int n) 587 { 588 struct ubifs_zbranch *zbr; 589 590 zbr = &znode->zbranch[n]; 591 if (zbr->znode) 592 znode = zbr->znode; 593 else 594 znode = ubifs_load_znode(c, zbr, znode, n); 595 return znode; 596 } 597 598 /** 599 * tnc_next - find next TNC entry. 600 * @c: UBIFS file-system description object 601 * @zn: znode is passed and returned here 602 * @n: znode branch slot number is passed and returned here 603 * 604 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 605 * no next entry, or a negative error code otherwise. 606 */ 607 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 608 { 609 struct ubifs_znode *znode = *zn; 610 int nn = *n; 611 612 nn += 1; 613 if (nn < znode->child_cnt) { 614 *n = nn; 615 return 0; 616 } 617 while (1) { 618 struct ubifs_znode *zp; 619 620 zp = znode->parent; 621 if (!zp) 622 return -ENOENT; 623 nn = znode->iip + 1; 624 znode = zp; 625 if (nn < znode->child_cnt) { 626 znode = get_znode(c, znode, nn); 627 if (IS_ERR(znode)) 628 return PTR_ERR(znode); 629 while (znode->level != 0) { 630 znode = get_znode(c, znode, 0); 631 if (IS_ERR(znode)) 632 return PTR_ERR(znode); 633 } 634 nn = 0; 635 break; 636 } 637 } 638 *zn = znode; 639 *n = nn; 640 return 0; 641 } 642 643 /** 644 * tnc_prev - find previous TNC entry. 645 * @c: UBIFS file-system description object 646 * @zn: znode is returned here 647 * @n: znode branch slot number is passed and returned here 648 * 649 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 650 * there is no next entry, or a negative error code otherwise. 651 */ 652 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 653 { 654 struct ubifs_znode *znode = *zn; 655 int nn = *n; 656 657 if (nn > 0) { 658 *n = nn - 1; 659 return 0; 660 } 661 while (1) { 662 struct ubifs_znode *zp; 663 664 zp = znode->parent; 665 if (!zp) 666 return -ENOENT; 667 nn = znode->iip - 1; 668 znode = zp; 669 if (nn >= 0) { 670 znode = get_znode(c, znode, nn); 671 if (IS_ERR(znode)) 672 return PTR_ERR(znode); 673 while (znode->level != 0) { 674 nn = znode->child_cnt - 1; 675 znode = get_znode(c, znode, nn); 676 if (IS_ERR(znode)) 677 return PTR_ERR(znode); 678 } 679 nn = znode->child_cnt - 1; 680 break; 681 } 682 } 683 *zn = znode; 684 *n = nn; 685 return 0; 686 } 687 688 /** 689 * resolve_collision - resolve a collision. 690 * @c: UBIFS file-system description object 691 * @key: key of a directory or extended attribute entry 692 * @zn: znode is returned here 693 * @n: zbranch number is passed and returned here 694 * @nm: name of the entry 695 * 696 * This function is called for "hashed" keys to make sure that the found key 697 * really corresponds to the looked up node (directory or extended attribute 698 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 699 * %0 is returned if @nm is not found and @zn and @n are set to the previous 700 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 701 * This means that @n may be set to %-1 if the leftmost key in @zn is the 702 * previous one. A negative error code is returned on failures. 703 */ 704 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 705 struct ubifs_znode **zn, int *n, 706 const struct qstr *nm) 707 { 708 int err; 709 710 err = matches_name(c, &(*zn)->zbranch[*n], nm); 711 if (unlikely(err < 0)) 712 return err; 713 if (err == NAME_MATCHES) 714 return 1; 715 716 if (err == NAME_GREATER) { 717 /* Look left */ 718 while (1) { 719 err = tnc_prev(c, zn, n); 720 if (err == -ENOENT) { 721 ubifs_assert(*n == 0); 722 *n = -1; 723 return 0; 724 } 725 if (err < 0) 726 return err; 727 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 728 /* 729 * We have found the branch after which we would 730 * like to insert, but inserting in this znode 731 * may still be wrong. Consider the following 3 732 * znodes, in the case where we are resolving a 733 * collision with Key2. 734 * 735 * znode zp 736 * ---------------------- 737 * level 1 | Key0 | Key1 | 738 * ----------------------- 739 * | | 740 * znode za | | znode zb 741 * ------------ ------------ 742 * level 0 | Key0 | | Key2 | 743 * ------------ ------------ 744 * 745 * The lookup finds Key2 in znode zb. Lets say 746 * there is no match and the name is greater so 747 * we look left. When we find Key0, we end up 748 * here. If we return now, we will insert into 749 * znode za at slot n = 1. But that is invalid 750 * according to the parent's keys. Key2 must 751 * be inserted into znode zb. 752 * 753 * Note, this problem is not relevant for the 754 * case when we go right, because 755 * 'tnc_insert()' would correct the parent key. 756 */ 757 if (*n == (*zn)->child_cnt - 1) { 758 err = tnc_next(c, zn, n); 759 if (err) { 760 /* Should be impossible */ 761 ubifs_assert(0); 762 if (err == -ENOENT) 763 err = -EINVAL; 764 return err; 765 } 766 ubifs_assert(*n == 0); 767 *n = -1; 768 } 769 return 0; 770 } 771 err = matches_name(c, &(*zn)->zbranch[*n], nm); 772 if (err < 0) 773 return err; 774 if (err == NAME_LESS) 775 return 0; 776 if (err == NAME_MATCHES) 777 return 1; 778 ubifs_assert(err == NAME_GREATER); 779 } 780 } else { 781 int nn = *n; 782 struct ubifs_znode *znode = *zn; 783 784 /* Look right */ 785 while (1) { 786 err = tnc_next(c, &znode, &nn); 787 if (err == -ENOENT) 788 return 0; 789 if (err < 0) 790 return err; 791 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 792 return 0; 793 err = matches_name(c, &znode->zbranch[nn], nm); 794 if (err < 0) 795 return err; 796 if (err == NAME_GREATER) 797 return 0; 798 *zn = znode; 799 *n = nn; 800 if (err == NAME_MATCHES) 801 return 1; 802 ubifs_assert(err == NAME_LESS); 803 } 804 } 805 } 806 807 /** 808 * fallible_matches_name - determine if a dent matches a given name. 809 * @c: UBIFS file-system description object 810 * @zbr: zbranch of dent 811 * @nm: name to match 812 * 813 * This is a "fallible" version of 'matches_name()' function which does not 814 * panic if the direntry/xentry referred by @zbr does not exist on the media. 815 * 816 * This function checks if xentry/direntry referred by zbranch @zbr matches name 817 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 818 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 819 * if xentry/direntry referred by @zbr does not exist on the media. A negative 820 * error code is returned in case of failure. 821 */ 822 static int fallible_matches_name(struct ubifs_info *c, 823 struct ubifs_zbranch *zbr, 824 const struct qstr *nm) 825 { 826 struct ubifs_dent_node *dent; 827 int nlen, err; 828 829 /* If possible, match against the dent in the leaf node cache */ 830 if (!zbr->leaf) { 831 dent = kmalloc(zbr->len, GFP_NOFS); 832 if (!dent) 833 return -ENOMEM; 834 835 err = fallible_read_node(c, &zbr->key, zbr, dent); 836 if (err < 0) 837 goto out_free; 838 if (err == 0) { 839 /* The node was not present */ 840 err = NOT_ON_MEDIA; 841 goto out_free; 842 } 843 ubifs_assert(err == 1); 844 845 err = lnc_add_directly(c, zbr, dent); 846 if (err) 847 goto out_free; 848 } else 849 dent = zbr->leaf; 850 851 nlen = le16_to_cpu(dent->nlen); 852 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 853 if (err == 0) { 854 if (nlen == nm->len) 855 return NAME_MATCHES; 856 else if (nlen < nm->len) 857 return NAME_LESS; 858 else 859 return NAME_GREATER; 860 } else if (err < 0) 861 return NAME_LESS; 862 else 863 return NAME_GREATER; 864 865 out_free: 866 kfree(dent); 867 return err; 868 } 869 870 /** 871 * fallible_resolve_collision - resolve a collision even if nodes are missing. 872 * @c: UBIFS file-system description object 873 * @key: key 874 * @zn: znode is returned here 875 * @n: branch number is passed and returned here 876 * @nm: name of directory entry 877 * @adding: indicates caller is adding a key to the TNC 878 * 879 * This is a "fallible" version of the 'resolve_collision()' function which 880 * does not panic if one of the nodes referred to by TNC does not exist on the 881 * media. This may happen when replaying the journal if a deleted node was 882 * Garbage-collected and the commit was not done. A branch that refers to a node 883 * that is not present is called a dangling branch. The following are the return 884 * codes for this function: 885 * o if @nm was found, %1 is returned and @zn and @n are set to the found 886 * branch; 887 * o if we are @adding and @nm was not found, %0 is returned; 888 * o if we are not @adding and @nm was not found, but a dangling branch was 889 * found, then %1 is returned and @zn and @n are set to the dangling branch; 890 * o a negative error code is returned in case of failure. 891 */ 892 static int fallible_resolve_collision(struct ubifs_info *c, 893 const union ubifs_key *key, 894 struct ubifs_znode **zn, int *n, 895 const struct qstr *nm, int adding) 896 { 897 struct ubifs_znode *o_znode = NULL, *znode = *zn; 898 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 899 900 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 901 if (unlikely(cmp < 0)) 902 return cmp; 903 if (cmp == NAME_MATCHES) 904 return 1; 905 if (cmp == NOT_ON_MEDIA) { 906 o_znode = znode; 907 o_n = nn; 908 /* 909 * We are unlucky and hit a dangling branch straight away. 910 * Now we do not really know where to go to find the needed 911 * branch - to the left or to the right. Well, let's try left. 912 */ 913 unsure = 1; 914 } else if (!adding) 915 unsure = 1; /* Remove a dangling branch wherever it is */ 916 917 if (cmp == NAME_GREATER || unsure) { 918 /* Look left */ 919 while (1) { 920 err = tnc_prev(c, zn, n); 921 if (err == -ENOENT) { 922 ubifs_assert(*n == 0); 923 *n = -1; 924 break; 925 } 926 if (err < 0) 927 return err; 928 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 929 /* See comments in 'resolve_collision()' */ 930 if (*n == (*zn)->child_cnt - 1) { 931 err = tnc_next(c, zn, n); 932 if (err) { 933 /* Should be impossible */ 934 ubifs_assert(0); 935 if (err == -ENOENT) 936 err = -EINVAL; 937 return err; 938 } 939 ubifs_assert(*n == 0); 940 *n = -1; 941 } 942 break; 943 } 944 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 945 if (err < 0) 946 return err; 947 if (err == NAME_MATCHES) 948 return 1; 949 if (err == NOT_ON_MEDIA) { 950 o_znode = *zn; 951 o_n = *n; 952 continue; 953 } 954 if (!adding) 955 continue; 956 if (err == NAME_LESS) 957 break; 958 else 959 unsure = 0; 960 } 961 } 962 963 if (cmp == NAME_LESS || unsure) { 964 /* Look right */ 965 *zn = znode; 966 *n = nn; 967 while (1) { 968 err = tnc_next(c, &znode, &nn); 969 if (err == -ENOENT) 970 break; 971 if (err < 0) 972 return err; 973 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 974 break; 975 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 976 if (err < 0) 977 return err; 978 if (err == NAME_GREATER) 979 break; 980 *zn = znode; 981 *n = nn; 982 if (err == NAME_MATCHES) 983 return 1; 984 if (err == NOT_ON_MEDIA) { 985 o_znode = znode; 986 o_n = nn; 987 } 988 } 989 } 990 991 /* Never match a dangling branch when adding */ 992 if (adding || !o_znode) 993 return 0; 994 995 dbg_mnt("dangling match LEB %d:%d len %d %s", 996 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 997 o_znode->zbranch[o_n].len, DBGKEY(key)); 998 *zn = o_znode; 999 *n = o_n; 1000 return 1; 1001 } 1002 1003 /** 1004 * matches_position - determine if a zbranch matches a given position. 1005 * @zbr: zbranch of dent 1006 * @lnum: LEB number of dent to match 1007 * @offs: offset of dent to match 1008 * 1009 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1010 */ 1011 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1012 { 1013 if (zbr->lnum == lnum && zbr->offs == offs) 1014 return 1; 1015 else 1016 return 0; 1017 } 1018 1019 /** 1020 * resolve_collision_directly - resolve a collision directly. 1021 * @c: UBIFS file-system description object 1022 * @key: key of directory entry 1023 * @zn: znode is passed and returned here 1024 * @n: zbranch number is passed and returned here 1025 * @lnum: LEB number of dent node to match 1026 * @offs: offset of dent node to match 1027 * 1028 * This function is used for "hashed" keys to make sure the found directory or 1029 * extended attribute entry node is what was looked for. It is used when the 1030 * flash address of the right node is known (@lnum:@offs) which makes it much 1031 * easier to resolve collisions (no need to read entries and match full 1032 * names). This function returns %1 and sets @zn and @n if the collision is 1033 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1034 * previous directory entry. Otherwise a negative error code is returned. 1035 */ 1036 static int resolve_collision_directly(struct ubifs_info *c, 1037 const union ubifs_key *key, 1038 struct ubifs_znode **zn, int *n, 1039 int lnum, int offs) 1040 { 1041 struct ubifs_znode *znode; 1042 int nn, err; 1043 1044 znode = *zn; 1045 nn = *n; 1046 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1047 return 1; 1048 1049 /* Look left */ 1050 while (1) { 1051 err = tnc_prev(c, &znode, &nn); 1052 if (err == -ENOENT) 1053 break; 1054 if (err < 0) 1055 return err; 1056 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1057 break; 1058 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1059 *zn = znode; 1060 *n = nn; 1061 return 1; 1062 } 1063 } 1064 1065 /* Look right */ 1066 znode = *zn; 1067 nn = *n; 1068 while (1) { 1069 err = tnc_next(c, &znode, &nn); 1070 if (err == -ENOENT) 1071 return 0; 1072 if (err < 0) 1073 return err; 1074 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1075 return 0; 1076 *zn = znode; 1077 *n = nn; 1078 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1079 return 1; 1080 } 1081 } 1082 1083 /** 1084 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1085 * @c: UBIFS file-system description object 1086 * @znode: znode to dirty 1087 * 1088 * If we do not have a unique key that resides in a znode, then we cannot 1089 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1090 * This function records the path back to the last dirty ancestor, and then 1091 * dirties the znodes on that path. 1092 */ 1093 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1094 struct ubifs_znode *znode) 1095 { 1096 struct ubifs_znode *zp; 1097 int *path = c->bottom_up_buf, p = 0; 1098 1099 ubifs_assert(c->zroot.znode); 1100 ubifs_assert(znode); 1101 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1102 kfree(c->bottom_up_buf); 1103 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1104 GFP_NOFS); 1105 if (!c->bottom_up_buf) 1106 return ERR_PTR(-ENOMEM); 1107 path = c->bottom_up_buf; 1108 } 1109 if (c->zroot.znode->level) { 1110 /* Go up until parent is dirty */ 1111 while (1) { 1112 int n; 1113 1114 zp = znode->parent; 1115 if (!zp) 1116 break; 1117 n = znode->iip; 1118 ubifs_assert(p < c->zroot.znode->level); 1119 path[p++] = n; 1120 if (!zp->cnext && ubifs_zn_dirty(znode)) 1121 break; 1122 znode = zp; 1123 } 1124 } 1125 1126 /* Come back down, dirtying as we go */ 1127 while (1) { 1128 struct ubifs_zbranch *zbr; 1129 1130 zp = znode->parent; 1131 if (zp) { 1132 ubifs_assert(path[p - 1] >= 0); 1133 ubifs_assert(path[p - 1] < zp->child_cnt); 1134 zbr = &zp->zbranch[path[--p]]; 1135 znode = dirty_cow_znode(c, zbr); 1136 } else { 1137 ubifs_assert(znode == c->zroot.znode); 1138 znode = dirty_cow_znode(c, &c->zroot); 1139 } 1140 if (IS_ERR(znode) || !p) 1141 break; 1142 ubifs_assert(path[p - 1] >= 0); 1143 ubifs_assert(path[p - 1] < znode->child_cnt); 1144 znode = znode->zbranch[path[p - 1]].znode; 1145 } 1146 1147 return znode; 1148 } 1149 1150 /** 1151 * ubifs_lookup_level0 - search for zero-level znode. 1152 * @c: UBIFS file-system description object 1153 * @key: key to lookup 1154 * @zn: znode is returned here 1155 * @n: znode branch slot number is returned here 1156 * 1157 * This function looks up the TNC tree and search for zero-level znode which 1158 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1159 * cases: 1160 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1161 * is returned and slot number of the matched branch is stored in @n; 1162 * o not exact match, which means that zero-level znode does not contain 1163 * @key, then %0 is returned and slot number of the closest branch is stored 1164 * in @n; 1165 * o @key is so small that it is even less than the lowest key of the 1166 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1167 * 1168 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1169 * function reads corresponding indexing nodes and inserts them to TNC. In 1170 * case of failure, a negative error code is returned. 1171 */ 1172 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1173 struct ubifs_znode **zn, int *n) 1174 { 1175 int err, exact; 1176 struct ubifs_znode *znode; 1177 unsigned long time = get_seconds(); 1178 1179 dbg_tnc("search key %s", DBGKEY(key)); 1180 1181 znode = c->zroot.znode; 1182 if (unlikely(!znode)) { 1183 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1184 if (IS_ERR(znode)) 1185 return PTR_ERR(znode); 1186 } 1187 1188 znode->time = time; 1189 1190 while (1) { 1191 struct ubifs_zbranch *zbr; 1192 1193 exact = ubifs_search_zbranch(c, znode, key, n); 1194 1195 if (znode->level == 0) 1196 break; 1197 1198 if (*n < 0) 1199 *n = 0; 1200 zbr = &znode->zbranch[*n]; 1201 1202 if (zbr->znode) { 1203 znode->time = time; 1204 znode = zbr->znode; 1205 continue; 1206 } 1207 1208 /* znode is not in TNC cache, load it from the media */ 1209 znode = ubifs_load_znode(c, zbr, znode, *n); 1210 if (IS_ERR(znode)) 1211 return PTR_ERR(znode); 1212 } 1213 1214 *zn = znode; 1215 if (exact || !is_hash_key(c, key) || *n != -1) { 1216 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1217 return exact; 1218 } 1219 1220 /* 1221 * Here is a tricky place. We have not found the key and this is a 1222 * "hashed" key, which may collide. The rest of the code deals with 1223 * situations like this: 1224 * 1225 * | 3 | 5 | 1226 * / \ 1227 * | 3 | 5 | | 6 | 7 | (x) 1228 * 1229 * Or more a complex example: 1230 * 1231 * | 1 | 5 | 1232 * / \ 1233 * | 1 | 3 | | 5 | 8 | 1234 * \ / 1235 * | 5 | 5 | | 6 | 7 | (x) 1236 * 1237 * In the examples, if we are looking for key "5", we may reach nodes 1238 * marked with "(x)". In this case what we have do is to look at the 1239 * left and see if there is "5" key there. If there is, we have to 1240 * return it. 1241 * 1242 * Note, this whole situation is possible because we allow to have 1243 * elements which are equivalent to the next key in the parent in the 1244 * children of current znode. For example, this happens if we split a 1245 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1246 * like this: 1247 * | 3 | 5 | 1248 * / \ 1249 * | 3 | 5 | | 5 | 6 | 7 | 1250 * ^ 1251 * And this becomes what is at the first "picture" after key "5" marked 1252 * with "^" is removed. What could be done is we could prohibit 1253 * splitting in the middle of the colliding sequence. Also, when 1254 * removing the leftmost key, we would have to correct the key of the 1255 * parent node, which would introduce additional complications. Namely, 1256 * if we changed the leftmost key of the parent znode, the garbage 1257 * collector would be unable to find it (GC is doing this when GC'ing 1258 * indexing LEBs). Although we already have an additional RB-tree where 1259 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1260 * after the commit. But anyway, this does not look easy to implement 1261 * so we did not try this. 1262 */ 1263 err = tnc_prev(c, &znode, n); 1264 if (err == -ENOENT) { 1265 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1266 *n = -1; 1267 return 0; 1268 } 1269 if (unlikely(err < 0)) 1270 return err; 1271 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1272 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1273 *n = -1; 1274 return 0; 1275 } 1276 1277 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1278 *zn = znode; 1279 return 1; 1280 } 1281 1282 /** 1283 * lookup_level0_dirty - search for zero-level znode dirtying. 1284 * @c: UBIFS file-system description object 1285 * @key: key to lookup 1286 * @zn: znode is returned here 1287 * @n: znode branch slot number is returned here 1288 * 1289 * This function looks up the TNC tree and search for zero-level znode which 1290 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1291 * cases: 1292 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1293 * is returned and slot number of the matched branch is stored in @n; 1294 * o not exact match, which means that zero-level znode does not contain @key 1295 * then %0 is returned and slot number of the closed branch is stored in 1296 * @n; 1297 * o @key is so small that it is even less than the lowest key of the 1298 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1299 * 1300 * Additionally all znodes in the path from the root to the located zero-level 1301 * znode are marked as dirty. 1302 * 1303 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1304 * function reads corresponding indexing nodes and inserts them to TNC. In 1305 * case of failure, a negative error code is returned. 1306 */ 1307 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1308 struct ubifs_znode **zn, int *n) 1309 { 1310 int err, exact; 1311 struct ubifs_znode *znode; 1312 unsigned long time = get_seconds(); 1313 1314 dbg_tnc("search and dirty key %s", DBGKEY(key)); 1315 1316 znode = c->zroot.znode; 1317 if (unlikely(!znode)) { 1318 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1319 if (IS_ERR(znode)) 1320 return PTR_ERR(znode); 1321 } 1322 1323 znode = dirty_cow_znode(c, &c->zroot); 1324 if (IS_ERR(znode)) 1325 return PTR_ERR(znode); 1326 1327 znode->time = time; 1328 1329 while (1) { 1330 struct ubifs_zbranch *zbr; 1331 1332 exact = ubifs_search_zbranch(c, znode, key, n); 1333 1334 if (znode->level == 0) 1335 break; 1336 1337 if (*n < 0) 1338 *n = 0; 1339 zbr = &znode->zbranch[*n]; 1340 1341 if (zbr->znode) { 1342 znode->time = time; 1343 znode = dirty_cow_znode(c, zbr); 1344 if (IS_ERR(znode)) 1345 return PTR_ERR(znode); 1346 continue; 1347 } 1348 1349 /* znode is not in TNC cache, load it from the media */ 1350 znode = ubifs_load_znode(c, zbr, znode, *n); 1351 if (IS_ERR(znode)) 1352 return PTR_ERR(znode); 1353 znode = dirty_cow_znode(c, zbr); 1354 if (IS_ERR(znode)) 1355 return PTR_ERR(znode); 1356 } 1357 1358 *zn = znode; 1359 if (exact || !is_hash_key(c, key) || *n != -1) { 1360 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1361 return exact; 1362 } 1363 1364 /* 1365 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1366 * code. 1367 */ 1368 err = tnc_prev(c, &znode, n); 1369 if (err == -ENOENT) { 1370 *n = -1; 1371 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1372 return 0; 1373 } 1374 if (unlikely(err < 0)) 1375 return err; 1376 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1377 *n = -1; 1378 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1379 return 0; 1380 } 1381 1382 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1383 znode = dirty_cow_bottom_up(c, znode); 1384 if (IS_ERR(znode)) 1385 return PTR_ERR(znode); 1386 } 1387 1388 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1389 *zn = znode; 1390 return 1; 1391 } 1392 1393 /** 1394 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1395 * @c: UBIFS file-system description object 1396 * @lnum: LEB number 1397 * @gc_seq1: garbage collection sequence number 1398 * 1399 * This function determines if @lnum may have been garbage collected since 1400 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1401 * %0 is returned. 1402 */ 1403 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1404 { 1405 int gc_seq2, gced_lnum; 1406 1407 gced_lnum = c->gced_lnum; 1408 smp_rmb(); 1409 gc_seq2 = c->gc_seq; 1410 /* Same seq means no GC */ 1411 if (gc_seq1 == gc_seq2) 1412 return 0; 1413 /* Different by more than 1 means we don't know */ 1414 if (gc_seq1 + 1 != gc_seq2) 1415 return 1; 1416 /* 1417 * We have seen the sequence number has increased by 1. Now we need to 1418 * be sure we read the right LEB number, so read it again. 1419 */ 1420 smp_rmb(); 1421 if (gced_lnum != c->gced_lnum) 1422 return 1; 1423 /* Finally we can check lnum */ 1424 if (gced_lnum == lnum) 1425 return 1; 1426 return 0; 1427 } 1428 1429 /** 1430 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1431 * @c: UBIFS file-system description object 1432 * @key: node key to lookup 1433 * @node: the node is returned here 1434 * @lnum: LEB number is returned here 1435 * @offs: offset is returned here 1436 * 1437 * This function looks up and reads node with key @key. The caller has to make 1438 * sure the @node buffer is large enough to fit the node. Returns zero in case 1439 * of success, %-ENOENT if the node was not found, and a negative error code in 1440 * case of failure. The node location can be returned in @lnum and @offs. 1441 */ 1442 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1443 void *node, int *lnum, int *offs) 1444 { 1445 int found, n, err, safely = 0, gc_seq1; 1446 struct ubifs_znode *znode; 1447 struct ubifs_zbranch zbr, *zt; 1448 1449 again: 1450 mutex_lock(&c->tnc_mutex); 1451 found = ubifs_lookup_level0(c, key, &znode, &n); 1452 if (!found) { 1453 err = -ENOENT; 1454 goto out; 1455 } else if (found < 0) { 1456 err = found; 1457 goto out; 1458 } 1459 zt = &znode->zbranch[n]; 1460 if (lnum) { 1461 *lnum = zt->lnum; 1462 *offs = zt->offs; 1463 } 1464 if (is_hash_key(c, key)) { 1465 /* 1466 * In this case the leaf node cache gets used, so we pass the 1467 * address of the zbranch and keep the mutex locked 1468 */ 1469 err = tnc_read_node_nm(c, zt, node); 1470 goto out; 1471 } 1472 if (safely) { 1473 err = ubifs_tnc_read_node(c, zt, node); 1474 goto out; 1475 } 1476 /* Drop the TNC mutex prematurely and race with garbage collection */ 1477 zbr = znode->zbranch[n]; 1478 gc_seq1 = c->gc_seq; 1479 mutex_unlock(&c->tnc_mutex); 1480 1481 if (ubifs_get_wbuf(c, zbr.lnum)) { 1482 /* We do not GC journal heads */ 1483 err = ubifs_tnc_read_node(c, &zbr, node); 1484 return err; 1485 } 1486 1487 err = fallible_read_node(c, key, &zbr, node); 1488 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1489 /* 1490 * The node may have been GC'ed out from under us so try again 1491 * while keeping the TNC mutex locked. 1492 */ 1493 safely = 1; 1494 goto again; 1495 } 1496 return 0; 1497 1498 out: 1499 mutex_unlock(&c->tnc_mutex); 1500 return err; 1501 } 1502 1503 /** 1504 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1505 * @c: UBIFS file-system description object 1506 * @bu: bulk-read parameters and results 1507 * 1508 * Lookup consecutive data node keys for the same inode that reside 1509 * consecutively in the same LEB. This function returns zero in case of success 1510 * and a negative error code in case of failure. 1511 * 1512 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1513 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1514 * maximum possible amount of nodes for bulk-read. 1515 */ 1516 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1517 { 1518 int n, err = 0, lnum = -1, uninitialized_var(offs); 1519 int uninitialized_var(len); 1520 unsigned int block = key_block(c, &bu->key); 1521 struct ubifs_znode *znode; 1522 1523 bu->cnt = 0; 1524 bu->blk_cnt = 0; 1525 bu->eof = 0; 1526 1527 mutex_lock(&c->tnc_mutex); 1528 /* Find first key */ 1529 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1530 if (err < 0) 1531 goto out; 1532 if (err) { 1533 /* Key found */ 1534 len = znode->zbranch[n].len; 1535 /* The buffer must be big enough for at least 1 node */ 1536 if (len > bu->buf_len) { 1537 err = -EINVAL; 1538 goto out; 1539 } 1540 /* Add this key */ 1541 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1542 bu->blk_cnt += 1; 1543 lnum = znode->zbranch[n].lnum; 1544 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1545 } 1546 while (1) { 1547 struct ubifs_zbranch *zbr; 1548 union ubifs_key *key; 1549 unsigned int next_block; 1550 1551 /* Find next key */ 1552 err = tnc_next(c, &znode, &n); 1553 if (err) 1554 goto out; 1555 zbr = &znode->zbranch[n]; 1556 key = &zbr->key; 1557 /* See if there is another data key for this file */ 1558 if (key_inum(c, key) != key_inum(c, &bu->key) || 1559 key_type(c, key) != UBIFS_DATA_KEY) { 1560 err = -ENOENT; 1561 goto out; 1562 } 1563 if (lnum < 0) { 1564 /* First key found */ 1565 lnum = zbr->lnum; 1566 offs = ALIGN(zbr->offs + zbr->len, 8); 1567 len = zbr->len; 1568 if (len > bu->buf_len) { 1569 err = -EINVAL; 1570 goto out; 1571 } 1572 } else { 1573 /* 1574 * The data nodes must be in consecutive positions in 1575 * the same LEB. 1576 */ 1577 if (zbr->lnum != lnum || zbr->offs != offs) 1578 goto out; 1579 offs += ALIGN(zbr->len, 8); 1580 len = ALIGN(len, 8) + zbr->len; 1581 /* Must not exceed buffer length */ 1582 if (len > bu->buf_len) 1583 goto out; 1584 } 1585 /* Allow for holes */ 1586 next_block = key_block(c, key); 1587 bu->blk_cnt += (next_block - block - 1); 1588 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1589 goto out; 1590 block = next_block; 1591 /* Add this key */ 1592 bu->zbranch[bu->cnt++] = *zbr; 1593 bu->blk_cnt += 1; 1594 /* See if we have room for more */ 1595 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1596 goto out; 1597 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1598 goto out; 1599 } 1600 out: 1601 if (err == -ENOENT) { 1602 bu->eof = 1; 1603 err = 0; 1604 } 1605 bu->gc_seq = c->gc_seq; 1606 mutex_unlock(&c->tnc_mutex); 1607 if (err) 1608 return err; 1609 /* 1610 * An enormous hole could cause bulk-read to encompass too many 1611 * page cache pages, so limit the number here. 1612 */ 1613 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1614 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1615 /* 1616 * Ensure that bulk-read covers a whole number of page cache 1617 * pages. 1618 */ 1619 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1620 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1621 return 0; 1622 if (bu->eof) { 1623 /* At the end of file we can round up */ 1624 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1625 return 0; 1626 } 1627 /* Exclude data nodes that do not make up a whole page cache page */ 1628 block = key_block(c, &bu->key) + bu->blk_cnt; 1629 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1630 while (bu->cnt) { 1631 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1632 break; 1633 bu->cnt -= 1; 1634 } 1635 return 0; 1636 } 1637 1638 /** 1639 * read_wbuf - bulk-read from a LEB with a wbuf. 1640 * @wbuf: wbuf that may overlap the read 1641 * @buf: buffer into which to read 1642 * @len: read length 1643 * @lnum: LEB number from which to read 1644 * @offs: offset from which to read 1645 * 1646 * This functions returns %0 on success or a negative error code on failure. 1647 */ 1648 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1649 int offs) 1650 { 1651 const struct ubifs_info *c = wbuf->c; 1652 int rlen, overlap; 1653 1654 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1655 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1656 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1657 ubifs_assert(offs + len <= c->leb_size); 1658 1659 spin_lock(&wbuf->lock); 1660 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1661 if (!overlap) { 1662 /* We may safely unlock the write-buffer and read the data */ 1663 spin_unlock(&wbuf->lock); 1664 return ubi_read(c->ubi, lnum, buf, offs, len); 1665 } 1666 1667 /* Don't read under wbuf */ 1668 rlen = wbuf->offs - offs; 1669 if (rlen < 0) 1670 rlen = 0; 1671 1672 /* Copy the rest from the write-buffer */ 1673 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1674 spin_unlock(&wbuf->lock); 1675 1676 if (rlen > 0) 1677 /* Read everything that goes before write-buffer */ 1678 return ubi_read(c->ubi, lnum, buf, offs, rlen); 1679 1680 return 0; 1681 } 1682 1683 /** 1684 * validate_data_node - validate data nodes for bulk-read. 1685 * @c: UBIFS file-system description object 1686 * @buf: buffer containing data node to validate 1687 * @zbr: zbranch of data node to validate 1688 * 1689 * This functions returns %0 on success or a negative error code on failure. 1690 */ 1691 static int validate_data_node(struct ubifs_info *c, void *buf, 1692 struct ubifs_zbranch *zbr) 1693 { 1694 union ubifs_key key1; 1695 struct ubifs_ch *ch = buf; 1696 int err, len; 1697 1698 if (ch->node_type != UBIFS_DATA_NODE) { 1699 ubifs_err("bad node type (%d but expected %d)", 1700 ch->node_type, UBIFS_DATA_NODE); 1701 goto out_err; 1702 } 1703 1704 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1705 if (err) { 1706 ubifs_err("expected node type %d", UBIFS_DATA_NODE); 1707 goto out; 1708 } 1709 1710 len = le32_to_cpu(ch->len); 1711 if (len != zbr->len) { 1712 ubifs_err("bad node length %d, expected %d", len, zbr->len); 1713 goto out_err; 1714 } 1715 1716 /* Make sure the key of the read node is correct */ 1717 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1718 if (!keys_eq(c, &zbr->key, &key1)) { 1719 ubifs_err("bad key in node at LEB %d:%d", 1720 zbr->lnum, zbr->offs); 1721 dbg_tnc("looked for key %s found node's key %s", 1722 DBGKEY(&zbr->key), DBGKEY1(&key1)); 1723 goto out_err; 1724 } 1725 1726 return 0; 1727 1728 out_err: 1729 err = -EINVAL; 1730 out: 1731 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1732 dbg_dump_node(c, buf); 1733 dbg_dump_stack(); 1734 return err; 1735 } 1736 1737 /** 1738 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1739 * @c: UBIFS file-system description object 1740 * @bu: bulk-read parameters and results 1741 * 1742 * This functions reads and validates the data nodes that were identified by the 1743 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1744 * -EAGAIN to indicate a race with GC, or another negative error code on 1745 * failure. 1746 */ 1747 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1748 { 1749 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1750 struct ubifs_wbuf *wbuf; 1751 void *buf; 1752 1753 len = bu->zbranch[bu->cnt - 1].offs; 1754 len += bu->zbranch[bu->cnt - 1].len - offs; 1755 if (len > bu->buf_len) { 1756 ubifs_err("buffer too small %d vs %d", bu->buf_len, len); 1757 return -EINVAL; 1758 } 1759 1760 /* Do the read */ 1761 wbuf = ubifs_get_wbuf(c, lnum); 1762 if (wbuf) 1763 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1764 else 1765 err = ubi_read(c->ubi, lnum, bu->buf, offs, len); 1766 1767 /* Check for a race with GC */ 1768 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1769 return -EAGAIN; 1770 1771 if (err && err != -EBADMSG) { 1772 ubifs_err("failed to read from LEB %d:%d, error %d", 1773 lnum, offs, err); 1774 dbg_dump_stack(); 1775 dbg_tnc("key %s", DBGKEY(&bu->key)); 1776 return err; 1777 } 1778 1779 /* Validate the nodes read */ 1780 buf = bu->buf; 1781 for (i = 0; i < bu->cnt; i++) { 1782 err = validate_data_node(c, buf, &bu->zbranch[i]); 1783 if (err) 1784 return err; 1785 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1786 } 1787 1788 return 0; 1789 } 1790 1791 /** 1792 * do_lookup_nm- look up a "hashed" node. 1793 * @c: UBIFS file-system description object 1794 * @key: node key to lookup 1795 * @node: the node is returned here 1796 * @nm: node name 1797 * 1798 * This function look up and reads a node which contains name hash in the key. 1799 * Since the hash may have collisions, there may be many nodes with the same 1800 * key, so we have to sequentially look to all of them until the needed one is 1801 * found. This function returns zero in case of success, %-ENOENT if the node 1802 * was not found, and a negative error code in case of failure. 1803 */ 1804 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1805 void *node, const struct qstr *nm) 1806 { 1807 int found, n, err; 1808 struct ubifs_znode *znode; 1809 1810 dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); 1811 mutex_lock(&c->tnc_mutex); 1812 found = ubifs_lookup_level0(c, key, &znode, &n); 1813 if (!found) { 1814 err = -ENOENT; 1815 goto out_unlock; 1816 } else if (found < 0) { 1817 err = found; 1818 goto out_unlock; 1819 } 1820 1821 ubifs_assert(n >= 0); 1822 1823 err = resolve_collision(c, key, &znode, &n, nm); 1824 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1825 if (unlikely(err < 0)) 1826 goto out_unlock; 1827 if (err == 0) { 1828 err = -ENOENT; 1829 goto out_unlock; 1830 } 1831 1832 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1833 1834 out_unlock: 1835 mutex_unlock(&c->tnc_mutex); 1836 return err; 1837 } 1838 1839 /** 1840 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1841 * @c: UBIFS file-system description object 1842 * @key: node key to lookup 1843 * @node: the node is returned here 1844 * @nm: node name 1845 * 1846 * This function look up and reads a node which contains name hash in the key. 1847 * Since the hash may have collisions, there may be many nodes with the same 1848 * key, so we have to sequentially look to all of them until the needed one is 1849 * found. This function returns zero in case of success, %-ENOENT if the node 1850 * was not found, and a negative error code in case of failure. 1851 */ 1852 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1853 void *node, const struct qstr *nm) 1854 { 1855 int err, len; 1856 const struct ubifs_dent_node *dent = node; 1857 1858 /* 1859 * We assume that in most of the cases there are no name collisions and 1860 * 'ubifs_tnc_lookup()' returns us the right direntry. 1861 */ 1862 err = ubifs_tnc_lookup(c, key, node); 1863 if (err) 1864 return err; 1865 1866 len = le16_to_cpu(dent->nlen); 1867 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1868 return 0; 1869 1870 /* 1871 * Unluckily, there are hash collisions and we have to iterate over 1872 * them look at each direntry with colliding name hash sequentially. 1873 */ 1874 return do_lookup_nm(c, key, node, nm); 1875 } 1876 1877 /** 1878 * correct_parent_keys - correct parent znodes' keys. 1879 * @c: UBIFS file-system description object 1880 * @znode: znode to correct parent znodes for 1881 * 1882 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1883 * zbranch changes, keys of parent znodes have to be corrected. This helper 1884 * function is called in such situations and corrects the keys if needed. 1885 */ 1886 static void correct_parent_keys(const struct ubifs_info *c, 1887 struct ubifs_znode *znode) 1888 { 1889 union ubifs_key *key, *key1; 1890 1891 ubifs_assert(znode->parent); 1892 ubifs_assert(znode->iip == 0); 1893 1894 key = &znode->zbranch[0].key; 1895 key1 = &znode->parent->zbranch[0].key; 1896 1897 while (keys_cmp(c, key, key1) < 0) { 1898 key_copy(c, key, key1); 1899 znode = znode->parent; 1900 znode->alt = 1; 1901 if (!znode->parent || znode->iip) 1902 break; 1903 key1 = &znode->parent->zbranch[0].key; 1904 } 1905 } 1906 1907 /** 1908 * insert_zbranch - insert a zbranch into a znode. 1909 * @znode: znode into which to insert 1910 * @zbr: zbranch to insert 1911 * @n: slot number to insert to 1912 * 1913 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1914 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1915 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1916 * slot, zbranches starting from @n have to be moved right. 1917 */ 1918 static void insert_zbranch(struct ubifs_znode *znode, 1919 const struct ubifs_zbranch *zbr, int n) 1920 { 1921 int i; 1922 1923 ubifs_assert(ubifs_zn_dirty(znode)); 1924 1925 if (znode->level) { 1926 for (i = znode->child_cnt; i > n; i--) { 1927 znode->zbranch[i] = znode->zbranch[i - 1]; 1928 if (znode->zbranch[i].znode) 1929 znode->zbranch[i].znode->iip = i; 1930 } 1931 if (zbr->znode) 1932 zbr->znode->iip = n; 1933 } else 1934 for (i = znode->child_cnt; i > n; i--) 1935 znode->zbranch[i] = znode->zbranch[i - 1]; 1936 1937 znode->zbranch[n] = *zbr; 1938 znode->child_cnt += 1; 1939 1940 /* 1941 * After inserting at slot zero, the lower bound of the key range of 1942 * this znode may have changed. If this znode is subsequently split 1943 * then the upper bound of the key range may change, and furthermore 1944 * it could change to be lower than the original lower bound. If that 1945 * happens, then it will no longer be possible to find this znode in the 1946 * TNC using the key from the index node on flash. That is bad because 1947 * if it is not found, we will assume it is obsolete and may overwrite 1948 * it. Then if there is an unclean unmount, we will start using the 1949 * old index which will be broken. 1950 * 1951 * So we first mark znodes that have insertions at slot zero, and then 1952 * if they are split we add their lnum/offs to the old_idx tree. 1953 */ 1954 if (n == 0) 1955 znode->alt = 1; 1956 } 1957 1958 /** 1959 * tnc_insert - insert a node into TNC. 1960 * @c: UBIFS file-system description object 1961 * @znode: znode to insert into 1962 * @zbr: branch to insert 1963 * @n: slot number to insert new zbranch to 1964 * 1965 * This function inserts a new node described by @zbr into znode @znode. If 1966 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1967 * are splat as well if needed. Returns zero in case of success or a negative 1968 * error code in case of failure. 1969 */ 1970 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1971 struct ubifs_zbranch *zbr, int n) 1972 { 1973 struct ubifs_znode *zn, *zi, *zp; 1974 int i, keep, move, appending = 0; 1975 union ubifs_key *key = &zbr->key, *key1; 1976 1977 ubifs_assert(n >= 0 && n <= c->fanout); 1978 1979 /* Implement naive insert for now */ 1980 again: 1981 zp = znode->parent; 1982 if (znode->child_cnt < c->fanout) { 1983 ubifs_assert(n != c->fanout); 1984 dbg_tnc("inserted at %d level %d, key %s", n, znode->level, 1985 DBGKEY(key)); 1986 1987 insert_zbranch(znode, zbr, n); 1988 1989 /* Ensure parent's key is correct */ 1990 if (n == 0 && zp && znode->iip == 0) 1991 correct_parent_keys(c, znode); 1992 1993 return 0; 1994 } 1995 1996 /* 1997 * Unfortunately, @znode does not have more empty slots and we have to 1998 * split it. 1999 */ 2000 dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); 2001 2002 if (znode->alt) 2003 /* 2004 * We can no longer be sure of finding this znode by key, so we 2005 * record it in the old_idx tree. 2006 */ 2007 ins_clr_old_idx_znode(c, znode); 2008 2009 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2010 if (!zn) 2011 return -ENOMEM; 2012 zn->parent = zp; 2013 zn->level = znode->level; 2014 2015 /* Decide where to split */ 2016 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2017 /* Try not to split consecutive data keys */ 2018 if (n == c->fanout) { 2019 key1 = &znode->zbranch[n - 1].key; 2020 if (key_inum(c, key1) == key_inum(c, key) && 2021 key_type(c, key1) == UBIFS_DATA_KEY) 2022 appending = 1; 2023 } else 2024 goto check_split; 2025 } else if (appending && n != c->fanout) { 2026 /* Try not to split consecutive data keys */ 2027 appending = 0; 2028 check_split: 2029 if (n >= (c->fanout + 1) / 2) { 2030 key1 = &znode->zbranch[0].key; 2031 if (key_inum(c, key1) == key_inum(c, key) && 2032 key_type(c, key1) == UBIFS_DATA_KEY) { 2033 key1 = &znode->zbranch[n].key; 2034 if (key_inum(c, key1) != key_inum(c, key) || 2035 key_type(c, key1) != UBIFS_DATA_KEY) { 2036 keep = n; 2037 move = c->fanout - keep; 2038 zi = znode; 2039 goto do_split; 2040 } 2041 } 2042 } 2043 } 2044 2045 if (appending) { 2046 keep = c->fanout; 2047 move = 0; 2048 } else { 2049 keep = (c->fanout + 1) / 2; 2050 move = c->fanout - keep; 2051 } 2052 2053 /* 2054 * Although we don't at present, we could look at the neighbors and see 2055 * if we can move some zbranches there. 2056 */ 2057 2058 if (n < keep) { 2059 /* Insert into existing znode */ 2060 zi = znode; 2061 move += 1; 2062 keep -= 1; 2063 } else { 2064 /* Insert into new znode */ 2065 zi = zn; 2066 n -= keep; 2067 /* Re-parent */ 2068 if (zn->level != 0) 2069 zbr->znode->parent = zn; 2070 } 2071 2072 do_split: 2073 2074 __set_bit(DIRTY_ZNODE, &zn->flags); 2075 atomic_long_inc(&c->dirty_zn_cnt); 2076 2077 zn->child_cnt = move; 2078 znode->child_cnt = keep; 2079 2080 dbg_tnc("moving %d, keeping %d", move, keep); 2081 2082 /* Move zbranch */ 2083 for (i = 0; i < move; i++) { 2084 zn->zbranch[i] = znode->zbranch[keep + i]; 2085 /* Re-parent */ 2086 if (zn->level != 0) 2087 if (zn->zbranch[i].znode) { 2088 zn->zbranch[i].znode->parent = zn; 2089 zn->zbranch[i].znode->iip = i; 2090 } 2091 } 2092 2093 /* Insert new key and branch */ 2094 dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); 2095 2096 insert_zbranch(zi, zbr, n); 2097 2098 /* Insert new znode (produced by spitting) into the parent */ 2099 if (zp) { 2100 if (n == 0 && zi == znode && znode->iip == 0) 2101 correct_parent_keys(c, znode); 2102 2103 /* Locate insertion point */ 2104 n = znode->iip + 1; 2105 2106 /* Tail recursion */ 2107 zbr->key = zn->zbranch[0].key; 2108 zbr->znode = zn; 2109 zbr->lnum = 0; 2110 zbr->offs = 0; 2111 zbr->len = 0; 2112 znode = zp; 2113 2114 goto again; 2115 } 2116 2117 /* We have to split root znode */ 2118 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2119 2120 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2121 if (!zi) 2122 return -ENOMEM; 2123 2124 zi->child_cnt = 2; 2125 zi->level = znode->level + 1; 2126 2127 __set_bit(DIRTY_ZNODE, &zi->flags); 2128 atomic_long_inc(&c->dirty_zn_cnt); 2129 2130 zi->zbranch[0].key = znode->zbranch[0].key; 2131 zi->zbranch[0].znode = znode; 2132 zi->zbranch[0].lnum = c->zroot.lnum; 2133 zi->zbranch[0].offs = c->zroot.offs; 2134 zi->zbranch[0].len = c->zroot.len; 2135 zi->zbranch[1].key = zn->zbranch[0].key; 2136 zi->zbranch[1].znode = zn; 2137 2138 c->zroot.lnum = 0; 2139 c->zroot.offs = 0; 2140 c->zroot.len = 0; 2141 c->zroot.znode = zi; 2142 2143 zn->parent = zi; 2144 zn->iip = 1; 2145 znode->parent = zi; 2146 znode->iip = 0; 2147 2148 return 0; 2149 } 2150 2151 /** 2152 * ubifs_tnc_add - add a node to TNC. 2153 * @c: UBIFS file-system description object 2154 * @key: key to add 2155 * @lnum: LEB number of node 2156 * @offs: node offset 2157 * @len: node length 2158 * 2159 * This function adds a node with key @key to TNC. The node may be new or it may 2160 * obsolete some existing one. Returns %0 on success or negative error code on 2161 * failure. 2162 */ 2163 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2164 int offs, int len) 2165 { 2166 int found, n, err = 0; 2167 struct ubifs_znode *znode; 2168 2169 mutex_lock(&c->tnc_mutex); 2170 dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); 2171 found = lookup_level0_dirty(c, key, &znode, &n); 2172 if (!found) { 2173 struct ubifs_zbranch zbr; 2174 2175 zbr.znode = NULL; 2176 zbr.lnum = lnum; 2177 zbr.offs = offs; 2178 zbr.len = len; 2179 key_copy(c, key, &zbr.key); 2180 err = tnc_insert(c, znode, &zbr, n + 1); 2181 } else if (found == 1) { 2182 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2183 2184 lnc_free(zbr); 2185 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2186 zbr->lnum = lnum; 2187 zbr->offs = offs; 2188 zbr->len = len; 2189 } else 2190 err = found; 2191 if (!err) 2192 err = dbg_check_tnc(c, 0); 2193 mutex_unlock(&c->tnc_mutex); 2194 2195 return err; 2196 } 2197 2198 /** 2199 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2200 * @c: UBIFS file-system description object 2201 * @key: key to add 2202 * @old_lnum: LEB number of old node 2203 * @old_offs: old node offset 2204 * @lnum: LEB number of node 2205 * @offs: node offset 2206 * @len: node length 2207 * 2208 * This function replaces a node with key @key in the TNC only if the old node 2209 * is found. This function is called by garbage collection when node are moved. 2210 * Returns %0 on success or negative error code on failure. 2211 */ 2212 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2213 int old_lnum, int old_offs, int lnum, int offs, int len) 2214 { 2215 int found, n, err = 0; 2216 struct ubifs_znode *znode; 2217 2218 mutex_lock(&c->tnc_mutex); 2219 dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, 2220 old_offs, lnum, offs, len, DBGKEY(key)); 2221 found = lookup_level0_dirty(c, key, &znode, &n); 2222 if (found < 0) { 2223 err = found; 2224 goto out_unlock; 2225 } 2226 2227 if (found == 1) { 2228 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2229 2230 found = 0; 2231 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2232 lnc_free(zbr); 2233 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2234 if (err) 2235 goto out_unlock; 2236 zbr->lnum = lnum; 2237 zbr->offs = offs; 2238 zbr->len = len; 2239 found = 1; 2240 } else if (is_hash_key(c, key)) { 2241 found = resolve_collision_directly(c, key, &znode, &n, 2242 old_lnum, old_offs); 2243 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2244 found, znode, n, old_lnum, old_offs); 2245 if (found < 0) { 2246 err = found; 2247 goto out_unlock; 2248 } 2249 2250 if (found) { 2251 /* Ensure the znode is dirtied */ 2252 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2253 znode = dirty_cow_bottom_up(c, znode); 2254 if (IS_ERR(znode)) { 2255 err = PTR_ERR(znode); 2256 goto out_unlock; 2257 } 2258 } 2259 zbr = &znode->zbranch[n]; 2260 lnc_free(zbr); 2261 err = ubifs_add_dirt(c, zbr->lnum, 2262 zbr->len); 2263 if (err) 2264 goto out_unlock; 2265 zbr->lnum = lnum; 2266 zbr->offs = offs; 2267 zbr->len = len; 2268 } 2269 } 2270 } 2271 2272 if (!found) 2273 err = ubifs_add_dirt(c, lnum, len); 2274 2275 if (!err) 2276 err = dbg_check_tnc(c, 0); 2277 2278 out_unlock: 2279 mutex_unlock(&c->tnc_mutex); 2280 return err; 2281 } 2282 2283 /** 2284 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2285 * @c: UBIFS file-system description object 2286 * @key: key to add 2287 * @lnum: LEB number of node 2288 * @offs: node offset 2289 * @len: node length 2290 * @nm: node name 2291 * 2292 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2293 * may have collisions, like directory entry keys. 2294 */ 2295 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2296 int lnum, int offs, int len, const struct qstr *nm) 2297 { 2298 int found, n, err = 0; 2299 struct ubifs_znode *znode; 2300 2301 mutex_lock(&c->tnc_mutex); 2302 dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, 2303 DBGKEY(key)); 2304 found = lookup_level0_dirty(c, key, &znode, &n); 2305 if (found < 0) { 2306 err = found; 2307 goto out_unlock; 2308 } 2309 2310 if (found == 1) { 2311 if (c->replaying) 2312 found = fallible_resolve_collision(c, key, &znode, &n, 2313 nm, 1); 2314 else 2315 found = resolve_collision(c, key, &znode, &n, nm); 2316 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2317 if (found < 0) { 2318 err = found; 2319 goto out_unlock; 2320 } 2321 2322 /* Ensure the znode is dirtied */ 2323 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2324 znode = dirty_cow_bottom_up(c, znode); 2325 if (IS_ERR(znode)) { 2326 err = PTR_ERR(znode); 2327 goto out_unlock; 2328 } 2329 } 2330 2331 if (found == 1) { 2332 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2333 2334 lnc_free(zbr); 2335 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2336 zbr->lnum = lnum; 2337 zbr->offs = offs; 2338 zbr->len = len; 2339 goto out_unlock; 2340 } 2341 } 2342 2343 if (!found) { 2344 struct ubifs_zbranch zbr; 2345 2346 zbr.znode = NULL; 2347 zbr.lnum = lnum; 2348 zbr.offs = offs; 2349 zbr.len = len; 2350 key_copy(c, key, &zbr.key); 2351 err = tnc_insert(c, znode, &zbr, n + 1); 2352 if (err) 2353 goto out_unlock; 2354 if (c->replaying) { 2355 /* 2356 * We did not find it in the index so there may be a 2357 * dangling branch still in the index. So we remove it 2358 * by passing 'ubifs_tnc_remove_nm()' the same key but 2359 * an unmatchable name. 2360 */ 2361 struct qstr noname = { .len = 0, .name = "" }; 2362 2363 err = dbg_check_tnc(c, 0); 2364 mutex_unlock(&c->tnc_mutex); 2365 if (err) 2366 return err; 2367 return ubifs_tnc_remove_nm(c, key, &noname); 2368 } 2369 } 2370 2371 out_unlock: 2372 if (!err) 2373 err = dbg_check_tnc(c, 0); 2374 mutex_unlock(&c->tnc_mutex); 2375 return err; 2376 } 2377 2378 /** 2379 * tnc_delete - delete a znode form TNC. 2380 * @c: UBIFS file-system description object 2381 * @znode: znode to delete from 2382 * @n: zbranch slot number to delete 2383 * 2384 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2385 * case of success and a negative error code in case of failure. 2386 */ 2387 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2388 { 2389 struct ubifs_zbranch *zbr; 2390 struct ubifs_znode *zp; 2391 int i, err; 2392 2393 /* Delete without merge for now */ 2394 ubifs_assert(znode->level == 0); 2395 ubifs_assert(n >= 0 && n < c->fanout); 2396 dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); 2397 2398 zbr = &znode->zbranch[n]; 2399 lnc_free(zbr); 2400 2401 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2402 if (err) { 2403 dbg_dump_znode(c, znode); 2404 return err; 2405 } 2406 2407 /* We do not "gap" zbranch slots */ 2408 for (i = n; i < znode->child_cnt - 1; i++) 2409 znode->zbranch[i] = znode->zbranch[i + 1]; 2410 znode->child_cnt -= 1; 2411 2412 if (znode->child_cnt > 0) 2413 return 0; 2414 2415 /* 2416 * This was the last zbranch, we have to delete this znode from the 2417 * parent. 2418 */ 2419 2420 do { 2421 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); 2422 ubifs_assert(ubifs_zn_dirty(znode)); 2423 2424 zp = znode->parent; 2425 n = znode->iip; 2426 2427 atomic_long_dec(&c->dirty_zn_cnt); 2428 2429 err = insert_old_idx_znode(c, znode); 2430 if (err) 2431 return err; 2432 2433 if (znode->cnext) { 2434 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2435 atomic_long_inc(&c->clean_zn_cnt); 2436 atomic_long_inc(&ubifs_clean_zn_cnt); 2437 } else 2438 kfree(znode); 2439 znode = zp; 2440 } while (znode->child_cnt == 1); /* while removing last child */ 2441 2442 /* Remove from znode, entry n - 1 */ 2443 znode->child_cnt -= 1; 2444 ubifs_assert(znode->level != 0); 2445 for (i = n; i < znode->child_cnt; i++) { 2446 znode->zbranch[i] = znode->zbranch[i + 1]; 2447 if (znode->zbranch[i].znode) 2448 znode->zbranch[i].znode->iip = i; 2449 } 2450 2451 /* 2452 * If this is the root and it has only 1 child then 2453 * collapse the tree. 2454 */ 2455 if (!znode->parent) { 2456 while (znode->child_cnt == 1 && znode->level != 0) { 2457 zp = znode; 2458 zbr = &znode->zbranch[0]; 2459 znode = get_znode(c, znode, 0); 2460 if (IS_ERR(znode)) 2461 return PTR_ERR(znode); 2462 znode = dirty_cow_znode(c, zbr); 2463 if (IS_ERR(znode)) 2464 return PTR_ERR(znode); 2465 znode->parent = NULL; 2466 znode->iip = 0; 2467 if (c->zroot.len) { 2468 err = insert_old_idx(c, c->zroot.lnum, 2469 c->zroot.offs); 2470 if (err) 2471 return err; 2472 } 2473 c->zroot.lnum = zbr->lnum; 2474 c->zroot.offs = zbr->offs; 2475 c->zroot.len = zbr->len; 2476 c->zroot.znode = znode; 2477 ubifs_assert(!test_bit(OBSOLETE_ZNODE, 2478 &zp->flags)); 2479 ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags)); 2480 atomic_long_dec(&c->dirty_zn_cnt); 2481 2482 if (zp->cnext) { 2483 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2484 atomic_long_inc(&c->clean_zn_cnt); 2485 atomic_long_inc(&ubifs_clean_zn_cnt); 2486 } else 2487 kfree(zp); 2488 } 2489 } 2490 2491 return 0; 2492 } 2493 2494 /** 2495 * ubifs_tnc_remove - remove an index entry of a node. 2496 * @c: UBIFS file-system description object 2497 * @key: key of node 2498 * 2499 * Returns %0 on success or negative error code on failure. 2500 */ 2501 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2502 { 2503 int found, n, err = 0; 2504 struct ubifs_znode *znode; 2505 2506 mutex_lock(&c->tnc_mutex); 2507 dbg_tnc("key %s", DBGKEY(key)); 2508 found = lookup_level0_dirty(c, key, &znode, &n); 2509 if (found < 0) { 2510 err = found; 2511 goto out_unlock; 2512 } 2513 if (found == 1) 2514 err = tnc_delete(c, znode, n); 2515 if (!err) 2516 err = dbg_check_tnc(c, 0); 2517 2518 out_unlock: 2519 mutex_unlock(&c->tnc_mutex); 2520 return err; 2521 } 2522 2523 /** 2524 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2525 * @c: UBIFS file-system description object 2526 * @key: key of node 2527 * @nm: directory entry name 2528 * 2529 * Returns %0 on success or negative error code on failure. 2530 */ 2531 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2532 const struct qstr *nm) 2533 { 2534 int n, err; 2535 struct ubifs_znode *znode; 2536 2537 mutex_lock(&c->tnc_mutex); 2538 dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); 2539 err = lookup_level0_dirty(c, key, &znode, &n); 2540 if (err < 0) 2541 goto out_unlock; 2542 2543 if (err) { 2544 if (c->replaying) 2545 err = fallible_resolve_collision(c, key, &znode, &n, 2546 nm, 0); 2547 else 2548 err = resolve_collision(c, key, &znode, &n, nm); 2549 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2550 if (err < 0) 2551 goto out_unlock; 2552 if (err) { 2553 /* Ensure the znode is dirtied */ 2554 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2555 znode = dirty_cow_bottom_up(c, znode); 2556 if (IS_ERR(znode)) { 2557 err = PTR_ERR(znode); 2558 goto out_unlock; 2559 } 2560 } 2561 err = tnc_delete(c, znode, n); 2562 } 2563 } 2564 2565 out_unlock: 2566 if (!err) 2567 err = dbg_check_tnc(c, 0); 2568 mutex_unlock(&c->tnc_mutex); 2569 return err; 2570 } 2571 2572 /** 2573 * key_in_range - determine if a key falls within a range of keys. 2574 * @c: UBIFS file-system description object 2575 * @key: key to check 2576 * @from_key: lowest key in range 2577 * @to_key: highest key in range 2578 * 2579 * This function returns %1 if the key is in range and %0 otherwise. 2580 */ 2581 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2582 union ubifs_key *from_key, union ubifs_key *to_key) 2583 { 2584 if (keys_cmp(c, key, from_key) < 0) 2585 return 0; 2586 if (keys_cmp(c, key, to_key) > 0) 2587 return 0; 2588 return 1; 2589 } 2590 2591 /** 2592 * ubifs_tnc_remove_range - remove index entries in range. 2593 * @c: UBIFS file-system description object 2594 * @from_key: lowest key to remove 2595 * @to_key: highest key to remove 2596 * 2597 * This function removes index entries starting at @from_key and ending at 2598 * @to_key. This function returns zero in case of success and a negative error 2599 * code in case of failure. 2600 */ 2601 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2602 union ubifs_key *to_key) 2603 { 2604 int i, n, k, err = 0; 2605 struct ubifs_znode *znode; 2606 union ubifs_key *key; 2607 2608 mutex_lock(&c->tnc_mutex); 2609 while (1) { 2610 /* Find first level 0 znode that contains keys to remove */ 2611 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2612 if (err < 0) 2613 goto out_unlock; 2614 2615 if (err) 2616 key = from_key; 2617 else { 2618 err = tnc_next(c, &znode, &n); 2619 if (err == -ENOENT) { 2620 err = 0; 2621 goto out_unlock; 2622 } 2623 if (err < 0) 2624 goto out_unlock; 2625 key = &znode->zbranch[n].key; 2626 if (!key_in_range(c, key, from_key, to_key)) { 2627 err = 0; 2628 goto out_unlock; 2629 } 2630 } 2631 2632 /* Ensure the znode is dirtied */ 2633 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2634 znode = dirty_cow_bottom_up(c, znode); 2635 if (IS_ERR(znode)) { 2636 err = PTR_ERR(znode); 2637 goto out_unlock; 2638 } 2639 } 2640 2641 /* Remove all keys in range except the first */ 2642 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2643 key = &znode->zbranch[i].key; 2644 if (!key_in_range(c, key, from_key, to_key)) 2645 break; 2646 lnc_free(&znode->zbranch[i]); 2647 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2648 znode->zbranch[i].len); 2649 if (err) { 2650 dbg_dump_znode(c, znode); 2651 goto out_unlock; 2652 } 2653 dbg_tnc("removing %s", DBGKEY(key)); 2654 } 2655 if (k) { 2656 for (i = n + 1 + k; i < znode->child_cnt; i++) 2657 znode->zbranch[i - k] = znode->zbranch[i]; 2658 znode->child_cnt -= k; 2659 } 2660 2661 /* Now delete the first */ 2662 err = tnc_delete(c, znode, n); 2663 if (err) 2664 goto out_unlock; 2665 } 2666 2667 out_unlock: 2668 if (!err) 2669 err = dbg_check_tnc(c, 0); 2670 mutex_unlock(&c->tnc_mutex); 2671 return err; 2672 } 2673 2674 /** 2675 * ubifs_tnc_remove_ino - remove an inode from TNC. 2676 * @c: UBIFS file-system description object 2677 * @inum: inode number to remove 2678 * 2679 * This function remove inode @inum and all the extended attributes associated 2680 * with the anode from TNC and returns zero in case of success or a negative 2681 * error code in case of failure. 2682 */ 2683 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2684 { 2685 union ubifs_key key1, key2; 2686 struct ubifs_dent_node *xent, *pxent = NULL; 2687 struct qstr nm = { .name = NULL }; 2688 2689 dbg_tnc("ino %lu", (unsigned long)inum); 2690 2691 /* 2692 * Walk all extended attribute entries and remove them together with 2693 * corresponding extended attribute inodes. 2694 */ 2695 lowest_xent_key(c, &key1, inum); 2696 while (1) { 2697 ino_t xattr_inum; 2698 int err; 2699 2700 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2701 if (IS_ERR(xent)) { 2702 err = PTR_ERR(xent); 2703 if (err == -ENOENT) 2704 break; 2705 return err; 2706 } 2707 2708 xattr_inum = le64_to_cpu(xent->inum); 2709 dbg_tnc("xent '%s', ino %lu", xent->name, 2710 (unsigned long)xattr_inum); 2711 2712 nm.name = xent->name; 2713 nm.len = le16_to_cpu(xent->nlen); 2714 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2715 if (err) { 2716 kfree(xent); 2717 return err; 2718 } 2719 2720 lowest_ino_key(c, &key1, xattr_inum); 2721 highest_ino_key(c, &key2, xattr_inum); 2722 err = ubifs_tnc_remove_range(c, &key1, &key2); 2723 if (err) { 2724 kfree(xent); 2725 return err; 2726 } 2727 2728 kfree(pxent); 2729 pxent = xent; 2730 key_read(c, &xent->key, &key1); 2731 } 2732 2733 kfree(pxent); 2734 lowest_ino_key(c, &key1, inum); 2735 highest_ino_key(c, &key2, inum); 2736 2737 return ubifs_tnc_remove_range(c, &key1, &key2); 2738 } 2739 2740 /** 2741 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2742 * @c: UBIFS file-system description object 2743 * @key: key of last entry 2744 * @nm: name of last entry found or %NULL 2745 * 2746 * This function finds and reads the next directory or extended attribute entry 2747 * after the given key (@key) if there is one. @nm is used to resolve 2748 * collisions. 2749 * 2750 * If the name of the current entry is not known and only the key is known, 2751 * @nm->name has to be %NULL. In this case the semantics of this function is a 2752 * little bit different and it returns the entry corresponding to this key, not 2753 * the next one. If the key was not found, the closest "right" entry is 2754 * returned. 2755 * 2756 * If the fist entry has to be found, @key has to contain the lowest possible 2757 * key value for this inode and @name has to be %NULL. 2758 * 2759 * This function returns the found directory or extended attribute entry node 2760 * in case of success, %-ENOENT is returned if no entry was found, and a 2761 * negative error code is returned in case of failure. 2762 */ 2763 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2764 union ubifs_key *key, 2765 const struct qstr *nm) 2766 { 2767 int n, err, type = key_type(c, key); 2768 struct ubifs_znode *znode; 2769 struct ubifs_dent_node *dent; 2770 struct ubifs_zbranch *zbr; 2771 union ubifs_key *dkey; 2772 2773 dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); 2774 ubifs_assert(is_hash_key(c, key)); 2775 2776 mutex_lock(&c->tnc_mutex); 2777 err = ubifs_lookup_level0(c, key, &znode, &n); 2778 if (unlikely(err < 0)) 2779 goto out_unlock; 2780 2781 if (nm->name) { 2782 if (err) { 2783 /* Handle collisions */ 2784 err = resolve_collision(c, key, &znode, &n, nm); 2785 dbg_tnc("rc returned %d, znode %p, n %d", 2786 err, znode, n); 2787 if (unlikely(err < 0)) 2788 goto out_unlock; 2789 } 2790 2791 /* Now find next entry */ 2792 err = tnc_next(c, &znode, &n); 2793 if (unlikely(err)) 2794 goto out_unlock; 2795 } else { 2796 /* 2797 * The full name of the entry was not given, in which case the 2798 * behavior of this function is a little different and it 2799 * returns current entry, not the next one. 2800 */ 2801 if (!err) { 2802 /* 2803 * However, the given key does not exist in the TNC 2804 * tree and @znode/@n variables contain the closest 2805 * "preceding" element. Switch to the next one. 2806 */ 2807 err = tnc_next(c, &znode, &n); 2808 if (err) 2809 goto out_unlock; 2810 } 2811 } 2812 2813 zbr = &znode->zbranch[n]; 2814 dent = kmalloc(zbr->len, GFP_NOFS); 2815 if (unlikely(!dent)) { 2816 err = -ENOMEM; 2817 goto out_unlock; 2818 } 2819 2820 /* 2821 * The above 'tnc_next()' call could lead us to the next inode, check 2822 * this. 2823 */ 2824 dkey = &zbr->key; 2825 if (key_inum(c, dkey) != key_inum(c, key) || 2826 key_type(c, dkey) != type) { 2827 err = -ENOENT; 2828 goto out_free; 2829 } 2830 2831 err = tnc_read_node_nm(c, zbr, dent); 2832 if (unlikely(err)) 2833 goto out_free; 2834 2835 mutex_unlock(&c->tnc_mutex); 2836 return dent; 2837 2838 out_free: 2839 kfree(dent); 2840 out_unlock: 2841 mutex_unlock(&c->tnc_mutex); 2842 return ERR_PTR(err); 2843 } 2844 2845 /** 2846 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2847 * @c: UBIFS file-system description object 2848 * 2849 * Destroy left-over obsolete znodes from a failed commit. 2850 */ 2851 static void tnc_destroy_cnext(struct ubifs_info *c) 2852 { 2853 struct ubifs_znode *cnext; 2854 2855 if (!c->cnext) 2856 return; 2857 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2858 cnext = c->cnext; 2859 do { 2860 struct ubifs_znode *znode = cnext; 2861 2862 cnext = cnext->cnext; 2863 if (test_bit(OBSOLETE_ZNODE, &znode->flags)) 2864 kfree(znode); 2865 } while (cnext && cnext != c->cnext); 2866 } 2867 2868 /** 2869 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2870 * @c: UBIFS file-system description object 2871 */ 2872 void ubifs_tnc_close(struct ubifs_info *c) 2873 { 2874 long clean_freed; 2875 2876 tnc_destroy_cnext(c); 2877 if (c->zroot.znode) { 2878 clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 2879 atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt); 2880 } 2881 kfree(c->gap_lebs); 2882 kfree(c->ilebs); 2883 destroy_old_idx(c); 2884 } 2885 2886 /** 2887 * left_znode - get the znode to the left. 2888 * @c: UBIFS file-system description object 2889 * @znode: znode 2890 * 2891 * This function returns a pointer to the znode to the left of @znode or NULL if 2892 * there is not one. A negative error code is returned on failure. 2893 */ 2894 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2895 struct ubifs_znode *znode) 2896 { 2897 int level = znode->level; 2898 2899 while (1) { 2900 int n = znode->iip - 1; 2901 2902 /* Go up until we can go left */ 2903 znode = znode->parent; 2904 if (!znode) 2905 return NULL; 2906 if (n >= 0) { 2907 /* Now go down the rightmost branch to 'level' */ 2908 znode = get_znode(c, znode, n); 2909 if (IS_ERR(znode)) 2910 return znode; 2911 while (znode->level != level) { 2912 n = znode->child_cnt - 1; 2913 znode = get_znode(c, znode, n); 2914 if (IS_ERR(znode)) 2915 return znode; 2916 } 2917 break; 2918 } 2919 } 2920 return znode; 2921 } 2922 2923 /** 2924 * right_znode - get the znode to the right. 2925 * @c: UBIFS file-system description object 2926 * @znode: znode 2927 * 2928 * This function returns a pointer to the znode to the right of @znode or NULL 2929 * if there is not one. A negative error code is returned on failure. 2930 */ 2931 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2932 struct ubifs_znode *znode) 2933 { 2934 int level = znode->level; 2935 2936 while (1) { 2937 int n = znode->iip + 1; 2938 2939 /* Go up until we can go right */ 2940 znode = znode->parent; 2941 if (!znode) 2942 return NULL; 2943 if (n < znode->child_cnt) { 2944 /* Now go down the leftmost branch to 'level' */ 2945 znode = get_znode(c, znode, n); 2946 if (IS_ERR(znode)) 2947 return znode; 2948 while (znode->level != level) { 2949 znode = get_znode(c, znode, 0); 2950 if (IS_ERR(znode)) 2951 return znode; 2952 } 2953 break; 2954 } 2955 } 2956 return znode; 2957 } 2958 2959 /** 2960 * lookup_znode - find a particular indexing node from TNC. 2961 * @c: UBIFS file-system description object 2962 * @key: index node key to lookup 2963 * @level: index node level 2964 * @lnum: index node LEB number 2965 * @offs: index node offset 2966 * 2967 * This function searches an indexing node by its first key @key and its 2968 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2969 * nodes it traverses to TNC. This function is called fro indexing nodes which 2970 * were found on the media by scanning, for example when garbage-collecting or 2971 * when doing in-the-gaps commit. This means that the indexing node which is 2972 * looked for does not have to have exactly the same leftmost key @key, because 2973 * the leftmost key may have been changed, in which case TNC will contain a 2974 * dirty znode which still refers the same @lnum:@offs. This function is clever 2975 * enough to recognize such indexing nodes. 2976 * 2977 * Note, if a znode was deleted or changed too much, then this function will 2978 * not find it. For situations like this UBIFS has the old index RB-tree 2979 * (indexed by @lnum:@offs). 2980 * 2981 * This function returns a pointer to the znode found or %NULL if it is not 2982 * found. A negative error code is returned on failure. 2983 */ 2984 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2985 union ubifs_key *key, int level, 2986 int lnum, int offs) 2987 { 2988 struct ubifs_znode *znode, *zn; 2989 int n, nn; 2990 2991 /* 2992 * The arguments have probably been read off flash, so don't assume 2993 * they are valid. 2994 */ 2995 if (level < 0) 2996 return ERR_PTR(-EINVAL); 2997 2998 /* Get the root znode */ 2999 znode = c->zroot.znode; 3000 if (!znode) { 3001 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3002 if (IS_ERR(znode)) 3003 return znode; 3004 } 3005 /* Check if it is the one we are looking for */ 3006 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3007 return znode; 3008 /* Descend to the parent level i.e. (level + 1) */ 3009 if (level >= znode->level) 3010 return NULL; 3011 while (1) { 3012 ubifs_search_zbranch(c, znode, key, &n); 3013 if (n < 0) { 3014 /* 3015 * We reached a znode where the leftmost key is greater 3016 * than the key we are searching for. This is the same 3017 * situation as the one described in a huge comment at 3018 * the end of the 'ubifs_lookup_level0()' function. And 3019 * for exactly the same reasons we have to try to look 3020 * left before giving up. 3021 */ 3022 znode = left_znode(c, znode); 3023 if (!znode) 3024 return NULL; 3025 if (IS_ERR(znode)) 3026 return znode; 3027 ubifs_search_zbranch(c, znode, key, &n); 3028 ubifs_assert(n >= 0); 3029 } 3030 if (znode->level == level + 1) 3031 break; 3032 znode = get_znode(c, znode, n); 3033 if (IS_ERR(znode)) 3034 return znode; 3035 } 3036 /* Check if the child is the one we are looking for */ 3037 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3038 return get_znode(c, znode, n); 3039 /* If the key is unique, there is nowhere else to look */ 3040 if (!is_hash_key(c, key)) 3041 return NULL; 3042 /* 3043 * The key is not unique and so may be also in the znodes to either 3044 * side. 3045 */ 3046 zn = znode; 3047 nn = n; 3048 /* Look left */ 3049 while (1) { 3050 /* Move one branch to the left */ 3051 if (n) 3052 n -= 1; 3053 else { 3054 znode = left_znode(c, znode); 3055 if (!znode) 3056 break; 3057 if (IS_ERR(znode)) 3058 return znode; 3059 n = znode->child_cnt - 1; 3060 } 3061 /* Check it */ 3062 if (znode->zbranch[n].lnum == lnum && 3063 znode->zbranch[n].offs == offs) 3064 return get_znode(c, znode, n); 3065 /* Stop if the key is less than the one we are looking for */ 3066 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3067 break; 3068 } 3069 /* Back to the middle */ 3070 znode = zn; 3071 n = nn; 3072 /* Look right */ 3073 while (1) { 3074 /* Move one branch to the right */ 3075 if (++n >= znode->child_cnt) { 3076 znode = right_znode(c, znode); 3077 if (!znode) 3078 break; 3079 if (IS_ERR(znode)) 3080 return znode; 3081 n = 0; 3082 } 3083 /* Check it */ 3084 if (znode->zbranch[n].lnum == lnum && 3085 znode->zbranch[n].offs == offs) 3086 return get_znode(c, znode, n); 3087 /* Stop if the key is greater than the one we are looking for */ 3088 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3089 break; 3090 } 3091 return NULL; 3092 } 3093 3094 /** 3095 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3096 * @c: UBIFS file-system description object 3097 * @key: key of index node 3098 * @level: index node level 3099 * @lnum: LEB number of index node 3100 * @offs: offset of index node 3101 * 3102 * This function returns %0 if the index node is not referred to in the TNC, %1 3103 * if the index node is referred to in the TNC and the corresponding znode is 3104 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3105 * znode is clean, and a negative error code in case of failure. 3106 * 3107 * Note, the @key argument has to be the key of the first child. Also note, 3108 * this function relies on the fact that 0:0 is never a valid LEB number and 3109 * offset for a main-area node. 3110 */ 3111 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3112 int lnum, int offs) 3113 { 3114 struct ubifs_znode *znode; 3115 3116 znode = lookup_znode(c, key, level, lnum, offs); 3117 if (!znode) 3118 return 0; 3119 if (IS_ERR(znode)) 3120 return PTR_ERR(znode); 3121 3122 return ubifs_zn_dirty(znode) ? 1 : 2; 3123 } 3124 3125 /** 3126 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3127 * @c: UBIFS file-system description object 3128 * @key: node key 3129 * @lnum: node LEB number 3130 * @offs: node offset 3131 * 3132 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3133 * not, and a negative error code in case of failure. 3134 * 3135 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3136 * and offset for a main-area node. 3137 */ 3138 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3139 int lnum, int offs) 3140 { 3141 struct ubifs_zbranch *zbr; 3142 struct ubifs_znode *znode, *zn; 3143 int n, found, err, nn; 3144 const int unique = !is_hash_key(c, key); 3145 3146 found = ubifs_lookup_level0(c, key, &znode, &n); 3147 if (found < 0) 3148 return found; /* Error code */ 3149 if (!found) 3150 return 0; 3151 zbr = &znode->zbranch[n]; 3152 if (lnum == zbr->lnum && offs == zbr->offs) 3153 return 1; /* Found it */ 3154 if (unique) 3155 return 0; 3156 /* 3157 * Because the key is not unique, we have to look left 3158 * and right as well 3159 */ 3160 zn = znode; 3161 nn = n; 3162 /* Look left */ 3163 while (1) { 3164 err = tnc_prev(c, &znode, &n); 3165 if (err == -ENOENT) 3166 break; 3167 if (err) 3168 return err; 3169 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3170 break; 3171 zbr = &znode->zbranch[n]; 3172 if (lnum == zbr->lnum && offs == zbr->offs) 3173 return 1; /* Found it */ 3174 } 3175 /* Look right */ 3176 znode = zn; 3177 n = nn; 3178 while (1) { 3179 err = tnc_next(c, &znode, &n); 3180 if (err) { 3181 if (err == -ENOENT) 3182 return 0; 3183 return err; 3184 } 3185 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3186 break; 3187 zbr = &znode->zbranch[n]; 3188 if (lnum == zbr->lnum && offs == zbr->offs) 3189 return 1; /* Found it */ 3190 } 3191 return 0; 3192 } 3193 3194 /** 3195 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3196 * @c: UBIFS file-system description object 3197 * @key: node key 3198 * @level: index node level (if it is an index node) 3199 * @lnum: node LEB number 3200 * @offs: node offset 3201 * @is_idx: non-zero if the node is an index node 3202 * 3203 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3204 * negative error code in case of failure. For index nodes, @key has to be the 3205 * key of the first child. An index node is considered to be in the TNC only if 3206 * the corresponding znode is clean or has not been loaded. 3207 */ 3208 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3209 int lnum, int offs, int is_idx) 3210 { 3211 int err; 3212 3213 mutex_lock(&c->tnc_mutex); 3214 if (is_idx) { 3215 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3216 if (err < 0) 3217 goto out_unlock; 3218 if (err == 1) 3219 /* The index node was found but it was dirty */ 3220 err = 0; 3221 else if (err == 2) 3222 /* The index node was found and it was clean */ 3223 err = 1; 3224 else 3225 BUG_ON(err != 0); 3226 } else 3227 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3228 3229 out_unlock: 3230 mutex_unlock(&c->tnc_mutex); 3231 return err; 3232 } 3233 3234 /** 3235 * ubifs_dirty_idx_node - dirty an index node. 3236 * @c: UBIFS file-system description object 3237 * @key: index node key 3238 * @level: index node level 3239 * @lnum: index node LEB number 3240 * @offs: index node offset 3241 * 3242 * This function loads and dirties an index node so that it can be garbage 3243 * collected. The @key argument has to be the key of the first child. This 3244 * function relies on the fact that 0:0 is never a valid LEB number and offset 3245 * for a main-area node. Returns %0 on success and a negative error code on 3246 * failure. 3247 */ 3248 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3249 int lnum, int offs) 3250 { 3251 struct ubifs_znode *znode; 3252 int err = 0; 3253 3254 mutex_lock(&c->tnc_mutex); 3255 znode = lookup_znode(c, key, level, lnum, offs); 3256 if (!znode) 3257 goto out_unlock; 3258 if (IS_ERR(znode)) { 3259 err = PTR_ERR(znode); 3260 goto out_unlock; 3261 } 3262 znode = dirty_cow_bottom_up(c, znode); 3263 if (IS_ERR(znode)) { 3264 err = PTR_ERR(znode); 3265 goto out_unlock; 3266 } 3267 3268 out_unlock: 3269 mutex_unlock(&c->tnc_mutex); 3270 return err; 3271 } 3272 3273 #ifdef CONFIG_UBIFS_FS_DEBUG 3274 3275 /** 3276 * dbg_check_inode_size - check if inode size is correct. 3277 * @c: UBIFS file-system description object 3278 * @inum: inode number 3279 * @size: inode size 3280 * 3281 * This function makes sure that the inode size (@size) is correct and it does 3282 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3283 * if it has a data page beyond @size, and other negative error code in case of 3284 * other errors. 3285 */ 3286 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3287 loff_t size) 3288 { 3289 int err, n; 3290 union ubifs_key from_key, to_key, *key; 3291 struct ubifs_znode *znode; 3292 unsigned int block; 3293 3294 if (!S_ISREG(inode->i_mode)) 3295 return 0; 3296 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 3297 return 0; 3298 3299 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3300 data_key_init(c, &from_key, inode->i_ino, block); 3301 highest_data_key(c, &to_key, inode->i_ino); 3302 3303 mutex_lock(&c->tnc_mutex); 3304 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3305 if (err < 0) 3306 goto out_unlock; 3307 3308 if (err) { 3309 err = -EINVAL; 3310 key = &from_key; 3311 goto out_dump; 3312 } 3313 3314 err = tnc_next(c, &znode, &n); 3315 if (err == -ENOENT) { 3316 err = 0; 3317 goto out_unlock; 3318 } 3319 if (err < 0) 3320 goto out_unlock; 3321 3322 ubifs_assert(err == 0); 3323 key = &znode->zbranch[n].key; 3324 if (!key_in_range(c, key, &from_key, &to_key)) 3325 goto out_unlock; 3326 3327 out_dump: 3328 block = key_block(c, key); 3329 ubifs_err("inode %lu has size %lld, but there are data at offset %lld " 3330 "(data key %s)", (unsigned long)inode->i_ino, size, 3331 ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key)); 3332 dbg_dump_inode(c, inode); 3333 dbg_dump_stack(); 3334 err = -EINVAL; 3335 3336 out_unlock: 3337 mutex_unlock(&c->tnc_mutex); 3338 return err; 3339 } 3340 3341 #endif /* CONFIG_UBIFS_FS_DEBUG */ 3342