xref: /linux/fs/ubifs/tnc.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 			 struct ubifs_zbranch *zbr);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 			      struct ubifs_zbranch *zbr, void *node);
41 
42 /*
43  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44  * @NAME_LESS: name corresponding to the first argument is less than second
45  * @NAME_MATCHES: names match
46  * @NAME_GREATER: name corresponding to the second argument is greater than
47  *                first
48  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49  *
50  * These constants were introduce to improve readability.
51  */
52 enum {
53 	NAME_LESS    = 0,
54 	NAME_MATCHES = 1,
55 	NAME_GREATER = 2,
56 	NOT_ON_MEDIA = 3,
57 };
58 
59 /**
60  * insert_old_idx - record an index node obsoleted since the last commit start.
61  * @c: UBIFS file-system description object
62  * @lnum: LEB number of obsoleted index node
63  * @offs: offset of obsoleted index node
64  *
65  * Returns %0 on success, and a negative error code on failure.
66  *
67  * For recovery, there must always be a complete intact version of the index on
68  * flash at all times. That is called the "old index". It is the index as at the
69  * time of the last successful commit. Many of the index nodes in the old index
70  * may be dirty, but they must not be erased until the next successful commit
71  * (at which point that index becomes the old index).
72  *
73  * That means that the garbage collection and the in-the-gaps method of
74  * committing must be able to determine if an index node is in the old index.
75  * Most of the old index nodes can be found by looking up the TNC using the
76  * 'lookup_znode()' function. However, some of the old index nodes may have
77  * been deleted from the current index or may have been changed so much that
78  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79  * That is what this function does. The RB-tree is ordered by LEB number and
80  * offset because they uniquely identify the old index node.
81  */
82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83 {
84 	struct ubifs_old_idx *old_idx, *o;
85 	struct rb_node **p, *parent = NULL;
86 
87 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 	if (unlikely(!old_idx))
89 		return -ENOMEM;
90 	old_idx->lnum = lnum;
91 	old_idx->offs = offs;
92 
93 	p = &c->old_idx.rb_node;
94 	while (*p) {
95 		parent = *p;
96 		o = rb_entry(parent, struct ubifs_old_idx, rb);
97 		if (lnum < o->lnum)
98 			p = &(*p)->rb_left;
99 		else if (lnum > o->lnum)
100 			p = &(*p)->rb_right;
101 		else if (offs < o->offs)
102 			p = &(*p)->rb_left;
103 		else if (offs > o->offs)
104 			p = &(*p)->rb_right;
105 		else {
106 			ubifs_err(c, "old idx added twice!");
107 			kfree(old_idx);
108 			return 0;
109 		}
110 	}
111 	rb_link_node(&old_idx->rb, parent, p);
112 	rb_insert_color(&old_idx->rb, &c->old_idx);
113 	return 0;
114 }
115 
116 /**
117  * insert_old_idx_znode - record a znode obsoleted since last commit start.
118  * @c: UBIFS file-system description object
119  * @znode: znode of obsoleted index node
120  *
121  * Returns %0 on success, and a negative error code on failure.
122  */
123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124 {
125 	if (znode->parent) {
126 		struct ubifs_zbranch *zbr;
127 
128 		zbr = &znode->parent->zbranch[znode->iip];
129 		if (zbr->len)
130 			return insert_old_idx(c, zbr->lnum, zbr->offs);
131 	} else
132 		if (c->zroot.len)
133 			return insert_old_idx(c, c->zroot.lnum,
134 					      c->zroot.offs);
135 	return 0;
136 }
137 
138 /**
139  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140  * @c: UBIFS file-system description object
141  * @znode: znode of obsoleted index node
142  *
143  * Returns %0 on success, and a negative error code on failure.
144  */
145 static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 				 struct ubifs_znode *znode)
147 {
148 	int err;
149 
150 	if (znode->parent) {
151 		struct ubifs_zbranch *zbr;
152 
153 		zbr = &znode->parent->zbranch[znode->iip];
154 		if (zbr->len) {
155 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 			if (err)
157 				return err;
158 			zbr->lnum = 0;
159 			zbr->offs = 0;
160 			zbr->len = 0;
161 		}
162 	} else
163 		if (c->zroot.len) {
164 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 			if (err)
166 				return err;
167 			c->zroot.lnum = 0;
168 			c->zroot.offs = 0;
169 			c->zroot.len = 0;
170 		}
171 	return 0;
172 }
173 
174 /**
175  * destroy_old_idx - destroy the old_idx RB-tree.
176  * @c: UBIFS file-system description object
177  *
178  * During start commit, the old_idx RB-tree is used to avoid overwriting index
179  * nodes that were in the index last commit but have since been deleted.  This
180  * is necessary for recovery i.e. the old index must be kept intact until the
181  * new index is successfully written.  The old-idx RB-tree is used for the
182  * in-the-gaps method of writing index nodes and is destroyed every commit.
183  */
184 void destroy_old_idx(struct ubifs_info *c)
185 {
186 	struct ubifs_old_idx *old_idx, *n;
187 
188 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
189 		kfree(old_idx);
190 
191 	c->old_idx = RB_ROOT;
192 }
193 
194 /**
195  * copy_znode - copy a dirty znode.
196  * @c: UBIFS file-system description object
197  * @znode: znode to copy
198  *
199  * A dirty znode being committed may not be changed, so it is copied.
200  */
201 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 				      struct ubifs_znode *znode)
203 {
204 	struct ubifs_znode *zn;
205 
206 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
207 	if (unlikely(!zn))
208 		return ERR_PTR(-ENOMEM);
209 
210 	zn->cnext = NULL;
211 	__set_bit(DIRTY_ZNODE, &zn->flags);
212 	__clear_bit(COW_ZNODE, &zn->flags);
213 
214 	ubifs_assert(c, !ubifs_zn_obsolete(znode));
215 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
216 
217 	if (znode->level != 0) {
218 		int i;
219 		const int n = zn->child_cnt;
220 
221 		/* The children now have new parent */
222 		for (i = 0; i < n; i++) {
223 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
224 
225 			if (zbr->znode)
226 				zbr->znode->parent = zn;
227 		}
228 	}
229 
230 	atomic_long_inc(&c->dirty_zn_cnt);
231 	return zn;
232 }
233 
234 /**
235  * add_idx_dirt - add dirt due to a dirty znode.
236  * @c: UBIFS file-system description object
237  * @lnum: LEB number of index node
238  * @dirt: size of index node
239  *
240  * This function updates lprops dirty space and the new size of the index.
241  */
242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243 {
244 	c->calc_idx_sz -= ALIGN(dirt, 8);
245 	return ubifs_add_dirt(c, lnum, dirt);
246 }
247 
248 /**
249  * dirty_cow_znode - ensure a znode is not being committed.
250  * @c: UBIFS file-system description object
251  * @zbr: branch of znode to check
252  *
253  * Returns dirtied znode on success or negative error code on failure.
254  */
255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 					   struct ubifs_zbranch *zbr)
257 {
258 	struct ubifs_znode *znode = zbr->znode;
259 	struct ubifs_znode *zn;
260 	int err;
261 
262 	if (!ubifs_zn_cow(znode)) {
263 		/* znode is not being committed */
264 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 			atomic_long_inc(&c->dirty_zn_cnt);
266 			atomic_long_dec(&c->clean_zn_cnt);
267 			atomic_long_dec(&ubifs_clean_zn_cnt);
268 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 			if (unlikely(err))
270 				return ERR_PTR(err);
271 		}
272 		return znode;
273 	}
274 
275 	zn = copy_znode(c, znode);
276 	if (IS_ERR(zn))
277 		return zn;
278 
279 	if (zbr->len) {
280 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 		if (unlikely(err))
282 			return ERR_PTR(err);
283 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 	} else
285 		err = 0;
286 
287 	zbr->znode = zn;
288 	zbr->lnum = 0;
289 	zbr->offs = 0;
290 	zbr->len = 0;
291 
292 	if (unlikely(err))
293 		return ERR_PTR(err);
294 	return zn;
295 }
296 
297 /**
298  * lnc_add - add a leaf node to the leaf node cache.
299  * @c: UBIFS file-system description object
300  * @zbr: zbranch of leaf node
301  * @node: leaf node
302  *
303  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304  * purpose of the leaf node cache is to save re-reading the same leaf node over
305  * and over again. Most things are cached by VFS, however the file system must
306  * cache directory entries for readdir and for resolving hash collisions. The
307  * present implementation of the leaf node cache is extremely simple, and
308  * allows for error returns that are not used but that may be needed if a more
309  * complex implementation is created.
310  *
311  * Note, this function does not add the @node object to LNC directly, but
312  * allocates a copy of the object and adds the copy to LNC. The reason for this
313  * is that @node has been allocated outside of the TNC subsystem and will be
314  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315  * may be changed at any time, e.g. freed by the shrinker.
316  */
317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 		   const void *node)
319 {
320 	int err;
321 	void *lnc_node;
322 	const struct ubifs_dent_node *dent = node;
323 
324 	ubifs_assert(c, !zbr->leaf);
325 	ubifs_assert(c, zbr->len != 0);
326 	ubifs_assert(c, is_hash_key(c, &zbr->key));
327 
328 	err = ubifs_validate_entry(c, dent);
329 	if (err) {
330 		dump_stack();
331 		ubifs_dump_node(c, dent);
332 		return err;
333 	}
334 
335 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
336 	if (!lnc_node)
337 		/* We don't have to have the cache, so no error */
338 		return 0;
339 
340 	zbr->leaf = lnc_node;
341 	return 0;
342 }
343 
344  /**
345  * lnc_add_directly - add a leaf node to the leaf-node-cache.
346  * @c: UBIFS file-system description object
347  * @zbr: zbranch of leaf node
348  * @node: leaf node
349  *
350  * This function is similar to 'lnc_add()', but it does not create a copy of
351  * @node but inserts @node to TNC directly.
352  */
353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 			    void *node)
355 {
356 	int err;
357 
358 	ubifs_assert(c, !zbr->leaf);
359 	ubifs_assert(c, zbr->len != 0);
360 
361 	err = ubifs_validate_entry(c, node);
362 	if (err) {
363 		dump_stack();
364 		ubifs_dump_node(c, node);
365 		return err;
366 	}
367 
368 	zbr->leaf = node;
369 	return 0;
370 }
371 
372 /**
373  * lnc_free - remove a leaf node from the leaf node cache.
374  * @zbr: zbranch of leaf node
375  * @node: leaf node
376  */
377 static void lnc_free(struct ubifs_zbranch *zbr)
378 {
379 	if (!zbr->leaf)
380 		return;
381 	kfree(zbr->leaf);
382 	zbr->leaf = NULL;
383 }
384 
385 /**
386  * tnc_read_hashed_node - read a "hashed" leaf node.
387  * @c: UBIFS file-system description object
388  * @zbr: key and position of the node
389  * @node: node is returned here
390  *
391  * This function reads a "hashed" node defined by @zbr from the leaf node cache
392  * (in it is there) or from the hash media, in which case the node is also
393  * added to LNC. Returns zero in case of success or a negative negative error
394  * code in case of failure.
395  */
396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 				void *node)
398 {
399 	int err;
400 
401 	ubifs_assert(c, is_hash_key(c, &zbr->key));
402 
403 	if (zbr->leaf) {
404 		/* Read from the leaf node cache */
405 		ubifs_assert(c, zbr->len != 0);
406 		memcpy(node, zbr->leaf, zbr->len);
407 		return 0;
408 	}
409 
410 	if (c->replaying) {
411 		err = fallible_read_node(c, &zbr->key, zbr, node);
412 		/*
413 		 * When the node was not found, return -ENOENT, 0 otherwise.
414 		 * Negative return codes stay as-is.
415 		 */
416 		if (err == 0)
417 			err = -ENOENT;
418 		else if (err == 1)
419 			err = 0;
420 	} else {
421 		err = ubifs_tnc_read_node(c, zbr, node);
422 	}
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @zbr: the zbranch describing the node to read
437  *
438  * This function tries to read a node of known type and length, checks it and
439  * stores it in @buf. This function returns %1 if a node is present and %0 if
440  * a node is not present. A negative error code is returned for I/O errors.
441  * This function performs that same function as ubifs_read_node except that
442  * it does not require that there is actually a node present and instead
443  * the return code indicates if a node was read.
444  *
445  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
446  * is true (it is controlled by corresponding mount option). However, if
447  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
448  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
449  * because during mounting or re-mounting from R/O mode to R/W mode we may read
450  * journal nodes (when replying the journal or doing the recovery) and the
451  * journal nodes may potentially be corrupted, so checking is required.
452  */
453 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
454 			 struct ubifs_zbranch *zbr)
455 {
456 	int len = zbr->len;
457 	int lnum = zbr->lnum;
458 	int offs = zbr->offs;
459 	int err, node_len;
460 	struct ubifs_ch *ch = buf;
461 	uint32_t crc, node_crc;
462 
463 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
464 
465 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
466 	if (err) {
467 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
468 			  type, lnum, offs, err);
469 		return err;
470 	}
471 
472 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
473 		return 0;
474 
475 	if (ch->node_type != type)
476 		return 0;
477 
478 	node_len = le32_to_cpu(ch->len);
479 	if (node_len != len)
480 		return 0;
481 
482 	if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
483 	    !c->remounting_rw)
484 		return 1;
485 
486 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
487 	node_crc = le32_to_cpu(ch->crc);
488 	if (crc != node_crc)
489 		return 0;
490 
491 	err = ubifs_node_check_hash(c, buf, zbr->hash);
492 	if (err) {
493 		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
494 		return 0;
495 	}
496 
497 	return 1;
498 }
499 
500 /**
501  * fallible_read_node - try to read a leaf node.
502  * @c: UBIFS file-system description object
503  * @key:  key of node to read
504  * @zbr:  position of node
505  * @node: node returned
506  *
507  * This function tries to read a node and returns %1 if the node is read, %0
508  * if the node is not present, and a negative error code in the case of error.
509  */
510 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
511 			      struct ubifs_zbranch *zbr, void *node)
512 {
513 	int ret;
514 
515 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
516 
517 	ret = try_read_node(c, node, key_type(c, key), zbr);
518 	if (ret == 1) {
519 		union ubifs_key node_key;
520 		struct ubifs_dent_node *dent = node;
521 
522 		/* All nodes have key in the same place */
523 		key_read(c, &dent->key, &node_key);
524 		if (keys_cmp(c, key, &node_key) != 0)
525 			ret = 0;
526 	}
527 	if (ret == 0 && c->replaying)
528 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
529 			zbr->lnum, zbr->offs, zbr->len);
530 	return ret;
531 }
532 
533 /**
534  * matches_name - determine if a direntry or xattr entry matches a given name.
535  * @c: UBIFS file-system description object
536  * @zbr: zbranch of dent
537  * @nm: name to match
538  *
539  * This function checks if xentry/direntry referred by zbranch @zbr matches name
540  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
541  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
542  * of failure, a negative error code is returned.
543  */
544 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
545 			const struct fscrypt_name *nm)
546 {
547 	struct ubifs_dent_node *dent;
548 	int nlen, err;
549 
550 	/* If possible, match against the dent in the leaf node cache */
551 	if (!zbr->leaf) {
552 		dent = kmalloc(zbr->len, GFP_NOFS);
553 		if (!dent)
554 			return -ENOMEM;
555 
556 		err = ubifs_tnc_read_node(c, zbr, dent);
557 		if (err)
558 			goto out_free;
559 
560 		/* Add the node to the leaf node cache */
561 		err = lnc_add_directly(c, zbr, dent);
562 		if (err)
563 			goto out_free;
564 	} else
565 		dent = zbr->leaf;
566 
567 	nlen = le16_to_cpu(dent->nlen);
568 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
569 	if (err == 0) {
570 		if (nlen == fname_len(nm))
571 			return NAME_MATCHES;
572 		else if (nlen < fname_len(nm))
573 			return NAME_LESS;
574 		else
575 			return NAME_GREATER;
576 	} else if (err < 0)
577 		return NAME_LESS;
578 	else
579 		return NAME_GREATER;
580 
581 out_free:
582 	kfree(dent);
583 	return err;
584 }
585 
586 /**
587  * get_znode - get a TNC znode that may not be loaded yet.
588  * @c: UBIFS file-system description object
589  * @znode: parent znode
590  * @n: znode branch slot number
591  *
592  * This function returns the znode or a negative error code.
593  */
594 static struct ubifs_znode *get_znode(struct ubifs_info *c,
595 				     struct ubifs_znode *znode, int n)
596 {
597 	struct ubifs_zbranch *zbr;
598 
599 	zbr = &znode->zbranch[n];
600 	if (zbr->znode)
601 		znode = zbr->znode;
602 	else
603 		znode = ubifs_load_znode(c, zbr, znode, n);
604 	return znode;
605 }
606 
607 /**
608  * tnc_next - find next TNC entry.
609  * @c: UBIFS file-system description object
610  * @zn: znode is passed and returned here
611  * @n: znode branch slot number is passed and returned here
612  *
613  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
614  * no next entry, or a negative error code otherwise.
615  */
616 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
617 {
618 	struct ubifs_znode *znode = *zn;
619 	int nn = *n;
620 
621 	nn += 1;
622 	if (nn < znode->child_cnt) {
623 		*n = nn;
624 		return 0;
625 	}
626 	while (1) {
627 		struct ubifs_znode *zp;
628 
629 		zp = znode->parent;
630 		if (!zp)
631 			return -ENOENT;
632 		nn = znode->iip + 1;
633 		znode = zp;
634 		if (nn < znode->child_cnt) {
635 			znode = get_znode(c, znode, nn);
636 			if (IS_ERR(znode))
637 				return PTR_ERR(znode);
638 			while (znode->level != 0) {
639 				znode = get_znode(c, znode, 0);
640 				if (IS_ERR(znode))
641 					return PTR_ERR(znode);
642 			}
643 			nn = 0;
644 			break;
645 		}
646 	}
647 	*zn = znode;
648 	*n = nn;
649 	return 0;
650 }
651 
652 /**
653  * tnc_prev - find previous TNC entry.
654  * @c: UBIFS file-system description object
655  * @zn: znode is returned here
656  * @n: znode branch slot number is passed and returned here
657  *
658  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
659  * there is no next entry, or a negative error code otherwise.
660  */
661 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
662 {
663 	struct ubifs_znode *znode = *zn;
664 	int nn = *n;
665 
666 	if (nn > 0) {
667 		*n = nn - 1;
668 		return 0;
669 	}
670 	while (1) {
671 		struct ubifs_znode *zp;
672 
673 		zp = znode->parent;
674 		if (!zp)
675 			return -ENOENT;
676 		nn = znode->iip - 1;
677 		znode = zp;
678 		if (nn >= 0) {
679 			znode = get_znode(c, znode, nn);
680 			if (IS_ERR(znode))
681 				return PTR_ERR(znode);
682 			while (znode->level != 0) {
683 				nn = znode->child_cnt - 1;
684 				znode = get_znode(c, znode, nn);
685 				if (IS_ERR(znode))
686 					return PTR_ERR(znode);
687 			}
688 			nn = znode->child_cnt - 1;
689 			break;
690 		}
691 	}
692 	*zn = znode;
693 	*n = nn;
694 	return 0;
695 }
696 
697 /**
698  * resolve_collision - resolve a collision.
699  * @c: UBIFS file-system description object
700  * @key: key of a directory or extended attribute entry
701  * @zn: znode is returned here
702  * @n: zbranch number is passed and returned here
703  * @nm: name of the entry
704  *
705  * This function is called for "hashed" keys to make sure that the found key
706  * really corresponds to the looked up node (directory or extended attribute
707  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
708  * %0 is returned if @nm is not found and @zn and @n are set to the previous
709  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
710  * This means that @n may be set to %-1 if the leftmost key in @zn is the
711  * previous one. A negative error code is returned on failures.
712  */
713 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
714 			     struct ubifs_znode **zn, int *n,
715 			     const struct fscrypt_name *nm)
716 {
717 	int err;
718 
719 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
720 	if (unlikely(err < 0))
721 		return err;
722 	if (err == NAME_MATCHES)
723 		return 1;
724 
725 	if (err == NAME_GREATER) {
726 		/* Look left */
727 		while (1) {
728 			err = tnc_prev(c, zn, n);
729 			if (err == -ENOENT) {
730 				ubifs_assert(c, *n == 0);
731 				*n = -1;
732 				return 0;
733 			}
734 			if (err < 0)
735 				return err;
736 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
737 				/*
738 				 * We have found the branch after which we would
739 				 * like to insert, but inserting in this znode
740 				 * may still be wrong. Consider the following 3
741 				 * znodes, in the case where we are resolving a
742 				 * collision with Key2.
743 				 *
744 				 *                  znode zp
745 				 *            ----------------------
746 				 * level 1     |  Key0  |  Key1  |
747 				 *            -----------------------
748 				 *                 |            |
749 				 *       znode za  |            |  znode zb
750 				 *          ------------      ------------
751 				 * level 0  |  Key0  |        |  Key2  |
752 				 *          ------------      ------------
753 				 *
754 				 * The lookup finds Key2 in znode zb. Lets say
755 				 * there is no match and the name is greater so
756 				 * we look left. When we find Key0, we end up
757 				 * here. If we return now, we will insert into
758 				 * znode za at slot n = 1.  But that is invalid
759 				 * according to the parent's keys.  Key2 must
760 				 * be inserted into znode zb.
761 				 *
762 				 * Note, this problem is not relevant for the
763 				 * case when we go right, because
764 				 * 'tnc_insert()' would correct the parent key.
765 				 */
766 				if (*n == (*zn)->child_cnt - 1) {
767 					err = tnc_next(c, zn, n);
768 					if (err) {
769 						/* Should be impossible */
770 						ubifs_assert(c, 0);
771 						if (err == -ENOENT)
772 							err = -EINVAL;
773 						return err;
774 					}
775 					ubifs_assert(c, *n == 0);
776 					*n = -1;
777 				}
778 				return 0;
779 			}
780 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
781 			if (err < 0)
782 				return err;
783 			if (err == NAME_LESS)
784 				return 0;
785 			if (err == NAME_MATCHES)
786 				return 1;
787 			ubifs_assert(c, err == NAME_GREATER);
788 		}
789 	} else {
790 		int nn = *n;
791 		struct ubifs_znode *znode = *zn;
792 
793 		/* Look right */
794 		while (1) {
795 			err = tnc_next(c, &znode, &nn);
796 			if (err == -ENOENT)
797 				return 0;
798 			if (err < 0)
799 				return err;
800 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
801 				return 0;
802 			err = matches_name(c, &znode->zbranch[nn], nm);
803 			if (err < 0)
804 				return err;
805 			if (err == NAME_GREATER)
806 				return 0;
807 			*zn = znode;
808 			*n = nn;
809 			if (err == NAME_MATCHES)
810 				return 1;
811 			ubifs_assert(c, err == NAME_LESS);
812 		}
813 	}
814 }
815 
816 /**
817  * fallible_matches_name - determine if a dent matches a given name.
818  * @c: UBIFS file-system description object
819  * @zbr: zbranch of dent
820  * @nm: name to match
821  *
822  * This is a "fallible" version of 'matches_name()' function which does not
823  * panic if the direntry/xentry referred by @zbr does not exist on the media.
824  *
825  * This function checks if xentry/direntry referred by zbranch @zbr matches name
826  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
827  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
828  * if xentry/direntry referred by @zbr does not exist on the media. A negative
829  * error code is returned in case of failure.
830  */
831 static int fallible_matches_name(struct ubifs_info *c,
832 				 struct ubifs_zbranch *zbr,
833 				 const struct fscrypt_name *nm)
834 {
835 	struct ubifs_dent_node *dent;
836 	int nlen, err;
837 
838 	/* If possible, match against the dent in the leaf node cache */
839 	if (!zbr->leaf) {
840 		dent = kmalloc(zbr->len, GFP_NOFS);
841 		if (!dent)
842 			return -ENOMEM;
843 
844 		err = fallible_read_node(c, &zbr->key, zbr, dent);
845 		if (err < 0)
846 			goto out_free;
847 		if (err == 0) {
848 			/* The node was not present */
849 			err = NOT_ON_MEDIA;
850 			goto out_free;
851 		}
852 		ubifs_assert(c, err == 1);
853 
854 		err = lnc_add_directly(c, zbr, dent);
855 		if (err)
856 			goto out_free;
857 	} else
858 		dent = zbr->leaf;
859 
860 	nlen = le16_to_cpu(dent->nlen);
861 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
862 	if (err == 0) {
863 		if (nlen == fname_len(nm))
864 			return NAME_MATCHES;
865 		else if (nlen < fname_len(nm))
866 			return NAME_LESS;
867 		else
868 			return NAME_GREATER;
869 	} else if (err < 0)
870 		return NAME_LESS;
871 	else
872 		return NAME_GREATER;
873 
874 out_free:
875 	kfree(dent);
876 	return err;
877 }
878 
879 /**
880  * fallible_resolve_collision - resolve a collision even if nodes are missing.
881  * @c: UBIFS file-system description object
882  * @key: key
883  * @zn: znode is returned here
884  * @n: branch number is passed and returned here
885  * @nm: name of directory entry
886  * @adding: indicates caller is adding a key to the TNC
887  *
888  * This is a "fallible" version of the 'resolve_collision()' function which
889  * does not panic if one of the nodes referred to by TNC does not exist on the
890  * media. This may happen when replaying the journal if a deleted node was
891  * Garbage-collected and the commit was not done. A branch that refers to a node
892  * that is not present is called a dangling branch. The following are the return
893  * codes for this function:
894  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
895  *    branch;
896  *  o if we are @adding and @nm was not found, %0 is returned;
897  *  o if we are not @adding and @nm was not found, but a dangling branch was
898  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
899  *  o a negative error code is returned in case of failure.
900  */
901 static int fallible_resolve_collision(struct ubifs_info *c,
902 				      const union ubifs_key *key,
903 				      struct ubifs_znode **zn, int *n,
904 				      const struct fscrypt_name *nm,
905 				      int adding)
906 {
907 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
908 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
909 
910 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
911 	if (unlikely(cmp < 0))
912 		return cmp;
913 	if (cmp == NAME_MATCHES)
914 		return 1;
915 	if (cmp == NOT_ON_MEDIA) {
916 		o_znode = znode;
917 		o_n = nn;
918 		/*
919 		 * We are unlucky and hit a dangling branch straight away.
920 		 * Now we do not really know where to go to find the needed
921 		 * branch - to the left or to the right. Well, let's try left.
922 		 */
923 		unsure = 1;
924 	} else if (!adding)
925 		unsure = 1; /* Remove a dangling branch wherever it is */
926 
927 	if (cmp == NAME_GREATER || unsure) {
928 		/* Look left */
929 		while (1) {
930 			err = tnc_prev(c, zn, n);
931 			if (err == -ENOENT) {
932 				ubifs_assert(c, *n == 0);
933 				*n = -1;
934 				break;
935 			}
936 			if (err < 0)
937 				return err;
938 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
939 				/* See comments in 'resolve_collision()' */
940 				if (*n == (*zn)->child_cnt - 1) {
941 					err = tnc_next(c, zn, n);
942 					if (err) {
943 						/* Should be impossible */
944 						ubifs_assert(c, 0);
945 						if (err == -ENOENT)
946 							err = -EINVAL;
947 						return err;
948 					}
949 					ubifs_assert(c, *n == 0);
950 					*n = -1;
951 				}
952 				break;
953 			}
954 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
955 			if (err < 0)
956 				return err;
957 			if (err == NAME_MATCHES)
958 				return 1;
959 			if (err == NOT_ON_MEDIA) {
960 				o_znode = *zn;
961 				o_n = *n;
962 				continue;
963 			}
964 			if (!adding)
965 				continue;
966 			if (err == NAME_LESS)
967 				break;
968 			else
969 				unsure = 0;
970 		}
971 	}
972 
973 	if (cmp == NAME_LESS || unsure) {
974 		/* Look right */
975 		*zn = znode;
976 		*n = nn;
977 		while (1) {
978 			err = tnc_next(c, &znode, &nn);
979 			if (err == -ENOENT)
980 				break;
981 			if (err < 0)
982 				return err;
983 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
984 				break;
985 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
986 			if (err < 0)
987 				return err;
988 			if (err == NAME_GREATER)
989 				break;
990 			*zn = znode;
991 			*n = nn;
992 			if (err == NAME_MATCHES)
993 				return 1;
994 			if (err == NOT_ON_MEDIA) {
995 				o_znode = znode;
996 				o_n = nn;
997 			}
998 		}
999 	}
1000 
1001 	/* Never match a dangling branch when adding */
1002 	if (adding || !o_znode)
1003 		return 0;
1004 
1005 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1006 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1007 		o_znode->zbranch[o_n].len);
1008 	*zn = o_znode;
1009 	*n = o_n;
1010 	return 1;
1011 }
1012 
1013 /**
1014  * matches_position - determine if a zbranch matches a given position.
1015  * @zbr: zbranch of dent
1016  * @lnum: LEB number of dent to match
1017  * @offs: offset of dent to match
1018  *
1019  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1020  */
1021 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1022 {
1023 	if (zbr->lnum == lnum && zbr->offs == offs)
1024 		return 1;
1025 	else
1026 		return 0;
1027 }
1028 
1029 /**
1030  * resolve_collision_directly - resolve a collision directly.
1031  * @c: UBIFS file-system description object
1032  * @key: key of directory entry
1033  * @zn: znode is passed and returned here
1034  * @n: zbranch number is passed and returned here
1035  * @lnum: LEB number of dent node to match
1036  * @offs: offset of dent node to match
1037  *
1038  * This function is used for "hashed" keys to make sure the found directory or
1039  * extended attribute entry node is what was looked for. It is used when the
1040  * flash address of the right node is known (@lnum:@offs) which makes it much
1041  * easier to resolve collisions (no need to read entries and match full
1042  * names). This function returns %1 and sets @zn and @n if the collision is
1043  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1044  * previous directory entry. Otherwise a negative error code is returned.
1045  */
1046 static int resolve_collision_directly(struct ubifs_info *c,
1047 				      const union ubifs_key *key,
1048 				      struct ubifs_znode **zn, int *n,
1049 				      int lnum, int offs)
1050 {
1051 	struct ubifs_znode *znode;
1052 	int nn, err;
1053 
1054 	znode = *zn;
1055 	nn = *n;
1056 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1057 		return 1;
1058 
1059 	/* Look left */
1060 	while (1) {
1061 		err = tnc_prev(c, &znode, &nn);
1062 		if (err == -ENOENT)
1063 			break;
1064 		if (err < 0)
1065 			return err;
1066 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1067 			break;
1068 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1069 			*zn = znode;
1070 			*n = nn;
1071 			return 1;
1072 		}
1073 	}
1074 
1075 	/* Look right */
1076 	znode = *zn;
1077 	nn = *n;
1078 	while (1) {
1079 		err = tnc_next(c, &znode, &nn);
1080 		if (err == -ENOENT)
1081 			return 0;
1082 		if (err < 0)
1083 			return err;
1084 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1085 			return 0;
1086 		*zn = znode;
1087 		*n = nn;
1088 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1089 			return 1;
1090 	}
1091 }
1092 
1093 /**
1094  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1095  * @c: UBIFS file-system description object
1096  * @znode: znode to dirty
1097  *
1098  * If we do not have a unique key that resides in a znode, then we cannot
1099  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1100  * This function records the path back to the last dirty ancestor, and then
1101  * dirties the znodes on that path.
1102  */
1103 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1104 					       struct ubifs_znode *znode)
1105 {
1106 	struct ubifs_znode *zp;
1107 	int *path = c->bottom_up_buf, p = 0;
1108 
1109 	ubifs_assert(c, c->zroot.znode);
1110 	ubifs_assert(c, znode);
1111 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1112 		kfree(c->bottom_up_buf);
1113 		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1114 						 sizeof(int),
1115 						 GFP_NOFS);
1116 		if (!c->bottom_up_buf)
1117 			return ERR_PTR(-ENOMEM);
1118 		path = c->bottom_up_buf;
1119 	}
1120 	if (c->zroot.znode->level) {
1121 		/* Go up until parent is dirty */
1122 		while (1) {
1123 			int n;
1124 
1125 			zp = znode->parent;
1126 			if (!zp)
1127 				break;
1128 			n = znode->iip;
1129 			ubifs_assert(c, p < c->zroot.znode->level);
1130 			path[p++] = n;
1131 			if (!zp->cnext && ubifs_zn_dirty(znode))
1132 				break;
1133 			znode = zp;
1134 		}
1135 	}
1136 
1137 	/* Come back down, dirtying as we go */
1138 	while (1) {
1139 		struct ubifs_zbranch *zbr;
1140 
1141 		zp = znode->parent;
1142 		if (zp) {
1143 			ubifs_assert(c, path[p - 1] >= 0);
1144 			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1145 			zbr = &zp->zbranch[path[--p]];
1146 			znode = dirty_cow_znode(c, zbr);
1147 		} else {
1148 			ubifs_assert(c, znode == c->zroot.znode);
1149 			znode = dirty_cow_znode(c, &c->zroot);
1150 		}
1151 		if (IS_ERR(znode) || !p)
1152 			break;
1153 		ubifs_assert(c, path[p - 1] >= 0);
1154 		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1155 		znode = znode->zbranch[path[p - 1]].znode;
1156 	}
1157 
1158 	return znode;
1159 }
1160 
1161 /**
1162  * ubifs_lookup_level0 - search for zero-level znode.
1163  * @c: UBIFS file-system description object
1164  * @key:  key to lookup
1165  * @zn: znode is returned here
1166  * @n: znode branch slot number is returned here
1167  *
1168  * This function looks up the TNC tree and search for zero-level znode which
1169  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1170  * cases:
1171  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1172  *     is returned and slot number of the matched branch is stored in @n;
1173  *   o not exact match, which means that zero-level znode does not contain
1174  *     @key, then %0 is returned and slot number of the closest branch is stored
1175  *     in @n;
1176  *   o @key is so small that it is even less than the lowest key of the
1177  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1178  *
1179  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1180  * function reads corresponding indexing nodes and inserts them to TNC. In
1181  * case of failure, a negative error code is returned.
1182  */
1183 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1184 			struct ubifs_znode **zn, int *n)
1185 {
1186 	int err, exact;
1187 	struct ubifs_znode *znode;
1188 	time64_t time = ktime_get_seconds();
1189 
1190 	dbg_tnck(key, "search key ");
1191 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1192 
1193 	znode = c->zroot.znode;
1194 	if (unlikely(!znode)) {
1195 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1196 		if (IS_ERR(znode))
1197 			return PTR_ERR(znode);
1198 	}
1199 
1200 	znode->time = time;
1201 
1202 	while (1) {
1203 		struct ubifs_zbranch *zbr;
1204 
1205 		exact = ubifs_search_zbranch(c, znode, key, n);
1206 
1207 		if (znode->level == 0)
1208 			break;
1209 
1210 		if (*n < 0)
1211 			*n = 0;
1212 		zbr = &znode->zbranch[*n];
1213 
1214 		if (zbr->znode) {
1215 			znode->time = time;
1216 			znode = zbr->znode;
1217 			continue;
1218 		}
1219 
1220 		/* znode is not in TNC cache, load it from the media */
1221 		znode = ubifs_load_znode(c, zbr, znode, *n);
1222 		if (IS_ERR(znode))
1223 			return PTR_ERR(znode);
1224 	}
1225 
1226 	*zn = znode;
1227 	if (exact || !is_hash_key(c, key) || *n != -1) {
1228 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1229 		return exact;
1230 	}
1231 
1232 	/*
1233 	 * Here is a tricky place. We have not found the key and this is a
1234 	 * "hashed" key, which may collide. The rest of the code deals with
1235 	 * situations like this:
1236 	 *
1237 	 *                  | 3 | 5 |
1238 	 *                  /       \
1239 	 *          | 3 | 5 |      | 6 | 7 | (x)
1240 	 *
1241 	 * Or more a complex example:
1242 	 *
1243 	 *                | 1 | 5 |
1244 	 *                /       \
1245 	 *       | 1 | 3 |         | 5 | 8 |
1246 	 *              \           /
1247 	 *          | 5 | 5 |   | 6 | 7 | (x)
1248 	 *
1249 	 * In the examples, if we are looking for key "5", we may reach nodes
1250 	 * marked with "(x)". In this case what we have do is to look at the
1251 	 * left and see if there is "5" key there. If there is, we have to
1252 	 * return it.
1253 	 *
1254 	 * Note, this whole situation is possible because we allow to have
1255 	 * elements which are equivalent to the next key in the parent in the
1256 	 * children of current znode. For example, this happens if we split a
1257 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1258 	 * like this:
1259 	 *                      | 3 | 5 |
1260 	 *                       /     \
1261 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1262 	 *                              ^
1263 	 * And this becomes what is at the first "picture" after key "5" marked
1264 	 * with "^" is removed. What could be done is we could prohibit
1265 	 * splitting in the middle of the colliding sequence. Also, when
1266 	 * removing the leftmost key, we would have to correct the key of the
1267 	 * parent node, which would introduce additional complications. Namely,
1268 	 * if we changed the leftmost key of the parent znode, the garbage
1269 	 * collector would be unable to find it (GC is doing this when GC'ing
1270 	 * indexing LEBs). Although we already have an additional RB-tree where
1271 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1272 	 * after the commit. But anyway, this does not look easy to implement
1273 	 * so we did not try this.
1274 	 */
1275 	err = tnc_prev(c, &znode, n);
1276 	if (err == -ENOENT) {
1277 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 		*n = -1;
1279 		return 0;
1280 	}
1281 	if (unlikely(err < 0))
1282 		return err;
1283 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1284 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1285 		*n = -1;
1286 		return 0;
1287 	}
1288 
1289 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1290 	*zn = znode;
1291 	return 1;
1292 }
1293 
1294 /**
1295  * lookup_level0_dirty - search for zero-level znode dirtying.
1296  * @c: UBIFS file-system description object
1297  * @key:  key to lookup
1298  * @zn: znode is returned here
1299  * @n: znode branch slot number is returned here
1300  *
1301  * This function looks up the TNC tree and search for zero-level znode which
1302  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1303  * cases:
1304  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1305  *     is returned and slot number of the matched branch is stored in @n;
1306  *   o not exact match, which means that zero-level znode does not contain @key
1307  *     then %0 is returned and slot number of the closed branch is stored in
1308  *     @n;
1309  *   o @key is so small that it is even less than the lowest key of the
1310  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1311  *
1312  * Additionally all znodes in the path from the root to the located zero-level
1313  * znode are marked as dirty.
1314  *
1315  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1316  * function reads corresponding indexing nodes and inserts them to TNC. In
1317  * case of failure, a negative error code is returned.
1318  */
1319 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1320 			       struct ubifs_znode **zn, int *n)
1321 {
1322 	int err, exact;
1323 	struct ubifs_znode *znode;
1324 	time64_t time = ktime_get_seconds();
1325 
1326 	dbg_tnck(key, "search and dirty key ");
1327 
1328 	znode = c->zroot.znode;
1329 	if (unlikely(!znode)) {
1330 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1331 		if (IS_ERR(znode))
1332 			return PTR_ERR(znode);
1333 	}
1334 
1335 	znode = dirty_cow_znode(c, &c->zroot);
1336 	if (IS_ERR(znode))
1337 		return PTR_ERR(znode);
1338 
1339 	znode->time = time;
1340 
1341 	while (1) {
1342 		struct ubifs_zbranch *zbr;
1343 
1344 		exact = ubifs_search_zbranch(c, znode, key, n);
1345 
1346 		if (znode->level == 0)
1347 			break;
1348 
1349 		if (*n < 0)
1350 			*n = 0;
1351 		zbr = &znode->zbranch[*n];
1352 
1353 		if (zbr->znode) {
1354 			znode->time = time;
1355 			znode = dirty_cow_znode(c, zbr);
1356 			if (IS_ERR(znode))
1357 				return PTR_ERR(znode);
1358 			continue;
1359 		}
1360 
1361 		/* znode is not in TNC cache, load it from the media */
1362 		znode = ubifs_load_znode(c, zbr, znode, *n);
1363 		if (IS_ERR(znode))
1364 			return PTR_ERR(znode);
1365 		znode = dirty_cow_znode(c, zbr);
1366 		if (IS_ERR(znode))
1367 			return PTR_ERR(znode);
1368 	}
1369 
1370 	*zn = znode;
1371 	if (exact || !is_hash_key(c, key) || *n != -1) {
1372 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1373 		return exact;
1374 	}
1375 
1376 	/*
1377 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1378 	 * code.
1379 	 */
1380 	err = tnc_prev(c, &znode, n);
1381 	if (err == -ENOENT) {
1382 		*n = -1;
1383 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 		return 0;
1385 	}
1386 	if (unlikely(err < 0))
1387 		return err;
1388 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1389 		*n = -1;
1390 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1391 		return 0;
1392 	}
1393 
1394 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1395 		znode = dirty_cow_bottom_up(c, znode);
1396 		if (IS_ERR(znode))
1397 			return PTR_ERR(znode);
1398 	}
1399 
1400 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1401 	*zn = znode;
1402 	return 1;
1403 }
1404 
1405 /**
1406  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1407  * @c: UBIFS file-system description object
1408  * @lnum: LEB number
1409  * @gc_seq1: garbage collection sequence number
1410  *
1411  * This function determines if @lnum may have been garbage collected since
1412  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1413  * %0 is returned.
1414  */
1415 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1416 {
1417 	int gc_seq2, gced_lnum;
1418 
1419 	gced_lnum = c->gced_lnum;
1420 	smp_rmb();
1421 	gc_seq2 = c->gc_seq;
1422 	/* Same seq means no GC */
1423 	if (gc_seq1 == gc_seq2)
1424 		return 0;
1425 	/* Different by more than 1 means we don't know */
1426 	if (gc_seq1 + 1 != gc_seq2)
1427 		return 1;
1428 	/*
1429 	 * We have seen the sequence number has increased by 1. Now we need to
1430 	 * be sure we read the right LEB number, so read it again.
1431 	 */
1432 	smp_rmb();
1433 	if (gced_lnum != c->gced_lnum)
1434 		return 1;
1435 	/* Finally we can check lnum */
1436 	if (gced_lnum == lnum)
1437 		return 1;
1438 	return 0;
1439 }
1440 
1441 /**
1442  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1443  * @c: UBIFS file-system description object
1444  * @key: node key to lookup
1445  * @node: the node is returned here
1446  * @lnum: LEB number is returned here
1447  * @offs: offset is returned here
1448  *
1449  * This function looks up and reads node with key @key. The caller has to make
1450  * sure the @node buffer is large enough to fit the node. Returns zero in case
1451  * of success, %-ENOENT if the node was not found, and a negative error code in
1452  * case of failure. The node location can be returned in @lnum and @offs.
1453  */
1454 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1455 		     void *node, int *lnum, int *offs)
1456 {
1457 	int found, n, err, safely = 0, gc_seq1;
1458 	struct ubifs_znode *znode;
1459 	struct ubifs_zbranch zbr, *zt;
1460 
1461 again:
1462 	mutex_lock(&c->tnc_mutex);
1463 	found = ubifs_lookup_level0(c, key, &znode, &n);
1464 	if (!found) {
1465 		err = -ENOENT;
1466 		goto out;
1467 	} else if (found < 0) {
1468 		err = found;
1469 		goto out;
1470 	}
1471 	zt = &znode->zbranch[n];
1472 	if (lnum) {
1473 		*lnum = zt->lnum;
1474 		*offs = zt->offs;
1475 	}
1476 	if (is_hash_key(c, key)) {
1477 		/*
1478 		 * In this case the leaf node cache gets used, so we pass the
1479 		 * address of the zbranch and keep the mutex locked
1480 		 */
1481 		err = tnc_read_hashed_node(c, zt, node);
1482 		goto out;
1483 	}
1484 	if (safely) {
1485 		err = ubifs_tnc_read_node(c, zt, node);
1486 		goto out;
1487 	}
1488 	/* Drop the TNC mutex prematurely and race with garbage collection */
1489 	zbr = znode->zbranch[n];
1490 	gc_seq1 = c->gc_seq;
1491 	mutex_unlock(&c->tnc_mutex);
1492 
1493 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1494 		/* We do not GC journal heads */
1495 		err = ubifs_tnc_read_node(c, &zbr, node);
1496 		return err;
1497 	}
1498 
1499 	err = fallible_read_node(c, key, &zbr, node);
1500 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1501 		/*
1502 		 * The node may have been GC'ed out from under us so try again
1503 		 * while keeping the TNC mutex locked.
1504 		 */
1505 		safely = 1;
1506 		goto again;
1507 	}
1508 	return 0;
1509 
1510 out:
1511 	mutex_unlock(&c->tnc_mutex);
1512 	return err;
1513 }
1514 
1515 /**
1516  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1517  * @c: UBIFS file-system description object
1518  * @bu: bulk-read parameters and results
1519  *
1520  * Lookup consecutive data node keys for the same inode that reside
1521  * consecutively in the same LEB. This function returns zero in case of success
1522  * and a negative error code in case of failure.
1523  *
1524  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1525  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1526  * maximum possible amount of nodes for bulk-read.
1527  */
1528 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1529 {
1530 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1531 	int uninitialized_var(len);
1532 	unsigned int block = key_block(c, &bu->key);
1533 	struct ubifs_znode *znode;
1534 
1535 	bu->cnt = 0;
1536 	bu->blk_cnt = 0;
1537 	bu->eof = 0;
1538 
1539 	mutex_lock(&c->tnc_mutex);
1540 	/* Find first key */
1541 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1542 	if (err < 0)
1543 		goto out;
1544 	if (err) {
1545 		/* Key found */
1546 		len = znode->zbranch[n].len;
1547 		/* The buffer must be big enough for at least 1 node */
1548 		if (len > bu->buf_len) {
1549 			err = -EINVAL;
1550 			goto out;
1551 		}
1552 		/* Add this key */
1553 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1554 		bu->blk_cnt += 1;
1555 		lnum = znode->zbranch[n].lnum;
1556 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1557 	}
1558 	while (1) {
1559 		struct ubifs_zbranch *zbr;
1560 		union ubifs_key *key;
1561 		unsigned int next_block;
1562 
1563 		/* Find next key */
1564 		err = tnc_next(c, &znode, &n);
1565 		if (err)
1566 			goto out;
1567 		zbr = &znode->zbranch[n];
1568 		key = &zbr->key;
1569 		/* See if there is another data key for this file */
1570 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1571 		    key_type(c, key) != UBIFS_DATA_KEY) {
1572 			err = -ENOENT;
1573 			goto out;
1574 		}
1575 		if (lnum < 0) {
1576 			/* First key found */
1577 			lnum = zbr->lnum;
1578 			offs = ALIGN(zbr->offs + zbr->len, 8);
1579 			len = zbr->len;
1580 			if (len > bu->buf_len) {
1581 				err = -EINVAL;
1582 				goto out;
1583 			}
1584 		} else {
1585 			/*
1586 			 * The data nodes must be in consecutive positions in
1587 			 * the same LEB.
1588 			 */
1589 			if (zbr->lnum != lnum || zbr->offs != offs)
1590 				goto out;
1591 			offs += ALIGN(zbr->len, 8);
1592 			len = ALIGN(len, 8) + zbr->len;
1593 			/* Must not exceed buffer length */
1594 			if (len > bu->buf_len)
1595 				goto out;
1596 		}
1597 		/* Allow for holes */
1598 		next_block = key_block(c, key);
1599 		bu->blk_cnt += (next_block - block - 1);
1600 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1601 			goto out;
1602 		block = next_block;
1603 		/* Add this key */
1604 		bu->zbranch[bu->cnt++] = *zbr;
1605 		bu->blk_cnt += 1;
1606 		/* See if we have room for more */
1607 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1608 			goto out;
1609 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1610 			goto out;
1611 	}
1612 out:
1613 	if (err == -ENOENT) {
1614 		bu->eof = 1;
1615 		err = 0;
1616 	}
1617 	bu->gc_seq = c->gc_seq;
1618 	mutex_unlock(&c->tnc_mutex);
1619 	if (err)
1620 		return err;
1621 	/*
1622 	 * An enormous hole could cause bulk-read to encompass too many
1623 	 * page cache pages, so limit the number here.
1624 	 */
1625 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1626 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1627 	/*
1628 	 * Ensure that bulk-read covers a whole number of page cache
1629 	 * pages.
1630 	 */
1631 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1632 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1633 		return 0;
1634 	if (bu->eof) {
1635 		/* At the end of file we can round up */
1636 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1637 		return 0;
1638 	}
1639 	/* Exclude data nodes that do not make up a whole page cache page */
1640 	block = key_block(c, &bu->key) + bu->blk_cnt;
1641 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1642 	while (bu->cnt) {
1643 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1644 			break;
1645 		bu->cnt -= 1;
1646 	}
1647 	return 0;
1648 }
1649 
1650 /**
1651  * read_wbuf - bulk-read from a LEB with a wbuf.
1652  * @wbuf: wbuf that may overlap the read
1653  * @buf: buffer into which to read
1654  * @len: read length
1655  * @lnum: LEB number from which to read
1656  * @offs: offset from which to read
1657  *
1658  * This functions returns %0 on success or a negative error code on failure.
1659  */
1660 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1661 		     int offs)
1662 {
1663 	const struct ubifs_info *c = wbuf->c;
1664 	int rlen, overlap;
1665 
1666 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1667 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1668 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1669 	ubifs_assert(c, offs + len <= c->leb_size);
1670 
1671 	spin_lock(&wbuf->lock);
1672 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1673 	if (!overlap) {
1674 		/* We may safely unlock the write-buffer and read the data */
1675 		spin_unlock(&wbuf->lock);
1676 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1677 	}
1678 
1679 	/* Don't read under wbuf */
1680 	rlen = wbuf->offs - offs;
1681 	if (rlen < 0)
1682 		rlen = 0;
1683 
1684 	/* Copy the rest from the write-buffer */
1685 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1686 	spin_unlock(&wbuf->lock);
1687 
1688 	if (rlen > 0)
1689 		/* Read everything that goes before write-buffer */
1690 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * validate_data_node - validate data nodes for bulk-read.
1697  * @c: UBIFS file-system description object
1698  * @buf: buffer containing data node to validate
1699  * @zbr: zbranch of data node to validate
1700  *
1701  * This functions returns %0 on success or a negative error code on failure.
1702  */
1703 static int validate_data_node(struct ubifs_info *c, void *buf,
1704 			      struct ubifs_zbranch *zbr)
1705 {
1706 	union ubifs_key key1;
1707 	struct ubifs_ch *ch = buf;
1708 	int err, len;
1709 
1710 	if (ch->node_type != UBIFS_DATA_NODE) {
1711 		ubifs_err(c, "bad node type (%d but expected %d)",
1712 			  ch->node_type, UBIFS_DATA_NODE);
1713 		goto out_err;
1714 	}
1715 
1716 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1717 	if (err) {
1718 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1719 		goto out;
1720 	}
1721 
1722 	err = ubifs_node_check_hash(c, buf, zbr->hash);
1723 	if (err) {
1724 		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1725 		return err;
1726 	}
1727 
1728 	len = le32_to_cpu(ch->len);
1729 	if (len != zbr->len) {
1730 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1731 		goto out_err;
1732 	}
1733 
1734 	/* Make sure the key of the read node is correct */
1735 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1736 	if (!keys_eq(c, &zbr->key, &key1)) {
1737 		ubifs_err(c, "bad key in node at LEB %d:%d",
1738 			  zbr->lnum, zbr->offs);
1739 		dbg_tnck(&zbr->key, "looked for key ");
1740 		dbg_tnck(&key1, "found node's key ");
1741 		goto out_err;
1742 	}
1743 
1744 	return 0;
1745 
1746 out_err:
1747 	err = -EINVAL;
1748 out:
1749 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1750 	ubifs_dump_node(c, buf);
1751 	dump_stack();
1752 	return err;
1753 }
1754 
1755 /**
1756  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1757  * @c: UBIFS file-system description object
1758  * @bu: bulk-read parameters and results
1759  *
1760  * This functions reads and validates the data nodes that were identified by the
1761  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1762  * -EAGAIN to indicate a race with GC, or another negative error code on
1763  * failure.
1764  */
1765 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1766 {
1767 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1768 	struct ubifs_wbuf *wbuf;
1769 	void *buf;
1770 
1771 	len = bu->zbranch[bu->cnt - 1].offs;
1772 	len += bu->zbranch[bu->cnt - 1].len - offs;
1773 	if (len > bu->buf_len) {
1774 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1775 		return -EINVAL;
1776 	}
1777 
1778 	/* Do the read */
1779 	wbuf = ubifs_get_wbuf(c, lnum);
1780 	if (wbuf)
1781 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1782 	else
1783 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1784 
1785 	/* Check for a race with GC */
1786 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1787 		return -EAGAIN;
1788 
1789 	if (err && err != -EBADMSG) {
1790 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1791 			  lnum, offs, err);
1792 		dump_stack();
1793 		dbg_tnck(&bu->key, "key ");
1794 		return err;
1795 	}
1796 
1797 	/* Validate the nodes read */
1798 	buf = bu->buf;
1799 	for (i = 0; i < bu->cnt; i++) {
1800 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1801 		if (err)
1802 			return err;
1803 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 /**
1810  * do_lookup_nm- look up a "hashed" node.
1811  * @c: UBIFS file-system description object
1812  * @key: node key to lookup
1813  * @node: the node is returned here
1814  * @nm: node name
1815  *
1816  * This function looks up and reads a node which contains name hash in the key.
1817  * Since the hash may have collisions, there may be many nodes with the same
1818  * key, so we have to sequentially look to all of them until the needed one is
1819  * found. This function returns zero in case of success, %-ENOENT if the node
1820  * was not found, and a negative error code in case of failure.
1821  */
1822 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1823 			void *node, const struct fscrypt_name *nm)
1824 {
1825 	int found, n, err;
1826 	struct ubifs_znode *znode;
1827 
1828 	dbg_tnck(key, "key ");
1829 	mutex_lock(&c->tnc_mutex);
1830 	found = ubifs_lookup_level0(c, key, &znode, &n);
1831 	if (!found) {
1832 		err = -ENOENT;
1833 		goto out_unlock;
1834 	} else if (found < 0) {
1835 		err = found;
1836 		goto out_unlock;
1837 	}
1838 
1839 	ubifs_assert(c, n >= 0);
1840 
1841 	err = resolve_collision(c, key, &znode, &n, nm);
1842 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1843 	if (unlikely(err < 0))
1844 		goto out_unlock;
1845 	if (err == 0) {
1846 		err = -ENOENT;
1847 		goto out_unlock;
1848 	}
1849 
1850 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1851 
1852 out_unlock:
1853 	mutex_unlock(&c->tnc_mutex);
1854 	return err;
1855 }
1856 
1857 /**
1858  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1859  * @c: UBIFS file-system description object
1860  * @key: node key to lookup
1861  * @node: the node is returned here
1862  * @nm: node name
1863  *
1864  * This function looks up and reads a node which contains name hash in the key.
1865  * Since the hash may have collisions, there may be many nodes with the same
1866  * key, so we have to sequentially look to all of them until the needed one is
1867  * found. This function returns zero in case of success, %-ENOENT if the node
1868  * was not found, and a negative error code in case of failure.
1869  */
1870 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1871 			void *node, const struct fscrypt_name *nm)
1872 {
1873 	int err, len;
1874 	const struct ubifs_dent_node *dent = node;
1875 
1876 	/*
1877 	 * We assume that in most of the cases there are no name collisions and
1878 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1879 	 */
1880 	err = ubifs_tnc_lookup(c, key, node);
1881 	if (err)
1882 		return err;
1883 
1884 	len = le16_to_cpu(dent->nlen);
1885 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1886 		return 0;
1887 
1888 	/*
1889 	 * Unluckily, there are hash collisions and we have to iterate over
1890 	 * them look at each direntry with colliding name hash sequentially.
1891 	 */
1892 
1893 	return do_lookup_nm(c, key, node, nm);
1894 }
1895 
1896 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1897 			    struct ubifs_dent_node *dent, uint32_t cookie,
1898 			    struct ubifs_znode **zn, int *n)
1899 {
1900 	int err;
1901 	struct ubifs_znode *znode = *zn;
1902 	struct ubifs_zbranch *zbr;
1903 	union ubifs_key *dkey;
1904 
1905 	for (;;) {
1906 		zbr = &znode->zbranch[*n];
1907 		dkey = &zbr->key;
1908 
1909 		if (key_inum(c, dkey) != key_inum(c, key) ||
1910 		    key_type(c, dkey) != key_type(c, key)) {
1911 			return -ENOENT;
1912 		}
1913 
1914 		err = tnc_read_hashed_node(c, zbr, dent);
1915 		if (err)
1916 			return err;
1917 
1918 		if (key_hash(c, key) == key_hash(c, dkey) &&
1919 		    le32_to_cpu(dent->cookie) == cookie) {
1920 			*zn = znode;
1921 			return 0;
1922 		}
1923 
1924 		err = tnc_next(c, &znode, n);
1925 		if (err)
1926 			return err;
1927 	}
1928 }
1929 
1930 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1931 			struct ubifs_dent_node *dent, uint32_t cookie)
1932 {
1933 	int n, err;
1934 	struct ubifs_znode *znode;
1935 	union ubifs_key start_key;
1936 
1937 	ubifs_assert(c, is_hash_key(c, key));
1938 
1939 	lowest_dent_key(c, &start_key, key_inum(c, key));
1940 
1941 	mutex_lock(&c->tnc_mutex);
1942 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1943 	if (unlikely(err < 0))
1944 		goto out_unlock;
1945 
1946 	err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1947 
1948 out_unlock:
1949 	mutex_unlock(&c->tnc_mutex);
1950 	return err;
1951 }
1952 
1953 /**
1954  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1955  * @c: UBIFS file-system description object
1956  * @key: node key to lookup
1957  * @node: the node is returned here
1958  * @cookie: node cookie for collision resolution
1959  *
1960  * This function looks up and reads a node which contains name hash in the key.
1961  * Since the hash may have collisions, there may be many nodes with the same
1962  * key, so we have to sequentially look to all of them until the needed one
1963  * with the same cookie value is found.
1964  * This function returns zero in case of success, %-ENOENT if the node
1965  * was not found, and a negative error code in case of failure.
1966  */
1967 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1968 			void *node, uint32_t cookie)
1969 {
1970 	int err;
1971 	const struct ubifs_dent_node *dent = node;
1972 
1973 	if (!c->double_hash)
1974 		return -EOPNOTSUPP;
1975 
1976 	/*
1977 	 * We assume that in most of the cases there are no name collisions and
1978 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1979 	 */
1980 	err = ubifs_tnc_lookup(c, key, node);
1981 	if (err)
1982 		return err;
1983 
1984 	if (le32_to_cpu(dent->cookie) == cookie)
1985 		return 0;
1986 
1987 	/*
1988 	 * Unluckily, there are hash collisions and we have to iterate over
1989 	 * them look at each direntry with colliding name hash sequentially.
1990 	 */
1991 	return do_lookup_dh(c, key, node, cookie);
1992 }
1993 
1994 /**
1995  * correct_parent_keys - correct parent znodes' keys.
1996  * @c: UBIFS file-system description object
1997  * @znode: znode to correct parent znodes for
1998  *
1999  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2000  * zbranch changes, keys of parent znodes have to be corrected. This helper
2001  * function is called in such situations and corrects the keys if needed.
2002  */
2003 static void correct_parent_keys(const struct ubifs_info *c,
2004 				struct ubifs_znode *znode)
2005 {
2006 	union ubifs_key *key, *key1;
2007 
2008 	ubifs_assert(c, znode->parent);
2009 	ubifs_assert(c, znode->iip == 0);
2010 
2011 	key = &znode->zbranch[0].key;
2012 	key1 = &znode->parent->zbranch[0].key;
2013 
2014 	while (keys_cmp(c, key, key1) < 0) {
2015 		key_copy(c, key, key1);
2016 		znode = znode->parent;
2017 		znode->alt = 1;
2018 		if (!znode->parent || znode->iip)
2019 			break;
2020 		key1 = &znode->parent->zbranch[0].key;
2021 	}
2022 }
2023 
2024 /**
2025  * insert_zbranch - insert a zbranch into a znode.
2026  * @c: UBIFS file-system description object
2027  * @znode: znode into which to insert
2028  * @zbr: zbranch to insert
2029  * @n: slot number to insert to
2030  *
2031  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2032  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2033  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2034  * slot, zbranches starting from @n have to be moved right.
2035  */
2036 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2037 			   const struct ubifs_zbranch *zbr, int n)
2038 {
2039 	int i;
2040 
2041 	ubifs_assert(c, ubifs_zn_dirty(znode));
2042 
2043 	if (znode->level) {
2044 		for (i = znode->child_cnt; i > n; i--) {
2045 			znode->zbranch[i] = znode->zbranch[i - 1];
2046 			if (znode->zbranch[i].znode)
2047 				znode->zbranch[i].znode->iip = i;
2048 		}
2049 		if (zbr->znode)
2050 			zbr->znode->iip = n;
2051 	} else
2052 		for (i = znode->child_cnt; i > n; i--)
2053 			znode->zbranch[i] = znode->zbranch[i - 1];
2054 
2055 	znode->zbranch[n] = *zbr;
2056 	znode->child_cnt += 1;
2057 
2058 	/*
2059 	 * After inserting at slot zero, the lower bound of the key range of
2060 	 * this znode may have changed. If this znode is subsequently split
2061 	 * then the upper bound of the key range may change, and furthermore
2062 	 * it could change to be lower than the original lower bound. If that
2063 	 * happens, then it will no longer be possible to find this znode in the
2064 	 * TNC using the key from the index node on flash. That is bad because
2065 	 * if it is not found, we will assume it is obsolete and may overwrite
2066 	 * it. Then if there is an unclean unmount, we will start using the
2067 	 * old index which will be broken.
2068 	 *
2069 	 * So we first mark znodes that have insertions at slot zero, and then
2070 	 * if they are split we add their lnum/offs to the old_idx tree.
2071 	 */
2072 	if (n == 0)
2073 		znode->alt = 1;
2074 }
2075 
2076 /**
2077  * tnc_insert - insert a node into TNC.
2078  * @c: UBIFS file-system description object
2079  * @znode: znode to insert into
2080  * @zbr: branch to insert
2081  * @n: slot number to insert new zbranch to
2082  *
2083  * This function inserts a new node described by @zbr into znode @znode. If
2084  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2085  * are splat as well if needed. Returns zero in case of success or a negative
2086  * error code in case of failure.
2087  */
2088 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2089 		      struct ubifs_zbranch *zbr, int n)
2090 {
2091 	struct ubifs_znode *zn, *zi, *zp;
2092 	int i, keep, move, appending = 0;
2093 	union ubifs_key *key = &zbr->key, *key1;
2094 
2095 	ubifs_assert(c, n >= 0 && n <= c->fanout);
2096 
2097 	/* Implement naive insert for now */
2098 again:
2099 	zp = znode->parent;
2100 	if (znode->child_cnt < c->fanout) {
2101 		ubifs_assert(c, n != c->fanout);
2102 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2103 
2104 		insert_zbranch(c, znode, zbr, n);
2105 
2106 		/* Ensure parent's key is correct */
2107 		if (n == 0 && zp && znode->iip == 0)
2108 			correct_parent_keys(c, znode);
2109 
2110 		return 0;
2111 	}
2112 
2113 	/*
2114 	 * Unfortunately, @znode does not have more empty slots and we have to
2115 	 * split it.
2116 	 */
2117 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2118 
2119 	if (znode->alt)
2120 		/*
2121 		 * We can no longer be sure of finding this znode by key, so we
2122 		 * record it in the old_idx tree.
2123 		 */
2124 		ins_clr_old_idx_znode(c, znode);
2125 
2126 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2127 	if (!zn)
2128 		return -ENOMEM;
2129 	zn->parent = zp;
2130 	zn->level = znode->level;
2131 
2132 	/* Decide where to split */
2133 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2134 		/* Try not to split consecutive data keys */
2135 		if (n == c->fanout) {
2136 			key1 = &znode->zbranch[n - 1].key;
2137 			if (key_inum(c, key1) == key_inum(c, key) &&
2138 			    key_type(c, key1) == UBIFS_DATA_KEY)
2139 				appending = 1;
2140 		} else
2141 			goto check_split;
2142 	} else if (appending && n != c->fanout) {
2143 		/* Try not to split consecutive data keys */
2144 		appending = 0;
2145 check_split:
2146 		if (n >= (c->fanout + 1) / 2) {
2147 			key1 = &znode->zbranch[0].key;
2148 			if (key_inum(c, key1) == key_inum(c, key) &&
2149 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2150 				key1 = &znode->zbranch[n].key;
2151 				if (key_inum(c, key1) != key_inum(c, key) ||
2152 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2153 					keep = n;
2154 					move = c->fanout - keep;
2155 					zi = znode;
2156 					goto do_split;
2157 				}
2158 			}
2159 		}
2160 	}
2161 
2162 	if (appending) {
2163 		keep = c->fanout;
2164 		move = 0;
2165 	} else {
2166 		keep = (c->fanout + 1) / 2;
2167 		move = c->fanout - keep;
2168 	}
2169 
2170 	/*
2171 	 * Although we don't at present, we could look at the neighbors and see
2172 	 * if we can move some zbranches there.
2173 	 */
2174 
2175 	if (n < keep) {
2176 		/* Insert into existing znode */
2177 		zi = znode;
2178 		move += 1;
2179 		keep -= 1;
2180 	} else {
2181 		/* Insert into new znode */
2182 		zi = zn;
2183 		n -= keep;
2184 		/* Re-parent */
2185 		if (zn->level != 0)
2186 			zbr->znode->parent = zn;
2187 	}
2188 
2189 do_split:
2190 
2191 	__set_bit(DIRTY_ZNODE, &zn->flags);
2192 	atomic_long_inc(&c->dirty_zn_cnt);
2193 
2194 	zn->child_cnt = move;
2195 	znode->child_cnt = keep;
2196 
2197 	dbg_tnc("moving %d, keeping %d", move, keep);
2198 
2199 	/* Move zbranch */
2200 	for (i = 0; i < move; i++) {
2201 		zn->zbranch[i] = znode->zbranch[keep + i];
2202 		/* Re-parent */
2203 		if (zn->level != 0)
2204 			if (zn->zbranch[i].znode) {
2205 				zn->zbranch[i].znode->parent = zn;
2206 				zn->zbranch[i].znode->iip = i;
2207 			}
2208 	}
2209 
2210 	/* Insert new key and branch */
2211 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2212 
2213 	insert_zbranch(c, zi, zbr, n);
2214 
2215 	/* Insert new znode (produced by spitting) into the parent */
2216 	if (zp) {
2217 		if (n == 0 && zi == znode && znode->iip == 0)
2218 			correct_parent_keys(c, znode);
2219 
2220 		/* Locate insertion point */
2221 		n = znode->iip + 1;
2222 
2223 		/* Tail recursion */
2224 		zbr->key = zn->zbranch[0].key;
2225 		zbr->znode = zn;
2226 		zbr->lnum = 0;
2227 		zbr->offs = 0;
2228 		zbr->len = 0;
2229 		znode = zp;
2230 
2231 		goto again;
2232 	}
2233 
2234 	/* We have to split root znode */
2235 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2236 
2237 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2238 	if (!zi)
2239 		return -ENOMEM;
2240 
2241 	zi->child_cnt = 2;
2242 	zi->level = znode->level + 1;
2243 
2244 	__set_bit(DIRTY_ZNODE, &zi->flags);
2245 	atomic_long_inc(&c->dirty_zn_cnt);
2246 
2247 	zi->zbranch[0].key = znode->zbranch[0].key;
2248 	zi->zbranch[0].znode = znode;
2249 	zi->zbranch[0].lnum = c->zroot.lnum;
2250 	zi->zbranch[0].offs = c->zroot.offs;
2251 	zi->zbranch[0].len = c->zroot.len;
2252 	zi->zbranch[1].key = zn->zbranch[0].key;
2253 	zi->zbranch[1].znode = zn;
2254 
2255 	c->zroot.lnum = 0;
2256 	c->zroot.offs = 0;
2257 	c->zroot.len = 0;
2258 	c->zroot.znode = zi;
2259 
2260 	zn->parent = zi;
2261 	zn->iip = 1;
2262 	znode->parent = zi;
2263 	znode->iip = 0;
2264 
2265 	return 0;
2266 }
2267 
2268 /**
2269  * ubifs_tnc_add - add a node to TNC.
2270  * @c: UBIFS file-system description object
2271  * @key: key to add
2272  * @lnum: LEB number of node
2273  * @offs: node offset
2274  * @len: node length
2275  * @hash: The hash over the node
2276  *
2277  * This function adds a node with key @key to TNC. The node may be new or it may
2278  * obsolete some existing one. Returns %0 on success or negative error code on
2279  * failure.
2280  */
2281 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2282 		  int offs, int len, const u8 *hash)
2283 {
2284 	int found, n, err = 0;
2285 	struct ubifs_znode *znode;
2286 
2287 	mutex_lock(&c->tnc_mutex);
2288 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2289 	found = lookup_level0_dirty(c, key, &znode, &n);
2290 	if (!found) {
2291 		struct ubifs_zbranch zbr;
2292 
2293 		zbr.znode = NULL;
2294 		zbr.lnum = lnum;
2295 		zbr.offs = offs;
2296 		zbr.len = len;
2297 		ubifs_copy_hash(c, hash, zbr.hash);
2298 		key_copy(c, key, &zbr.key);
2299 		err = tnc_insert(c, znode, &zbr, n + 1);
2300 	} else if (found == 1) {
2301 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2302 
2303 		lnc_free(zbr);
2304 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2305 		zbr->lnum = lnum;
2306 		zbr->offs = offs;
2307 		zbr->len = len;
2308 		ubifs_copy_hash(c, hash, zbr->hash);
2309 	} else
2310 		err = found;
2311 	if (!err)
2312 		err = dbg_check_tnc(c, 0);
2313 	mutex_unlock(&c->tnc_mutex);
2314 
2315 	return err;
2316 }
2317 
2318 /**
2319  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2320  * @c: UBIFS file-system description object
2321  * @key: key to add
2322  * @old_lnum: LEB number of old node
2323  * @old_offs: old node offset
2324  * @lnum: LEB number of node
2325  * @offs: node offset
2326  * @len: node length
2327  *
2328  * This function replaces a node with key @key in the TNC only if the old node
2329  * is found.  This function is called by garbage collection when node are moved.
2330  * Returns %0 on success or negative error code on failure.
2331  */
2332 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2333 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2334 {
2335 	int found, n, err = 0;
2336 	struct ubifs_znode *znode;
2337 
2338 	mutex_lock(&c->tnc_mutex);
2339 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2340 		 old_offs, lnum, offs, len);
2341 	found = lookup_level0_dirty(c, key, &znode, &n);
2342 	if (found < 0) {
2343 		err = found;
2344 		goto out_unlock;
2345 	}
2346 
2347 	if (found == 1) {
2348 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2349 
2350 		found = 0;
2351 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2352 			lnc_free(zbr);
2353 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2354 			if (err)
2355 				goto out_unlock;
2356 			zbr->lnum = lnum;
2357 			zbr->offs = offs;
2358 			zbr->len = len;
2359 			found = 1;
2360 		} else if (is_hash_key(c, key)) {
2361 			found = resolve_collision_directly(c, key, &znode, &n,
2362 							   old_lnum, old_offs);
2363 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2364 				found, znode, n, old_lnum, old_offs);
2365 			if (found < 0) {
2366 				err = found;
2367 				goto out_unlock;
2368 			}
2369 
2370 			if (found) {
2371 				/* Ensure the znode is dirtied */
2372 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2373 					znode = dirty_cow_bottom_up(c, znode);
2374 					if (IS_ERR(znode)) {
2375 						err = PTR_ERR(znode);
2376 						goto out_unlock;
2377 					}
2378 				}
2379 				zbr = &znode->zbranch[n];
2380 				lnc_free(zbr);
2381 				err = ubifs_add_dirt(c, zbr->lnum,
2382 						     zbr->len);
2383 				if (err)
2384 					goto out_unlock;
2385 				zbr->lnum = lnum;
2386 				zbr->offs = offs;
2387 				zbr->len = len;
2388 			}
2389 		}
2390 	}
2391 
2392 	if (!found)
2393 		err = ubifs_add_dirt(c, lnum, len);
2394 
2395 	if (!err)
2396 		err = dbg_check_tnc(c, 0);
2397 
2398 out_unlock:
2399 	mutex_unlock(&c->tnc_mutex);
2400 	return err;
2401 }
2402 
2403 /**
2404  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2405  * @c: UBIFS file-system description object
2406  * @key: key to add
2407  * @lnum: LEB number of node
2408  * @offs: node offset
2409  * @len: node length
2410  * @hash: The hash over the node
2411  * @nm: node name
2412  *
2413  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2414  * may have collisions, like directory entry keys.
2415  */
2416 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2417 		     int lnum, int offs, int len, const u8 *hash,
2418 		     const struct fscrypt_name *nm)
2419 {
2420 	int found, n, err = 0;
2421 	struct ubifs_znode *znode;
2422 
2423 	mutex_lock(&c->tnc_mutex);
2424 	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2425 	found = lookup_level0_dirty(c, key, &znode, &n);
2426 	if (found < 0) {
2427 		err = found;
2428 		goto out_unlock;
2429 	}
2430 
2431 	if (found == 1) {
2432 		if (c->replaying)
2433 			found = fallible_resolve_collision(c, key, &znode, &n,
2434 							   nm, 1);
2435 		else
2436 			found = resolve_collision(c, key, &znode, &n, nm);
2437 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2438 		if (found < 0) {
2439 			err = found;
2440 			goto out_unlock;
2441 		}
2442 
2443 		/* Ensure the znode is dirtied */
2444 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2445 			znode = dirty_cow_bottom_up(c, znode);
2446 			if (IS_ERR(znode)) {
2447 				err = PTR_ERR(znode);
2448 				goto out_unlock;
2449 			}
2450 		}
2451 
2452 		if (found == 1) {
2453 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2454 
2455 			lnc_free(zbr);
2456 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2457 			zbr->lnum = lnum;
2458 			zbr->offs = offs;
2459 			zbr->len = len;
2460 			ubifs_copy_hash(c, hash, zbr->hash);
2461 			goto out_unlock;
2462 		}
2463 	}
2464 
2465 	if (!found) {
2466 		struct ubifs_zbranch zbr;
2467 
2468 		zbr.znode = NULL;
2469 		zbr.lnum = lnum;
2470 		zbr.offs = offs;
2471 		zbr.len = len;
2472 		ubifs_copy_hash(c, hash, zbr.hash);
2473 		key_copy(c, key, &zbr.key);
2474 		err = tnc_insert(c, znode, &zbr, n + 1);
2475 		if (err)
2476 			goto out_unlock;
2477 		if (c->replaying) {
2478 			/*
2479 			 * We did not find it in the index so there may be a
2480 			 * dangling branch still in the index. So we remove it
2481 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2482 			 * an unmatchable name.
2483 			 */
2484 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2485 
2486 			err = dbg_check_tnc(c, 0);
2487 			mutex_unlock(&c->tnc_mutex);
2488 			if (err)
2489 				return err;
2490 			return ubifs_tnc_remove_nm(c, key, &noname);
2491 		}
2492 	}
2493 
2494 out_unlock:
2495 	if (!err)
2496 		err = dbg_check_tnc(c, 0);
2497 	mutex_unlock(&c->tnc_mutex);
2498 	return err;
2499 }
2500 
2501 /**
2502  * tnc_delete - delete a znode form TNC.
2503  * @c: UBIFS file-system description object
2504  * @znode: znode to delete from
2505  * @n: zbranch slot number to delete
2506  *
2507  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2508  * case of success and a negative error code in case of failure.
2509  */
2510 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2511 {
2512 	struct ubifs_zbranch *zbr;
2513 	struct ubifs_znode *zp;
2514 	int i, err;
2515 
2516 	/* Delete without merge for now */
2517 	ubifs_assert(c, znode->level == 0);
2518 	ubifs_assert(c, n >= 0 && n < c->fanout);
2519 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2520 
2521 	zbr = &znode->zbranch[n];
2522 	lnc_free(zbr);
2523 
2524 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2525 	if (err) {
2526 		ubifs_dump_znode(c, znode);
2527 		return err;
2528 	}
2529 
2530 	/* We do not "gap" zbranch slots */
2531 	for (i = n; i < znode->child_cnt - 1; i++)
2532 		znode->zbranch[i] = znode->zbranch[i + 1];
2533 	znode->child_cnt -= 1;
2534 
2535 	if (znode->child_cnt > 0)
2536 		return 0;
2537 
2538 	/*
2539 	 * This was the last zbranch, we have to delete this znode from the
2540 	 * parent.
2541 	 */
2542 
2543 	do {
2544 		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2545 		ubifs_assert(c, ubifs_zn_dirty(znode));
2546 
2547 		zp = znode->parent;
2548 		n = znode->iip;
2549 
2550 		atomic_long_dec(&c->dirty_zn_cnt);
2551 
2552 		err = insert_old_idx_znode(c, znode);
2553 		if (err)
2554 			return err;
2555 
2556 		if (znode->cnext) {
2557 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2558 			atomic_long_inc(&c->clean_zn_cnt);
2559 			atomic_long_inc(&ubifs_clean_zn_cnt);
2560 		} else
2561 			kfree(znode);
2562 		znode = zp;
2563 	} while (znode->child_cnt == 1); /* while removing last child */
2564 
2565 	/* Remove from znode, entry n - 1 */
2566 	znode->child_cnt -= 1;
2567 	ubifs_assert(c, znode->level != 0);
2568 	for (i = n; i < znode->child_cnt; i++) {
2569 		znode->zbranch[i] = znode->zbranch[i + 1];
2570 		if (znode->zbranch[i].znode)
2571 			znode->zbranch[i].znode->iip = i;
2572 	}
2573 
2574 	/*
2575 	 * If this is the root and it has only 1 child then
2576 	 * collapse the tree.
2577 	 */
2578 	if (!znode->parent) {
2579 		while (znode->child_cnt == 1 && znode->level != 0) {
2580 			zp = znode;
2581 			zbr = &znode->zbranch[0];
2582 			znode = get_znode(c, znode, 0);
2583 			if (IS_ERR(znode))
2584 				return PTR_ERR(znode);
2585 			znode = dirty_cow_znode(c, zbr);
2586 			if (IS_ERR(znode))
2587 				return PTR_ERR(znode);
2588 			znode->parent = NULL;
2589 			znode->iip = 0;
2590 			if (c->zroot.len) {
2591 				err = insert_old_idx(c, c->zroot.lnum,
2592 						     c->zroot.offs);
2593 				if (err)
2594 					return err;
2595 			}
2596 			c->zroot.lnum = zbr->lnum;
2597 			c->zroot.offs = zbr->offs;
2598 			c->zroot.len = zbr->len;
2599 			c->zroot.znode = znode;
2600 			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2601 			ubifs_assert(c, ubifs_zn_dirty(zp));
2602 			atomic_long_dec(&c->dirty_zn_cnt);
2603 
2604 			if (zp->cnext) {
2605 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2606 				atomic_long_inc(&c->clean_zn_cnt);
2607 				atomic_long_inc(&ubifs_clean_zn_cnt);
2608 			} else
2609 				kfree(zp);
2610 		}
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 /**
2617  * ubifs_tnc_remove - remove an index entry of a node.
2618  * @c: UBIFS file-system description object
2619  * @key: key of node
2620  *
2621  * Returns %0 on success or negative error code on failure.
2622  */
2623 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2624 {
2625 	int found, n, err = 0;
2626 	struct ubifs_znode *znode;
2627 
2628 	mutex_lock(&c->tnc_mutex);
2629 	dbg_tnck(key, "key ");
2630 	found = lookup_level0_dirty(c, key, &znode, &n);
2631 	if (found < 0) {
2632 		err = found;
2633 		goto out_unlock;
2634 	}
2635 	if (found == 1)
2636 		err = tnc_delete(c, znode, n);
2637 	if (!err)
2638 		err = dbg_check_tnc(c, 0);
2639 
2640 out_unlock:
2641 	mutex_unlock(&c->tnc_mutex);
2642 	return err;
2643 }
2644 
2645 /**
2646  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2647  * @c: UBIFS file-system description object
2648  * @key: key of node
2649  * @nm: directory entry name
2650  *
2651  * Returns %0 on success or negative error code on failure.
2652  */
2653 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2654 			const struct fscrypt_name *nm)
2655 {
2656 	int n, err;
2657 	struct ubifs_znode *znode;
2658 
2659 	mutex_lock(&c->tnc_mutex);
2660 	dbg_tnck(key, "key ");
2661 	err = lookup_level0_dirty(c, key, &znode, &n);
2662 	if (err < 0)
2663 		goto out_unlock;
2664 
2665 	if (err) {
2666 		if (c->replaying)
2667 			err = fallible_resolve_collision(c, key, &znode, &n,
2668 							 nm, 0);
2669 		else
2670 			err = resolve_collision(c, key, &znode, &n, nm);
2671 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2672 		if (err < 0)
2673 			goto out_unlock;
2674 		if (err) {
2675 			/* Ensure the znode is dirtied */
2676 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2677 				znode = dirty_cow_bottom_up(c, znode);
2678 				if (IS_ERR(znode)) {
2679 					err = PTR_ERR(znode);
2680 					goto out_unlock;
2681 				}
2682 			}
2683 			err = tnc_delete(c, znode, n);
2684 		}
2685 	}
2686 
2687 out_unlock:
2688 	if (!err)
2689 		err = dbg_check_tnc(c, 0);
2690 	mutex_unlock(&c->tnc_mutex);
2691 	return err;
2692 }
2693 
2694 /**
2695  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2696  * @c: UBIFS file-system description object
2697  * @key: key of node
2698  * @cookie: node cookie for collision resolution
2699  *
2700  * Returns %0 on success or negative error code on failure.
2701  */
2702 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2703 			uint32_t cookie)
2704 {
2705 	int n, err;
2706 	struct ubifs_znode *znode;
2707 	struct ubifs_dent_node *dent;
2708 	struct ubifs_zbranch *zbr;
2709 
2710 	if (!c->double_hash)
2711 		return -EOPNOTSUPP;
2712 
2713 	mutex_lock(&c->tnc_mutex);
2714 	err = lookup_level0_dirty(c, key, &znode, &n);
2715 	if (err <= 0)
2716 		goto out_unlock;
2717 
2718 	zbr = &znode->zbranch[n];
2719 	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2720 	if (!dent) {
2721 		err = -ENOMEM;
2722 		goto out_unlock;
2723 	}
2724 
2725 	err = tnc_read_hashed_node(c, zbr, dent);
2726 	if (err)
2727 		goto out_free;
2728 
2729 	/* If the cookie does not match, we're facing a hash collision. */
2730 	if (le32_to_cpu(dent->cookie) != cookie) {
2731 		union ubifs_key start_key;
2732 
2733 		lowest_dent_key(c, &start_key, key_inum(c, key));
2734 
2735 		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2736 		if (unlikely(err < 0))
2737 			goto out_free;
2738 
2739 		err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2740 		if (err)
2741 			goto out_free;
2742 	}
2743 
2744 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2745 		znode = dirty_cow_bottom_up(c, znode);
2746 		if (IS_ERR(znode)) {
2747 			err = PTR_ERR(znode);
2748 			goto out_free;
2749 		}
2750 	}
2751 	err = tnc_delete(c, znode, n);
2752 
2753 out_free:
2754 	kfree(dent);
2755 out_unlock:
2756 	if (!err)
2757 		err = dbg_check_tnc(c, 0);
2758 	mutex_unlock(&c->tnc_mutex);
2759 	return err;
2760 }
2761 
2762 /**
2763  * key_in_range - determine if a key falls within a range of keys.
2764  * @c: UBIFS file-system description object
2765  * @key: key to check
2766  * @from_key: lowest key in range
2767  * @to_key: highest key in range
2768  *
2769  * This function returns %1 if the key is in range and %0 otherwise.
2770  */
2771 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2772 			union ubifs_key *from_key, union ubifs_key *to_key)
2773 {
2774 	if (keys_cmp(c, key, from_key) < 0)
2775 		return 0;
2776 	if (keys_cmp(c, key, to_key) > 0)
2777 		return 0;
2778 	return 1;
2779 }
2780 
2781 /**
2782  * ubifs_tnc_remove_range - remove index entries in range.
2783  * @c: UBIFS file-system description object
2784  * @from_key: lowest key to remove
2785  * @to_key: highest key to remove
2786  *
2787  * This function removes index entries starting at @from_key and ending at
2788  * @to_key.  This function returns zero in case of success and a negative error
2789  * code in case of failure.
2790  */
2791 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2792 			   union ubifs_key *to_key)
2793 {
2794 	int i, n, k, err = 0;
2795 	struct ubifs_znode *znode;
2796 	union ubifs_key *key;
2797 
2798 	mutex_lock(&c->tnc_mutex);
2799 	while (1) {
2800 		/* Find first level 0 znode that contains keys to remove */
2801 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2802 		if (err < 0)
2803 			goto out_unlock;
2804 
2805 		if (err)
2806 			key = from_key;
2807 		else {
2808 			err = tnc_next(c, &znode, &n);
2809 			if (err == -ENOENT) {
2810 				err = 0;
2811 				goto out_unlock;
2812 			}
2813 			if (err < 0)
2814 				goto out_unlock;
2815 			key = &znode->zbranch[n].key;
2816 			if (!key_in_range(c, key, from_key, to_key)) {
2817 				err = 0;
2818 				goto out_unlock;
2819 			}
2820 		}
2821 
2822 		/* Ensure the znode is dirtied */
2823 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2824 			znode = dirty_cow_bottom_up(c, znode);
2825 			if (IS_ERR(znode)) {
2826 				err = PTR_ERR(znode);
2827 				goto out_unlock;
2828 			}
2829 		}
2830 
2831 		/* Remove all keys in range except the first */
2832 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2833 			key = &znode->zbranch[i].key;
2834 			if (!key_in_range(c, key, from_key, to_key))
2835 				break;
2836 			lnc_free(&znode->zbranch[i]);
2837 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2838 					     znode->zbranch[i].len);
2839 			if (err) {
2840 				ubifs_dump_znode(c, znode);
2841 				goto out_unlock;
2842 			}
2843 			dbg_tnck(key, "removing key ");
2844 		}
2845 		if (k) {
2846 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2847 				znode->zbranch[i - k] = znode->zbranch[i];
2848 			znode->child_cnt -= k;
2849 		}
2850 
2851 		/* Now delete the first */
2852 		err = tnc_delete(c, znode, n);
2853 		if (err)
2854 			goto out_unlock;
2855 	}
2856 
2857 out_unlock:
2858 	if (!err)
2859 		err = dbg_check_tnc(c, 0);
2860 	mutex_unlock(&c->tnc_mutex);
2861 	return err;
2862 }
2863 
2864 /**
2865  * ubifs_tnc_remove_ino - remove an inode from TNC.
2866  * @c: UBIFS file-system description object
2867  * @inum: inode number to remove
2868  *
2869  * This function remove inode @inum and all the extended attributes associated
2870  * with the anode from TNC and returns zero in case of success or a negative
2871  * error code in case of failure.
2872  */
2873 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2874 {
2875 	union ubifs_key key1, key2;
2876 	struct ubifs_dent_node *xent, *pxent = NULL;
2877 	struct fscrypt_name nm = {0};
2878 
2879 	dbg_tnc("ino %lu", (unsigned long)inum);
2880 
2881 	/*
2882 	 * Walk all extended attribute entries and remove them together with
2883 	 * corresponding extended attribute inodes.
2884 	 */
2885 	lowest_xent_key(c, &key1, inum);
2886 	while (1) {
2887 		ino_t xattr_inum;
2888 		int err;
2889 
2890 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2891 		if (IS_ERR(xent)) {
2892 			err = PTR_ERR(xent);
2893 			if (err == -ENOENT)
2894 				break;
2895 			return err;
2896 		}
2897 
2898 		xattr_inum = le64_to_cpu(xent->inum);
2899 		dbg_tnc("xent '%s', ino %lu", xent->name,
2900 			(unsigned long)xattr_inum);
2901 
2902 		ubifs_evict_xattr_inode(c, xattr_inum);
2903 
2904 		fname_name(&nm) = xent->name;
2905 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2906 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2907 		if (err) {
2908 			kfree(xent);
2909 			return err;
2910 		}
2911 
2912 		lowest_ino_key(c, &key1, xattr_inum);
2913 		highest_ino_key(c, &key2, xattr_inum);
2914 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2915 		if (err) {
2916 			kfree(xent);
2917 			return err;
2918 		}
2919 
2920 		kfree(pxent);
2921 		pxent = xent;
2922 		key_read(c, &xent->key, &key1);
2923 	}
2924 
2925 	kfree(pxent);
2926 	lowest_ino_key(c, &key1, inum);
2927 	highest_ino_key(c, &key2, inum);
2928 
2929 	return ubifs_tnc_remove_range(c, &key1, &key2);
2930 }
2931 
2932 /**
2933  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2934  * @c: UBIFS file-system description object
2935  * @key: key of last entry
2936  * @nm: name of last entry found or %NULL
2937  *
2938  * This function finds and reads the next directory or extended attribute entry
2939  * after the given key (@key) if there is one. @nm is used to resolve
2940  * collisions.
2941  *
2942  * If the name of the current entry is not known and only the key is known,
2943  * @nm->name has to be %NULL. In this case the semantics of this function is a
2944  * little bit different and it returns the entry corresponding to this key, not
2945  * the next one. If the key was not found, the closest "right" entry is
2946  * returned.
2947  *
2948  * If the fist entry has to be found, @key has to contain the lowest possible
2949  * key value for this inode and @name has to be %NULL.
2950  *
2951  * This function returns the found directory or extended attribute entry node
2952  * in case of success, %-ENOENT is returned if no entry was found, and a
2953  * negative error code is returned in case of failure.
2954  */
2955 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2956 					   union ubifs_key *key,
2957 					   const struct fscrypt_name *nm)
2958 {
2959 	int n, err, type = key_type(c, key);
2960 	struct ubifs_znode *znode;
2961 	struct ubifs_dent_node *dent;
2962 	struct ubifs_zbranch *zbr;
2963 	union ubifs_key *dkey;
2964 
2965 	dbg_tnck(key, "key ");
2966 	ubifs_assert(c, is_hash_key(c, key));
2967 
2968 	mutex_lock(&c->tnc_mutex);
2969 	err = ubifs_lookup_level0(c, key, &znode, &n);
2970 	if (unlikely(err < 0))
2971 		goto out_unlock;
2972 
2973 	if (fname_len(nm) > 0) {
2974 		if (err) {
2975 			/* Handle collisions */
2976 			if (c->replaying)
2977 				err = fallible_resolve_collision(c, key, &znode, &n,
2978 							 nm, 0);
2979 			else
2980 				err = resolve_collision(c, key, &znode, &n, nm);
2981 			dbg_tnc("rc returned %d, znode %p, n %d",
2982 				err, znode, n);
2983 			if (unlikely(err < 0))
2984 				goto out_unlock;
2985 		}
2986 
2987 		/* Now find next entry */
2988 		err = tnc_next(c, &znode, &n);
2989 		if (unlikely(err))
2990 			goto out_unlock;
2991 	} else {
2992 		/*
2993 		 * The full name of the entry was not given, in which case the
2994 		 * behavior of this function is a little different and it
2995 		 * returns current entry, not the next one.
2996 		 */
2997 		if (!err) {
2998 			/*
2999 			 * However, the given key does not exist in the TNC
3000 			 * tree and @znode/@n variables contain the closest
3001 			 * "preceding" element. Switch to the next one.
3002 			 */
3003 			err = tnc_next(c, &znode, &n);
3004 			if (err)
3005 				goto out_unlock;
3006 		}
3007 	}
3008 
3009 	zbr = &znode->zbranch[n];
3010 	dent = kmalloc(zbr->len, GFP_NOFS);
3011 	if (unlikely(!dent)) {
3012 		err = -ENOMEM;
3013 		goto out_unlock;
3014 	}
3015 
3016 	/*
3017 	 * The above 'tnc_next()' call could lead us to the next inode, check
3018 	 * this.
3019 	 */
3020 	dkey = &zbr->key;
3021 	if (key_inum(c, dkey) != key_inum(c, key) ||
3022 	    key_type(c, dkey) != type) {
3023 		err = -ENOENT;
3024 		goto out_free;
3025 	}
3026 
3027 	err = tnc_read_hashed_node(c, zbr, dent);
3028 	if (unlikely(err))
3029 		goto out_free;
3030 
3031 	mutex_unlock(&c->tnc_mutex);
3032 	return dent;
3033 
3034 out_free:
3035 	kfree(dent);
3036 out_unlock:
3037 	mutex_unlock(&c->tnc_mutex);
3038 	return ERR_PTR(err);
3039 }
3040 
3041 /**
3042  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3043  * @c: UBIFS file-system description object
3044  *
3045  * Destroy left-over obsolete znodes from a failed commit.
3046  */
3047 static void tnc_destroy_cnext(struct ubifs_info *c)
3048 {
3049 	struct ubifs_znode *cnext;
3050 
3051 	if (!c->cnext)
3052 		return;
3053 	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3054 	cnext = c->cnext;
3055 	do {
3056 		struct ubifs_znode *znode = cnext;
3057 
3058 		cnext = cnext->cnext;
3059 		if (ubifs_zn_obsolete(znode))
3060 			kfree(znode);
3061 	} while (cnext && cnext != c->cnext);
3062 }
3063 
3064 /**
3065  * ubifs_tnc_close - close TNC subsystem and free all related resources.
3066  * @c: UBIFS file-system description object
3067  */
3068 void ubifs_tnc_close(struct ubifs_info *c)
3069 {
3070 	tnc_destroy_cnext(c);
3071 	if (c->zroot.znode) {
3072 		long n, freed;
3073 
3074 		n = atomic_long_read(&c->clean_zn_cnt);
3075 		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3076 		ubifs_assert(c, freed == n);
3077 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3078 	}
3079 	kfree(c->gap_lebs);
3080 	kfree(c->ilebs);
3081 	destroy_old_idx(c);
3082 }
3083 
3084 /**
3085  * left_znode - get the znode to the left.
3086  * @c: UBIFS file-system description object
3087  * @znode: znode
3088  *
3089  * This function returns a pointer to the znode to the left of @znode or NULL if
3090  * there is not one. A negative error code is returned on failure.
3091  */
3092 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3093 				      struct ubifs_znode *znode)
3094 {
3095 	int level = znode->level;
3096 
3097 	while (1) {
3098 		int n = znode->iip - 1;
3099 
3100 		/* Go up until we can go left */
3101 		znode = znode->parent;
3102 		if (!znode)
3103 			return NULL;
3104 		if (n >= 0) {
3105 			/* Now go down the rightmost branch to 'level' */
3106 			znode = get_znode(c, znode, n);
3107 			if (IS_ERR(znode))
3108 				return znode;
3109 			while (znode->level != level) {
3110 				n = znode->child_cnt - 1;
3111 				znode = get_znode(c, znode, n);
3112 				if (IS_ERR(znode))
3113 					return znode;
3114 			}
3115 			break;
3116 		}
3117 	}
3118 	return znode;
3119 }
3120 
3121 /**
3122  * right_znode - get the znode to the right.
3123  * @c: UBIFS file-system description object
3124  * @znode: znode
3125  *
3126  * This function returns a pointer to the znode to the right of @znode or NULL
3127  * if there is not one. A negative error code is returned on failure.
3128  */
3129 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3130 				       struct ubifs_znode *znode)
3131 {
3132 	int level = znode->level;
3133 
3134 	while (1) {
3135 		int n = znode->iip + 1;
3136 
3137 		/* Go up until we can go right */
3138 		znode = znode->parent;
3139 		if (!znode)
3140 			return NULL;
3141 		if (n < znode->child_cnt) {
3142 			/* Now go down the leftmost branch to 'level' */
3143 			znode = get_znode(c, znode, n);
3144 			if (IS_ERR(znode))
3145 				return znode;
3146 			while (znode->level != level) {
3147 				znode = get_znode(c, znode, 0);
3148 				if (IS_ERR(znode))
3149 					return znode;
3150 			}
3151 			break;
3152 		}
3153 	}
3154 	return znode;
3155 }
3156 
3157 /**
3158  * lookup_znode - find a particular indexing node from TNC.
3159  * @c: UBIFS file-system description object
3160  * @key: index node key to lookup
3161  * @level: index node level
3162  * @lnum: index node LEB number
3163  * @offs: index node offset
3164  *
3165  * This function searches an indexing node by its first key @key and its
3166  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3167  * nodes it traverses to TNC. This function is called for indexing nodes which
3168  * were found on the media by scanning, for example when garbage-collecting or
3169  * when doing in-the-gaps commit. This means that the indexing node which is
3170  * looked for does not have to have exactly the same leftmost key @key, because
3171  * the leftmost key may have been changed, in which case TNC will contain a
3172  * dirty znode which still refers the same @lnum:@offs. This function is clever
3173  * enough to recognize such indexing nodes.
3174  *
3175  * Note, if a znode was deleted or changed too much, then this function will
3176  * not find it. For situations like this UBIFS has the old index RB-tree
3177  * (indexed by @lnum:@offs).
3178  *
3179  * This function returns a pointer to the znode found or %NULL if it is not
3180  * found. A negative error code is returned on failure.
3181  */
3182 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3183 					union ubifs_key *key, int level,
3184 					int lnum, int offs)
3185 {
3186 	struct ubifs_znode *znode, *zn;
3187 	int n, nn;
3188 
3189 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3190 
3191 	/*
3192 	 * The arguments have probably been read off flash, so don't assume
3193 	 * they are valid.
3194 	 */
3195 	if (level < 0)
3196 		return ERR_PTR(-EINVAL);
3197 
3198 	/* Get the root znode */
3199 	znode = c->zroot.znode;
3200 	if (!znode) {
3201 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3202 		if (IS_ERR(znode))
3203 			return znode;
3204 	}
3205 	/* Check if it is the one we are looking for */
3206 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3207 		return znode;
3208 	/* Descend to the parent level i.e. (level + 1) */
3209 	if (level >= znode->level)
3210 		return NULL;
3211 	while (1) {
3212 		ubifs_search_zbranch(c, znode, key, &n);
3213 		if (n < 0) {
3214 			/*
3215 			 * We reached a znode where the leftmost key is greater
3216 			 * than the key we are searching for. This is the same
3217 			 * situation as the one described in a huge comment at
3218 			 * the end of the 'ubifs_lookup_level0()' function. And
3219 			 * for exactly the same reasons we have to try to look
3220 			 * left before giving up.
3221 			 */
3222 			znode = left_znode(c, znode);
3223 			if (!znode)
3224 				return NULL;
3225 			if (IS_ERR(znode))
3226 				return znode;
3227 			ubifs_search_zbranch(c, znode, key, &n);
3228 			ubifs_assert(c, n >= 0);
3229 		}
3230 		if (znode->level == level + 1)
3231 			break;
3232 		znode = get_znode(c, znode, n);
3233 		if (IS_ERR(znode))
3234 			return znode;
3235 	}
3236 	/* Check if the child is the one we are looking for */
3237 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3238 		return get_znode(c, znode, n);
3239 	/* If the key is unique, there is nowhere else to look */
3240 	if (!is_hash_key(c, key))
3241 		return NULL;
3242 	/*
3243 	 * The key is not unique and so may be also in the znodes to either
3244 	 * side.
3245 	 */
3246 	zn = znode;
3247 	nn = n;
3248 	/* Look left */
3249 	while (1) {
3250 		/* Move one branch to the left */
3251 		if (n)
3252 			n -= 1;
3253 		else {
3254 			znode = left_znode(c, znode);
3255 			if (!znode)
3256 				break;
3257 			if (IS_ERR(znode))
3258 				return znode;
3259 			n = znode->child_cnt - 1;
3260 		}
3261 		/* Check it */
3262 		if (znode->zbranch[n].lnum == lnum &&
3263 		    znode->zbranch[n].offs == offs)
3264 			return get_znode(c, znode, n);
3265 		/* Stop if the key is less than the one we are looking for */
3266 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3267 			break;
3268 	}
3269 	/* Back to the middle */
3270 	znode = zn;
3271 	n = nn;
3272 	/* Look right */
3273 	while (1) {
3274 		/* Move one branch to the right */
3275 		if (++n >= znode->child_cnt) {
3276 			znode = right_znode(c, znode);
3277 			if (!znode)
3278 				break;
3279 			if (IS_ERR(znode))
3280 				return znode;
3281 			n = 0;
3282 		}
3283 		/* Check it */
3284 		if (znode->zbranch[n].lnum == lnum &&
3285 		    znode->zbranch[n].offs == offs)
3286 			return get_znode(c, znode, n);
3287 		/* Stop if the key is greater than the one we are looking for */
3288 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3289 			break;
3290 	}
3291 	return NULL;
3292 }
3293 
3294 /**
3295  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3296  * @c: UBIFS file-system description object
3297  * @key: key of index node
3298  * @level: index node level
3299  * @lnum: LEB number of index node
3300  * @offs: offset of index node
3301  *
3302  * This function returns %0 if the index node is not referred to in the TNC, %1
3303  * if the index node is referred to in the TNC and the corresponding znode is
3304  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3305  * znode is clean, and a negative error code in case of failure.
3306  *
3307  * Note, the @key argument has to be the key of the first child. Also note,
3308  * this function relies on the fact that 0:0 is never a valid LEB number and
3309  * offset for a main-area node.
3310  */
3311 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3312 		       int lnum, int offs)
3313 {
3314 	struct ubifs_znode *znode;
3315 
3316 	znode = lookup_znode(c, key, level, lnum, offs);
3317 	if (!znode)
3318 		return 0;
3319 	if (IS_ERR(znode))
3320 		return PTR_ERR(znode);
3321 
3322 	return ubifs_zn_dirty(znode) ? 1 : 2;
3323 }
3324 
3325 /**
3326  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3327  * @c: UBIFS file-system description object
3328  * @key: node key
3329  * @lnum: node LEB number
3330  * @offs: node offset
3331  *
3332  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3333  * not, and a negative error code in case of failure.
3334  *
3335  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3336  * and offset for a main-area node.
3337  */
3338 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3339 			       int lnum, int offs)
3340 {
3341 	struct ubifs_zbranch *zbr;
3342 	struct ubifs_znode *znode, *zn;
3343 	int n, found, err, nn;
3344 	const int unique = !is_hash_key(c, key);
3345 
3346 	found = ubifs_lookup_level0(c, key, &znode, &n);
3347 	if (found < 0)
3348 		return found; /* Error code */
3349 	if (!found)
3350 		return 0;
3351 	zbr = &znode->zbranch[n];
3352 	if (lnum == zbr->lnum && offs == zbr->offs)
3353 		return 1; /* Found it */
3354 	if (unique)
3355 		return 0;
3356 	/*
3357 	 * Because the key is not unique, we have to look left
3358 	 * and right as well
3359 	 */
3360 	zn = znode;
3361 	nn = n;
3362 	/* Look left */
3363 	while (1) {
3364 		err = tnc_prev(c, &znode, &n);
3365 		if (err == -ENOENT)
3366 			break;
3367 		if (err)
3368 			return err;
3369 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3370 			break;
3371 		zbr = &znode->zbranch[n];
3372 		if (lnum == zbr->lnum && offs == zbr->offs)
3373 			return 1; /* Found it */
3374 	}
3375 	/* Look right */
3376 	znode = zn;
3377 	n = nn;
3378 	while (1) {
3379 		err = tnc_next(c, &znode, &n);
3380 		if (err) {
3381 			if (err == -ENOENT)
3382 				return 0;
3383 			return err;
3384 		}
3385 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3386 			break;
3387 		zbr = &znode->zbranch[n];
3388 		if (lnum == zbr->lnum && offs == zbr->offs)
3389 			return 1; /* Found it */
3390 	}
3391 	return 0;
3392 }
3393 
3394 /**
3395  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3396  * @c: UBIFS file-system description object
3397  * @key: node key
3398  * @level: index node level (if it is an index node)
3399  * @lnum: node LEB number
3400  * @offs: node offset
3401  * @is_idx: non-zero if the node is an index node
3402  *
3403  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3404  * negative error code in case of failure. For index nodes, @key has to be the
3405  * key of the first child. An index node is considered to be in the TNC only if
3406  * the corresponding znode is clean or has not been loaded.
3407  */
3408 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3409 		       int lnum, int offs, int is_idx)
3410 {
3411 	int err;
3412 
3413 	mutex_lock(&c->tnc_mutex);
3414 	if (is_idx) {
3415 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3416 		if (err < 0)
3417 			goto out_unlock;
3418 		if (err == 1)
3419 			/* The index node was found but it was dirty */
3420 			err = 0;
3421 		else if (err == 2)
3422 			/* The index node was found and it was clean */
3423 			err = 1;
3424 		else
3425 			BUG_ON(err != 0);
3426 	} else
3427 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3428 
3429 out_unlock:
3430 	mutex_unlock(&c->tnc_mutex);
3431 	return err;
3432 }
3433 
3434 /**
3435  * ubifs_dirty_idx_node - dirty an index node.
3436  * @c: UBIFS file-system description object
3437  * @key: index node key
3438  * @level: index node level
3439  * @lnum: index node LEB number
3440  * @offs: index node offset
3441  *
3442  * This function loads and dirties an index node so that it can be garbage
3443  * collected. The @key argument has to be the key of the first child. This
3444  * function relies on the fact that 0:0 is never a valid LEB number and offset
3445  * for a main-area node. Returns %0 on success and a negative error code on
3446  * failure.
3447  */
3448 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3449 			 int lnum, int offs)
3450 {
3451 	struct ubifs_znode *znode;
3452 	int err = 0;
3453 
3454 	mutex_lock(&c->tnc_mutex);
3455 	znode = lookup_znode(c, key, level, lnum, offs);
3456 	if (!znode)
3457 		goto out_unlock;
3458 	if (IS_ERR(znode)) {
3459 		err = PTR_ERR(znode);
3460 		goto out_unlock;
3461 	}
3462 	znode = dirty_cow_bottom_up(c, znode);
3463 	if (IS_ERR(znode)) {
3464 		err = PTR_ERR(znode);
3465 		goto out_unlock;
3466 	}
3467 
3468 out_unlock:
3469 	mutex_unlock(&c->tnc_mutex);
3470 	return err;
3471 }
3472 
3473 /**
3474  * dbg_check_inode_size - check if inode size is correct.
3475  * @c: UBIFS file-system description object
3476  * @inum: inode number
3477  * @size: inode size
3478  *
3479  * This function makes sure that the inode size (@size) is correct and it does
3480  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3481  * if it has a data page beyond @size, and other negative error code in case of
3482  * other errors.
3483  */
3484 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3485 			 loff_t size)
3486 {
3487 	int err, n;
3488 	union ubifs_key from_key, to_key, *key;
3489 	struct ubifs_znode *znode;
3490 	unsigned int block;
3491 
3492 	if (!S_ISREG(inode->i_mode))
3493 		return 0;
3494 	if (!dbg_is_chk_gen(c))
3495 		return 0;
3496 
3497 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3498 	data_key_init(c, &from_key, inode->i_ino, block);
3499 	highest_data_key(c, &to_key, inode->i_ino);
3500 
3501 	mutex_lock(&c->tnc_mutex);
3502 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3503 	if (err < 0)
3504 		goto out_unlock;
3505 
3506 	if (err) {
3507 		key = &from_key;
3508 		goto out_dump;
3509 	}
3510 
3511 	err = tnc_next(c, &znode, &n);
3512 	if (err == -ENOENT) {
3513 		err = 0;
3514 		goto out_unlock;
3515 	}
3516 	if (err < 0)
3517 		goto out_unlock;
3518 
3519 	ubifs_assert(c, err == 0);
3520 	key = &znode->zbranch[n].key;
3521 	if (!key_in_range(c, key, &from_key, &to_key))
3522 		goto out_unlock;
3523 
3524 out_dump:
3525 	block = key_block(c, key);
3526 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3527 		  (unsigned long)inode->i_ino, size,
3528 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3529 	mutex_unlock(&c->tnc_mutex);
3530 	ubifs_dump_inode(c, inode);
3531 	dump_stack();
3532 	return -EINVAL;
3533 
3534 out_unlock:
3535 	mutex_unlock(&c->tnc_mutex);
3536 	return err;
3537 }
3538