xref: /linux/fs/ubifs/tnc.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13  * the UBIFS B-tree.
14  *
15  * At the moment the locking rules of the TNC tree are quite simple and
16  * straightforward. We just have a mutex and lock it when we traverse the
17  * tree. If a znode is not in memory, we read it from flash while still having
18  * the mutex locked.
19  */
20 
21 #include <linux/crc32.h>
22 #include <linux/slab.h>
23 #include "ubifs.h"
24 
25 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26 			 struct ubifs_zbranch *zbr);
27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28 			      struct ubifs_zbranch *zbr, void *node);
29 
30 /*
31  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32  * @NAME_LESS: name corresponding to the first argument is less than second
33  * @NAME_MATCHES: names match
34  * @NAME_GREATER: name corresponding to the second argument is greater than
35  *                first
36  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
37  *
38  * These constants were introduce to improve readability.
39  */
40 enum {
41 	NAME_LESS    = 0,
42 	NAME_MATCHES = 1,
43 	NAME_GREATER = 2,
44 	NOT_ON_MEDIA = 3,
45 };
46 
47 /**
48  * insert_old_idx - record an index node obsoleted since the last commit start.
49  * @c: UBIFS file-system description object
50  * @lnum: LEB number of obsoleted index node
51  * @offs: offset of obsoleted index node
52  *
53  * Returns %0 on success, and a negative error code on failure.
54  *
55  * For recovery, there must always be a complete intact version of the index on
56  * flash at all times. That is called the "old index". It is the index as at the
57  * time of the last successful commit. Many of the index nodes in the old index
58  * may be dirty, but they must not be erased until the next successful commit
59  * (at which point that index becomes the old index).
60  *
61  * That means that the garbage collection and the in-the-gaps method of
62  * committing must be able to determine if an index node is in the old index.
63  * Most of the old index nodes can be found by looking up the TNC using the
64  * 'lookup_znode()' function. However, some of the old index nodes may have
65  * been deleted from the current index or may have been changed so much that
66  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
67  * That is what this function does. The RB-tree is ordered by LEB number and
68  * offset because they uniquely identify the old index node.
69  */
70 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
71 {
72 	struct ubifs_old_idx *old_idx, *o;
73 	struct rb_node **p, *parent = NULL;
74 
75 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
76 	if (unlikely(!old_idx))
77 		return -ENOMEM;
78 	old_idx->lnum = lnum;
79 	old_idx->offs = offs;
80 
81 	p = &c->old_idx.rb_node;
82 	while (*p) {
83 		parent = *p;
84 		o = rb_entry(parent, struct ubifs_old_idx, rb);
85 		if (lnum < o->lnum)
86 			p = &(*p)->rb_left;
87 		else if (lnum > o->lnum)
88 			p = &(*p)->rb_right;
89 		else if (offs < o->offs)
90 			p = &(*p)->rb_left;
91 		else if (offs > o->offs)
92 			p = &(*p)->rb_right;
93 		else {
94 			ubifs_err(c, "old idx added twice!");
95 			kfree(old_idx);
96 			return 0;
97 		}
98 	}
99 	rb_link_node(&old_idx->rb, parent, p);
100 	rb_insert_color(&old_idx->rb, &c->old_idx);
101 	return 0;
102 }
103 
104 /**
105  * insert_old_idx_znode - record a znode obsoleted since last commit start.
106  * @c: UBIFS file-system description object
107  * @znode: znode of obsoleted index node
108  *
109  * Returns %0 on success, and a negative error code on failure.
110  */
111 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
112 {
113 	if (znode->parent) {
114 		struct ubifs_zbranch *zbr;
115 
116 		zbr = &znode->parent->zbranch[znode->iip];
117 		if (zbr->len)
118 			return insert_old_idx(c, zbr->lnum, zbr->offs);
119 	} else
120 		if (c->zroot.len)
121 			return insert_old_idx(c, c->zroot.lnum,
122 					      c->zroot.offs);
123 	return 0;
124 }
125 
126 /**
127  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
128  * @c: UBIFS file-system description object
129  * @znode: znode of obsoleted index node
130  *
131  * Returns %0 on success, and a negative error code on failure.
132  */
133 static int ins_clr_old_idx_znode(struct ubifs_info *c,
134 				 struct ubifs_znode *znode)
135 {
136 	int err;
137 
138 	if (znode->parent) {
139 		struct ubifs_zbranch *zbr;
140 
141 		zbr = &znode->parent->zbranch[znode->iip];
142 		if (zbr->len) {
143 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
144 			if (err)
145 				return err;
146 			zbr->lnum = 0;
147 			zbr->offs = 0;
148 			zbr->len = 0;
149 		}
150 	} else
151 		if (c->zroot.len) {
152 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
153 			if (err)
154 				return err;
155 			c->zroot.lnum = 0;
156 			c->zroot.offs = 0;
157 			c->zroot.len = 0;
158 		}
159 	return 0;
160 }
161 
162 /**
163  * destroy_old_idx - destroy the old_idx RB-tree.
164  * @c: UBIFS file-system description object
165  *
166  * During start commit, the old_idx RB-tree is used to avoid overwriting index
167  * nodes that were in the index last commit but have since been deleted.  This
168  * is necessary for recovery i.e. the old index must be kept intact until the
169  * new index is successfully written.  The old-idx RB-tree is used for the
170  * in-the-gaps method of writing index nodes and is destroyed every commit.
171  */
172 void destroy_old_idx(struct ubifs_info *c)
173 {
174 	struct ubifs_old_idx *old_idx, *n;
175 
176 	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
177 		kfree(old_idx);
178 
179 	c->old_idx = RB_ROOT;
180 }
181 
182 /**
183  * copy_znode - copy a dirty znode.
184  * @c: UBIFS file-system description object
185  * @znode: znode to copy
186  *
187  * A dirty znode being committed may not be changed, so it is copied.
188  */
189 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
190 				      struct ubifs_znode *znode)
191 {
192 	struct ubifs_znode *zn;
193 
194 	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
195 	if (unlikely(!zn))
196 		return ERR_PTR(-ENOMEM);
197 
198 	zn->cnext = NULL;
199 	__set_bit(DIRTY_ZNODE, &zn->flags);
200 	__clear_bit(COW_ZNODE, &zn->flags);
201 
202 	ubifs_assert(c, !ubifs_zn_obsolete(znode));
203 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
204 
205 	if (znode->level != 0) {
206 		int i;
207 		const int n = zn->child_cnt;
208 
209 		/* The children now have new parent */
210 		for (i = 0; i < n; i++) {
211 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
212 
213 			if (zbr->znode)
214 				zbr->znode->parent = zn;
215 		}
216 	}
217 
218 	atomic_long_inc(&c->dirty_zn_cnt);
219 	return zn;
220 }
221 
222 /**
223  * add_idx_dirt - add dirt due to a dirty znode.
224  * @c: UBIFS file-system description object
225  * @lnum: LEB number of index node
226  * @dirt: size of index node
227  *
228  * This function updates lprops dirty space and the new size of the index.
229  */
230 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
231 {
232 	c->calc_idx_sz -= ALIGN(dirt, 8);
233 	return ubifs_add_dirt(c, lnum, dirt);
234 }
235 
236 /**
237  * dirty_cow_znode - ensure a znode is not being committed.
238  * @c: UBIFS file-system description object
239  * @zbr: branch of znode to check
240  *
241  * Returns dirtied znode on success or negative error code on failure.
242  */
243 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
244 					   struct ubifs_zbranch *zbr)
245 {
246 	struct ubifs_znode *znode = zbr->znode;
247 	struct ubifs_znode *zn;
248 	int err;
249 
250 	if (!ubifs_zn_cow(znode)) {
251 		/* znode is not being committed */
252 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
253 			atomic_long_inc(&c->dirty_zn_cnt);
254 			atomic_long_dec(&c->clean_zn_cnt);
255 			atomic_long_dec(&ubifs_clean_zn_cnt);
256 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
257 			if (unlikely(err))
258 				return ERR_PTR(err);
259 		}
260 		return znode;
261 	}
262 
263 	zn = copy_znode(c, znode);
264 	if (IS_ERR(zn))
265 		return zn;
266 
267 	if (zbr->len) {
268 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
269 		if (unlikely(err))
270 			return ERR_PTR(err);
271 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
272 	} else
273 		err = 0;
274 
275 	zbr->znode = zn;
276 	zbr->lnum = 0;
277 	zbr->offs = 0;
278 	zbr->len = 0;
279 
280 	if (unlikely(err))
281 		return ERR_PTR(err);
282 	return zn;
283 }
284 
285 /**
286  * lnc_add - add a leaf node to the leaf node cache.
287  * @c: UBIFS file-system description object
288  * @zbr: zbranch of leaf node
289  * @node: leaf node
290  *
291  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
292  * purpose of the leaf node cache is to save re-reading the same leaf node over
293  * and over again. Most things are cached by VFS, however the file system must
294  * cache directory entries for readdir and for resolving hash collisions. The
295  * present implementation of the leaf node cache is extremely simple, and
296  * allows for error returns that are not used but that may be needed if a more
297  * complex implementation is created.
298  *
299  * Note, this function does not add the @node object to LNC directly, but
300  * allocates a copy of the object and adds the copy to LNC. The reason for this
301  * is that @node has been allocated outside of the TNC subsystem and will be
302  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
303  * may be changed at any time, e.g. freed by the shrinker.
304  */
305 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
306 		   const void *node)
307 {
308 	int err;
309 	void *lnc_node;
310 	const struct ubifs_dent_node *dent = node;
311 
312 	ubifs_assert(c, !zbr->leaf);
313 	ubifs_assert(c, zbr->len != 0);
314 	ubifs_assert(c, is_hash_key(c, &zbr->key));
315 
316 	err = ubifs_validate_entry(c, dent);
317 	if (err) {
318 		dump_stack();
319 		ubifs_dump_node(c, dent);
320 		return err;
321 	}
322 
323 	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
324 	if (!lnc_node)
325 		/* We don't have to have the cache, so no error */
326 		return 0;
327 
328 	zbr->leaf = lnc_node;
329 	return 0;
330 }
331 
332  /**
333  * lnc_add_directly - add a leaf node to the leaf-node-cache.
334  * @c: UBIFS file-system description object
335  * @zbr: zbranch of leaf node
336  * @node: leaf node
337  *
338  * This function is similar to 'lnc_add()', but it does not create a copy of
339  * @node but inserts @node to TNC directly.
340  */
341 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
342 			    void *node)
343 {
344 	int err;
345 
346 	ubifs_assert(c, !zbr->leaf);
347 	ubifs_assert(c, zbr->len != 0);
348 
349 	err = ubifs_validate_entry(c, node);
350 	if (err) {
351 		dump_stack();
352 		ubifs_dump_node(c, node);
353 		return err;
354 	}
355 
356 	zbr->leaf = node;
357 	return 0;
358 }
359 
360 /**
361  * lnc_free - remove a leaf node from the leaf node cache.
362  * @zbr: zbranch of leaf node
363  * @node: leaf node
364  */
365 static void lnc_free(struct ubifs_zbranch *zbr)
366 {
367 	if (!zbr->leaf)
368 		return;
369 	kfree(zbr->leaf);
370 	zbr->leaf = NULL;
371 }
372 
373 /**
374  * tnc_read_hashed_node - read a "hashed" leaf node.
375  * @c: UBIFS file-system description object
376  * @zbr: key and position of the node
377  * @node: node is returned here
378  *
379  * This function reads a "hashed" node defined by @zbr from the leaf node cache
380  * (in it is there) or from the hash media, in which case the node is also
381  * added to LNC. Returns zero in case of success or a negative negative error
382  * code in case of failure.
383  */
384 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
385 				void *node)
386 {
387 	int err;
388 
389 	ubifs_assert(c, is_hash_key(c, &zbr->key));
390 
391 	if (zbr->leaf) {
392 		/* Read from the leaf node cache */
393 		ubifs_assert(c, zbr->len != 0);
394 		memcpy(node, zbr->leaf, zbr->len);
395 		return 0;
396 	}
397 
398 	if (c->replaying) {
399 		err = fallible_read_node(c, &zbr->key, zbr, node);
400 		/*
401 		 * When the node was not found, return -ENOENT, 0 otherwise.
402 		 * Negative return codes stay as-is.
403 		 */
404 		if (err == 0)
405 			err = -ENOENT;
406 		else if (err == 1)
407 			err = 0;
408 	} else {
409 		err = ubifs_tnc_read_node(c, zbr, node);
410 	}
411 	if (err)
412 		return err;
413 
414 	/* Add the node to the leaf node cache */
415 	err = lnc_add(c, zbr, node);
416 	return err;
417 }
418 
419 /**
420  * try_read_node - read a node if it is a node.
421  * @c: UBIFS file-system description object
422  * @buf: buffer to read to
423  * @type: node type
424  * @zbr: the zbranch describing the node to read
425  *
426  * This function tries to read a node of known type and length, checks it and
427  * stores it in @buf. This function returns %1 if a node is present and %0 if
428  * a node is not present. A negative error code is returned for I/O errors.
429  * This function performs that same function as ubifs_read_node except that
430  * it does not require that there is actually a node present and instead
431  * the return code indicates if a node was read.
432  *
433  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
434  * is true (it is controlled by corresponding mount option). However, if
435  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
436  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
437  * because during mounting or re-mounting from R/O mode to R/W mode we may read
438  * journal nodes (when replying the journal or doing the recovery) and the
439  * journal nodes may potentially be corrupted, so checking is required.
440  */
441 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
442 			 struct ubifs_zbranch *zbr)
443 {
444 	int len = zbr->len;
445 	int lnum = zbr->lnum;
446 	int offs = zbr->offs;
447 	int err, node_len;
448 	struct ubifs_ch *ch = buf;
449 	uint32_t crc, node_crc;
450 
451 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
452 
453 	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
454 	if (err) {
455 		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
456 			  type, lnum, offs, err);
457 		return err;
458 	}
459 
460 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
461 		return 0;
462 
463 	if (ch->node_type != type)
464 		return 0;
465 
466 	node_len = le32_to_cpu(ch->len);
467 	if (node_len != len)
468 		return 0;
469 
470 	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
471 	    c->remounting_rw) {
472 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
473 		node_crc = le32_to_cpu(ch->crc);
474 		if (crc != node_crc)
475 			return 0;
476 	}
477 
478 	err = ubifs_node_check_hash(c, buf, zbr->hash);
479 	if (err) {
480 		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
481 		return 0;
482 	}
483 
484 	return 1;
485 }
486 
487 /**
488  * fallible_read_node - try to read a leaf node.
489  * @c: UBIFS file-system description object
490  * @key:  key of node to read
491  * @zbr:  position of node
492  * @node: node returned
493  *
494  * This function tries to read a node and returns %1 if the node is read, %0
495  * if the node is not present, and a negative error code in the case of error.
496  */
497 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
498 			      struct ubifs_zbranch *zbr, void *node)
499 {
500 	int ret;
501 
502 	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
503 
504 	ret = try_read_node(c, node, key_type(c, key), zbr);
505 	if (ret == 1) {
506 		union ubifs_key node_key;
507 		struct ubifs_dent_node *dent = node;
508 
509 		/* All nodes have key in the same place */
510 		key_read(c, &dent->key, &node_key);
511 		if (keys_cmp(c, key, &node_key) != 0)
512 			ret = 0;
513 	}
514 	if (ret == 0 && c->replaying)
515 		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
516 			zbr->lnum, zbr->offs, zbr->len);
517 	return ret;
518 }
519 
520 /**
521  * matches_name - determine if a direntry or xattr entry matches a given name.
522  * @c: UBIFS file-system description object
523  * @zbr: zbranch of dent
524  * @nm: name to match
525  *
526  * This function checks if xentry/direntry referred by zbranch @zbr matches name
527  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
528  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
529  * of failure, a negative error code is returned.
530  */
531 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
532 			const struct fscrypt_name *nm)
533 {
534 	struct ubifs_dent_node *dent;
535 	int nlen, err;
536 
537 	/* If possible, match against the dent in the leaf node cache */
538 	if (!zbr->leaf) {
539 		dent = kmalloc(zbr->len, GFP_NOFS);
540 		if (!dent)
541 			return -ENOMEM;
542 
543 		err = ubifs_tnc_read_node(c, zbr, dent);
544 		if (err)
545 			goto out_free;
546 
547 		/* Add the node to the leaf node cache */
548 		err = lnc_add_directly(c, zbr, dent);
549 		if (err)
550 			goto out_free;
551 	} else
552 		dent = zbr->leaf;
553 
554 	nlen = le16_to_cpu(dent->nlen);
555 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
556 	if (err == 0) {
557 		if (nlen == fname_len(nm))
558 			return NAME_MATCHES;
559 		else if (nlen < fname_len(nm))
560 			return NAME_LESS;
561 		else
562 			return NAME_GREATER;
563 	} else if (err < 0)
564 		return NAME_LESS;
565 	else
566 		return NAME_GREATER;
567 
568 out_free:
569 	kfree(dent);
570 	return err;
571 }
572 
573 /**
574  * get_znode - get a TNC znode that may not be loaded yet.
575  * @c: UBIFS file-system description object
576  * @znode: parent znode
577  * @n: znode branch slot number
578  *
579  * This function returns the znode or a negative error code.
580  */
581 static struct ubifs_znode *get_znode(struct ubifs_info *c,
582 				     struct ubifs_znode *znode, int n)
583 {
584 	struct ubifs_zbranch *zbr;
585 
586 	zbr = &znode->zbranch[n];
587 	if (zbr->znode)
588 		znode = zbr->znode;
589 	else
590 		znode = ubifs_load_znode(c, zbr, znode, n);
591 	return znode;
592 }
593 
594 /**
595  * tnc_next - find next TNC entry.
596  * @c: UBIFS file-system description object
597  * @zn: znode is passed and returned here
598  * @n: znode branch slot number is passed and returned here
599  *
600  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
601  * no next entry, or a negative error code otherwise.
602  */
603 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
604 {
605 	struct ubifs_znode *znode = *zn;
606 	int nn = *n;
607 
608 	nn += 1;
609 	if (nn < znode->child_cnt) {
610 		*n = nn;
611 		return 0;
612 	}
613 	while (1) {
614 		struct ubifs_znode *zp;
615 
616 		zp = znode->parent;
617 		if (!zp)
618 			return -ENOENT;
619 		nn = znode->iip + 1;
620 		znode = zp;
621 		if (nn < znode->child_cnt) {
622 			znode = get_znode(c, znode, nn);
623 			if (IS_ERR(znode))
624 				return PTR_ERR(znode);
625 			while (znode->level != 0) {
626 				znode = get_znode(c, znode, 0);
627 				if (IS_ERR(znode))
628 					return PTR_ERR(znode);
629 			}
630 			nn = 0;
631 			break;
632 		}
633 	}
634 	*zn = znode;
635 	*n = nn;
636 	return 0;
637 }
638 
639 /**
640  * tnc_prev - find previous TNC entry.
641  * @c: UBIFS file-system description object
642  * @zn: znode is returned here
643  * @n: znode branch slot number is passed and returned here
644  *
645  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
646  * there is no next entry, or a negative error code otherwise.
647  */
648 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
649 {
650 	struct ubifs_znode *znode = *zn;
651 	int nn = *n;
652 
653 	if (nn > 0) {
654 		*n = nn - 1;
655 		return 0;
656 	}
657 	while (1) {
658 		struct ubifs_znode *zp;
659 
660 		zp = znode->parent;
661 		if (!zp)
662 			return -ENOENT;
663 		nn = znode->iip - 1;
664 		znode = zp;
665 		if (nn >= 0) {
666 			znode = get_znode(c, znode, nn);
667 			if (IS_ERR(znode))
668 				return PTR_ERR(znode);
669 			while (znode->level != 0) {
670 				nn = znode->child_cnt - 1;
671 				znode = get_znode(c, znode, nn);
672 				if (IS_ERR(znode))
673 					return PTR_ERR(znode);
674 			}
675 			nn = znode->child_cnt - 1;
676 			break;
677 		}
678 	}
679 	*zn = znode;
680 	*n = nn;
681 	return 0;
682 }
683 
684 /**
685  * resolve_collision - resolve a collision.
686  * @c: UBIFS file-system description object
687  * @key: key of a directory or extended attribute entry
688  * @zn: znode is returned here
689  * @n: zbranch number is passed and returned here
690  * @nm: name of the entry
691  *
692  * This function is called for "hashed" keys to make sure that the found key
693  * really corresponds to the looked up node (directory or extended attribute
694  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
695  * %0 is returned if @nm is not found and @zn and @n are set to the previous
696  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
697  * This means that @n may be set to %-1 if the leftmost key in @zn is the
698  * previous one. A negative error code is returned on failures.
699  */
700 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
701 			     struct ubifs_znode **zn, int *n,
702 			     const struct fscrypt_name *nm)
703 {
704 	int err;
705 
706 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
707 	if (unlikely(err < 0))
708 		return err;
709 	if (err == NAME_MATCHES)
710 		return 1;
711 
712 	if (err == NAME_GREATER) {
713 		/* Look left */
714 		while (1) {
715 			err = tnc_prev(c, zn, n);
716 			if (err == -ENOENT) {
717 				ubifs_assert(c, *n == 0);
718 				*n = -1;
719 				return 0;
720 			}
721 			if (err < 0)
722 				return err;
723 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
724 				/*
725 				 * We have found the branch after which we would
726 				 * like to insert, but inserting in this znode
727 				 * may still be wrong. Consider the following 3
728 				 * znodes, in the case where we are resolving a
729 				 * collision with Key2.
730 				 *
731 				 *                  znode zp
732 				 *            ----------------------
733 				 * level 1     |  Key0  |  Key1  |
734 				 *            -----------------------
735 				 *                 |            |
736 				 *       znode za  |            |  znode zb
737 				 *          ------------      ------------
738 				 * level 0  |  Key0  |        |  Key2  |
739 				 *          ------------      ------------
740 				 *
741 				 * The lookup finds Key2 in znode zb. Lets say
742 				 * there is no match and the name is greater so
743 				 * we look left. When we find Key0, we end up
744 				 * here. If we return now, we will insert into
745 				 * znode za at slot n = 1.  But that is invalid
746 				 * according to the parent's keys.  Key2 must
747 				 * be inserted into znode zb.
748 				 *
749 				 * Note, this problem is not relevant for the
750 				 * case when we go right, because
751 				 * 'tnc_insert()' would correct the parent key.
752 				 */
753 				if (*n == (*zn)->child_cnt - 1) {
754 					err = tnc_next(c, zn, n);
755 					if (err) {
756 						/* Should be impossible */
757 						ubifs_assert(c, 0);
758 						if (err == -ENOENT)
759 							err = -EINVAL;
760 						return err;
761 					}
762 					ubifs_assert(c, *n == 0);
763 					*n = -1;
764 				}
765 				return 0;
766 			}
767 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
768 			if (err < 0)
769 				return err;
770 			if (err == NAME_LESS)
771 				return 0;
772 			if (err == NAME_MATCHES)
773 				return 1;
774 			ubifs_assert(c, err == NAME_GREATER);
775 		}
776 	} else {
777 		int nn = *n;
778 		struct ubifs_znode *znode = *zn;
779 
780 		/* Look right */
781 		while (1) {
782 			err = tnc_next(c, &znode, &nn);
783 			if (err == -ENOENT)
784 				return 0;
785 			if (err < 0)
786 				return err;
787 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
788 				return 0;
789 			err = matches_name(c, &znode->zbranch[nn], nm);
790 			if (err < 0)
791 				return err;
792 			if (err == NAME_GREATER)
793 				return 0;
794 			*zn = znode;
795 			*n = nn;
796 			if (err == NAME_MATCHES)
797 				return 1;
798 			ubifs_assert(c, err == NAME_LESS);
799 		}
800 	}
801 }
802 
803 /**
804  * fallible_matches_name - determine if a dent matches a given name.
805  * @c: UBIFS file-system description object
806  * @zbr: zbranch of dent
807  * @nm: name to match
808  *
809  * This is a "fallible" version of 'matches_name()' function which does not
810  * panic if the direntry/xentry referred by @zbr does not exist on the media.
811  *
812  * This function checks if xentry/direntry referred by zbranch @zbr matches name
813  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
814  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
815  * if xentry/direntry referred by @zbr does not exist on the media. A negative
816  * error code is returned in case of failure.
817  */
818 static int fallible_matches_name(struct ubifs_info *c,
819 				 struct ubifs_zbranch *zbr,
820 				 const struct fscrypt_name *nm)
821 {
822 	struct ubifs_dent_node *dent;
823 	int nlen, err;
824 
825 	/* If possible, match against the dent in the leaf node cache */
826 	if (!zbr->leaf) {
827 		dent = kmalloc(zbr->len, GFP_NOFS);
828 		if (!dent)
829 			return -ENOMEM;
830 
831 		err = fallible_read_node(c, &zbr->key, zbr, dent);
832 		if (err < 0)
833 			goto out_free;
834 		if (err == 0) {
835 			/* The node was not present */
836 			err = NOT_ON_MEDIA;
837 			goto out_free;
838 		}
839 		ubifs_assert(c, err == 1);
840 
841 		err = lnc_add_directly(c, zbr, dent);
842 		if (err)
843 			goto out_free;
844 	} else
845 		dent = zbr->leaf;
846 
847 	nlen = le16_to_cpu(dent->nlen);
848 	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
849 	if (err == 0) {
850 		if (nlen == fname_len(nm))
851 			return NAME_MATCHES;
852 		else if (nlen < fname_len(nm))
853 			return NAME_LESS;
854 		else
855 			return NAME_GREATER;
856 	} else if (err < 0)
857 		return NAME_LESS;
858 	else
859 		return NAME_GREATER;
860 
861 out_free:
862 	kfree(dent);
863 	return err;
864 }
865 
866 /**
867  * fallible_resolve_collision - resolve a collision even if nodes are missing.
868  * @c: UBIFS file-system description object
869  * @key: key
870  * @zn: znode is returned here
871  * @n: branch number is passed and returned here
872  * @nm: name of directory entry
873  * @adding: indicates caller is adding a key to the TNC
874  *
875  * This is a "fallible" version of the 'resolve_collision()' function which
876  * does not panic if one of the nodes referred to by TNC does not exist on the
877  * media. This may happen when replaying the journal if a deleted node was
878  * Garbage-collected and the commit was not done. A branch that refers to a node
879  * that is not present is called a dangling branch. The following are the return
880  * codes for this function:
881  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
882  *    branch;
883  *  o if we are @adding and @nm was not found, %0 is returned;
884  *  o if we are not @adding and @nm was not found, but a dangling branch was
885  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
886  *  o a negative error code is returned in case of failure.
887  */
888 static int fallible_resolve_collision(struct ubifs_info *c,
889 				      const union ubifs_key *key,
890 				      struct ubifs_znode **zn, int *n,
891 				      const struct fscrypt_name *nm,
892 				      int adding)
893 {
894 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
895 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
896 
897 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
898 	if (unlikely(cmp < 0))
899 		return cmp;
900 	if (cmp == NAME_MATCHES)
901 		return 1;
902 	if (cmp == NOT_ON_MEDIA) {
903 		o_znode = znode;
904 		o_n = nn;
905 		/*
906 		 * We are unlucky and hit a dangling branch straight away.
907 		 * Now we do not really know where to go to find the needed
908 		 * branch - to the left or to the right. Well, let's try left.
909 		 */
910 		unsure = 1;
911 	} else if (!adding)
912 		unsure = 1; /* Remove a dangling branch wherever it is */
913 
914 	if (cmp == NAME_GREATER || unsure) {
915 		/* Look left */
916 		while (1) {
917 			err = tnc_prev(c, zn, n);
918 			if (err == -ENOENT) {
919 				ubifs_assert(c, *n == 0);
920 				*n = -1;
921 				break;
922 			}
923 			if (err < 0)
924 				return err;
925 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
926 				/* See comments in 'resolve_collision()' */
927 				if (*n == (*zn)->child_cnt - 1) {
928 					err = tnc_next(c, zn, n);
929 					if (err) {
930 						/* Should be impossible */
931 						ubifs_assert(c, 0);
932 						if (err == -ENOENT)
933 							err = -EINVAL;
934 						return err;
935 					}
936 					ubifs_assert(c, *n == 0);
937 					*n = -1;
938 				}
939 				break;
940 			}
941 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
942 			if (err < 0)
943 				return err;
944 			if (err == NAME_MATCHES)
945 				return 1;
946 			if (err == NOT_ON_MEDIA) {
947 				o_znode = *zn;
948 				o_n = *n;
949 				continue;
950 			}
951 			if (!adding)
952 				continue;
953 			if (err == NAME_LESS)
954 				break;
955 			else
956 				unsure = 0;
957 		}
958 	}
959 
960 	if (cmp == NAME_LESS || unsure) {
961 		/* Look right */
962 		*zn = znode;
963 		*n = nn;
964 		while (1) {
965 			err = tnc_next(c, &znode, &nn);
966 			if (err == -ENOENT)
967 				break;
968 			if (err < 0)
969 				return err;
970 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
971 				break;
972 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
973 			if (err < 0)
974 				return err;
975 			if (err == NAME_GREATER)
976 				break;
977 			*zn = znode;
978 			*n = nn;
979 			if (err == NAME_MATCHES)
980 				return 1;
981 			if (err == NOT_ON_MEDIA) {
982 				o_znode = znode;
983 				o_n = nn;
984 			}
985 		}
986 	}
987 
988 	/* Never match a dangling branch when adding */
989 	if (adding || !o_znode)
990 		return 0;
991 
992 	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
993 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
994 		o_znode->zbranch[o_n].len);
995 	*zn = o_znode;
996 	*n = o_n;
997 	return 1;
998 }
999 
1000 /**
1001  * matches_position - determine if a zbranch matches a given position.
1002  * @zbr: zbranch of dent
1003  * @lnum: LEB number of dent to match
1004  * @offs: offset of dent to match
1005  *
1006  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1007  */
1008 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1009 {
1010 	if (zbr->lnum == lnum && zbr->offs == offs)
1011 		return 1;
1012 	else
1013 		return 0;
1014 }
1015 
1016 /**
1017  * resolve_collision_directly - resolve a collision directly.
1018  * @c: UBIFS file-system description object
1019  * @key: key of directory entry
1020  * @zn: znode is passed and returned here
1021  * @n: zbranch number is passed and returned here
1022  * @lnum: LEB number of dent node to match
1023  * @offs: offset of dent node to match
1024  *
1025  * This function is used for "hashed" keys to make sure the found directory or
1026  * extended attribute entry node is what was looked for. It is used when the
1027  * flash address of the right node is known (@lnum:@offs) which makes it much
1028  * easier to resolve collisions (no need to read entries and match full
1029  * names). This function returns %1 and sets @zn and @n if the collision is
1030  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1031  * previous directory entry. Otherwise a negative error code is returned.
1032  */
1033 static int resolve_collision_directly(struct ubifs_info *c,
1034 				      const union ubifs_key *key,
1035 				      struct ubifs_znode **zn, int *n,
1036 				      int lnum, int offs)
1037 {
1038 	struct ubifs_znode *znode;
1039 	int nn, err;
1040 
1041 	znode = *zn;
1042 	nn = *n;
1043 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1044 		return 1;
1045 
1046 	/* Look left */
1047 	while (1) {
1048 		err = tnc_prev(c, &znode, &nn);
1049 		if (err == -ENOENT)
1050 			break;
1051 		if (err < 0)
1052 			return err;
1053 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1054 			break;
1055 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1056 			*zn = znode;
1057 			*n = nn;
1058 			return 1;
1059 		}
1060 	}
1061 
1062 	/* Look right */
1063 	znode = *zn;
1064 	nn = *n;
1065 	while (1) {
1066 		err = tnc_next(c, &znode, &nn);
1067 		if (err == -ENOENT)
1068 			return 0;
1069 		if (err < 0)
1070 			return err;
1071 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1072 			return 0;
1073 		*zn = znode;
1074 		*n = nn;
1075 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1076 			return 1;
1077 	}
1078 }
1079 
1080 /**
1081  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1082  * @c: UBIFS file-system description object
1083  * @znode: znode to dirty
1084  *
1085  * If we do not have a unique key that resides in a znode, then we cannot
1086  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1087  * This function records the path back to the last dirty ancestor, and then
1088  * dirties the znodes on that path.
1089  */
1090 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1091 					       struct ubifs_znode *znode)
1092 {
1093 	struct ubifs_znode *zp;
1094 	int *path = c->bottom_up_buf, p = 0;
1095 
1096 	ubifs_assert(c, c->zroot.znode);
1097 	ubifs_assert(c, znode);
1098 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1099 		kfree(c->bottom_up_buf);
1100 		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1101 						 sizeof(int),
1102 						 GFP_NOFS);
1103 		if (!c->bottom_up_buf)
1104 			return ERR_PTR(-ENOMEM);
1105 		path = c->bottom_up_buf;
1106 	}
1107 	if (c->zroot.znode->level) {
1108 		/* Go up until parent is dirty */
1109 		while (1) {
1110 			int n;
1111 
1112 			zp = znode->parent;
1113 			if (!zp)
1114 				break;
1115 			n = znode->iip;
1116 			ubifs_assert(c, p < c->zroot.znode->level);
1117 			path[p++] = n;
1118 			if (!zp->cnext && ubifs_zn_dirty(znode))
1119 				break;
1120 			znode = zp;
1121 		}
1122 	}
1123 
1124 	/* Come back down, dirtying as we go */
1125 	while (1) {
1126 		struct ubifs_zbranch *zbr;
1127 
1128 		zp = znode->parent;
1129 		if (zp) {
1130 			ubifs_assert(c, path[p - 1] >= 0);
1131 			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1132 			zbr = &zp->zbranch[path[--p]];
1133 			znode = dirty_cow_znode(c, zbr);
1134 		} else {
1135 			ubifs_assert(c, znode == c->zroot.znode);
1136 			znode = dirty_cow_znode(c, &c->zroot);
1137 		}
1138 		if (IS_ERR(znode) || !p)
1139 			break;
1140 		ubifs_assert(c, path[p - 1] >= 0);
1141 		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1142 		znode = znode->zbranch[path[p - 1]].znode;
1143 	}
1144 
1145 	return znode;
1146 }
1147 
1148 /**
1149  * ubifs_lookup_level0 - search for zero-level znode.
1150  * @c: UBIFS file-system description object
1151  * @key:  key to lookup
1152  * @zn: znode is returned here
1153  * @n: znode branch slot number is returned here
1154  *
1155  * This function looks up the TNC tree and search for zero-level znode which
1156  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1157  * cases:
1158  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1159  *     is returned and slot number of the matched branch is stored in @n;
1160  *   o not exact match, which means that zero-level znode does not contain
1161  *     @key, then %0 is returned and slot number of the closest branch is stored
1162  *     in @n;
1163  *   o @key is so small that it is even less than the lowest key of the
1164  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1165  *
1166  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1167  * function reads corresponding indexing nodes and inserts them to TNC. In
1168  * case of failure, a negative error code is returned.
1169  */
1170 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1171 			struct ubifs_znode **zn, int *n)
1172 {
1173 	int err, exact;
1174 	struct ubifs_znode *znode;
1175 	time64_t time = ktime_get_seconds();
1176 
1177 	dbg_tnck(key, "search key ");
1178 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1179 
1180 	znode = c->zroot.znode;
1181 	if (unlikely(!znode)) {
1182 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1183 		if (IS_ERR(znode))
1184 			return PTR_ERR(znode);
1185 	}
1186 
1187 	znode->time = time;
1188 
1189 	while (1) {
1190 		struct ubifs_zbranch *zbr;
1191 
1192 		exact = ubifs_search_zbranch(c, znode, key, n);
1193 
1194 		if (znode->level == 0)
1195 			break;
1196 
1197 		if (*n < 0)
1198 			*n = 0;
1199 		zbr = &znode->zbranch[*n];
1200 
1201 		if (zbr->znode) {
1202 			znode->time = time;
1203 			znode = zbr->znode;
1204 			continue;
1205 		}
1206 
1207 		/* znode is not in TNC cache, load it from the media */
1208 		znode = ubifs_load_znode(c, zbr, znode, *n);
1209 		if (IS_ERR(znode))
1210 			return PTR_ERR(znode);
1211 	}
1212 
1213 	*zn = znode;
1214 	if (exact || !is_hash_key(c, key) || *n != -1) {
1215 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1216 		return exact;
1217 	}
1218 
1219 	/*
1220 	 * Here is a tricky place. We have not found the key and this is a
1221 	 * "hashed" key, which may collide. The rest of the code deals with
1222 	 * situations like this:
1223 	 *
1224 	 *                  | 3 | 5 |
1225 	 *                  /       \
1226 	 *          | 3 | 5 |      | 6 | 7 | (x)
1227 	 *
1228 	 * Or more a complex example:
1229 	 *
1230 	 *                | 1 | 5 |
1231 	 *                /       \
1232 	 *       | 1 | 3 |         | 5 | 8 |
1233 	 *              \           /
1234 	 *          | 5 | 5 |   | 6 | 7 | (x)
1235 	 *
1236 	 * In the examples, if we are looking for key "5", we may reach nodes
1237 	 * marked with "(x)". In this case what we have do is to look at the
1238 	 * left and see if there is "5" key there. If there is, we have to
1239 	 * return it.
1240 	 *
1241 	 * Note, this whole situation is possible because we allow to have
1242 	 * elements which are equivalent to the next key in the parent in the
1243 	 * children of current znode. For example, this happens if we split a
1244 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1245 	 * like this:
1246 	 *                      | 3 | 5 |
1247 	 *                       /     \
1248 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1249 	 *                              ^
1250 	 * And this becomes what is at the first "picture" after key "5" marked
1251 	 * with "^" is removed. What could be done is we could prohibit
1252 	 * splitting in the middle of the colliding sequence. Also, when
1253 	 * removing the leftmost key, we would have to correct the key of the
1254 	 * parent node, which would introduce additional complications. Namely,
1255 	 * if we changed the leftmost key of the parent znode, the garbage
1256 	 * collector would be unable to find it (GC is doing this when GC'ing
1257 	 * indexing LEBs). Although we already have an additional RB-tree where
1258 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1259 	 * after the commit. But anyway, this does not look easy to implement
1260 	 * so we did not try this.
1261 	 */
1262 	err = tnc_prev(c, &znode, n);
1263 	if (err == -ENOENT) {
1264 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1265 		*n = -1;
1266 		return 0;
1267 	}
1268 	if (unlikely(err < 0))
1269 		return err;
1270 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1271 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272 		*n = -1;
1273 		return 0;
1274 	}
1275 
1276 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1277 	*zn = znode;
1278 	return 1;
1279 }
1280 
1281 /**
1282  * lookup_level0_dirty - search for zero-level znode dirtying.
1283  * @c: UBIFS file-system description object
1284  * @key:  key to lookup
1285  * @zn: znode is returned here
1286  * @n: znode branch slot number is returned here
1287  *
1288  * This function looks up the TNC tree and search for zero-level znode which
1289  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1290  * cases:
1291  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1292  *     is returned and slot number of the matched branch is stored in @n;
1293  *   o not exact match, which means that zero-level znode does not contain @key
1294  *     then %0 is returned and slot number of the closed branch is stored in
1295  *     @n;
1296  *   o @key is so small that it is even less than the lowest key of the
1297  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1298  *
1299  * Additionally all znodes in the path from the root to the located zero-level
1300  * znode are marked as dirty.
1301  *
1302  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1303  * function reads corresponding indexing nodes and inserts them to TNC. In
1304  * case of failure, a negative error code is returned.
1305  */
1306 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1307 			       struct ubifs_znode **zn, int *n)
1308 {
1309 	int err, exact;
1310 	struct ubifs_znode *znode;
1311 	time64_t time = ktime_get_seconds();
1312 
1313 	dbg_tnck(key, "search and dirty key ");
1314 
1315 	znode = c->zroot.znode;
1316 	if (unlikely(!znode)) {
1317 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1318 		if (IS_ERR(znode))
1319 			return PTR_ERR(znode);
1320 	}
1321 
1322 	znode = dirty_cow_znode(c, &c->zroot);
1323 	if (IS_ERR(znode))
1324 		return PTR_ERR(znode);
1325 
1326 	znode->time = time;
1327 
1328 	while (1) {
1329 		struct ubifs_zbranch *zbr;
1330 
1331 		exact = ubifs_search_zbranch(c, znode, key, n);
1332 
1333 		if (znode->level == 0)
1334 			break;
1335 
1336 		if (*n < 0)
1337 			*n = 0;
1338 		zbr = &znode->zbranch[*n];
1339 
1340 		if (zbr->znode) {
1341 			znode->time = time;
1342 			znode = dirty_cow_znode(c, zbr);
1343 			if (IS_ERR(znode))
1344 				return PTR_ERR(znode);
1345 			continue;
1346 		}
1347 
1348 		/* znode is not in TNC cache, load it from the media */
1349 		znode = ubifs_load_znode(c, zbr, znode, *n);
1350 		if (IS_ERR(znode))
1351 			return PTR_ERR(znode);
1352 		znode = dirty_cow_znode(c, zbr);
1353 		if (IS_ERR(znode))
1354 			return PTR_ERR(znode);
1355 	}
1356 
1357 	*zn = znode;
1358 	if (exact || !is_hash_key(c, key) || *n != -1) {
1359 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1360 		return exact;
1361 	}
1362 
1363 	/*
1364 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1365 	 * code.
1366 	 */
1367 	err = tnc_prev(c, &znode, n);
1368 	if (err == -ENOENT) {
1369 		*n = -1;
1370 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1371 		return 0;
1372 	}
1373 	if (unlikely(err < 0))
1374 		return err;
1375 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1376 		*n = -1;
1377 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378 		return 0;
1379 	}
1380 
1381 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1382 		znode = dirty_cow_bottom_up(c, znode);
1383 		if (IS_ERR(znode))
1384 			return PTR_ERR(znode);
1385 	}
1386 
1387 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1388 	*zn = znode;
1389 	return 1;
1390 }
1391 
1392 /**
1393  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1394  * @c: UBIFS file-system description object
1395  * @lnum: LEB number
1396  * @gc_seq1: garbage collection sequence number
1397  *
1398  * This function determines if @lnum may have been garbage collected since
1399  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1400  * %0 is returned.
1401  */
1402 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1403 {
1404 	int gc_seq2, gced_lnum;
1405 
1406 	gced_lnum = c->gced_lnum;
1407 	smp_rmb();
1408 	gc_seq2 = c->gc_seq;
1409 	/* Same seq means no GC */
1410 	if (gc_seq1 == gc_seq2)
1411 		return 0;
1412 	/* Different by more than 1 means we don't know */
1413 	if (gc_seq1 + 1 != gc_seq2)
1414 		return 1;
1415 	/*
1416 	 * We have seen the sequence number has increased by 1. Now we need to
1417 	 * be sure we read the right LEB number, so read it again.
1418 	 */
1419 	smp_rmb();
1420 	if (gced_lnum != c->gced_lnum)
1421 		return 1;
1422 	/* Finally we can check lnum */
1423 	if (gced_lnum == lnum)
1424 		return 1;
1425 	return 0;
1426 }
1427 
1428 /**
1429  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1430  * @c: UBIFS file-system description object
1431  * @key: node key to lookup
1432  * @node: the node is returned here
1433  * @lnum: LEB number is returned here
1434  * @offs: offset is returned here
1435  *
1436  * This function looks up and reads node with key @key. The caller has to make
1437  * sure the @node buffer is large enough to fit the node. Returns zero in case
1438  * of success, %-ENOENT if the node was not found, and a negative error code in
1439  * case of failure. The node location can be returned in @lnum and @offs.
1440  */
1441 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1442 		     void *node, int *lnum, int *offs)
1443 {
1444 	int found, n, err, safely = 0, gc_seq1;
1445 	struct ubifs_znode *znode;
1446 	struct ubifs_zbranch zbr, *zt;
1447 
1448 again:
1449 	mutex_lock(&c->tnc_mutex);
1450 	found = ubifs_lookup_level0(c, key, &znode, &n);
1451 	if (!found) {
1452 		err = -ENOENT;
1453 		goto out;
1454 	} else if (found < 0) {
1455 		err = found;
1456 		goto out;
1457 	}
1458 	zt = &znode->zbranch[n];
1459 	if (lnum) {
1460 		*lnum = zt->lnum;
1461 		*offs = zt->offs;
1462 	}
1463 	if (is_hash_key(c, key)) {
1464 		/*
1465 		 * In this case the leaf node cache gets used, so we pass the
1466 		 * address of the zbranch and keep the mutex locked
1467 		 */
1468 		err = tnc_read_hashed_node(c, zt, node);
1469 		goto out;
1470 	}
1471 	if (safely) {
1472 		err = ubifs_tnc_read_node(c, zt, node);
1473 		goto out;
1474 	}
1475 	/* Drop the TNC mutex prematurely and race with garbage collection */
1476 	zbr = znode->zbranch[n];
1477 	gc_seq1 = c->gc_seq;
1478 	mutex_unlock(&c->tnc_mutex);
1479 
1480 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1481 		/* We do not GC journal heads */
1482 		err = ubifs_tnc_read_node(c, &zbr, node);
1483 		return err;
1484 	}
1485 
1486 	err = fallible_read_node(c, key, &zbr, node);
1487 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1488 		/*
1489 		 * The node may have been GC'ed out from under us so try again
1490 		 * while keeping the TNC mutex locked.
1491 		 */
1492 		safely = 1;
1493 		goto again;
1494 	}
1495 	return 0;
1496 
1497 out:
1498 	mutex_unlock(&c->tnc_mutex);
1499 	return err;
1500 }
1501 
1502 /**
1503  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1504  * @c: UBIFS file-system description object
1505  * @bu: bulk-read parameters and results
1506  *
1507  * Lookup consecutive data node keys for the same inode that reside
1508  * consecutively in the same LEB. This function returns zero in case of success
1509  * and a negative error code in case of failure.
1510  *
1511  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1512  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1513  * maximum possible amount of nodes for bulk-read.
1514  */
1515 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1516 {
1517 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1518 	int uninitialized_var(len);
1519 	unsigned int block = key_block(c, &bu->key);
1520 	struct ubifs_znode *znode;
1521 
1522 	bu->cnt = 0;
1523 	bu->blk_cnt = 0;
1524 	bu->eof = 0;
1525 
1526 	mutex_lock(&c->tnc_mutex);
1527 	/* Find first key */
1528 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1529 	if (err < 0)
1530 		goto out;
1531 	if (err) {
1532 		/* Key found */
1533 		len = znode->zbranch[n].len;
1534 		/* The buffer must be big enough for at least 1 node */
1535 		if (len > bu->buf_len) {
1536 			err = -EINVAL;
1537 			goto out;
1538 		}
1539 		/* Add this key */
1540 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1541 		bu->blk_cnt += 1;
1542 		lnum = znode->zbranch[n].lnum;
1543 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1544 	}
1545 	while (1) {
1546 		struct ubifs_zbranch *zbr;
1547 		union ubifs_key *key;
1548 		unsigned int next_block;
1549 
1550 		/* Find next key */
1551 		err = tnc_next(c, &znode, &n);
1552 		if (err)
1553 			goto out;
1554 		zbr = &znode->zbranch[n];
1555 		key = &zbr->key;
1556 		/* See if there is another data key for this file */
1557 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1558 		    key_type(c, key) != UBIFS_DATA_KEY) {
1559 			err = -ENOENT;
1560 			goto out;
1561 		}
1562 		if (lnum < 0) {
1563 			/* First key found */
1564 			lnum = zbr->lnum;
1565 			offs = ALIGN(zbr->offs + zbr->len, 8);
1566 			len = zbr->len;
1567 			if (len > bu->buf_len) {
1568 				err = -EINVAL;
1569 				goto out;
1570 			}
1571 		} else {
1572 			/*
1573 			 * The data nodes must be in consecutive positions in
1574 			 * the same LEB.
1575 			 */
1576 			if (zbr->lnum != lnum || zbr->offs != offs)
1577 				goto out;
1578 			offs += ALIGN(zbr->len, 8);
1579 			len = ALIGN(len, 8) + zbr->len;
1580 			/* Must not exceed buffer length */
1581 			if (len > bu->buf_len)
1582 				goto out;
1583 		}
1584 		/* Allow for holes */
1585 		next_block = key_block(c, key);
1586 		bu->blk_cnt += (next_block - block - 1);
1587 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588 			goto out;
1589 		block = next_block;
1590 		/* Add this key */
1591 		bu->zbranch[bu->cnt++] = *zbr;
1592 		bu->blk_cnt += 1;
1593 		/* See if we have room for more */
1594 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1595 			goto out;
1596 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597 			goto out;
1598 	}
1599 out:
1600 	if (err == -ENOENT) {
1601 		bu->eof = 1;
1602 		err = 0;
1603 	}
1604 	bu->gc_seq = c->gc_seq;
1605 	mutex_unlock(&c->tnc_mutex);
1606 	if (err)
1607 		return err;
1608 	/*
1609 	 * An enormous hole could cause bulk-read to encompass too many
1610 	 * page cache pages, so limit the number here.
1611 	 */
1612 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1613 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1614 	/*
1615 	 * Ensure that bulk-read covers a whole number of page cache
1616 	 * pages.
1617 	 */
1618 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1619 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1620 		return 0;
1621 	if (bu->eof) {
1622 		/* At the end of file we can round up */
1623 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1624 		return 0;
1625 	}
1626 	/* Exclude data nodes that do not make up a whole page cache page */
1627 	block = key_block(c, &bu->key) + bu->blk_cnt;
1628 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1629 	while (bu->cnt) {
1630 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1631 			break;
1632 		bu->cnt -= 1;
1633 	}
1634 	return 0;
1635 }
1636 
1637 /**
1638  * read_wbuf - bulk-read from a LEB with a wbuf.
1639  * @wbuf: wbuf that may overlap the read
1640  * @buf: buffer into which to read
1641  * @len: read length
1642  * @lnum: LEB number from which to read
1643  * @offs: offset from which to read
1644  *
1645  * This functions returns %0 on success or a negative error code on failure.
1646  */
1647 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1648 		     int offs)
1649 {
1650 	const struct ubifs_info *c = wbuf->c;
1651 	int rlen, overlap;
1652 
1653 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1654 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1655 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1656 	ubifs_assert(c, offs + len <= c->leb_size);
1657 
1658 	spin_lock(&wbuf->lock);
1659 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1660 	if (!overlap) {
1661 		/* We may safely unlock the write-buffer and read the data */
1662 		spin_unlock(&wbuf->lock);
1663 		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1664 	}
1665 
1666 	/* Don't read under wbuf */
1667 	rlen = wbuf->offs - offs;
1668 	if (rlen < 0)
1669 		rlen = 0;
1670 
1671 	/* Copy the rest from the write-buffer */
1672 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1673 	spin_unlock(&wbuf->lock);
1674 
1675 	if (rlen > 0)
1676 		/* Read everything that goes before write-buffer */
1677 		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1678 
1679 	return 0;
1680 }
1681 
1682 /**
1683  * validate_data_node - validate data nodes for bulk-read.
1684  * @c: UBIFS file-system description object
1685  * @buf: buffer containing data node to validate
1686  * @zbr: zbranch of data node to validate
1687  *
1688  * This functions returns %0 on success or a negative error code on failure.
1689  */
1690 static int validate_data_node(struct ubifs_info *c, void *buf,
1691 			      struct ubifs_zbranch *zbr)
1692 {
1693 	union ubifs_key key1;
1694 	struct ubifs_ch *ch = buf;
1695 	int err, len;
1696 
1697 	if (ch->node_type != UBIFS_DATA_NODE) {
1698 		ubifs_err(c, "bad node type (%d but expected %d)",
1699 			  ch->node_type, UBIFS_DATA_NODE);
1700 		goto out_err;
1701 	}
1702 
1703 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1704 	if (err) {
1705 		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1706 		goto out;
1707 	}
1708 
1709 	err = ubifs_node_check_hash(c, buf, zbr->hash);
1710 	if (err) {
1711 		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1712 		return err;
1713 	}
1714 
1715 	len = le32_to_cpu(ch->len);
1716 	if (len != zbr->len) {
1717 		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718 		goto out_err;
1719 	}
1720 
1721 	/* Make sure the key of the read node is correct */
1722 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723 	if (!keys_eq(c, &zbr->key, &key1)) {
1724 		ubifs_err(c, "bad key in node at LEB %d:%d",
1725 			  zbr->lnum, zbr->offs);
1726 		dbg_tnck(&zbr->key, "looked for key ");
1727 		dbg_tnck(&key1, "found node's key ");
1728 		goto out_err;
1729 	}
1730 
1731 	return 0;
1732 
1733 out_err:
1734 	err = -EINVAL;
1735 out:
1736 	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737 	ubifs_dump_node(c, buf);
1738 	dump_stack();
1739 	return err;
1740 }
1741 
1742 /**
1743  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744  * @c: UBIFS file-system description object
1745  * @bu: bulk-read parameters and results
1746  *
1747  * This functions reads and validates the data nodes that were identified by the
1748  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749  * -EAGAIN to indicate a race with GC, or another negative error code on
1750  * failure.
1751  */
1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753 {
1754 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755 	struct ubifs_wbuf *wbuf;
1756 	void *buf;
1757 
1758 	len = bu->zbranch[bu->cnt - 1].offs;
1759 	len += bu->zbranch[bu->cnt - 1].len - offs;
1760 	if (len > bu->buf_len) {
1761 		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* Do the read */
1766 	wbuf = ubifs_get_wbuf(c, lnum);
1767 	if (wbuf)
1768 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 	else
1770 		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1771 
1772 	/* Check for a race with GC */
1773 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774 		return -EAGAIN;
1775 
1776 	if (err && err != -EBADMSG) {
1777 		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778 			  lnum, offs, err);
1779 		dump_stack();
1780 		dbg_tnck(&bu->key, "key ");
1781 		return err;
1782 	}
1783 
1784 	/* Validate the nodes read */
1785 	buf = bu->buf;
1786 	for (i = 0; i < bu->cnt; i++) {
1787 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1788 		if (err)
1789 			return err;
1790 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * do_lookup_nm- look up a "hashed" node.
1798  * @c: UBIFS file-system description object
1799  * @key: node key to lookup
1800  * @node: the node is returned here
1801  * @nm: node name
1802  *
1803  * This function looks up and reads a node which contains name hash in the key.
1804  * Since the hash may have collisions, there may be many nodes with the same
1805  * key, so we have to sequentially look to all of them until the needed one is
1806  * found. This function returns zero in case of success, %-ENOENT if the node
1807  * was not found, and a negative error code in case of failure.
1808  */
1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810 			void *node, const struct fscrypt_name *nm)
1811 {
1812 	int found, n, err;
1813 	struct ubifs_znode *znode;
1814 
1815 	dbg_tnck(key, "key ");
1816 	mutex_lock(&c->tnc_mutex);
1817 	found = ubifs_lookup_level0(c, key, &znode, &n);
1818 	if (!found) {
1819 		err = -ENOENT;
1820 		goto out_unlock;
1821 	} else if (found < 0) {
1822 		err = found;
1823 		goto out_unlock;
1824 	}
1825 
1826 	ubifs_assert(c, n >= 0);
1827 
1828 	err = resolve_collision(c, key, &znode, &n, nm);
1829 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830 	if (unlikely(err < 0))
1831 		goto out_unlock;
1832 	if (err == 0) {
1833 		err = -ENOENT;
1834 		goto out_unlock;
1835 	}
1836 
1837 	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1838 
1839 out_unlock:
1840 	mutex_unlock(&c->tnc_mutex);
1841 	return err;
1842 }
1843 
1844 /**
1845  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846  * @c: UBIFS file-system description object
1847  * @key: node key to lookup
1848  * @node: the node is returned here
1849  * @nm: node name
1850  *
1851  * This function looks up and reads a node which contains name hash in the key.
1852  * Since the hash may have collisions, there may be many nodes with the same
1853  * key, so we have to sequentially look to all of them until the needed one is
1854  * found. This function returns zero in case of success, %-ENOENT if the node
1855  * was not found, and a negative error code in case of failure.
1856  */
1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858 			void *node, const struct fscrypt_name *nm)
1859 {
1860 	int err, len;
1861 	const struct ubifs_dent_node *dent = node;
1862 
1863 	/*
1864 	 * We assume that in most of the cases there are no name collisions and
1865 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866 	 */
1867 	err = ubifs_tnc_lookup(c, key, node);
1868 	if (err)
1869 		return err;
1870 
1871 	len = le16_to_cpu(dent->nlen);
1872 	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873 		return 0;
1874 
1875 	/*
1876 	 * Unluckily, there are hash collisions and we have to iterate over
1877 	 * them look at each direntry with colliding name hash sequentially.
1878 	 */
1879 
1880 	return do_lookup_nm(c, key, node, nm);
1881 }
1882 
1883 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1884 			    struct ubifs_dent_node *dent, uint32_t cookie,
1885 			    struct ubifs_znode **zn, int *n)
1886 {
1887 	int err;
1888 	struct ubifs_znode *znode = *zn;
1889 	struct ubifs_zbranch *zbr;
1890 	union ubifs_key *dkey;
1891 
1892 	for (;;) {
1893 		zbr = &znode->zbranch[*n];
1894 		dkey = &zbr->key;
1895 
1896 		if (key_inum(c, dkey) != key_inum(c, key) ||
1897 		    key_type(c, dkey) != key_type(c, key)) {
1898 			return -ENOENT;
1899 		}
1900 
1901 		err = tnc_read_hashed_node(c, zbr, dent);
1902 		if (err)
1903 			return err;
1904 
1905 		if (key_hash(c, key) == key_hash(c, dkey) &&
1906 		    le32_to_cpu(dent->cookie) == cookie) {
1907 			*zn = znode;
1908 			return 0;
1909 		}
1910 
1911 		err = tnc_next(c, &znode, n);
1912 		if (err)
1913 			return err;
1914 	}
1915 }
1916 
1917 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1918 			struct ubifs_dent_node *dent, uint32_t cookie)
1919 {
1920 	int n, err;
1921 	struct ubifs_znode *znode;
1922 	union ubifs_key start_key;
1923 
1924 	ubifs_assert(c, is_hash_key(c, key));
1925 
1926 	lowest_dent_key(c, &start_key, key_inum(c, key));
1927 
1928 	mutex_lock(&c->tnc_mutex);
1929 	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1930 	if (unlikely(err < 0))
1931 		goto out_unlock;
1932 
1933 	err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1934 
1935 out_unlock:
1936 	mutex_unlock(&c->tnc_mutex);
1937 	return err;
1938 }
1939 
1940 /**
1941  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1942  * @c: UBIFS file-system description object
1943  * @key: node key to lookup
1944  * @node: the node is returned here
1945  * @cookie: node cookie for collision resolution
1946  *
1947  * This function looks up and reads a node which contains name hash in the key.
1948  * Since the hash may have collisions, there may be many nodes with the same
1949  * key, so we have to sequentially look to all of them until the needed one
1950  * with the same cookie value is found.
1951  * This function returns zero in case of success, %-ENOENT if the node
1952  * was not found, and a negative error code in case of failure.
1953  */
1954 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1955 			void *node, uint32_t cookie)
1956 {
1957 	int err;
1958 	const struct ubifs_dent_node *dent = node;
1959 
1960 	if (!c->double_hash)
1961 		return -EOPNOTSUPP;
1962 
1963 	/*
1964 	 * We assume that in most of the cases there are no name collisions and
1965 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1966 	 */
1967 	err = ubifs_tnc_lookup(c, key, node);
1968 	if (err)
1969 		return err;
1970 
1971 	if (le32_to_cpu(dent->cookie) == cookie)
1972 		return 0;
1973 
1974 	/*
1975 	 * Unluckily, there are hash collisions and we have to iterate over
1976 	 * them look at each direntry with colliding name hash sequentially.
1977 	 */
1978 	return do_lookup_dh(c, key, node, cookie);
1979 }
1980 
1981 /**
1982  * correct_parent_keys - correct parent znodes' keys.
1983  * @c: UBIFS file-system description object
1984  * @znode: znode to correct parent znodes for
1985  *
1986  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1987  * zbranch changes, keys of parent znodes have to be corrected. This helper
1988  * function is called in such situations and corrects the keys if needed.
1989  */
1990 static void correct_parent_keys(const struct ubifs_info *c,
1991 				struct ubifs_znode *znode)
1992 {
1993 	union ubifs_key *key, *key1;
1994 
1995 	ubifs_assert(c, znode->parent);
1996 	ubifs_assert(c, znode->iip == 0);
1997 
1998 	key = &znode->zbranch[0].key;
1999 	key1 = &znode->parent->zbranch[0].key;
2000 
2001 	while (keys_cmp(c, key, key1) < 0) {
2002 		key_copy(c, key, key1);
2003 		znode = znode->parent;
2004 		znode->alt = 1;
2005 		if (!znode->parent || znode->iip)
2006 			break;
2007 		key1 = &znode->parent->zbranch[0].key;
2008 	}
2009 }
2010 
2011 /**
2012  * insert_zbranch - insert a zbranch into a znode.
2013  * @c: UBIFS file-system description object
2014  * @znode: znode into which to insert
2015  * @zbr: zbranch to insert
2016  * @n: slot number to insert to
2017  *
2018  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2019  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2020  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2021  * slot, zbranches starting from @n have to be moved right.
2022  */
2023 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2024 			   const struct ubifs_zbranch *zbr, int n)
2025 {
2026 	int i;
2027 
2028 	ubifs_assert(c, ubifs_zn_dirty(znode));
2029 
2030 	if (znode->level) {
2031 		for (i = znode->child_cnt; i > n; i--) {
2032 			znode->zbranch[i] = znode->zbranch[i - 1];
2033 			if (znode->zbranch[i].znode)
2034 				znode->zbranch[i].znode->iip = i;
2035 		}
2036 		if (zbr->znode)
2037 			zbr->znode->iip = n;
2038 	} else
2039 		for (i = znode->child_cnt; i > n; i--)
2040 			znode->zbranch[i] = znode->zbranch[i - 1];
2041 
2042 	znode->zbranch[n] = *zbr;
2043 	znode->child_cnt += 1;
2044 
2045 	/*
2046 	 * After inserting at slot zero, the lower bound of the key range of
2047 	 * this znode may have changed. If this znode is subsequently split
2048 	 * then the upper bound of the key range may change, and furthermore
2049 	 * it could change to be lower than the original lower bound. If that
2050 	 * happens, then it will no longer be possible to find this znode in the
2051 	 * TNC using the key from the index node on flash. That is bad because
2052 	 * if it is not found, we will assume it is obsolete and may overwrite
2053 	 * it. Then if there is an unclean unmount, we will start using the
2054 	 * old index which will be broken.
2055 	 *
2056 	 * So we first mark znodes that have insertions at slot zero, and then
2057 	 * if they are split we add their lnum/offs to the old_idx tree.
2058 	 */
2059 	if (n == 0)
2060 		znode->alt = 1;
2061 }
2062 
2063 /**
2064  * tnc_insert - insert a node into TNC.
2065  * @c: UBIFS file-system description object
2066  * @znode: znode to insert into
2067  * @zbr: branch to insert
2068  * @n: slot number to insert new zbranch to
2069  *
2070  * This function inserts a new node described by @zbr into znode @znode. If
2071  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2072  * are splat as well if needed. Returns zero in case of success or a negative
2073  * error code in case of failure.
2074  */
2075 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2076 		      struct ubifs_zbranch *zbr, int n)
2077 {
2078 	struct ubifs_znode *zn, *zi, *zp;
2079 	int i, keep, move, appending = 0;
2080 	union ubifs_key *key = &zbr->key, *key1;
2081 
2082 	ubifs_assert(c, n >= 0 && n <= c->fanout);
2083 
2084 	/* Implement naive insert for now */
2085 again:
2086 	zp = znode->parent;
2087 	if (znode->child_cnt < c->fanout) {
2088 		ubifs_assert(c, n != c->fanout);
2089 		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2090 
2091 		insert_zbranch(c, znode, zbr, n);
2092 
2093 		/* Ensure parent's key is correct */
2094 		if (n == 0 && zp && znode->iip == 0)
2095 			correct_parent_keys(c, znode);
2096 
2097 		return 0;
2098 	}
2099 
2100 	/*
2101 	 * Unfortunately, @znode does not have more empty slots and we have to
2102 	 * split it.
2103 	 */
2104 	dbg_tnck(key, "splitting level %d, key ", znode->level);
2105 
2106 	if (znode->alt)
2107 		/*
2108 		 * We can no longer be sure of finding this znode by key, so we
2109 		 * record it in the old_idx tree.
2110 		 */
2111 		ins_clr_old_idx_znode(c, znode);
2112 
2113 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2114 	if (!zn)
2115 		return -ENOMEM;
2116 	zn->parent = zp;
2117 	zn->level = znode->level;
2118 
2119 	/* Decide where to split */
2120 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2121 		/* Try not to split consecutive data keys */
2122 		if (n == c->fanout) {
2123 			key1 = &znode->zbranch[n - 1].key;
2124 			if (key_inum(c, key1) == key_inum(c, key) &&
2125 			    key_type(c, key1) == UBIFS_DATA_KEY)
2126 				appending = 1;
2127 		} else
2128 			goto check_split;
2129 	} else if (appending && n != c->fanout) {
2130 		/* Try not to split consecutive data keys */
2131 		appending = 0;
2132 check_split:
2133 		if (n >= (c->fanout + 1) / 2) {
2134 			key1 = &znode->zbranch[0].key;
2135 			if (key_inum(c, key1) == key_inum(c, key) &&
2136 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2137 				key1 = &znode->zbranch[n].key;
2138 				if (key_inum(c, key1) != key_inum(c, key) ||
2139 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2140 					keep = n;
2141 					move = c->fanout - keep;
2142 					zi = znode;
2143 					goto do_split;
2144 				}
2145 			}
2146 		}
2147 	}
2148 
2149 	if (appending) {
2150 		keep = c->fanout;
2151 		move = 0;
2152 	} else {
2153 		keep = (c->fanout + 1) / 2;
2154 		move = c->fanout - keep;
2155 	}
2156 
2157 	/*
2158 	 * Although we don't at present, we could look at the neighbors and see
2159 	 * if we can move some zbranches there.
2160 	 */
2161 
2162 	if (n < keep) {
2163 		/* Insert into existing znode */
2164 		zi = znode;
2165 		move += 1;
2166 		keep -= 1;
2167 	} else {
2168 		/* Insert into new znode */
2169 		zi = zn;
2170 		n -= keep;
2171 		/* Re-parent */
2172 		if (zn->level != 0)
2173 			zbr->znode->parent = zn;
2174 	}
2175 
2176 do_split:
2177 
2178 	__set_bit(DIRTY_ZNODE, &zn->flags);
2179 	atomic_long_inc(&c->dirty_zn_cnt);
2180 
2181 	zn->child_cnt = move;
2182 	znode->child_cnt = keep;
2183 
2184 	dbg_tnc("moving %d, keeping %d", move, keep);
2185 
2186 	/* Move zbranch */
2187 	for (i = 0; i < move; i++) {
2188 		zn->zbranch[i] = znode->zbranch[keep + i];
2189 		/* Re-parent */
2190 		if (zn->level != 0)
2191 			if (zn->zbranch[i].znode) {
2192 				zn->zbranch[i].znode->parent = zn;
2193 				zn->zbranch[i].znode->iip = i;
2194 			}
2195 	}
2196 
2197 	/* Insert new key and branch */
2198 	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2199 
2200 	insert_zbranch(c, zi, zbr, n);
2201 
2202 	/* Insert new znode (produced by spitting) into the parent */
2203 	if (zp) {
2204 		if (n == 0 && zi == znode && znode->iip == 0)
2205 			correct_parent_keys(c, znode);
2206 
2207 		/* Locate insertion point */
2208 		n = znode->iip + 1;
2209 
2210 		/* Tail recursion */
2211 		zbr->key = zn->zbranch[0].key;
2212 		zbr->znode = zn;
2213 		zbr->lnum = 0;
2214 		zbr->offs = 0;
2215 		zbr->len = 0;
2216 		znode = zp;
2217 
2218 		goto again;
2219 	}
2220 
2221 	/* We have to split root znode */
2222 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2223 
2224 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2225 	if (!zi)
2226 		return -ENOMEM;
2227 
2228 	zi->child_cnt = 2;
2229 	zi->level = znode->level + 1;
2230 
2231 	__set_bit(DIRTY_ZNODE, &zi->flags);
2232 	atomic_long_inc(&c->dirty_zn_cnt);
2233 
2234 	zi->zbranch[0].key = znode->zbranch[0].key;
2235 	zi->zbranch[0].znode = znode;
2236 	zi->zbranch[0].lnum = c->zroot.lnum;
2237 	zi->zbranch[0].offs = c->zroot.offs;
2238 	zi->zbranch[0].len = c->zroot.len;
2239 	zi->zbranch[1].key = zn->zbranch[0].key;
2240 	zi->zbranch[1].znode = zn;
2241 
2242 	c->zroot.lnum = 0;
2243 	c->zroot.offs = 0;
2244 	c->zroot.len = 0;
2245 	c->zroot.znode = zi;
2246 
2247 	zn->parent = zi;
2248 	zn->iip = 1;
2249 	znode->parent = zi;
2250 	znode->iip = 0;
2251 
2252 	return 0;
2253 }
2254 
2255 /**
2256  * ubifs_tnc_add - add a node to TNC.
2257  * @c: UBIFS file-system description object
2258  * @key: key to add
2259  * @lnum: LEB number of node
2260  * @offs: node offset
2261  * @len: node length
2262  * @hash: The hash over the node
2263  *
2264  * This function adds a node with key @key to TNC. The node may be new or it may
2265  * obsolete some existing one. Returns %0 on success or negative error code on
2266  * failure.
2267  */
2268 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2269 		  int offs, int len, const u8 *hash)
2270 {
2271 	int found, n, err = 0;
2272 	struct ubifs_znode *znode;
2273 
2274 	mutex_lock(&c->tnc_mutex);
2275 	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2276 	found = lookup_level0_dirty(c, key, &znode, &n);
2277 	if (!found) {
2278 		struct ubifs_zbranch zbr;
2279 
2280 		zbr.znode = NULL;
2281 		zbr.lnum = lnum;
2282 		zbr.offs = offs;
2283 		zbr.len = len;
2284 		ubifs_copy_hash(c, hash, zbr.hash);
2285 		key_copy(c, key, &zbr.key);
2286 		err = tnc_insert(c, znode, &zbr, n + 1);
2287 	} else if (found == 1) {
2288 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2289 
2290 		lnc_free(zbr);
2291 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2292 		zbr->lnum = lnum;
2293 		zbr->offs = offs;
2294 		zbr->len = len;
2295 		ubifs_copy_hash(c, hash, zbr->hash);
2296 	} else
2297 		err = found;
2298 	if (!err)
2299 		err = dbg_check_tnc(c, 0);
2300 	mutex_unlock(&c->tnc_mutex);
2301 
2302 	return err;
2303 }
2304 
2305 /**
2306  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2307  * @c: UBIFS file-system description object
2308  * @key: key to add
2309  * @old_lnum: LEB number of old node
2310  * @old_offs: old node offset
2311  * @lnum: LEB number of node
2312  * @offs: node offset
2313  * @len: node length
2314  *
2315  * This function replaces a node with key @key in the TNC only if the old node
2316  * is found.  This function is called by garbage collection when node are moved.
2317  * Returns %0 on success or negative error code on failure.
2318  */
2319 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2320 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2321 {
2322 	int found, n, err = 0;
2323 	struct ubifs_znode *znode;
2324 
2325 	mutex_lock(&c->tnc_mutex);
2326 	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2327 		 old_offs, lnum, offs, len);
2328 	found = lookup_level0_dirty(c, key, &znode, &n);
2329 	if (found < 0) {
2330 		err = found;
2331 		goto out_unlock;
2332 	}
2333 
2334 	if (found == 1) {
2335 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2336 
2337 		found = 0;
2338 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2339 			lnc_free(zbr);
2340 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2341 			if (err)
2342 				goto out_unlock;
2343 			zbr->lnum = lnum;
2344 			zbr->offs = offs;
2345 			zbr->len = len;
2346 			found = 1;
2347 		} else if (is_hash_key(c, key)) {
2348 			found = resolve_collision_directly(c, key, &znode, &n,
2349 							   old_lnum, old_offs);
2350 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2351 				found, znode, n, old_lnum, old_offs);
2352 			if (found < 0) {
2353 				err = found;
2354 				goto out_unlock;
2355 			}
2356 
2357 			if (found) {
2358 				/* Ensure the znode is dirtied */
2359 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2360 					znode = dirty_cow_bottom_up(c, znode);
2361 					if (IS_ERR(znode)) {
2362 						err = PTR_ERR(znode);
2363 						goto out_unlock;
2364 					}
2365 				}
2366 				zbr = &znode->zbranch[n];
2367 				lnc_free(zbr);
2368 				err = ubifs_add_dirt(c, zbr->lnum,
2369 						     zbr->len);
2370 				if (err)
2371 					goto out_unlock;
2372 				zbr->lnum = lnum;
2373 				zbr->offs = offs;
2374 				zbr->len = len;
2375 			}
2376 		}
2377 	}
2378 
2379 	if (!found)
2380 		err = ubifs_add_dirt(c, lnum, len);
2381 
2382 	if (!err)
2383 		err = dbg_check_tnc(c, 0);
2384 
2385 out_unlock:
2386 	mutex_unlock(&c->tnc_mutex);
2387 	return err;
2388 }
2389 
2390 /**
2391  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2392  * @c: UBIFS file-system description object
2393  * @key: key to add
2394  * @lnum: LEB number of node
2395  * @offs: node offset
2396  * @len: node length
2397  * @hash: The hash over the node
2398  * @nm: node name
2399  *
2400  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2401  * may have collisions, like directory entry keys.
2402  */
2403 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2404 		     int lnum, int offs, int len, const u8 *hash,
2405 		     const struct fscrypt_name *nm)
2406 {
2407 	int found, n, err = 0;
2408 	struct ubifs_znode *znode;
2409 
2410 	mutex_lock(&c->tnc_mutex);
2411 	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2412 	found = lookup_level0_dirty(c, key, &znode, &n);
2413 	if (found < 0) {
2414 		err = found;
2415 		goto out_unlock;
2416 	}
2417 
2418 	if (found == 1) {
2419 		if (c->replaying)
2420 			found = fallible_resolve_collision(c, key, &znode, &n,
2421 							   nm, 1);
2422 		else
2423 			found = resolve_collision(c, key, &znode, &n, nm);
2424 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2425 		if (found < 0) {
2426 			err = found;
2427 			goto out_unlock;
2428 		}
2429 
2430 		/* Ensure the znode is dirtied */
2431 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2432 			znode = dirty_cow_bottom_up(c, znode);
2433 			if (IS_ERR(znode)) {
2434 				err = PTR_ERR(znode);
2435 				goto out_unlock;
2436 			}
2437 		}
2438 
2439 		if (found == 1) {
2440 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2441 
2442 			lnc_free(zbr);
2443 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2444 			zbr->lnum = lnum;
2445 			zbr->offs = offs;
2446 			zbr->len = len;
2447 			ubifs_copy_hash(c, hash, zbr->hash);
2448 			goto out_unlock;
2449 		}
2450 	}
2451 
2452 	if (!found) {
2453 		struct ubifs_zbranch zbr;
2454 
2455 		zbr.znode = NULL;
2456 		zbr.lnum = lnum;
2457 		zbr.offs = offs;
2458 		zbr.len = len;
2459 		ubifs_copy_hash(c, hash, zbr.hash);
2460 		key_copy(c, key, &zbr.key);
2461 		err = tnc_insert(c, znode, &zbr, n + 1);
2462 		if (err)
2463 			goto out_unlock;
2464 		if (c->replaying) {
2465 			/*
2466 			 * We did not find it in the index so there may be a
2467 			 * dangling branch still in the index. So we remove it
2468 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2469 			 * an unmatchable name.
2470 			 */
2471 			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2472 
2473 			err = dbg_check_tnc(c, 0);
2474 			mutex_unlock(&c->tnc_mutex);
2475 			if (err)
2476 				return err;
2477 			return ubifs_tnc_remove_nm(c, key, &noname);
2478 		}
2479 	}
2480 
2481 out_unlock:
2482 	if (!err)
2483 		err = dbg_check_tnc(c, 0);
2484 	mutex_unlock(&c->tnc_mutex);
2485 	return err;
2486 }
2487 
2488 /**
2489  * tnc_delete - delete a znode form TNC.
2490  * @c: UBIFS file-system description object
2491  * @znode: znode to delete from
2492  * @n: zbranch slot number to delete
2493  *
2494  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2495  * case of success and a negative error code in case of failure.
2496  */
2497 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2498 {
2499 	struct ubifs_zbranch *zbr;
2500 	struct ubifs_znode *zp;
2501 	int i, err;
2502 
2503 	/* Delete without merge for now */
2504 	ubifs_assert(c, znode->level == 0);
2505 	ubifs_assert(c, n >= 0 && n < c->fanout);
2506 	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2507 
2508 	zbr = &znode->zbranch[n];
2509 	lnc_free(zbr);
2510 
2511 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2512 	if (err) {
2513 		ubifs_dump_znode(c, znode);
2514 		return err;
2515 	}
2516 
2517 	/* We do not "gap" zbranch slots */
2518 	for (i = n; i < znode->child_cnt - 1; i++)
2519 		znode->zbranch[i] = znode->zbranch[i + 1];
2520 	znode->child_cnt -= 1;
2521 
2522 	if (znode->child_cnt > 0)
2523 		return 0;
2524 
2525 	/*
2526 	 * This was the last zbranch, we have to delete this znode from the
2527 	 * parent.
2528 	 */
2529 
2530 	do {
2531 		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2532 		ubifs_assert(c, ubifs_zn_dirty(znode));
2533 
2534 		zp = znode->parent;
2535 		n = znode->iip;
2536 
2537 		atomic_long_dec(&c->dirty_zn_cnt);
2538 
2539 		err = insert_old_idx_znode(c, znode);
2540 		if (err)
2541 			return err;
2542 
2543 		if (znode->cnext) {
2544 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2545 			atomic_long_inc(&c->clean_zn_cnt);
2546 			atomic_long_inc(&ubifs_clean_zn_cnt);
2547 		} else
2548 			kfree(znode);
2549 		znode = zp;
2550 	} while (znode->child_cnt == 1); /* while removing last child */
2551 
2552 	/* Remove from znode, entry n - 1 */
2553 	znode->child_cnt -= 1;
2554 	ubifs_assert(c, znode->level != 0);
2555 	for (i = n; i < znode->child_cnt; i++) {
2556 		znode->zbranch[i] = znode->zbranch[i + 1];
2557 		if (znode->zbranch[i].znode)
2558 			znode->zbranch[i].znode->iip = i;
2559 	}
2560 
2561 	/*
2562 	 * If this is the root and it has only 1 child then
2563 	 * collapse the tree.
2564 	 */
2565 	if (!znode->parent) {
2566 		while (znode->child_cnt == 1 && znode->level != 0) {
2567 			zp = znode;
2568 			zbr = &znode->zbranch[0];
2569 			znode = get_znode(c, znode, 0);
2570 			if (IS_ERR(znode))
2571 				return PTR_ERR(znode);
2572 			znode = dirty_cow_znode(c, zbr);
2573 			if (IS_ERR(znode))
2574 				return PTR_ERR(znode);
2575 			znode->parent = NULL;
2576 			znode->iip = 0;
2577 			if (c->zroot.len) {
2578 				err = insert_old_idx(c, c->zroot.lnum,
2579 						     c->zroot.offs);
2580 				if (err)
2581 					return err;
2582 			}
2583 			c->zroot.lnum = zbr->lnum;
2584 			c->zroot.offs = zbr->offs;
2585 			c->zroot.len = zbr->len;
2586 			c->zroot.znode = znode;
2587 			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2588 			ubifs_assert(c, ubifs_zn_dirty(zp));
2589 			atomic_long_dec(&c->dirty_zn_cnt);
2590 
2591 			if (zp->cnext) {
2592 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2593 				atomic_long_inc(&c->clean_zn_cnt);
2594 				atomic_long_inc(&ubifs_clean_zn_cnt);
2595 			} else
2596 				kfree(zp);
2597 		}
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 /**
2604  * ubifs_tnc_remove - remove an index entry of a node.
2605  * @c: UBIFS file-system description object
2606  * @key: key of node
2607  *
2608  * Returns %0 on success or negative error code on failure.
2609  */
2610 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2611 {
2612 	int found, n, err = 0;
2613 	struct ubifs_znode *znode;
2614 
2615 	mutex_lock(&c->tnc_mutex);
2616 	dbg_tnck(key, "key ");
2617 	found = lookup_level0_dirty(c, key, &znode, &n);
2618 	if (found < 0) {
2619 		err = found;
2620 		goto out_unlock;
2621 	}
2622 	if (found == 1)
2623 		err = tnc_delete(c, znode, n);
2624 	if (!err)
2625 		err = dbg_check_tnc(c, 0);
2626 
2627 out_unlock:
2628 	mutex_unlock(&c->tnc_mutex);
2629 	return err;
2630 }
2631 
2632 /**
2633  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2634  * @c: UBIFS file-system description object
2635  * @key: key of node
2636  * @nm: directory entry name
2637  *
2638  * Returns %0 on success or negative error code on failure.
2639  */
2640 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2641 			const struct fscrypt_name *nm)
2642 {
2643 	int n, err;
2644 	struct ubifs_znode *znode;
2645 
2646 	mutex_lock(&c->tnc_mutex);
2647 	dbg_tnck(key, "key ");
2648 	err = lookup_level0_dirty(c, key, &znode, &n);
2649 	if (err < 0)
2650 		goto out_unlock;
2651 
2652 	if (err) {
2653 		if (c->replaying)
2654 			err = fallible_resolve_collision(c, key, &znode, &n,
2655 							 nm, 0);
2656 		else
2657 			err = resolve_collision(c, key, &znode, &n, nm);
2658 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2659 		if (err < 0)
2660 			goto out_unlock;
2661 		if (err) {
2662 			/* Ensure the znode is dirtied */
2663 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2664 				znode = dirty_cow_bottom_up(c, znode);
2665 				if (IS_ERR(znode)) {
2666 					err = PTR_ERR(znode);
2667 					goto out_unlock;
2668 				}
2669 			}
2670 			err = tnc_delete(c, znode, n);
2671 		}
2672 	}
2673 
2674 out_unlock:
2675 	if (!err)
2676 		err = dbg_check_tnc(c, 0);
2677 	mutex_unlock(&c->tnc_mutex);
2678 	return err;
2679 }
2680 
2681 /**
2682  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2683  * @c: UBIFS file-system description object
2684  * @key: key of node
2685  * @cookie: node cookie for collision resolution
2686  *
2687  * Returns %0 on success or negative error code on failure.
2688  */
2689 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2690 			uint32_t cookie)
2691 {
2692 	int n, err;
2693 	struct ubifs_znode *znode;
2694 	struct ubifs_dent_node *dent;
2695 	struct ubifs_zbranch *zbr;
2696 
2697 	if (!c->double_hash)
2698 		return -EOPNOTSUPP;
2699 
2700 	mutex_lock(&c->tnc_mutex);
2701 	err = lookup_level0_dirty(c, key, &znode, &n);
2702 	if (err <= 0)
2703 		goto out_unlock;
2704 
2705 	zbr = &znode->zbranch[n];
2706 	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2707 	if (!dent) {
2708 		err = -ENOMEM;
2709 		goto out_unlock;
2710 	}
2711 
2712 	err = tnc_read_hashed_node(c, zbr, dent);
2713 	if (err)
2714 		goto out_free;
2715 
2716 	/* If the cookie does not match, we're facing a hash collision. */
2717 	if (le32_to_cpu(dent->cookie) != cookie) {
2718 		union ubifs_key start_key;
2719 
2720 		lowest_dent_key(c, &start_key, key_inum(c, key));
2721 
2722 		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2723 		if (unlikely(err < 0))
2724 			goto out_free;
2725 
2726 		err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2727 		if (err)
2728 			goto out_free;
2729 	}
2730 
2731 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2732 		znode = dirty_cow_bottom_up(c, znode);
2733 		if (IS_ERR(znode)) {
2734 			err = PTR_ERR(znode);
2735 			goto out_free;
2736 		}
2737 	}
2738 	err = tnc_delete(c, znode, n);
2739 
2740 out_free:
2741 	kfree(dent);
2742 out_unlock:
2743 	if (!err)
2744 		err = dbg_check_tnc(c, 0);
2745 	mutex_unlock(&c->tnc_mutex);
2746 	return err;
2747 }
2748 
2749 /**
2750  * key_in_range - determine if a key falls within a range of keys.
2751  * @c: UBIFS file-system description object
2752  * @key: key to check
2753  * @from_key: lowest key in range
2754  * @to_key: highest key in range
2755  *
2756  * This function returns %1 if the key is in range and %0 otherwise.
2757  */
2758 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2759 			union ubifs_key *from_key, union ubifs_key *to_key)
2760 {
2761 	if (keys_cmp(c, key, from_key) < 0)
2762 		return 0;
2763 	if (keys_cmp(c, key, to_key) > 0)
2764 		return 0;
2765 	return 1;
2766 }
2767 
2768 /**
2769  * ubifs_tnc_remove_range - remove index entries in range.
2770  * @c: UBIFS file-system description object
2771  * @from_key: lowest key to remove
2772  * @to_key: highest key to remove
2773  *
2774  * This function removes index entries starting at @from_key and ending at
2775  * @to_key.  This function returns zero in case of success and a negative error
2776  * code in case of failure.
2777  */
2778 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2779 			   union ubifs_key *to_key)
2780 {
2781 	int i, n, k, err = 0;
2782 	struct ubifs_znode *znode;
2783 	union ubifs_key *key;
2784 
2785 	mutex_lock(&c->tnc_mutex);
2786 	while (1) {
2787 		/* Find first level 0 znode that contains keys to remove */
2788 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2789 		if (err < 0)
2790 			goto out_unlock;
2791 
2792 		if (err)
2793 			key = from_key;
2794 		else {
2795 			err = tnc_next(c, &znode, &n);
2796 			if (err == -ENOENT) {
2797 				err = 0;
2798 				goto out_unlock;
2799 			}
2800 			if (err < 0)
2801 				goto out_unlock;
2802 			key = &znode->zbranch[n].key;
2803 			if (!key_in_range(c, key, from_key, to_key)) {
2804 				err = 0;
2805 				goto out_unlock;
2806 			}
2807 		}
2808 
2809 		/* Ensure the znode is dirtied */
2810 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2811 			znode = dirty_cow_bottom_up(c, znode);
2812 			if (IS_ERR(znode)) {
2813 				err = PTR_ERR(znode);
2814 				goto out_unlock;
2815 			}
2816 		}
2817 
2818 		/* Remove all keys in range except the first */
2819 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2820 			key = &znode->zbranch[i].key;
2821 			if (!key_in_range(c, key, from_key, to_key))
2822 				break;
2823 			lnc_free(&znode->zbranch[i]);
2824 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2825 					     znode->zbranch[i].len);
2826 			if (err) {
2827 				ubifs_dump_znode(c, znode);
2828 				goto out_unlock;
2829 			}
2830 			dbg_tnck(key, "removing key ");
2831 		}
2832 		if (k) {
2833 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2834 				znode->zbranch[i - k] = znode->zbranch[i];
2835 			znode->child_cnt -= k;
2836 		}
2837 
2838 		/* Now delete the first */
2839 		err = tnc_delete(c, znode, n);
2840 		if (err)
2841 			goto out_unlock;
2842 	}
2843 
2844 out_unlock:
2845 	if (!err)
2846 		err = dbg_check_tnc(c, 0);
2847 	mutex_unlock(&c->tnc_mutex);
2848 	return err;
2849 }
2850 
2851 /**
2852  * ubifs_tnc_remove_ino - remove an inode from TNC.
2853  * @c: UBIFS file-system description object
2854  * @inum: inode number to remove
2855  *
2856  * This function remove inode @inum and all the extended attributes associated
2857  * with the anode from TNC and returns zero in case of success or a negative
2858  * error code in case of failure.
2859  */
2860 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2861 {
2862 	union ubifs_key key1, key2;
2863 	struct ubifs_dent_node *xent, *pxent = NULL;
2864 	struct fscrypt_name nm = {0};
2865 
2866 	dbg_tnc("ino %lu", (unsigned long)inum);
2867 
2868 	/*
2869 	 * Walk all extended attribute entries and remove them together with
2870 	 * corresponding extended attribute inodes.
2871 	 */
2872 	lowest_xent_key(c, &key1, inum);
2873 	while (1) {
2874 		ino_t xattr_inum;
2875 		int err;
2876 
2877 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2878 		if (IS_ERR(xent)) {
2879 			err = PTR_ERR(xent);
2880 			if (err == -ENOENT)
2881 				break;
2882 			return err;
2883 		}
2884 
2885 		xattr_inum = le64_to_cpu(xent->inum);
2886 		dbg_tnc("xent '%s', ino %lu", xent->name,
2887 			(unsigned long)xattr_inum);
2888 
2889 		ubifs_evict_xattr_inode(c, xattr_inum);
2890 
2891 		fname_name(&nm) = xent->name;
2892 		fname_len(&nm) = le16_to_cpu(xent->nlen);
2893 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2894 		if (err) {
2895 			kfree(xent);
2896 			return err;
2897 		}
2898 
2899 		lowest_ino_key(c, &key1, xattr_inum);
2900 		highest_ino_key(c, &key2, xattr_inum);
2901 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2902 		if (err) {
2903 			kfree(xent);
2904 			return err;
2905 		}
2906 
2907 		kfree(pxent);
2908 		pxent = xent;
2909 		key_read(c, &xent->key, &key1);
2910 	}
2911 
2912 	kfree(pxent);
2913 	lowest_ino_key(c, &key1, inum);
2914 	highest_ino_key(c, &key2, inum);
2915 
2916 	return ubifs_tnc_remove_range(c, &key1, &key2);
2917 }
2918 
2919 /**
2920  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2921  * @c: UBIFS file-system description object
2922  * @key: key of last entry
2923  * @nm: name of last entry found or %NULL
2924  *
2925  * This function finds and reads the next directory or extended attribute entry
2926  * after the given key (@key) if there is one. @nm is used to resolve
2927  * collisions.
2928  *
2929  * If the name of the current entry is not known and only the key is known,
2930  * @nm->name has to be %NULL. In this case the semantics of this function is a
2931  * little bit different and it returns the entry corresponding to this key, not
2932  * the next one. If the key was not found, the closest "right" entry is
2933  * returned.
2934  *
2935  * If the fist entry has to be found, @key has to contain the lowest possible
2936  * key value for this inode and @name has to be %NULL.
2937  *
2938  * This function returns the found directory or extended attribute entry node
2939  * in case of success, %-ENOENT is returned if no entry was found, and a
2940  * negative error code is returned in case of failure.
2941  */
2942 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2943 					   union ubifs_key *key,
2944 					   const struct fscrypt_name *nm)
2945 {
2946 	int n, err, type = key_type(c, key);
2947 	struct ubifs_znode *znode;
2948 	struct ubifs_dent_node *dent;
2949 	struct ubifs_zbranch *zbr;
2950 	union ubifs_key *dkey;
2951 
2952 	dbg_tnck(key, "key ");
2953 	ubifs_assert(c, is_hash_key(c, key));
2954 
2955 	mutex_lock(&c->tnc_mutex);
2956 	err = ubifs_lookup_level0(c, key, &znode, &n);
2957 	if (unlikely(err < 0))
2958 		goto out_unlock;
2959 
2960 	if (fname_len(nm) > 0) {
2961 		if (err) {
2962 			/* Handle collisions */
2963 			if (c->replaying)
2964 				err = fallible_resolve_collision(c, key, &znode, &n,
2965 							 nm, 0);
2966 			else
2967 				err = resolve_collision(c, key, &znode, &n, nm);
2968 			dbg_tnc("rc returned %d, znode %p, n %d",
2969 				err, znode, n);
2970 			if (unlikely(err < 0))
2971 				goto out_unlock;
2972 		}
2973 
2974 		/* Now find next entry */
2975 		err = tnc_next(c, &znode, &n);
2976 		if (unlikely(err))
2977 			goto out_unlock;
2978 	} else {
2979 		/*
2980 		 * The full name of the entry was not given, in which case the
2981 		 * behavior of this function is a little different and it
2982 		 * returns current entry, not the next one.
2983 		 */
2984 		if (!err) {
2985 			/*
2986 			 * However, the given key does not exist in the TNC
2987 			 * tree and @znode/@n variables contain the closest
2988 			 * "preceding" element. Switch to the next one.
2989 			 */
2990 			err = tnc_next(c, &znode, &n);
2991 			if (err)
2992 				goto out_unlock;
2993 		}
2994 	}
2995 
2996 	zbr = &znode->zbranch[n];
2997 	dent = kmalloc(zbr->len, GFP_NOFS);
2998 	if (unlikely(!dent)) {
2999 		err = -ENOMEM;
3000 		goto out_unlock;
3001 	}
3002 
3003 	/*
3004 	 * The above 'tnc_next()' call could lead us to the next inode, check
3005 	 * this.
3006 	 */
3007 	dkey = &zbr->key;
3008 	if (key_inum(c, dkey) != key_inum(c, key) ||
3009 	    key_type(c, dkey) != type) {
3010 		err = -ENOENT;
3011 		goto out_free;
3012 	}
3013 
3014 	err = tnc_read_hashed_node(c, zbr, dent);
3015 	if (unlikely(err))
3016 		goto out_free;
3017 
3018 	mutex_unlock(&c->tnc_mutex);
3019 	return dent;
3020 
3021 out_free:
3022 	kfree(dent);
3023 out_unlock:
3024 	mutex_unlock(&c->tnc_mutex);
3025 	return ERR_PTR(err);
3026 }
3027 
3028 /**
3029  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3030  * @c: UBIFS file-system description object
3031  *
3032  * Destroy left-over obsolete znodes from a failed commit.
3033  */
3034 static void tnc_destroy_cnext(struct ubifs_info *c)
3035 {
3036 	struct ubifs_znode *cnext;
3037 
3038 	if (!c->cnext)
3039 		return;
3040 	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3041 	cnext = c->cnext;
3042 	do {
3043 		struct ubifs_znode *znode = cnext;
3044 
3045 		cnext = cnext->cnext;
3046 		if (ubifs_zn_obsolete(znode))
3047 			kfree(znode);
3048 	} while (cnext && cnext != c->cnext);
3049 }
3050 
3051 /**
3052  * ubifs_tnc_close - close TNC subsystem and free all related resources.
3053  * @c: UBIFS file-system description object
3054  */
3055 void ubifs_tnc_close(struct ubifs_info *c)
3056 {
3057 	tnc_destroy_cnext(c);
3058 	if (c->zroot.znode) {
3059 		long n, freed;
3060 
3061 		n = atomic_long_read(&c->clean_zn_cnt);
3062 		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3063 		ubifs_assert(c, freed == n);
3064 		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3065 	}
3066 	kfree(c->gap_lebs);
3067 	kfree(c->ilebs);
3068 	destroy_old_idx(c);
3069 }
3070 
3071 /**
3072  * left_znode - get the znode to the left.
3073  * @c: UBIFS file-system description object
3074  * @znode: znode
3075  *
3076  * This function returns a pointer to the znode to the left of @znode or NULL if
3077  * there is not one. A negative error code is returned on failure.
3078  */
3079 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3080 				      struct ubifs_znode *znode)
3081 {
3082 	int level = znode->level;
3083 
3084 	while (1) {
3085 		int n = znode->iip - 1;
3086 
3087 		/* Go up until we can go left */
3088 		znode = znode->parent;
3089 		if (!znode)
3090 			return NULL;
3091 		if (n >= 0) {
3092 			/* Now go down the rightmost branch to 'level' */
3093 			znode = get_znode(c, znode, n);
3094 			if (IS_ERR(znode))
3095 				return znode;
3096 			while (znode->level != level) {
3097 				n = znode->child_cnt - 1;
3098 				znode = get_znode(c, znode, n);
3099 				if (IS_ERR(znode))
3100 					return znode;
3101 			}
3102 			break;
3103 		}
3104 	}
3105 	return znode;
3106 }
3107 
3108 /**
3109  * right_znode - get the znode to the right.
3110  * @c: UBIFS file-system description object
3111  * @znode: znode
3112  *
3113  * This function returns a pointer to the znode to the right of @znode or NULL
3114  * if there is not one. A negative error code is returned on failure.
3115  */
3116 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3117 				       struct ubifs_znode *znode)
3118 {
3119 	int level = znode->level;
3120 
3121 	while (1) {
3122 		int n = znode->iip + 1;
3123 
3124 		/* Go up until we can go right */
3125 		znode = znode->parent;
3126 		if (!znode)
3127 			return NULL;
3128 		if (n < znode->child_cnt) {
3129 			/* Now go down the leftmost branch to 'level' */
3130 			znode = get_znode(c, znode, n);
3131 			if (IS_ERR(znode))
3132 				return znode;
3133 			while (znode->level != level) {
3134 				znode = get_znode(c, znode, 0);
3135 				if (IS_ERR(znode))
3136 					return znode;
3137 			}
3138 			break;
3139 		}
3140 	}
3141 	return znode;
3142 }
3143 
3144 /**
3145  * lookup_znode - find a particular indexing node from TNC.
3146  * @c: UBIFS file-system description object
3147  * @key: index node key to lookup
3148  * @level: index node level
3149  * @lnum: index node LEB number
3150  * @offs: index node offset
3151  *
3152  * This function searches an indexing node by its first key @key and its
3153  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3154  * nodes it traverses to TNC. This function is called for indexing nodes which
3155  * were found on the media by scanning, for example when garbage-collecting or
3156  * when doing in-the-gaps commit. This means that the indexing node which is
3157  * looked for does not have to have exactly the same leftmost key @key, because
3158  * the leftmost key may have been changed, in which case TNC will contain a
3159  * dirty znode which still refers the same @lnum:@offs. This function is clever
3160  * enough to recognize such indexing nodes.
3161  *
3162  * Note, if a znode was deleted or changed too much, then this function will
3163  * not find it. For situations like this UBIFS has the old index RB-tree
3164  * (indexed by @lnum:@offs).
3165  *
3166  * This function returns a pointer to the znode found or %NULL if it is not
3167  * found. A negative error code is returned on failure.
3168  */
3169 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3170 					union ubifs_key *key, int level,
3171 					int lnum, int offs)
3172 {
3173 	struct ubifs_znode *znode, *zn;
3174 	int n, nn;
3175 
3176 	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3177 
3178 	/*
3179 	 * The arguments have probably been read off flash, so don't assume
3180 	 * they are valid.
3181 	 */
3182 	if (level < 0)
3183 		return ERR_PTR(-EINVAL);
3184 
3185 	/* Get the root znode */
3186 	znode = c->zroot.znode;
3187 	if (!znode) {
3188 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3189 		if (IS_ERR(znode))
3190 			return znode;
3191 	}
3192 	/* Check if it is the one we are looking for */
3193 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3194 		return znode;
3195 	/* Descend to the parent level i.e. (level + 1) */
3196 	if (level >= znode->level)
3197 		return NULL;
3198 	while (1) {
3199 		ubifs_search_zbranch(c, znode, key, &n);
3200 		if (n < 0) {
3201 			/*
3202 			 * We reached a znode where the leftmost key is greater
3203 			 * than the key we are searching for. This is the same
3204 			 * situation as the one described in a huge comment at
3205 			 * the end of the 'ubifs_lookup_level0()' function. And
3206 			 * for exactly the same reasons we have to try to look
3207 			 * left before giving up.
3208 			 */
3209 			znode = left_znode(c, znode);
3210 			if (!znode)
3211 				return NULL;
3212 			if (IS_ERR(znode))
3213 				return znode;
3214 			ubifs_search_zbranch(c, znode, key, &n);
3215 			ubifs_assert(c, n >= 0);
3216 		}
3217 		if (znode->level == level + 1)
3218 			break;
3219 		znode = get_znode(c, znode, n);
3220 		if (IS_ERR(znode))
3221 			return znode;
3222 	}
3223 	/* Check if the child is the one we are looking for */
3224 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3225 		return get_znode(c, znode, n);
3226 	/* If the key is unique, there is nowhere else to look */
3227 	if (!is_hash_key(c, key))
3228 		return NULL;
3229 	/*
3230 	 * The key is not unique and so may be also in the znodes to either
3231 	 * side.
3232 	 */
3233 	zn = znode;
3234 	nn = n;
3235 	/* Look left */
3236 	while (1) {
3237 		/* Move one branch to the left */
3238 		if (n)
3239 			n -= 1;
3240 		else {
3241 			znode = left_znode(c, znode);
3242 			if (!znode)
3243 				break;
3244 			if (IS_ERR(znode))
3245 				return znode;
3246 			n = znode->child_cnt - 1;
3247 		}
3248 		/* Check it */
3249 		if (znode->zbranch[n].lnum == lnum &&
3250 		    znode->zbranch[n].offs == offs)
3251 			return get_znode(c, znode, n);
3252 		/* Stop if the key is less than the one we are looking for */
3253 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3254 			break;
3255 	}
3256 	/* Back to the middle */
3257 	znode = zn;
3258 	n = nn;
3259 	/* Look right */
3260 	while (1) {
3261 		/* Move one branch to the right */
3262 		if (++n >= znode->child_cnt) {
3263 			znode = right_znode(c, znode);
3264 			if (!znode)
3265 				break;
3266 			if (IS_ERR(znode))
3267 				return znode;
3268 			n = 0;
3269 		}
3270 		/* Check it */
3271 		if (znode->zbranch[n].lnum == lnum &&
3272 		    znode->zbranch[n].offs == offs)
3273 			return get_znode(c, znode, n);
3274 		/* Stop if the key is greater than the one we are looking for */
3275 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3276 			break;
3277 	}
3278 	return NULL;
3279 }
3280 
3281 /**
3282  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3283  * @c: UBIFS file-system description object
3284  * @key: key of index node
3285  * @level: index node level
3286  * @lnum: LEB number of index node
3287  * @offs: offset of index node
3288  *
3289  * This function returns %0 if the index node is not referred to in the TNC, %1
3290  * if the index node is referred to in the TNC and the corresponding znode is
3291  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3292  * znode is clean, and a negative error code in case of failure.
3293  *
3294  * Note, the @key argument has to be the key of the first child. Also note,
3295  * this function relies on the fact that 0:0 is never a valid LEB number and
3296  * offset for a main-area node.
3297  */
3298 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3299 		       int lnum, int offs)
3300 {
3301 	struct ubifs_znode *znode;
3302 
3303 	znode = lookup_znode(c, key, level, lnum, offs);
3304 	if (!znode)
3305 		return 0;
3306 	if (IS_ERR(znode))
3307 		return PTR_ERR(znode);
3308 
3309 	return ubifs_zn_dirty(znode) ? 1 : 2;
3310 }
3311 
3312 /**
3313  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3314  * @c: UBIFS file-system description object
3315  * @key: node key
3316  * @lnum: node LEB number
3317  * @offs: node offset
3318  *
3319  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3320  * not, and a negative error code in case of failure.
3321  *
3322  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3323  * and offset for a main-area node.
3324  */
3325 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3326 			       int lnum, int offs)
3327 {
3328 	struct ubifs_zbranch *zbr;
3329 	struct ubifs_znode *znode, *zn;
3330 	int n, found, err, nn;
3331 	const int unique = !is_hash_key(c, key);
3332 
3333 	found = ubifs_lookup_level0(c, key, &znode, &n);
3334 	if (found < 0)
3335 		return found; /* Error code */
3336 	if (!found)
3337 		return 0;
3338 	zbr = &znode->zbranch[n];
3339 	if (lnum == zbr->lnum && offs == zbr->offs)
3340 		return 1; /* Found it */
3341 	if (unique)
3342 		return 0;
3343 	/*
3344 	 * Because the key is not unique, we have to look left
3345 	 * and right as well
3346 	 */
3347 	zn = znode;
3348 	nn = n;
3349 	/* Look left */
3350 	while (1) {
3351 		err = tnc_prev(c, &znode, &n);
3352 		if (err == -ENOENT)
3353 			break;
3354 		if (err)
3355 			return err;
3356 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3357 			break;
3358 		zbr = &znode->zbranch[n];
3359 		if (lnum == zbr->lnum && offs == zbr->offs)
3360 			return 1; /* Found it */
3361 	}
3362 	/* Look right */
3363 	znode = zn;
3364 	n = nn;
3365 	while (1) {
3366 		err = tnc_next(c, &znode, &n);
3367 		if (err) {
3368 			if (err == -ENOENT)
3369 				return 0;
3370 			return err;
3371 		}
3372 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3373 			break;
3374 		zbr = &znode->zbranch[n];
3375 		if (lnum == zbr->lnum && offs == zbr->offs)
3376 			return 1; /* Found it */
3377 	}
3378 	return 0;
3379 }
3380 
3381 /**
3382  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3383  * @c: UBIFS file-system description object
3384  * @key: node key
3385  * @level: index node level (if it is an index node)
3386  * @lnum: node LEB number
3387  * @offs: node offset
3388  * @is_idx: non-zero if the node is an index node
3389  *
3390  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3391  * negative error code in case of failure. For index nodes, @key has to be the
3392  * key of the first child. An index node is considered to be in the TNC only if
3393  * the corresponding znode is clean or has not been loaded.
3394  */
3395 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3396 		       int lnum, int offs, int is_idx)
3397 {
3398 	int err;
3399 
3400 	mutex_lock(&c->tnc_mutex);
3401 	if (is_idx) {
3402 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3403 		if (err < 0)
3404 			goto out_unlock;
3405 		if (err == 1)
3406 			/* The index node was found but it was dirty */
3407 			err = 0;
3408 		else if (err == 2)
3409 			/* The index node was found and it was clean */
3410 			err = 1;
3411 		else
3412 			BUG_ON(err != 0);
3413 	} else
3414 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3415 
3416 out_unlock:
3417 	mutex_unlock(&c->tnc_mutex);
3418 	return err;
3419 }
3420 
3421 /**
3422  * ubifs_dirty_idx_node - dirty an index node.
3423  * @c: UBIFS file-system description object
3424  * @key: index node key
3425  * @level: index node level
3426  * @lnum: index node LEB number
3427  * @offs: index node offset
3428  *
3429  * This function loads and dirties an index node so that it can be garbage
3430  * collected. The @key argument has to be the key of the first child. This
3431  * function relies on the fact that 0:0 is never a valid LEB number and offset
3432  * for a main-area node. Returns %0 on success and a negative error code on
3433  * failure.
3434  */
3435 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3436 			 int lnum, int offs)
3437 {
3438 	struct ubifs_znode *znode;
3439 	int err = 0;
3440 
3441 	mutex_lock(&c->tnc_mutex);
3442 	znode = lookup_znode(c, key, level, lnum, offs);
3443 	if (!znode)
3444 		goto out_unlock;
3445 	if (IS_ERR(znode)) {
3446 		err = PTR_ERR(znode);
3447 		goto out_unlock;
3448 	}
3449 	znode = dirty_cow_bottom_up(c, znode);
3450 	if (IS_ERR(znode)) {
3451 		err = PTR_ERR(znode);
3452 		goto out_unlock;
3453 	}
3454 
3455 out_unlock:
3456 	mutex_unlock(&c->tnc_mutex);
3457 	return err;
3458 }
3459 
3460 /**
3461  * dbg_check_inode_size - check if inode size is correct.
3462  * @c: UBIFS file-system description object
3463  * @inum: inode number
3464  * @size: inode size
3465  *
3466  * This function makes sure that the inode size (@size) is correct and it does
3467  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3468  * if it has a data page beyond @size, and other negative error code in case of
3469  * other errors.
3470  */
3471 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3472 			 loff_t size)
3473 {
3474 	int err, n;
3475 	union ubifs_key from_key, to_key, *key;
3476 	struct ubifs_znode *znode;
3477 	unsigned int block;
3478 
3479 	if (!S_ISREG(inode->i_mode))
3480 		return 0;
3481 	if (!dbg_is_chk_gen(c))
3482 		return 0;
3483 
3484 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3485 	data_key_init(c, &from_key, inode->i_ino, block);
3486 	highest_data_key(c, &to_key, inode->i_ino);
3487 
3488 	mutex_lock(&c->tnc_mutex);
3489 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3490 	if (err < 0)
3491 		goto out_unlock;
3492 
3493 	if (err) {
3494 		key = &from_key;
3495 		goto out_dump;
3496 	}
3497 
3498 	err = tnc_next(c, &znode, &n);
3499 	if (err == -ENOENT) {
3500 		err = 0;
3501 		goto out_unlock;
3502 	}
3503 	if (err < 0)
3504 		goto out_unlock;
3505 
3506 	ubifs_assert(c, err == 0);
3507 	key = &znode->zbranch[n].key;
3508 	if (!key_in_range(c, key, &from_key, &to_key))
3509 		goto out_unlock;
3510 
3511 out_dump:
3512 	block = key_block(c, key);
3513 	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3514 		  (unsigned long)inode->i_ino, size,
3515 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3516 	mutex_unlock(&c->tnc_mutex);
3517 	ubifs_dump_inode(c, inode);
3518 	dump_stack();
3519 	return -EINVAL;
3520 
3521 out_unlock:
3522 	mutex_unlock(&c->tnc_mutex);
3523 	return err;
3524 }
3525