1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 13 * the UBIFS B-tree. 14 * 15 * At the moment the locking rules of the TNC tree are quite simple and 16 * straightforward. We just have a mutex and lock it when we traverse the 17 * tree. If a znode is not in memory, we read it from flash while still having 18 * the mutex locked. 19 */ 20 21 #include <linux/crc32.h> 22 #include <linux/slab.h> 23 #include "ubifs.h" 24 25 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 26 struct ubifs_zbranch *zbr); 27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 28 struct ubifs_zbranch *zbr, void *node); 29 30 /* 31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 32 * @NAME_LESS: name corresponding to the first argument is less than second 33 * @NAME_MATCHES: names match 34 * @NAME_GREATER: name corresponding to the second argument is greater than 35 * first 36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 37 * 38 * These constants were introduce to improve readability. 39 */ 40 enum { 41 NAME_LESS = 0, 42 NAME_MATCHES = 1, 43 NAME_GREATER = 2, 44 NOT_ON_MEDIA = 3, 45 }; 46 47 /** 48 * insert_old_idx - record an index node obsoleted since the last commit start. 49 * @c: UBIFS file-system description object 50 * @lnum: LEB number of obsoleted index node 51 * @offs: offset of obsoleted index node 52 * 53 * Returns %0 on success, and a negative error code on failure. 54 * 55 * For recovery, there must always be a complete intact version of the index on 56 * flash at all times. That is called the "old index". It is the index as at the 57 * time of the last successful commit. Many of the index nodes in the old index 58 * may be dirty, but they must not be erased until the next successful commit 59 * (at which point that index becomes the old index). 60 * 61 * That means that the garbage collection and the in-the-gaps method of 62 * committing must be able to determine if an index node is in the old index. 63 * Most of the old index nodes can be found by looking up the TNC using the 64 * 'lookup_znode()' function. However, some of the old index nodes may have 65 * been deleted from the current index or may have been changed so much that 66 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 67 * That is what this function does. The RB-tree is ordered by LEB number and 68 * offset because they uniquely identify the old index node. 69 */ 70 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 71 { 72 struct ubifs_old_idx *old_idx, *o; 73 struct rb_node **p, *parent = NULL; 74 75 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 76 if (unlikely(!old_idx)) 77 return -ENOMEM; 78 old_idx->lnum = lnum; 79 old_idx->offs = offs; 80 81 p = &c->old_idx.rb_node; 82 while (*p) { 83 parent = *p; 84 o = rb_entry(parent, struct ubifs_old_idx, rb); 85 if (lnum < o->lnum) 86 p = &(*p)->rb_left; 87 else if (lnum > o->lnum) 88 p = &(*p)->rb_right; 89 else if (offs < o->offs) 90 p = &(*p)->rb_left; 91 else if (offs > o->offs) 92 p = &(*p)->rb_right; 93 else { 94 ubifs_err(c, "old idx added twice!"); 95 kfree(old_idx); 96 return 0; 97 } 98 } 99 rb_link_node(&old_idx->rb, parent, p); 100 rb_insert_color(&old_idx->rb, &c->old_idx); 101 return 0; 102 } 103 104 /** 105 * insert_old_idx_znode - record a znode obsoleted since last commit start. 106 * @c: UBIFS file-system description object 107 * @znode: znode of obsoleted index node 108 * 109 * Returns %0 on success, and a negative error code on failure. 110 */ 111 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 112 { 113 if (znode->parent) { 114 struct ubifs_zbranch *zbr; 115 116 zbr = &znode->parent->zbranch[znode->iip]; 117 if (zbr->len) 118 return insert_old_idx(c, zbr->lnum, zbr->offs); 119 } else 120 if (c->zroot.len) 121 return insert_old_idx(c, c->zroot.lnum, 122 c->zroot.offs); 123 return 0; 124 } 125 126 /** 127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 128 * @c: UBIFS file-system description object 129 * @znode: znode of obsoleted index node 130 * 131 * Returns %0 on success, and a negative error code on failure. 132 */ 133 static int ins_clr_old_idx_znode(struct ubifs_info *c, 134 struct ubifs_znode *znode) 135 { 136 int err; 137 138 if (znode->parent) { 139 struct ubifs_zbranch *zbr; 140 141 zbr = &znode->parent->zbranch[znode->iip]; 142 if (zbr->len) { 143 err = insert_old_idx(c, zbr->lnum, zbr->offs); 144 if (err) 145 return err; 146 zbr->lnum = 0; 147 zbr->offs = 0; 148 zbr->len = 0; 149 } 150 } else 151 if (c->zroot.len) { 152 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 153 if (err) 154 return err; 155 c->zroot.lnum = 0; 156 c->zroot.offs = 0; 157 c->zroot.len = 0; 158 } 159 return 0; 160 } 161 162 /** 163 * destroy_old_idx - destroy the old_idx RB-tree. 164 * @c: UBIFS file-system description object 165 * 166 * During start commit, the old_idx RB-tree is used to avoid overwriting index 167 * nodes that were in the index last commit but have since been deleted. This 168 * is necessary for recovery i.e. the old index must be kept intact until the 169 * new index is successfully written. The old-idx RB-tree is used for the 170 * in-the-gaps method of writing index nodes and is destroyed every commit. 171 */ 172 void destroy_old_idx(struct ubifs_info *c) 173 { 174 struct ubifs_old_idx *old_idx, *n; 175 176 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 177 kfree(old_idx); 178 179 c->old_idx = RB_ROOT; 180 } 181 182 /** 183 * copy_znode - copy a dirty znode. 184 * @c: UBIFS file-system description object 185 * @znode: znode to copy 186 * 187 * A dirty znode being committed may not be changed, so it is copied. 188 */ 189 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 190 struct ubifs_znode *znode) 191 { 192 struct ubifs_znode *zn; 193 194 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 195 if (unlikely(!zn)) 196 return ERR_PTR(-ENOMEM); 197 198 zn->cnext = NULL; 199 __set_bit(DIRTY_ZNODE, &zn->flags); 200 __clear_bit(COW_ZNODE, &zn->flags); 201 202 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 203 __set_bit(OBSOLETE_ZNODE, &znode->flags); 204 205 if (znode->level != 0) { 206 int i; 207 const int n = zn->child_cnt; 208 209 /* The children now have new parent */ 210 for (i = 0; i < n; i++) { 211 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 212 213 if (zbr->znode) 214 zbr->znode->parent = zn; 215 } 216 } 217 218 atomic_long_inc(&c->dirty_zn_cnt); 219 return zn; 220 } 221 222 /** 223 * add_idx_dirt - add dirt due to a dirty znode. 224 * @c: UBIFS file-system description object 225 * @lnum: LEB number of index node 226 * @dirt: size of index node 227 * 228 * This function updates lprops dirty space and the new size of the index. 229 */ 230 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 231 { 232 c->calc_idx_sz -= ALIGN(dirt, 8); 233 return ubifs_add_dirt(c, lnum, dirt); 234 } 235 236 /** 237 * dirty_cow_znode - ensure a znode is not being committed. 238 * @c: UBIFS file-system description object 239 * @zbr: branch of znode to check 240 * 241 * Returns dirtied znode on success or negative error code on failure. 242 */ 243 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 244 struct ubifs_zbranch *zbr) 245 { 246 struct ubifs_znode *znode = zbr->znode; 247 struct ubifs_znode *zn; 248 int err; 249 250 if (!ubifs_zn_cow(znode)) { 251 /* znode is not being committed */ 252 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 253 atomic_long_inc(&c->dirty_zn_cnt); 254 atomic_long_dec(&c->clean_zn_cnt); 255 atomic_long_dec(&ubifs_clean_zn_cnt); 256 err = add_idx_dirt(c, zbr->lnum, zbr->len); 257 if (unlikely(err)) 258 return ERR_PTR(err); 259 } 260 return znode; 261 } 262 263 zn = copy_znode(c, znode); 264 if (IS_ERR(zn)) 265 return zn; 266 267 if (zbr->len) { 268 err = insert_old_idx(c, zbr->lnum, zbr->offs); 269 if (unlikely(err)) 270 return ERR_PTR(err); 271 err = add_idx_dirt(c, zbr->lnum, zbr->len); 272 } else 273 err = 0; 274 275 zbr->znode = zn; 276 zbr->lnum = 0; 277 zbr->offs = 0; 278 zbr->len = 0; 279 280 if (unlikely(err)) 281 return ERR_PTR(err); 282 return zn; 283 } 284 285 /** 286 * lnc_add - add a leaf node to the leaf node cache. 287 * @c: UBIFS file-system description object 288 * @zbr: zbranch of leaf node 289 * @node: leaf node 290 * 291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 292 * purpose of the leaf node cache is to save re-reading the same leaf node over 293 * and over again. Most things are cached by VFS, however the file system must 294 * cache directory entries for readdir and for resolving hash collisions. The 295 * present implementation of the leaf node cache is extremely simple, and 296 * allows for error returns that are not used but that may be needed if a more 297 * complex implementation is created. 298 * 299 * Note, this function does not add the @node object to LNC directly, but 300 * allocates a copy of the object and adds the copy to LNC. The reason for this 301 * is that @node has been allocated outside of the TNC subsystem and will be 302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 303 * may be changed at any time, e.g. freed by the shrinker. 304 */ 305 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 306 const void *node) 307 { 308 int err; 309 void *lnc_node; 310 const struct ubifs_dent_node *dent = node; 311 312 ubifs_assert(c, !zbr->leaf); 313 ubifs_assert(c, zbr->len != 0); 314 ubifs_assert(c, is_hash_key(c, &zbr->key)); 315 316 err = ubifs_validate_entry(c, dent); 317 if (err) { 318 dump_stack(); 319 ubifs_dump_node(c, dent); 320 return err; 321 } 322 323 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 324 if (!lnc_node) 325 /* We don't have to have the cache, so no error */ 326 return 0; 327 328 zbr->leaf = lnc_node; 329 return 0; 330 } 331 332 /** 333 * lnc_add_directly - add a leaf node to the leaf-node-cache. 334 * @c: UBIFS file-system description object 335 * @zbr: zbranch of leaf node 336 * @node: leaf node 337 * 338 * This function is similar to 'lnc_add()', but it does not create a copy of 339 * @node but inserts @node to TNC directly. 340 */ 341 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 342 void *node) 343 { 344 int err; 345 346 ubifs_assert(c, !zbr->leaf); 347 ubifs_assert(c, zbr->len != 0); 348 349 err = ubifs_validate_entry(c, node); 350 if (err) { 351 dump_stack(); 352 ubifs_dump_node(c, node); 353 return err; 354 } 355 356 zbr->leaf = node; 357 return 0; 358 } 359 360 /** 361 * lnc_free - remove a leaf node from the leaf node cache. 362 * @zbr: zbranch of leaf node 363 * @node: leaf node 364 */ 365 static void lnc_free(struct ubifs_zbranch *zbr) 366 { 367 if (!zbr->leaf) 368 return; 369 kfree(zbr->leaf); 370 zbr->leaf = NULL; 371 } 372 373 /** 374 * tnc_read_hashed_node - read a "hashed" leaf node. 375 * @c: UBIFS file-system description object 376 * @zbr: key and position of the node 377 * @node: node is returned here 378 * 379 * This function reads a "hashed" node defined by @zbr from the leaf node cache 380 * (in it is there) or from the hash media, in which case the node is also 381 * added to LNC. Returns zero in case of success or a negative negative error 382 * code in case of failure. 383 */ 384 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 385 void *node) 386 { 387 int err; 388 389 ubifs_assert(c, is_hash_key(c, &zbr->key)); 390 391 if (zbr->leaf) { 392 /* Read from the leaf node cache */ 393 ubifs_assert(c, zbr->len != 0); 394 memcpy(node, zbr->leaf, zbr->len); 395 return 0; 396 } 397 398 if (c->replaying) { 399 err = fallible_read_node(c, &zbr->key, zbr, node); 400 /* 401 * When the node was not found, return -ENOENT, 0 otherwise. 402 * Negative return codes stay as-is. 403 */ 404 if (err == 0) 405 err = -ENOENT; 406 else if (err == 1) 407 err = 0; 408 } else { 409 err = ubifs_tnc_read_node(c, zbr, node); 410 } 411 if (err) 412 return err; 413 414 /* Add the node to the leaf node cache */ 415 err = lnc_add(c, zbr, node); 416 return err; 417 } 418 419 /** 420 * try_read_node - read a node if it is a node. 421 * @c: UBIFS file-system description object 422 * @buf: buffer to read to 423 * @type: node type 424 * @zbr: the zbranch describing the node to read 425 * 426 * This function tries to read a node of known type and length, checks it and 427 * stores it in @buf. This function returns %1 if a node is present and %0 if 428 * a node is not present. A negative error code is returned for I/O errors. 429 * This function performs that same function as ubifs_read_node except that 430 * it does not require that there is actually a node present and instead 431 * the return code indicates if a node was read. 432 * 433 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 434 * is true (it is controlled by corresponding mount option). However, if 435 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 436 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 437 * because during mounting or re-mounting from R/O mode to R/W mode we may read 438 * journal nodes (when replying the journal or doing the recovery) and the 439 * journal nodes may potentially be corrupted, so checking is required. 440 */ 441 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 442 struct ubifs_zbranch *zbr) 443 { 444 int len = zbr->len; 445 int lnum = zbr->lnum; 446 int offs = zbr->offs; 447 int err, node_len; 448 struct ubifs_ch *ch = buf; 449 uint32_t crc, node_crc; 450 451 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 452 453 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 454 if (err) { 455 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 456 type, lnum, offs, err); 457 return err; 458 } 459 460 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 461 return 0; 462 463 if (ch->node_type != type) 464 return 0; 465 466 node_len = le32_to_cpu(ch->len); 467 if (node_len != len) 468 return 0; 469 470 if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting || 471 c->remounting_rw) { 472 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 473 node_crc = le32_to_cpu(ch->crc); 474 if (crc != node_crc) 475 return 0; 476 } 477 478 err = ubifs_node_check_hash(c, buf, zbr->hash); 479 if (err) { 480 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs); 481 return 0; 482 } 483 484 return 1; 485 } 486 487 /** 488 * fallible_read_node - try to read a leaf node. 489 * @c: UBIFS file-system description object 490 * @key: key of node to read 491 * @zbr: position of node 492 * @node: node returned 493 * 494 * This function tries to read a node and returns %1 if the node is read, %0 495 * if the node is not present, and a negative error code in the case of error. 496 */ 497 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 498 struct ubifs_zbranch *zbr, void *node) 499 { 500 int ret; 501 502 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 503 504 ret = try_read_node(c, node, key_type(c, key), zbr); 505 if (ret == 1) { 506 union ubifs_key node_key; 507 struct ubifs_dent_node *dent = node; 508 509 /* All nodes have key in the same place */ 510 key_read(c, &dent->key, &node_key); 511 if (keys_cmp(c, key, &node_key) != 0) 512 ret = 0; 513 } 514 if (ret == 0 && c->replaying) 515 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 516 zbr->lnum, zbr->offs, zbr->len); 517 return ret; 518 } 519 520 /** 521 * matches_name - determine if a direntry or xattr entry matches a given name. 522 * @c: UBIFS file-system description object 523 * @zbr: zbranch of dent 524 * @nm: name to match 525 * 526 * This function checks if xentry/direntry referred by zbranch @zbr matches name 527 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 528 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 529 * of failure, a negative error code is returned. 530 */ 531 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 532 const struct fscrypt_name *nm) 533 { 534 struct ubifs_dent_node *dent; 535 int nlen, err; 536 537 /* If possible, match against the dent in the leaf node cache */ 538 if (!zbr->leaf) { 539 dent = kmalloc(zbr->len, GFP_NOFS); 540 if (!dent) 541 return -ENOMEM; 542 543 err = ubifs_tnc_read_node(c, zbr, dent); 544 if (err) 545 goto out_free; 546 547 /* Add the node to the leaf node cache */ 548 err = lnc_add_directly(c, zbr, dent); 549 if (err) 550 goto out_free; 551 } else 552 dent = zbr->leaf; 553 554 nlen = le16_to_cpu(dent->nlen); 555 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 556 if (err == 0) { 557 if (nlen == fname_len(nm)) 558 return NAME_MATCHES; 559 else if (nlen < fname_len(nm)) 560 return NAME_LESS; 561 else 562 return NAME_GREATER; 563 } else if (err < 0) 564 return NAME_LESS; 565 else 566 return NAME_GREATER; 567 568 out_free: 569 kfree(dent); 570 return err; 571 } 572 573 /** 574 * get_znode - get a TNC znode that may not be loaded yet. 575 * @c: UBIFS file-system description object 576 * @znode: parent znode 577 * @n: znode branch slot number 578 * 579 * This function returns the znode or a negative error code. 580 */ 581 static struct ubifs_znode *get_znode(struct ubifs_info *c, 582 struct ubifs_znode *znode, int n) 583 { 584 struct ubifs_zbranch *zbr; 585 586 zbr = &znode->zbranch[n]; 587 if (zbr->znode) 588 znode = zbr->znode; 589 else 590 znode = ubifs_load_znode(c, zbr, znode, n); 591 return znode; 592 } 593 594 /** 595 * tnc_next - find next TNC entry. 596 * @c: UBIFS file-system description object 597 * @zn: znode is passed and returned here 598 * @n: znode branch slot number is passed and returned here 599 * 600 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 601 * no next entry, or a negative error code otherwise. 602 */ 603 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 604 { 605 struct ubifs_znode *znode = *zn; 606 int nn = *n; 607 608 nn += 1; 609 if (nn < znode->child_cnt) { 610 *n = nn; 611 return 0; 612 } 613 while (1) { 614 struct ubifs_znode *zp; 615 616 zp = znode->parent; 617 if (!zp) 618 return -ENOENT; 619 nn = znode->iip + 1; 620 znode = zp; 621 if (nn < znode->child_cnt) { 622 znode = get_znode(c, znode, nn); 623 if (IS_ERR(znode)) 624 return PTR_ERR(znode); 625 while (znode->level != 0) { 626 znode = get_znode(c, znode, 0); 627 if (IS_ERR(znode)) 628 return PTR_ERR(znode); 629 } 630 nn = 0; 631 break; 632 } 633 } 634 *zn = znode; 635 *n = nn; 636 return 0; 637 } 638 639 /** 640 * tnc_prev - find previous TNC entry. 641 * @c: UBIFS file-system description object 642 * @zn: znode is returned here 643 * @n: znode branch slot number is passed and returned here 644 * 645 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 646 * there is no next entry, or a negative error code otherwise. 647 */ 648 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 649 { 650 struct ubifs_znode *znode = *zn; 651 int nn = *n; 652 653 if (nn > 0) { 654 *n = nn - 1; 655 return 0; 656 } 657 while (1) { 658 struct ubifs_znode *zp; 659 660 zp = znode->parent; 661 if (!zp) 662 return -ENOENT; 663 nn = znode->iip - 1; 664 znode = zp; 665 if (nn >= 0) { 666 znode = get_znode(c, znode, nn); 667 if (IS_ERR(znode)) 668 return PTR_ERR(znode); 669 while (znode->level != 0) { 670 nn = znode->child_cnt - 1; 671 znode = get_znode(c, znode, nn); 672 if (IS_ERR(znode)) 673 return PTR_ERR(znode); 674 } 675 nn = znode->child_cnt - 1; 676 break; 677 } 678 } 679 *zn = znode; 680 *n = nn; 681 return 0; 682 } 683 684 /** 685 * resolve_collision - resolve a collision. 686 * @c: UBIFS file-system description object 687 * @key: key of a directory or extended attribute entry 688 * @zn: znode is returned here 689 * @n: zbranch number is passed and returned here 690 * @nm: name of the entry 691 * 692 * This function is called for "hashed" keys to make sure that the found key 693 * really corresponds to the looked up node (directory or extended attribute 694 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 695 * %0 is returned if @nm is not found and @zn and @n are set to the previous 696 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 697 * This means that @n may be set to %-1 if the leftmost key in @zn is the 698 * previous one. A negative error code is returned on failures. 699 */ 700 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 701 struct ubifs_znode **zn, int *n, 702 const struct fscrypt_name *nm) 703 { 704 int err; 705 706 err = matches_name(c, &(*zn)->zbranch[*n], nm); 707 if (unlikely(err < 0)) 708 return err; 709 if (err == NAME_MATCHES) 710 return 1; 711 712 if (err == NAME_GREATER) { 713 /* Look left */ 714 while (1) { 715 err = tnc_prev(c, zn, n); 716 if (err == -ENOENT) { 717 ubifs_assert(c, *n == 0); 718 *n = -1; 719 return 0; 720 } 721 if (err < 0) 722 return err; 723 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 724 /* 725 * We have found the branch after which we would 726 * like to insert, but inserting in this znode 727 * may still be wrong. Consider the following 3 728 * znodes, in the case where we are resolving a 729 * collision with Key2. 730 * 731 * znode zp 732 * ---------------------- 733 * level 1 | Key0 | Key1 | 734 * ----------------------- 735 * | | 736 * znode za | | znode zb 737 * ------------ ------------ 738 * level 0 | Key0 | | Key2 | 739 * ------------ ------------ 740 * 741 * The lookup finds Key2 in znode zb. Lets say 742 * there is no match and the name is greater so 743 * we look left. When we find Key0, we end up 744 * here. If we return now, we will insert into 745 * znode za at slot n = 1. But that is invalid 746 * according to the parent's keys. Key2 must 747 * be inserted into znode zb. 748 * 749 * Note, this problem is not relevant for the 750 * case when we go right, because 751 * 'tnc_insert()' would correct the parent key. 752 */ 753 if (*n == (*zn)->child_cnt - 1) { 754 err = tnc_next(c, zn, n); 755 if (err) { 756 /* Should be impossible */ 757 ubifs_assert(c, 0); 758 if (err == -ENOENT) 759 err = -EINVAL; 760 return err; 761 } 762 ubifs_assert(c, *n == 0); 763 *n = -1; 764 } 765 return 0; 766 } 767 err = matches_name(c, &(*zn)->zbranch[*n], nm); 768 if (err < 0) 769 return err; 770 if (err == NAME_LESS) 771 return 0; 772 if (err == NAME_MATCHES) 773 return 1; 774 ubifs_assert(c, err == NAME_GREATER); 775 } 776 } else { 777 int nn = *n; 778 struct ubifs_znode *znode = *zn; 779 780 /* Look right */ 781 while (1) { 782 err = tnc_next(c, &znode, &nn); 783 if (err == -ENOENT) 784 return 0; 785 if (err < 0) 786 return err; 787 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 788 return 0; 789 err = matches_name(c, &znode->zbranch[nn], nm); 790 if (err < 0) 791 return err; 792 if (err == NAME_GREATER) 793 return 0; 794 *zn = znode; 795 *n = nn; 796 if (err == NAME_MATCHES) 797 return 1; 798 ubifs_assert(c, err == NAME_LESS); 799 } 800 } 801 } 802 803 /** 804 * fallible_matches_name - determine if a dent matches a given name. 805 * @c: UBIFS file-system description object 806 * @zbr: zbranch of dent 807 * @nm: name to match 808 * 809 * This is a "fallible" version of 'matches_name()' function which does not 810 * panic if the direntry/xentry referred by @zbr does not exist on the media. 811 * 812 * This function checks if xentry/direntry referred by zbranch @zbr matches name 813 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 814 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 815 * if xentry/direntry referred by @zbr does not exist on the media. A negative 816 * error code is returned in case of failure. 817 */ 818 static int fallible_matches_name(struct ubifs_info *c, 819 struct ubifs_zbranch *zbr, 820 const struct fscrypt_name *nm) 821 { 822 struct ubifs_dent_node *dent; 823 int nlen, err; 824 825 /* If possible, match against the dent in the leaf node cache */ 826 if (!zbr->leaf) { 827 dent = kmalloc(zbr->len, GFP_NOFS); 828 if (!dent) 829 return -ENOMEM; 830 831 err = fallible_read_node(c, &zbr->key, zbr, dent); 832 if (err < 0) 833 goto out_free; 834 if (err == 0) { 835 /* The node was not present */ 836 err = NOT_ON_MEDIA; 837 goto out_free; 838 } 839 ubifs_assert(c, err == 1); 840 841 err = lnc_add_directly(c, zbr, dent); 842 if (err) 843 goto out_free; 844 } else 845 dent = zbr->leaf; 846 847 nlen = le16_to_cpu(dent->nlen); 848 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm))); 849 if (err == 0) { 850 if (nlen == fname_len(nm)) 851 return NAME_MATCHES; 852 else if (nlen < fname_len(nm)) 853 return NAME_LESS; 854 else 855 return NAME_GREATER; 856 } else if (err < 0) 857 return NAME_LESS; 858 else 859 return NAME_GREATER; 860 861 out_free: 862 kfree(dent); 863 return err; 864 } 865 866 /** 867 * fallible_resolve_collision - resolve a collision even if nodes are missing. 868 * @c: UBIFS file-system description object 869 * @key: key 870 * @zn: znode is returned here 871 * @n: branch number is passed and returned here 872 * @nm: name of directory entry 873 * @adding: indicates caller is adding a key to the TNC 874 * 875 * This is a "fallible" version of the 'resolve_collision()' function which 876 * does not panic if one of the nodes referred to by TNC does not exist on the 877 * media. This may happen when replaying the journal if a deleted node was 878 * Garbage-collected and the commit was not done. A branch that refers to a node 879 * that is not present is called a dangling branch. The following are the return 880 * codes for this function: 881 * o if @nm was found, %1 is returned and @zn and @n are set to the found 882 * branch; 883 * o if we are @adding and @nm was not found, %0 is returned; 884 * o if we are not @adding and @nm was not found, but a dangling branch was 885 * found, then %1 is returned and @zn and @n are set to the dangling branch; 886 * o a negative error code is returned in case of failure. 887 */ 888 static int fallible_resolve_collision(struct ubifs_info *c, 889 const union ubifs_key *key, 890 struct ubifs_znode **zn, int *n, 891 const struct fscrypt_name *nm, 892 int adding) 893 { 894 struct ubifs_znode *o_znode = NULL, *znode = *zn; 895 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 896 897 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 898 if (unlikely(cmp < 0)) 899 return cmp; 900 if (cmp == NAME_MATCHES) 901 return 1; 902 if (cmp == NOT_ON_MEDIA) { 903 o_znode = znode; 904 o_n = nn; 905 /* 906 * We are unlucky and hit a dangling branch straight away. 907 * Now we do not really know where to go to find the needed 908 * branch - to the left or to the right. Well, let's try left. 909 */ 910 unsure = 1; 911 } else if (!adding) 912 unsure = 1; /* Remove a dangling branch wherever it is */ 913 914 if (cmp == NAME_GREATER || unsure) { 915 /* Look left */ 916 while (1) { 917 err = tnc_prev(c, zn, n); 918 if (err == -ENOENT) { 919 ubifs_assert(c, *n == 0); 920 *n = -1; 921 break; 922 } 923 if (err < 0) 924 return err; 925 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 926 /* See comments in 'resolve_collision()' */ 927 if (*n == (*zn)->child_cnt - 1) { 928 err = tnc_next(c, zn, n); 929 if (err) { 930 /* Should be impossible */ 931 ubifs_assert(c, 0); 932 if (err == -ENOENT) 933 err = -EINVAL; 934 return err; 935 } 936 ubifs_assert(c, *n == 0); 937 *n = -1; 938 } 939 break; 940 } 941 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 942 if (err < 0) 943 return err; 944 if (err == NAME_MATCHES) 945 return 1; 946 if (err == NOT_ON_MEDIA) { 947 o_znode = *zn; 948 o_n = *n; 949 continue; 950 } 951 if (!adding) 952 continue; 953 if (err == NAME_LESS) 954 break; 955 else 956 unsure = 0; 957 } 958 } 959 960 if (cmp == NAME_LESS || unsure) { 961 /* Look right */ 962 *zn = znode; 963 *n = nn; 964 while (1) { 965 err = tnc_next(c, &znode, &nn); 966 if (err == -ENOENT) 967 break; 968 if (err < 0) 969 return err; 970 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 971 break; 972 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 973 if (err < 0) 974 return err; 975 if (err == NAME_GREATER) 976 break; 977 *zn = znode; 978 *n = nn; 979 if (err == NAME_MATCHES) 980 return 1; 981 if (err == NOT_ON_MEDIA) { 982 o_znode = znode; 983 o_n = nn; 984 } 985 } 986 } 987 988 /* Never match a dangling branch when adding */ 989 if (adding || !o_znode) 990 return 0; 991 992 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 993 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 994 o_znode->zbranch[o_n].len); 995 *zn = o_znode; 996 *n = o_n; 997 return 1; 998 } 999 1000 /** 1001 * matches_position - determine if a zbranch matches a given position. 1002 * @zbr: zbranch of dent 1003 * @lnum: LEB number of dent to match 1004 * @offs: offset of dent to match 1005 * 1006 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 1007 */ 1008 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 1009 { 1010 if (zbr->lnum == lnum && zbr->offs == offs) 1011 return 1; 1012 else 1013 return 0; 1014 } 1015 1016 /** 1017 * resolve_collision_directly - resolve a collision directly. 1018 * @c: UBIFS file-system description object 1019 * @key: key of directory entry 1020 * @zn: znode is passed and returned here 1021 * @n: zbranch number is passed and returned here 1022 * @lnum: LEB number of dent node to match 1023 * @offs: offset of dent node to match 1024 * 1025 * This function is used for "hashed" keys to make sure the found directory or 1026 * extended attribute entry node is what was looked for. It is used when the 1027 * flash address of the right node is known (@lnum:@offs) which makes it much 1028 * easier to resolve collisions (no need to read entries and match full 1029 * names). This function returns %1 and sets @zn and @n if the collision is 1030 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1031 * previous directory entry. Otherwise a negative error code is returned. 1032 */ 1033 static int resolve_collision_directly(struct ubifs_info *c, 1034 const union ubifs_key *key, 1035 struct ubifs_znode **zn, int *n, 1036 int lnum, int offs) 1037 { 1038 struct ubifs_znode *znode; 1039 int nn, err; 1040 1041 znode = *zn; 1042 nn = *n; 1043 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1044 return 1; 1045 1046 /* Look left */ 1047 while (1) { 1048 err = tnc_prev(c, &znode, &nn); 1049 if (err == -ENOENT) 1050 break; 1051 if (err < 0) 1052 return err; 1053 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1054 break; 1055 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1056 *zn = znode; 1057 *n = nn; 1058 return 1; 1059 } 1060 } 1061 1062 /* Look right */ 1063 znode = *zn; 1064 nn = *n; 1065 while (1) { 1066 err = tnc_next(c, &znode, &nn); 1067 if (err == -ENOENT) 1068 return 0; 1069 if (err < 0) 1070 return err; 1071 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1072 return 0; 1073 *zn = znode; 1074 *n = nn; 1075 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1076 return 1; 1077 } 1078 } 1079 1080 /** 1081 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1082 * @c: UBIFS file-system description object 1083 * @znode: znode to dirty 1084 * 1085 * If we do not have a unique key that resides in a znode, then we cannot 1086 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1087 * This function records the path back to the last dirty ancestor, and then 1088 * dirties the znodes on that path. 1089 */ 1090 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1091 struct ubifs_znode *znode) 1092 { 1093 struct ubifs_znode *zp; 1094 int *path = c->bottom_up_buf, p = 0; 1095 1096 ubifs_assert(c, c->zroot.znode); 1097 ubifs_assert(c, znode); 1098 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1099 kfree(c->bottom_up_buf); 1100 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level, 1101 sizeof(int), 1102 GFP_NOFS); 1103 if (!c->bottom_up_buf) 1104 return ERR_PTR(-ENOMEM); 1105 path = c->bottom_up_buf; 1106 } 1107 if (c->zroot.znode->level) { 1108 /* Go up until parent is dirty */ 1109 while (1) { 1110 int n; 1111 1112 zp = znode->parent; 1113 if (!zp) 1114 break; 1115 n = znode->iip; 1116 ubifs_assert(c, p < c->zroot.znode->level); 1117 path[p++] = n; 1118 if (!zp->cnext && ubifs_zn_dirty(znode)) 1119 break; 1120 znode = zp; 1121 } 1122 } 1123 1124 /* Come back down, dirtying as we go */ 1125 while (1) { 1126 struct ubifs_zbranch *zbr; 1127 1128 zp = znode->parent; 1129 if (zp) { 1130 ubifs_assert(c, path[p - 1] >= 0); 1131 ubifs_assert(c, path[p - 1] < zp->child_cnt); 1132 zbr = &zp->zbranch[path[--p]]; 1133 znode = dirty_cow_znode(c, zbr); 1134 } else { 1135 ubifs_assert(c, znode == c->zroot.znode); 1136 znode = dirty_cow_znode(c, &c->zroot); 1137 } 1138 if (IS_ERR(znode) || !p) 1139 break; 1140 ubifs_assert(c, path[p - 1] >= 0); 1141 ubifs_assert(c, path[p - 1] < znode->child_cnt); 1142 znode = znode->zbranch[path[p - 1]].znode; 1143 } 1144 1145 return znode; 1146 } 1147 1148 /** 1149 * ubifs_lookup_level0 - search for zero-level znode. 1150 * @c: UBIFS file-system description object 1151 * @key: key to lookup 1152 * @zn: znode is returned here 1153 * @n: znode branch slot number is returned here 1154 * 1155 * This function looks up the TNC tree and search for zero-level znode which 1156 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1157 * cases: 1158 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1159 * is returned and slot number of the matched branch is stored in @n; 1160 * o not exact match, which means that zero-level znode does not contain 1161 * @key, then %0 is returned and slot number of the closest branch is stored 1162 * in @n; 1163 * o @key is so small that it is even less than the lowest key of the 1164 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1165 * 1166 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1167 * function reads corresponding indexing nodes and inserts them to TNC. In 1168 * case of failure, a negative error code is returned. 1169 */ 1170 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1171 struct ubifs_znode **zn, int *n) 1172 { 1173 int err, exact; 1174 struct ubifs_znode *znode; 1175 time64_t time = ktime_get_seconds(); 1176 1177 dbg_tnck(key, "search key "); 1178 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 1179 1180 znode = c->zroot.znode; 1181 if (unlikely(!znode)) { 1182 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1183 if (IS_ERR(znode)) 1184 return PTR_ERR(znode); 1185 } 1186 1187 znode->time = time; 1188 1189 while (1) { 1190 struct ubifs_zbranch *zbr; 1191 1192 exact = ubifs_search_zbranch(c, znode, key, n); 1193 1194 if (znode->level == 0) 1195 break; 1196 1197 if (*n < 0) 1198 *n = 0; 1199 zbr = &znode->zbranch[*n]; 1200 1201 if (zbr->znode) { 1202 znode->time = time; 1203 znode = zbr->znode; 1204 continue; 1205 } 1206 1207 /* znode is not in TNC cache, load it from the media */ 1208 znode = ubifs_load_znode(c, zbr, znode, *n); 1209 if (IS_ERR(znode)) 1210 return PTR_ERR(znode); 1211 } 1212 1213 *zn = znode; 1214 if (exact || !is_hash_key(c, key) || *n != -1) { 1215 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1216 return exact; 1217 } 1218 1219 /* 1220 * Here is a tricky place. We have not found the key and this is a 1221 * "hashed" key, which may collide. The rest of the code deals with 1222 * situations like this: 1223 * 1224 * | 3 | 5 | 1225 * / \ 1226 * | 3 | 5 | | 6 | 7 | (x) 1227 * 1228 * Or more a complex example: 1229 * 1230 * | 1 | 5 | 1231 * / \ 1232 * | 1 | 3 | | 5 | 8 | 1233 * \ / 1234 * | 5 | 5 | | 6 | 7 | (x) 1235 * 1236 * In the examples, if we are looking for key "5", we may reach nodes 1237 * marked with "(x)". In this case what we have do is to look at the 1238 * left and see if there is "5" key there. If there is, we have to 1239 * return it. 1240 * 1241 * Note, this whole situation is possible because we allow to have 1242 * elements which are equivalent to the next key in the parent in the 1243 * children of current znode. For example, this happens if we split a 1244 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1245 * like this: 1246 * | 3 | 5 | 1247 * / \ 1248 * | 3 | 5 | | 5 | 6 | 7 | 1249 * ^ 1250 * And this becomes what is at the first "picture" after key "5" marked 1251 * with "^" is removed. What could be done is we could prohibit 1252 * splitting in the middle of the colliding sequence. Also, when 1253 * removing the leftmost key, we would have to correct the key of the 1254 * parent node, which would introduce additional complications. Namely, 1255 * if we changed the leftmost key of the parent znode, the garbage 1256 * collector would be unable to find it (GC is doing this when GC'ing 1257 * indexing LEBs). Although we already have an additional RB-tree where 1258 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1259 * after the commit. But anyway, this does not look easy to implement 1260 * so we did not try this. 1261 */ 1262 err = tnc_prev(c, &znode, n); 1263 if (err == -ENOENT) { 1264 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1265 *n = -1; 1266 return 0; 1267 } 1268 if (unlikely(err < 0)) 1269 return err; 1270 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1271 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1272 *n = -1; 1273 return 0; 1274 } 1275 1276 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1277 *zn = znode; 1278 return 1; 1279 } 1280 1281 /** 1282 * lookup_level0_dirty - search for zero-level znode dirtying. 1283 * @c: UBIFS file-system description object 1284 * @key: key to lookup 1285 * @zn: znode is returned here 1286 * @n: znode branch slot number is returned here 1287 * 1288 * This function looks up the TNC tree and search for zero-level znode which 1289 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1290 * cases: 1291 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1292 * is returned and slot number of the matched branch is stored in @n; 1293 * o not exact match, which means that zero-level znode does not contain @key 1294 * then %0 is returned and slot number of the closed branch is stored in 1295 * @n; 1296 * o @key is so small that it is even less than the lowest key of the 1297 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1298 * 1299 * Additionally all znodes in the path from the root to the located zero-level 1300 * znode are marked as dirty. 1301 * 1302 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1303 * function reads corresponding indexing nodes and inserts them to TNC. In 1304 * case of failure, a negative error code is returned. 1305 */ 1306 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1307 struct ubifs_znode **zn, int *n) 1308 { 1309 int err, exact; 1310 struct ubifs_znode *znode; 1311 time64_t time = ktime_get_seconds(); 1312 1313 dbg_tnck(key, "search and dirty key "); 1314 1315 znode = c->zroot.znode; 1316 if (unlikely(!znode)) { 1317 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1318 if (IS_ERR(znode)) 1319 return PTR_ERR(znode); 1320 } 1321 1322 znode = dirty_cow_znode(c, &c->zroot); 1323 if (IS_ERR(znode)) 1324 return PTR_ERR(znode); 1325 1326 znode->time = time; 1327 1328 while (1) { 1329 struct ubifs_zbranch *zbr; 1330 1331 exact = ubifs_search_zbranch(c, znode, key, n); 1332 1333 if (znode->level == 0) 1334 break; 1335 1336 if (*n < 0) 1337 *n = 0; 1338 zbr = &znode->zbranch[*n]; 1339 1340 if (zbr->znode) { 1341 znode->time = time; 1342 znode = dirty_cow_znode(c, zbr); 1343 if (IS_ERR(znode)) 1344 return PTR_ERR(znode); 1345 continue; 1346 } 1347 1348 /* znode is not in TNC cache, load it from the media */ 1349 znode = ubifs_load_znode(c, zbr, znode, *n); 1350 if (IS_ERR(znode)) 1351 return PTR_ERR(znode); 1352 znode = dirty_cow_znode(c, zbr); 1353 if (IS_ERR(znode)) 1354 return PTR_ERR(znode); 1355 } 1356 1357 *zn = znode; 1358 if (exact || !is_hash_key(c, key) || *n != -1) { 1359 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1360 return exact; 1361 } 1362 1363 /* 1364 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1365 * code. 1366 */ 1367 err = tnc_prev(c, &znode, n); 1368 if (err == -ENOENT) { 1369 *n = -1; 1370 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1371 return 0; 1372 } 1373 if (unlikely(err < 0)) 1374 return err; 1375 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1376 *n = -1; 1377 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1378 return 0; 1379 } 1380 1381 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1382 znode = dirty_cow_bottom_up(c, znode); 1383 if (IS_ERR(znode)) 1384 return PTR_ERR(znode); 1385 } 1386 1387 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1388 *zn = znode; 1389 return 1; 1390 } 1391 1392 /** 1393 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1394 * @c: UBIFS file-system description object 1395 * @lnum: LEB number 1396 * @gc_seq1: garbage collection sequence number 1397 * 1398 * This function determines if @lnum may have been garbage collected since 1399 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1400 * %0 is returned. 1401 */ 1402 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1403 { 1404 int gc_seq2, gced_lnum; 1405 1406 gced_lnum = c->gced_lnum; 1407 smp_rmb(); 1408 gc_seq2 = c->gc_seq; 1409 /* Same seq means no GC */ 1410 if (gc_seq1 == gc_seq2) 1411 return 0; 1412 /* Different by more than 1 means we don't know */ 1413 if (gc_seq1 + 1 != gc_seq2) 1414 return 1; 1415 /* 1416 * We have seen the sequence number has increased by 1. Now we need to 1417 * be sure we read the right LEB number, so read it again. 1418 */ 1419 smp_rmb(); 1420 if (gced_lnum != c->gced_lnum) 1421 return 1; 1422 /* Finally we can check lnum */ 1423 if (gced_lnum == lnum) 1424 return 1; 1425 return 0; 1426 } 1427 1428 /** 1429 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1430 * @c: UBIFS file-system description object 1431 * @key: node key to lookup 1432 * @node: the node is returned here 1433 * @lnum: LEB number is returned here 1434 * @offs: offset is returned here 1435 * 1436 * This function looks up and reads node with key @key. The caller has to make 1437 * sure the @node buffer is large enough to fit the node. Returns zero in case 1438 * of success, %-ENOENT if the node was not found, and a negative error code in 1439 * case of failure. The node location can be returned in @lnum and @offs. 1440 */ 1441 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1442 void *node, int *lnum, int *offs) 1443 { 1444 int found, n, err, safely = 0, gc_seq1; 1445 struct ubifs_znode *znode; 1446 struct ubifs_zbranch zbr, *zt; 1447 1448 again: 1449 mutex_lock(&c->tnc_mutex); 1450 found = ubifs_lookup_level0(c, key, &znode, &n); 1451 if (!found) { 1452 err = -ENOENT; 1453 goto out; 1454 } else if (found < 0) { 1455 err = found; 1456 goto out; 1457 } 1458 zt = &znode->zbranch[n]; 1459 if (lnum) { 1460 *lnum = zt->lnum; 1461 *offs = zt->offs; 1462 } 1463 if (is_hash_key(c, key)) { 1464 /* 1465 * In this case the leaf node cache gets used, so we pass the 1466 * address of the zbranch and keep the mutex locked 1467 */ 1468 err = tnc_read_hashed_node(c, zt, node); 1469 goto out; 1470 } 1471 if (safely) { 1472 err = ubifs_tnc_read_node(c, zt, node); 1473 goto out; 1474 } 1475 /* Drop the TNC mutex prematurely and race with garbage collection */ 1476 zbr = znode->zbranch[n]; 1477 gc_seq1 = c->gc_seq; 1478 mutex_unlock(&c->tnc_mutex); 1479 1480 if (ubifs_get_wbuf(c, zbr.lnum)) { 1481 /* We do not GC journal heads */ 1482 err = ubifs_tnc_read_node(c, &zbr, node); 1483 return err; 1484 } 1485 1486 err = fallible_read_node(c, key, &zbr, node); 1487 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1488 /* 1489 * The node may have been GC'ed out from under us so try again 1490 * while keeping the TNC mutex locked. 1491 */ 1492 safely = 1; 1493 goto again; 1494 } 1495 return 0; 1496 1497 out: 1498 mutex_unlock(&c->tnc_mutex); 1499 return err; 1500 } 1501 1502 /** 1503 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1504 * @c: UBIFS file-system description object 1505 * @bu: bulk-read parameters and results 1506 * 1507 * Lookup consecutive data node keys for the same inode that reside 1508 * consecutively in the same LEB. This function returns zero in case of success 1509 * and a negative error code in case of failure. 1510 * 1511 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1512 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1513 * maximum possible amount of nodes for bulk-read. 1514 */ 1515 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1516 { 1517 int n, err = 0, lnum = -1, uninitialized_var(offs); 1518 int uninitialized_var(len); 1519 unsigned int block = key_block(c, &bu->key); 1520 struct ubifs_znode *znode; 1521 1522 bu->cnt = 0; 1523 bu->blk_cnt = 0; 1524 bu->eof = 0; 1525 1526 mutex_lock(&c->tnc_mutex); 1527 /* Find first key */ 1528 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1529 if (err < 0) 1530 goto out; 1531 if (err) { 1532 /* Key found */ 1533 len = znode->zbranch[n].len; 1534 /* The buffer must be big enough for at least 1 node */ 1535 if (len > bu->buf_len) { 1536 err = -EINVAL; 1537 goto out; 1538 } 1539 /* Add this key */ 1540 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1541 bu->blk_cnt += 1; 1542 lnum = znode->zbranch[n].lnum; 1543 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1544 } 1545 while (1) { 1546 struct ubifs_zbranch *zbr; 1547 union ubifs_key *key; 1548 unsigned int next_block; 1549 1550 /* Find next key */ 1551 err = tnc_next(c, &znode, &n); 1552 if (err) 1553 goto out; 1554 zbr = &znode->zbranch[n]; 1555 key = &zbr->key; 1556 /* See if there is another data key for this file */ 1557 if (key_inum(c, key) != key_inum(c, &bu->key) || 1558 key_type(c, key) != UBIFS_DATA_KEY) { 1559 err = -ENOENT; 1560 goto out; 1561 } 1562 if (lnum < 0) { 1563 /* First key found */ 1564 lnum = zbr->lnum; 1565 offs = ALIGN(zbr->offs + zbr->len, 8); 1566 len = zbr->len; 1567 if (len > bu->buf_len) { 1568 err = -EINVAL; 1569 goto out; 1570 } 1571 } else { 1572 /* 1573 * The data nodes must be in consecutive positions in 1574 * the same LEB. 1575 */ 1576 if (zbr->lnum != lnum || zbr->offs != offs) 1577 goto out; 1578 offs += ALIGN(zbr->len, 8); 1579 len = ALIGN(len, 8) + zbr->len; 1580 /* Must not exceed buffer length */ 1581 if (len > bu->buf_len) 1582 goto out; 1583 } 1584 /* Allow for holes */ 1585 next_block = key_block(c, key); 1586 bu->blk_cnt += (next_block - block - 1); 1587 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1588 goto out; 1589 block = next_block; 1590 /* Add this key */ 1591 bu->zbranch[bu->cnt++] = *zbr; 1592 bu->blk_cnt += 1; 1593 /* See if we have room for more */ 1594 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1595 goto out; 1596 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1597 goto out; 1598 } 1599 out: 1600 if (err == -ENOENT) { 1601 bu->eof = 1; 1602 err = 0; 1603 } 1604 bu->gc_seq = c->gc_seq; 1605 mutex_unlock(&c->tnc_mutex); 1606 if (err) 1607 return err; 1608 /* 1609 * An enormous hole could cause bulk-read to encompass too many 1610 * page cache pages, so limit the number here. 1611 */ 1612 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1613 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1614 /* 1615 * Ensure that bulk-read covers a whole number of page cache 1616 * pages. 1617 */ 1618 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1619 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1620 return 0; 1621 if (bu->eof) { 1622 /* At the end of file we can round up */ 1623 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1624 return 0; 1625 } 1626 /* Exclude data nodes that do not make up a whole page cache page */ 1627 block = key_block(c, &bu->key) + bu->blk_cnt; 1628 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1629 while (bu->cnt) { 1630 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1631 break; 1632 bu->cnt -= 1; 1633 } 1634 return 0; 1635 } 1636 1637 /** 1638 * read_wbuf - bulk-read from a LEB with a wbuf. 1639 * @wbuf: wbuf that may overlap the read 1640 * @buf: buffer into which to read 1641 * @len: read length 1642 * @lnum: LEB number from which to read 1643 * @offs: offset from which to read 1644 * 1645 * This functions returns %0 on success or a negative error code on failure. 1646 */ 1647 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1648 int offs) 1649 { 1650 const struct ubifs_info *c = wbuf->c; 1651 int rlen, overlap; 1652 1653 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1654 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1655 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1656 ubifs_assert(c, offs + len <= c->leb_size); 1657 1658 spin_lock(&wbuf->lock); 1659 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1660 if (!overlap) { 1661 /* We may safely unlock the write-buffer and read the data */ 1662 spin_unlock(&wbuf->lock); 1663 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1664 } 1665 1666 /* Don't read under wbuf */ 1667 rlen = wbuf->offs - offs; 1668 if (rlen < 0) 1669 rlen = 0; 1670 1671 /* Copy the rest from the write-buffer */ 1672 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1673 spin_unlock(&wbuf->lock); 1674 1675 if (rlen > 0) 1676 /* Read everything that goes before write-buffer */ 1677 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1678 1679 return 0; 1680 } 1681 1682 /** 1683 * validate_data_node - validate data nodes for bulk-read. 1684 * @c: UBIFS file-system description object 1685 * @buf: buffer containing data node to validate 1686 * @zbr: zbranch of data node to validate 1687 * 1688 * This functions returns %0 on success or a negative error code on failure. 1689 */ 1690 static int validate_data_node(struct ubifs_info *c, void *buf, 1691 struct ubifs_zbranch *zbr) 1692 { 1693 union ubifs_key key1; 1694 struct ubifs_ch *ch = buf; 1695 int err, len; 1696 1697 if (ch->node_type != UBIFS_DATA_NODE) { 1698 ubifs_err(c, "bad node type (%d but expected %d)", 1699 ch->node_type, UBIFS_DATA_NODE); 1700 goto out_err; 1701 } 1702 1703 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1704 if (err) { 1705 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1706 goto out; 1707 } 1708 1709 err = ubifs_node_check_hash(c, buf, zbr->hash); 1710 if (err) { 1711 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs); 1712 return err; 1713 } 1714 1715 len = le32_to_cpu(ch->len); 1716 if (len != zbr->len) { 1717 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1718 goto out_err; 1719 } 1720 1721 /* Make sure the key of the read node is correct */ 1722 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1723 if (!keys_eq(c, &zbr->key, &key1)) { 1724 ubifs_err(c, "bad key in node at LEB %d:%d", 1725 zbr->lnum, zbr->offs); 1726 dbg_tnck(&zbr->key, "looked for key "); 1727 dbg_tnck(&key1, "found node's key "); 1728 goto out_err; 1729 } 1730 1731 return 0; 1732 1733 out_err: 1734 err = -EINVAL; 1735 out: 1736 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1737 ubifs_dump_node(c, buf); 1738 dump_stack(); 1739 return err; 1740 } 1741 1742 /** 1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1744 * @c: UBIFS file-system description object 1745 * @bu: bulk-read parameters and results 1746 * 1747 * This functions reads and validates the data nodes that were identified by the 1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1749 * -EAGAIN to indicate a race with GC, or another negative error code on 1750 * failure. 1751 */ 1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1753 { 1754 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1755 struct ubifs_wbuf *wbuf; 1756 void *buf; 1757 1758 len = bu->zbranch[bu->cnt - 1].offs; 1759 len += bu->zbranch[bu->cnt - 1].len - offs; 1760 if (len > bu->buf_len) { 1761 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1762 return -EINVAL; 1763 } 1764 1765 /* Do the read */ 1766 wbuf = ubifs_get_wbuf(c, lnum); 1767 if (wbuf) 1768 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1769 else 1770 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1771 1772 /* Check for a race with GC */ 1773 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1774 return -EAGAIN; 1775 1776 if (err && err != -EBADMSG) { 1777 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1778 lnum, offs, err); 1779 dump_stack(); 1780 dbg_tnck(&bu->key, "key "); 1781 return err; 1782 } 1783 1784 /* Validate the nodes read */ 1785 buf = bu->buf; 1786 for (i = 0; i < bu->cnt; i++) { 1787 err = validate_data_node(c, buf, &bu->zbranch[i]); 1788 if (err) 1789 return err; 1790 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1791 } 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * do_lookup_nm- look up a "hashed" node. 1798 * @c: UBIFS file-system description object 1799 * @key: node key to lookup 1800 * @node: the node is returned here 1801 * @nm: node name 1802 * 1803 * This function looks up and reads a node which contains name hash in the key. 1804 * Since the hash may have collisions, there may be many nodes with the same 1805 * key, so we have to sequentially look to all of them until the needed one is 1806 * found. This function returns zero in case of success, %-ENOENT if the node 1807 * was not found, and a negative error code in case of failure. 1808 */ 1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1810 void *node, const struct fscrypt_name *nm) 1811 { 1812 int found, n, err; 1813 struct ubifs_znode *znode; 1814 1815 dbg_tnck(key, "key "); 1816 mutex_lock(&c->tnc_mutex); 1817 found = ubifs_lookup_level0(c, key, &znode, &n); 1818 if (!found) { 1819 err = -ENOENT; 1820 goto out_unlock; 1821 } else if (found < 0) { 1822 err = found; 1823 goto out_unlock; 1824 } 1825 1826 ubifs_assert(c, n >= 0); 1827 1828 err = resolve_collision(c, key, &znode, &n, nm); 1829 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1830 if (unlikely(err < 0)) 1831 goto out_unlock; 1832 if (err == 0) { 1833 err = -ENOENT; 1834 goto out_unlock; 1835 } 1836 1837 err = tnc_read_hashed_node(c, &znode->zbranch[n], node); 1838 1839 out_unlock: 1840 mutex_unlock(&c->tnc_mutex); 1841 return err; 1842 } 1843 1844 /** 1845 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1846 * @c: UBIFS file-system description object 1847 * @key: node key to lookup 1848 * @node: the node is returned here 1849 * @nm: node name 1850 * 1851 * This function looks up and reads a node which contains name hash in the key. 1852 * Since the hash may have collisions, there may be many nodes with the same 1853 * key, so we have to sequentially look to all of them until the needed one is 1854 * found. This function returns zero in case of success, %-ENOENT if the node 1855 * was not found, and a negative error code in case of failure. 1856 */ 1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1858 void *node, const struct fscrypt_name *nm) 1859 { 1860 int err, len; 1861 const struct ubifs_dent_node *dent = node; 1862 1863 /* 1864 * We assume that in most of the cases there are no name collisions and 1865 * 'ubifs_tnc_lookup()' returns us the right direntry. 1866 */ 1867 err = ubifs_tnc_lookup(c, key, node); 1868 if (err) 1869 return err; 1870 1871 len = le16_to_cpu(dent->nlen); 1872 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len)) 1873 return 0; 1874 1875 /* 1876 * Unluckily, there are hash collisions and we have to iterate over 1877 * them look at each direntry with colliding name hash sequentially. 1878 */ 1879 1880 return do_lookup_nm(c, key, node, nm); 1881 } 1882 1883 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key, 1884 struct ubifs_dent_node *dent, uint32_t cookie, 1885 struct ubifs_znode **zn, int *n) 1886 { 1887 int err; 1888 struct ubifs_znode *znode = *zn; 1889 struct ubifs_zbranch *zbr; 1890 union ubifs_key *dkey; 1891 1892 for (;;) { 1893 zbr = &znode->zbranch[*n]; 1894 dkey = &zbr->key; 1895 1896 if (key_inum(c, dkey) != key_inum(c, key) || 1897 key_type(c, dkey) != key_type(c, key)) { 1898 return -ENOENT; 1899 } 1900 1901 err = tnc_read_hashed_node(c, zbr, dent); 1902 if (err) 1903 return err; 1904 1905 if (key_hash(c, key) == key_hash(c, dkey) && 1906 le32_to_cpu(dent->cookie) == cookie) { 1907 *zn = znode; 1908 return 0; 1909 } 1910 1911 err = tnc_next(c, &znode, n); 1912 if (err) 1913 return err; 1914 } 1915 } 1916 1917 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1918 struct ubifs_dent_node *dent, uint32_t cookie) 1919 { 1920 int n, err; 1921 struct ubifs_znode *znode; 1922 union ubifs_key start_key; 1923 1924 ubifs_assert(c, is_hash_key(c, key)); 1925 1926 lowest_dent_key(c, &start_key, key_inum(c, key)); 1927 1928 mutex_lock(&c->tnc_mutex); 1929 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 1930 if (unlikely(err < 0)) 1931 goto out_unlock; 1932 1933 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 1934 1935 out_unlock: 1936 mutex_unlock(&c->tnc_mutex); 1937 return err; 1938 } 1939 1940 /** 1941 * ubifs_tnc_lookup_dh - look up a "double hashed" node. 1942 * @c: UBIFS file-system description object 1943 * @key: node key to lookup 1944 * @node: the node is returned here 1945 * @cookie: node cookie for collision resolution 1946 * 1947 * This function looks up and reads a node which contains name hash in the key. 1948 * Since the hash may have collisions, there may be many nodes with the same 1949 * key, so we have to sequentially look to all of them until the needed one 1950 * with the same cookie value is found. 1951 * This function returns zero in case of success, %-ENOENT if the node 1952 * was not found, and a negative error code in case of failure. 1953 */ 1954 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, 1955 void *node, uint32_t cookie) 1956 { 1957 int err; 1958 const struct ubifs_dent_node *dent = node; 1959 1960 if (!c->double_hash) 1961 return -EOPNOTSUPP; 1962 1963 /* 1964 * We assume that in most of the cases there are no name collisions and 1965 * 'ubifs_tnc_lookup()' returns us the right direntry. 1966 */ 1967 err = ubifs_tnc_lookup(c, key, node); 1968 if (err) 1969 return err; 1970 1971 if (le32_to_cpu(dent->cookie) == cookie) 1972 return 0; 1973 1974 /* 1975 * Unluckily, there are hash collisions and we have to iterate over 1976 * them look at each direntry with colliding name hash sequentially. 1977 */ 1978 return do_lookup_dh(c, key, node, cookie); 1979 } 1980 1981 /** 1982 * correct_parent_keys - correct parent znodes' keys. 1983 * @c: UBIFS file-system description object 1984 * @znode: znode to correct parent znodes for 1985 * 1986 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1987 * zbranch changes, keys of parent znodes have to be corrected. This helper 1988 * function is called in such situations and corrects the keys if needed. 1989 */ 1990 static void correct_parent_keys(const struct ubifs_info *c, 1991 struct ubifs_znode *znode) 1992 { 1993 union ubifs_key *key, *key1; 1994 1995 ubifs_assert(c, znode->parent); 1996 ubifs_assert(c, znode->iip == 0); 1997 1998 key = &znode->zbranch[0].key; 1999 key1 = &znode->parent->zbranch[0].key; 2000 2001 while (keys_cmp(c, key, key1) < 0) { 2002 key_copy(c, key, key1); 2003 znode = znode->parent; 2004 znode->alt = 1; 2005 if (!znode->parent || znode->iip) 2006 break; 2007 key1 = &znode->parent->zbranch[0].key; 2008 } 2009 } 2010 2011 /** 2012 * insert_zbranch - insert a zbranch into a znode. 2013 * @c: UBIFS file-system description object 2014 * @znode: znode into which to insert 2015 * @zbr: zbranch to insert 2016 * @n: slot number to insert to 2017 * 2018 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 2019 * znode's array of zbranches and keeps zbranches consolidated, so when a new 2020 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 2021 * slot, zbranches starting from @n have to be moved right. 2022 */ 2023 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode, 2024 const struct ubifs_zbranch *zbr, int n) 2025 { 2026 int i; 2027 2028 ubifs_assert(c, ubifs_zn_dirty(znode)); 2029 2030 if (znode->level) { 2031 for (i = znode->child_cnt; i > n; i--) { 2032 znode->zbranch[i] = znode->zbranch[i - 1]; 2033 if (znode->zbranch[i].znode) 2034 znode->zbranch[i].znode->iip = i; 2035 } 2036 if (zbr->znode) 2037 zbr->znode->iip = n; 2038 } else 2039 for (i = znode->child_cnt; i > n; i--) 2040 znode->zbranch[i] = znode->zbranch[i - 1]; 2041 2042 znode->zbranch[n] = *zbr; 2043 znode->child_cnt += 1; 2044 2045 /* 2046 * After inserting at slot zero, the lower bound of the key range of 2047 * this znode may have changed. If this znode is subsequently split 2048 * then the upper bound of the key range may change, and furthermore 2049 * it could change to be lower than the original lower bound. If that 2050 * happens, then it will no longer be possible to find this znode in the 2051 * TNC using the key from the index node on flash. That is bad because 2052 * if it is not found, we will assume it is obsolete and may overwrite 2053 * it. Then if there is an unclean unmount, we will start using the 2054 * old index which will be broken. 2055 * 2056 * So we first mark znodes that have insertions at slot zero, and then 2057 * if they are split we add their lnum/offs to the old_idx tree. 2058 */ 2059 if (n == 0) 2060 znode->alt = 1; 2061 } 2062 2063 /** 2064 * tnc_insert - insert a node into TNC. 2065 * @c: UBIFS file-system description object 2066 * @znode: znode to insert into 2067 * @zbr: branch to insert 2068 * @n: slot number to insert new zbranch to 2069 * 2070 * This function inserts a new node described by @zbr into znode @znode. If 2071 * znode does not have a free slot for new zbranch, it is split. Parent znodes 2072 * are splat as well if needed. Returns zero in case of success or a negative 2073 * error code in case of failure. 2074 */ 2075 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 2076 struct ubifs_zbranch *zbr, int n) 2077 { 2078 struct ubifs_znode *zn, *zi, *zp; 2079 int i, keep, move, appending = 0; 2080 union ubifs_key *key = &zbr->key, *key1; 2081 2082 ubifs_assert(c, n >= 0 && n <= c->fanout); 2083 2084 /* Implement naive insert for now */ 2085 again: 2086 zp = znode->parent; 2087 if (znode->child_cnt < c->fanout) { 2088 ubifs_assert(c, n != c->fanout); 2089 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 2090 2091 insert_zbranch(c, znode, zbr, n); 2092 2093 /* Ensure parent's key is correct */ 2094 if (n == 0 && zp && znode->iip == 0) 2095 correct_parent_keys(c, znode); 2096 2097 return 0; 2098 } 2099 2100 /* 2101 * Unfortunately, @znode does not have more empty slots and we have to 2102 * split it. 2103 */ 2104 dbg_tnck(key, "splitting level %d, key ", znode->level); 2105 2106 if (znode->alt) 2107 /* 2108 * We can no longer be sure of finding this znode by key, so we 2109 * record it in the old_idx tree. 2110 */ 2111 ins_clr_old_idx_znode(c, znode); 2112 2113 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 2114 if (!zn) 2115 return -ENOMEM; 2116 zn->parent = zp; 2117 zn->level = znode->level; 2118 2119 /* Decide where to split */ 2120 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2121 /* Try not to split consecutive data keys */ 2122 if (n == c->fanout) { 2123 key1 = &znode->zbranch[n - 1].key; 2124 if (key_inum(c, key1) == key_inum(c, key) && 2125 key_type(c, key1) == UBIFS_DATA_KEY) 2126 appending = 1; 2127 } else 2128 goto check_split; 2129 } else if (appending && n != c->fanout) { 2130 /* Try not to split consecutive data keys */ 2131 appending = 0; 2132 check_split: 2133 if (n >= (c->fanout + 1) / 2) { 2134 key1 = &znode->zbranch[0].key; 2135 if (key_inum(c, key1) == key_inum(c, key) && 2136 key_type(c, key1) == UBIFS_DATA_KEY) { 2137 key1 = &znode->zbranch[n].key; 2138 if (key_inum(c, key1) != key_inum(c, key) || 2139 key_type(c, key1) != UBIFS_DATA_KEY) { 2140 keep = n; 2141 move = c->fanout - keep; 2142 zi = znode; 2143 goto do_split; 2144 } 2145 } 2146 } 2147 } 2148 2149 if (appending) { 2150 keep = c->fanout; 2151 move = 0; 2152 } else { 2153 keep = (c->fanout + 1) / 2; 2154 move = c->fanout - keep; 2155 } 2156 2157 /* 2158 * Although we don't at present, we could look at the neighbors and see 2159 * if we can move some zbranches there. 2160 */ 2161 2162 if (n < keep) { 2163 /* Insert into existing znode */ 2164 zi = znode; 2165 move += 1; 2166 keep -= 1; 2167 } else { 2168 /* Insert into new znode */ 2169 zi = zn; 2170 n -= keep; 2171 /* Re-parent */ 2172 if (zn->level != 0) 2173 zbr->znode->parent = zn; 2174 } 2175 2176 do_split: 2177 2178 __set_bit(DIRTY_ZNODE, &zn->flags); 2179 atomic_long_inc(&c->dirty_zn_cnt); 2180 2181 zn->child_cnt = move; 2182 znode->child_cnt = keep; 2183 2184 dbg_tnc("moving %d, keeping %d", move, keep); 2185 2186 /* Move zbranch */ 2187 for (i = 0; i < move; i++) { 2188 zn->zbranch[i] = znode->zbranch[keep + i]; 2189 /* Re-parent */ 2190 if (zn->level != 0) 2191 if (zn->zbranch[i].znode) { 2192 zn->zbranch[i].znode->parent = zn; 2193 zn->zbranch[i].znode->iip = i; 2194 } 2195 } 2196 2197 /* Insert new key and branch */ 2198 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2199 2200 insert_zbranch(c, zi, zbr, n); 2201 2202 /* Insert new znode (produced by spitting) into the parent */ 2203 if (zp) { 2204 if (n == 0 && zi == znode && znode->iip == 0) 2205 correct_parent_keys(c, znode); 2206 2207 /* Locate insertion point */ 2208 n = znode->iip + 1; 2209 2210 /* Tail recursion */ 2211 zbr->key = zn->zbranch[0].key; 2212 zbr->znode = zn; 2213 zbr->lnum = 0; 2214 zbr->offs = 0; 2215 zbr->len = 0; 2216 znode = zp; 2217 2218 goto again; 2219 } 2220 2221 /* We have to split root znode */ 2222 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2223 2224 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2225 if (!zi) 2226 return -ENOMEM; 2227 2228 zi->child_cnt = 2; 2229 zi->level = znode->level + 1; 2230 2231 __set_bit(DIRTY_ZNODE, &zi->flags); 2232 atomic_long_inc(&c->dirty_zn_cnt); 2233 2234 zi->zbranch[0].key = znode->zbranch[0].key; 2235 zi->zbranch[0].znode = znode; 2236 zi->zbranch[0].lnum = c->zroot.lnum; 2237 zi->zbranch[0].offs = c->zroot.offs; 2238 zi->zbranch[0].len = c->zroot.len; 2239 zi->zbranch[1].key = zn->zbranch[0].key; 2240 zi->zbranch[1].znode = zn; 2241 2242 c->zroot.lnum = 0; 2243 c->zroot.offs = 0; 2244 c->zroot.len = 0; 2245 c->zroot.znode = zi; 2246 2247 zn->parent = zi; 2248 zn->iip = 1; 2249 znode->parent = zi; 2250 znode->iip = 0; 2251 2252 return 0; 2253 } 2254 2255 /** 2256 * ubifs_tnc_add - add a node to TNC. 2257 * @c: UBIFS file-system description object 2258 * @key: key to add 2259 * @lnum: LEB number of node 2260 * @offs: node offset 2261 * @len: node length 2262 * @hash: The hash over the node 2263 * 2264 * This function adds a node with key @key to TNC. The node may be new or it may 2265 * obsolete some existing one. Returns %0 on success or negative error code on 2266 * failure. 2267 */ 2268 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2269 int offs, int len, const u8 *hash) 2270 { 2271 int found, n, err = 0; 2272 struct ubifs_znode *znode; 2273 2274 mutex_lock(&c->tnc_mutex); 2275 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2276 found = lookup_level0_dirty(c, key, &znode, &n); 2277 if (!found) { 2278 struct ubifs_zbranch zbr; 2279 2280 zbr.znode = NULL; 2281 zbr.lnum = lnum; 2282 zbr.offs = offs; 2283 zbr.len = len; 2284 ubifs_copy_hash(c, hash, zbr.hash); 2285 key_copy(c, key, &zbr.key); 2286 err = tnc_insert(c, znode, &zbr, n + 1); 2287 } else if (found == 1) { 2288 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2289 2290 lnc_free(zbr); 2291 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2292 zbr->lnum = lnum; 2293 zbr->offs = offs; 2294 zbr->len = len; 2295 ubifs_copy_hash(c, hash, zbr->hash); 2296 } else 2297 err = found; 2298 if (!err) 2299 err = dbg_check_tnc(c, 0); 2300 mutex_unlock(&c->tnc_mutex); 2301 2302 return err; 2303 } 2304 2305 /** 2306 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2307 * @c: UBIFS file-system description object 2308 * @key: key to add 2309 * @old_lnum: LEB number of old node 2310 * @old_offs: old node offset 2311 * @lnum: LEB number of node 2312 * @offs: node offset 2313 * @len: node length 2314 * 2315 * This function replaces a node with key @key in the TNC only if the old node 2316 * is found. This function is called by garbage collection when node are moved. 2317 * Returns %0 on success or negative error code on failure. 2318 */ 2319 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2320 int old_lnum, int old_offs, int lnum, int offs, int len) 2321 { 2322 int found, n, err = 0; 2323 struct ubifs_znode *znode; 2324 2325 mutex_lock(&c->tnc_mutex); 2326 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2327 old_offs, lnum, offs, len); 2328 found = lookup_level0_dirty(c, key, &znode, &n); 2329 if (found < 0) { 2330 err = found; 2331 goto out_unlock; 2332 } 2333 2334 if (found == 1) { 2335 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2336 2337 found = 0; 2338 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2339 lnc_free(zbr); 2340 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2341 if (err) 2342 goto out_unlock; 2343 zbr->lnum = lnum; 2344 zbr->offs = offs; 2345 zbr->len = len; 2346 found = 1; 2347 } else if (is_hash_key(c, key)) { 2348 found = resolve_collision_directly(c, key, &znode, &n, 2349 old_lnum, old_offs); 2350 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2351 found, znode, n, old_lnum, old_offs); 2352 if (found < 0) { 2353 err = found; 2354 goto out_unlock; 2355 } 2356 2357 if (found) { 2358 /* Ensure the znode is dirtied */ 2359 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2360 znode = dirty_cow_bottom_up(c, znode); 2361 if (IS_ERR(znode)) { 2362 err = PTR_ERR(znode); 2363 goto out_unlock; 2364 } 2365 } 2366 zbr = &znode->zbranch[n]; 2367 lnc_free(zbr); 2368 err = ubifs_add_dirt(c, zbr->lnum, 2369 zbr->len); 2370 if (err) 2371 goto out_unlock; 2372 zbr->lnum = lnum; 2373 zbr->offs = offs; 2374 zbr->len = len; 2375 } 2376 } 2377 } 2378 2379 if (!found) 2380 err = ubifs_add_dirt(c, lnum, len); 2381 2382 if (!err) 2383 err = dbg_check_tnc(c, 0); 2384 2385 out_unlock: 2386 mutex_unlock(&c->tnc_mutex); 2387 return err; 2388 } 2389 2390 /** 2391 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2392 * @c: UBIFS file-system description object 2393 * @key: key to add 2394 * @lnum: LEB number of node 2395 * @offs: node offset 2396 * @len: node length 2397 * @hash: The hash over the node 2398 * @nm: node name 2399 * 2400 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2401 * may have collisions, like directory entry keys. 2402 */ 2403 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2404 int lnum, int offs, int len, const u8 *hash, 2405 const struct fscrypt_name *nm) 2406 { 2407 int found, n, err = 0; 2408 struct ubifs_znode *znode; 2409 2410 mutex_lock(&c->tnc_mutex); 2411 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs); 2412 found = lookup_level0_dirty(c, key, &znode, &n); 2413 if (found < 0) { 2414 err = found; 2415 goto out_unlock; 2416 } 2417 2418 if (found == 1) { 2419 if (c->replaying) 2420 found = fallible_resolve_collision(c, key, &znode, &n, 2421 nm, 1); 2422 else 2423 found = resolve_collision(c, key, &znode, &n, nm); 2424 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2425 if (found < 0) { 2426 err = found; 2427 goto out_unlock; 2428 } 2429 2430 /* Ensure the znode is dirtied */ 2431 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2432 znode = dirty_cow_bottom_up(c, znode); 2433 if (IS_ERR(znode)) { 2434 err = PTR_ERR(znode); 2435 goto out_unlock; 2436 } 2437 } 2438 2439 if (found == 1) { 2440 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2441 2442 lnc_free(zbr); 2443 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2444 zbr->lnum = lnum; 2445 zbr->offs = offs; 2446 zbr->len = len; 2447 ubifs_copy_hash(c, hash, zbr->hash); 2448 goto out_unlock; 2449 } 2450 } 2451 2452 if (!found) { 2453 struct ubifs_zbranch zbr; 2454 2455 zbr.znode = NULL; 2456 zbr.lnum = lnum; 2457 zbr.offs = offs; 2458 zbr.len = len; 2459 ubifs_copy_hash(c, hash, zbr.hash); 2460 key_copy(c, key, &zbr.key); 2461 err = tnc_insert(c, znode, &zbr, n + 1); 2462 if (err) 2463 goto out_unlock; 2464 if (c->replaying) { 2465 /* 2466 * We did not find it in the index so there may be a 2467 * dangling branch still in the index. So we remove it 2468 * by passing 'ubifs_tnc_remove_nm()' the same key but 2469 * an unmatchable name. 2470 */ 2471 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } }; 2472 2473 err = dbg_check_tnc(c, 0); 2474 mutex_unlock(&c->tnc_mutex); 2475 if (err) 2476 return err; 2477 return ubifs_tnc_remove_nm(c, key, &noname); 2478 } 2479 } 2480 2481 out_unlock: 2482 if (!err) 2483 err = dbg_check_tnc(c, 0); 2484 mutex_unlock(&c->tnc_mutex); 2485 return err; 2486 } 2487 2488 /** 2489 * tnc_delete - delete a znode form TNC. 2490 * @c: UBIFS file-system description object 2491 * @znode: znode to delete from 2492 * @n: zbranch slot number to delete 2493 * 2494 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2495 * case of success and a negative error code in case of failure. 2496 */ 2497 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2498 { 2499 struct ubifs_zbranch *zbr; 2500 struct ubifs_znode *zp; 2501 int i, err; 2502 2503 /* Delete without merge for now */ 2504 ubifs_assert(c, znode->level == 0); 2505 ubifs_assert(c, n >= 0 && n < c->fanout); 2506 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2507 2508 zbr = &znode->zbranch[n]; 2509 lnc_free(zbr); 2510 2511 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2512 if (err) { 2513 ubifs_dump_znode(c, znode); 2514 return err; 2515 } 2516 2517 /* We do not "gap" zbranch slots */ 2518 for (i = n; i < znode->child_cnt - 1; i++) 2519 znode->zbranch[i] = znode->zbranch[i + 1]; 2520 znode->child_cnt -= 1; 2521 2522 if (znode->child_cnt > 0) 2523 return 0; 2524 2525 /* 2526 * This was the last zbranch, we have to delete this znode from the 2527 * parent. 2528 */ 2529 2530 do { 2531 ubifs_assert(c, !ubifs_zn_obsolete(znode)); 2532 ubifs_assert(c, ubifs_zn_dirty(znode)); 2533 2534 zp = znode->parent; 2535 n = znode->iip; 2536 2537 atomic_long_dec(&c->dirty_zn_cnt); 2538 2539 err = insert_old_idx_znode(c, znode); 2540 if (err) 2541 return err; 2542 2543 if (znode->cnext) { 2544 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2545 atomic_long_inc(&c->clean_zn_cnt); 2546 atomic_long_inc(&ubifs_clean_zn_cnt); 2547 } else 2548 kfree(znode); 2549 znode = zp; 2550 } while (znode->child_cnt == 1); /* while removing last child */ 2551 2552 /* Remove from znode, entry n - 1 */ 2553 znode->child_cnt -= 1; 2554 ubifs_assert(c, znode->level != 0); 2555 for (i = n; i < znode->child_cnt; i++) { 2556 znode->zbranch[i] = znode->zbranch[i + 1]; 2557 if (znode->zbranch[i].znode) 2558 znode->zbranch[i].znode->iip = i; 2559 } 2560 2561 /* 2562 * If this is the root and it has only 1 child then 2563 * collapse the tree. 2564 */ 2565 if (!znode->parent) { 2566 while (znode->child_cnt == 1 && znode->level != 0) { 2567 zp = znode; 2568 zbr = &znode->zbranch[0]; 2569 znode = get_znode(c, znode, 0); 2570 if (IS_ERR(znode)) 2571 return PTR_ERR(znode); 2572 znode = dirty_cow_znode(c, zbr); 2573 if (IS_ERR(znode)) 2574 return PTR_ERR(znode); 2575 znode->parent = NULL; 2576 znode->iip = 0; 2577 if (c->zroot.len) { 2578 err = insert_old_idx(c, c->zroot.lnum, 2579 c->zroot.offs); 2580 if (err) 2581 return err; 2582 } 2583 c->zroot.lnum = zbr->lnum; 2584 c->zroot.offs = zbr->offs; 2585 c->zroot.len = zbr->len; 2586 c->zroot.znode = znode; 2587 ubifs_assert(c, !ubifs_zn_obsolete(zp)); 2588 ubifs_assert(c, ubifs_zn_dirty(zp)); 2589 atomic_long_dec(&c->dirty_zn_cnt); 2590 2591 if (zp->cnext) { 2592 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2593 atomic_long_inc(&c->clean_zn_cnt); 2594 atomic_long_inc(&ubifs_clean_zn_cnt); 2595 } else 2596 kfree(zp); 2597 } 2598 } 2599 2600 return 0; 2601 } 2602 2603 /** 2604 * ubifs_tnc_remove - remove an index entry of a node. 2605 * @c: UBIFS file-system description object 2606 * @key: key of node 2607 * 2608 * Returns %0 on success or negative error code on failure. 2609 */ 2610 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2611 { 2612 int found, n, err = 0; 2613 struct ubifs_znode *znode; 2614 2615 mutex_lock(&c->tnc_mutex); 2616 dbg_tnck(key, "key "); 2617 found = lookup_level0_dirty(c, key, &znode, &n); 2618 if (found < 0) { 2619 err = found; 2620 goto out_unlock; 2621 } 2622 if (found == 1) 2623 err = tnc_delete(c, znode, n); 2624 if (!err) 2625 err = dbg_check_tnc(c, 0); 2626 2627 out_unlock: 2628 mutex_unlock(&c->tnc_mutex); 2629 return err; 2630 } 2631 2632 /** 2633 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2634 * @c: UBIFS file-system description object 2635 * @key: key of node 2636 * @nm: directory entry name 2637 * 2638 * Returns %0 on success or negative error code on failure. 2639 */ 2640 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2641 const struct fscrypt_name *nm) 2642 { 2643 int n, err; 2644 struct ubifs_znode *znode; 2645 2646 mutex_lock(&c->tnc_mutex); 2647 dbg_tnck(key, "key "); 2648 err = lookup_level0_dirty(c, key, &znode, &n); 2649 if (err < 0) 2650 goto out_unlock; 2651 2652 if (err) { 2653 if (c->replaying) 2654 err = fallible_resolve_collision(c, key, &znode, &n, 2655 nm, 0); 2656 else 2657 err = resolve_collision(c, key, &znode, &n, nm); 2658 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2659 if (err < 0) 2660 goto out_unlock; 2661 if (err) { 2662 /* Ensure the znode is dirtied */ 2663 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2664 znode = dirty_cow_bottom_up(c, znode); 2665 if (IS_ERR(znode)) { 2666 err = PTR_ERR(znode); 2667 goto out_unlock; 2668 } 2669 } 2670 err = tnc_delete(c, znode, n); 2671 } 2672 } 2673 2674 out_unlock: 2675 if (!err) 2676 err = dbg_check_tnc(c, 0); 2677 mutex_unlock(&c->tnc_mutex); 2678 return err; 2679 } 2680 2681 /** 2682 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node. 2683 * @c: UBIFS file-system description object 2684 * @key: key of node 2685 * @cookie: node cookie for collision resolution 2686 * 2687 * Returns %0 on success or negative error code on failure. 2688 */ 2689 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, 2690 uint32_t cookie) 2691 { 2692 int n, err; 2693 struct ubifs_znode *znode; 2694 struct ubifs_dent_node *dent; 2695 struct ubifs_zbranch *zbr; 2696 2697 if (!c->double_hash) 2698 return -EOPNOTSUPP; 2699 2700 mutex_lock(&c->tnc_mutex); 2701 err = lookup_level0_dirty(c, key, &znode, &n); 2702 if (err <= 0) 2703 goto out_unlock; 2704 2705 zbr = &znode->zbranch[n]; 2706 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 2707 if (!dent) { 2708 err = -ENOMEM; 2709 goto out_unlock; 2710 } 2711 2712 err = tnc_read_hashed_node(c, zbr, dent); 2713 if (err) 2714 goto out_free; 2715 2716 /* If the cookie does not match, we're facing a hash collision. */ 2717 if (le32_to_cpu(dent->cookie) != cookie) { 2718 union ubifs_key start_key; 2719 2720 lowest_dent_key(c, &start_key, key_inum(c, key)); 2721 2722 err = ubifs_lookup_level0(c, &start_key, &znode, &n); 2723 if (unlikely(err < 0)) 2724 goto out_free; 2725 2726 err = search_dh_cookie(c, key, dent, cookie, &znode, &n); 2727 if (err) 2728 goto out_free; 2729 } 2730 2731 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2732 znode = dirty_cow_bottom_up(c, znode); 2733 if (IS_ERR(znode)) { 2734 err = PTR_ERR(znode); 2735 goto out_free; 2736 } 2737 } 2738 err = tnc_delete(c, znode, n); 2739 2740 out_free: 2741 kfree(dent); 2742 out_unlock: 2743 if (!err) 2744 err = dbg_check_tnc(c, 0); 2745 mutex_unlock(&c->tnc_mutex); 2746 return err; 2747 } 2748 2749 /** 2750 * key_in_range - determine if a key falls within a range of keys. 2751 * @c: UBIFS file-system description object 2752 * @key: key to check 2753 * @from_key: lowest key in range 2754 * @to_key: highest key in range 2755 * 2756 * This function returns %1 if the key is in range and %0 otherwise. 2757 */ 2758 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2759 union ubifs_key *from_key, union ubifs_key *to_key) 2760 { 2761 if (keys_cmp(c, key, from_key) < 0) 2762 return 0; 2763 if (keys_cmp(c, key, to_key) > 0) 2764 return 0; 2765 return 1; 2766 } 2767 2768 /** 2769 * ubifs_tnc_remove_range - remove index entries in range. 2770 * @c: UBIFS file-system description object 2771 * @from_key: lowest key to remove 2772 * @to_key: highest key to remove 2773 * 2774 * This function removes index entries starting at @from_key and ending at 2775 * @to_key. This function returns zero in case of success and a negative error 2776 * code in case of failure. 2777 */ 2778 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2779 union ubifs_key *to_key) 2780 { 2781 int i, n, k, err = 0; 2782 struct ubifs_znode *znode; 2783 union ubifs_key *key; 2784 2785 mutex_lock(&c->tnc_mutex); 2786 while (1) { 2787 /* Find first level 0 znode that contains keys to remove */ 2788 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2789 if (err < 0) 2790 goto out_unlock; 2791 2792 if (err) 2793 key = from_key; 2794 else { 2795 err = tnc_next(c, &znode, &n); 2796 if (err == -ENOENT) { 2797 err = 0; 2798 goto out_unlock; 2799 } 2800 if (err < 0) 2801 goto out_unlock; 2802 key = &znode->zbranch[n].key; 2803 if (!key_in_range(c, key, from_key, to_key)) { 2804 err = 0; 2805 goto out_unlock; 2806 } 2807 } 2808 2809 /* Ensure the znode is dirtied */ 2810 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2811 znode = dirty_cow_bottom_up(c, znode); 2812 if (IS_ERR(znode)) { 2813 err = PTR_ERR(znode); 2814 goto out_unlock; 2815 } 2816 } 2817 2818 /* Remove all keys in range except the first */ 2819 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2820 key = &znode->zbranch[i].key; 2821 if (!key_in_range(c, key, from_key, to_key)) 2822 break; 2823 lnc_free(&znode->zbranch[i]); 2824 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2825 znode->zbranch[i].len); 2826 if (err) { 2827 ubifs_dump_znode(c, znode); 2828 goto out_unlock; 2829 } 2830 dbg_tnck(key, "removing key "); 2831 } 2832 if (k) { 2833 for (i = n + 1 + k; i < znode->child_cnt; i++) 2834 znode->zbranch[i - k] = znode->zbranch[i]; 2835 znode->child_cnt -= k; 2836 } 2837 2838 /* Now delete the first */ 2839 err = tnc_delete(c, znode, n); 2840 if (err) 2841 goto out_unlock; 2842 } 2843 2844 out_unlock: 2845 if (!err) 2846 err = dbg_check_tnc(c, 0); 2847 mutex_unlock(&c->tnc_mutex); 2848 return err; 2849 } 2850 2851 /** 2852 * ubifs_tnc_remove_ino - remove an inode from TNC. 2853 * @c: UBIFS file-system description object 2854 * @inum: inode number to remove 2855 * 2856 * This function remove inode @inum and all the extended attributes associated 2857 * with the anode from TNC and returns zero in case of success or a negative 2858 * error code in case of failure. 2859 */ 2860 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2861 { 2862 union ubifs_key key1, key2; 2863 struct ubifs_dent_node *xent, *pxent = NULL; 2864 struct fscrypt_name nm = {0}; 2865 2866 dbg_tnc("ino %lu", (unsigned long)inum); 2867 2868 /* 2869 * Walk all extended attribute entries and remove them together with 2870 * corresponding extended attribute inodes. 2871 */ 2872 lowest_xent_key(c, &key1, inum); 2873 while (1) { 2874 ino_t xattr_inum; 2875 int err; 2876 2877 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2878 if (IS_ERR(xent)) { 2879 err = PTR_ERR(xent); 2880 if (err == -ENOENT) 2881 break; 2882 return err; 2883 } 2884 2885 xattr_inum = le64_to_cpu(xent->inum); 2886 dbg_tnc("xent '%s', ino %lu", xent->name, 2887 (unsigned long)xattr_inum); 2888 2889 ubifs_evict_xattr_inode(c, xattr_inum); 2890 2891 fname_name(&nm) = xent->name; 2892 fname_len(&nm) = le16_to_cpu(xent->nlen); 2893 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2894 if (err) { 2895 kfree(xent); 2896 return err; 2897 } 2898 2899 lowest_ino_key(c, &key1, xattr_inum); 2900 highest_ino_key(c, &key2, xattr_inum); 2901 err = ubifs_tnc_remove_range(c, &key1, &key2); 2902 if (err) { 2903 kfree(xent); 2904 return err; 2905 } 2906 2907 kfree(pxent); 2908 pxent = xent; 2909 key_read(c, &xent->key, &key1); 2910 } 2911 2912 kfree(pxent); 2913 lowest_ino_key(c, &key1, inum); 2914 highest_ino_key(c, &key2, inum); 2915 2916 return ubifs_tnc_remove_range(c, &key1, &key2); 2917 } 2918 2919 /** 2920 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2921 * @c: UBIFS file-system description object 2922 * @key: key of last entry 2923 * @nm: name of last entry found or %NULL 2924 * 2925 * This function finds and reads the next directory or extended attribute entry 2926 * after the given key (@key) if there is one. @nm is used to resolve 2927 * collisions. 2928 * 2929 * If the name of the current entry is not known and only the key is known, 2930 * @nm->name has to be %NULL. In this case the semantics of this function is a 2931 * little bit different and it returns the entry corresponding to this key, not 2932 * the next one. If the key was not found, the closest "right" entry is 2933 * returned. 2934 * 2935 * If the fist entry has to be found, @key has to contain the lowest possible 2936 * key value for this inode and @name has to be %NULL. 2937 * 2938 * This function returns the found directory or extended attribute entry node 2939 * in case of success, %-ENOENT is returned if no entry was found, and a 2940 * negative error code is returned in case of failure. 2941 */ 2942 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2943 union ubifs_key *key, 2944 const struct fscrypt_name *nm) 2945 { 2946 int n, err, type = key_type(c, key); 2947 struct ubifs_znode *znode; 2948 struct ubifs_dent_node *dent; 2949 struct ubifs_zbranch *zbr; 2950 union ubifs_key *dkey; 2951 2952 dbg_tnck(key, "key "); 2953 ubifs_assert(c, is_hash_key(c, key)); 2954 2955 mutex_lock(&c->tnc_mutex); 2956 err = ubifs_lookup_level0(c, key, &znode, &n); 2957 if (unlikely(err < 0)) 2958 goto out_unlock; 2959 2960 if (fname_len(nm) > 0) { 2961 if (err) { 2962 /* Handle collisions */ 2963 if (c->replaying) 2964 err = fallible_resolve_collision(c, key, &znode, &n, 2965 nm, 0); 2966 else 2967 err = resolve_collision(c, key, &znode, &n, nm); 2968 dbg_tnc("rc returned %d, znode %p, n %d", 2969 err, znode, n); 2970 if (unlikely(err < 0)) 2971 goto out_unlock; 2972 } 2973 2974 /* Now find next entry */ 2975 err = tnc_next(c, &znode, &n); 2976 if (unlikely(err)) 2977 goto out_unlock; 2978 } else { 2979 /* 2980 * The full name of the entry was not given, in which case the 2981 * behavior of this function is a little different and it 2982 * returns current entry, not the next one. 2983 */ 2984 if (!err) { 2985 /* 2986 * However, the given key does not exist in the TNC 2987 * tree and @znode/@n variables contain the closest 2988 * "preceding" element. Switch to the next one. 2989 */ 2990 err = tnc_next(c, &znode, &n); 2991 if (err) 2992 goto out_unlock; 2993 } 2994 } 2995 2996 zbr = &znode->zbranch[n]; 2997 dent = kmalloc(zbr->len, GFP_NOFS); 2998 if (unlikely(!dent)) { 2999 err = -ENOMEM; 3000 goto out_unlock; 3001 } 3002 3003 /* 3004 * The above 'tnc_next()' call could lead us to the next inode, check 3005 * this. 3006 */ 3007 dkey = &zbr->key; 3008 if (key_inum(c, dkey) != key_inum(c, key) || 3009 key_type(c, dkey) != type) { 3010 err = -ENOENT; 3011 goto out_free; 3012 } 3013 3014 err = tnc_read_hashed_node(c, zbr, dent); 3015 if (unlikely(err)) 3016 goto out_free; 3017 3018 mutex_unlock(&c->tnc_mutex); 3019 return dent; 3020 3021 out_free: 3022 kfree(dent); 3023 out_unlock: 3024 mutex_unlock(&c->tnc_mutex); 3025 return ERR_PTR(err); 3026 } 3027 3028 /** 3029 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 3030 * @c: UBIFS file-system description object 3031 * 3032 * Destroy left-over obsolete znodes from a failed commit. 3033 */ 3034 static void tnc_destroy_cnext(struct ubifs_info *c) 3035 { 3036 struct ubifs_znode *cnext; 3037 3038 if (!c->cnext) 3039 return; 3040 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN); 3041 cnext = c->cnext; 3042 do { 3043 struct ubifs_znode *znode = cnext; 3044 3045 cnext = cnext->cnext; 3046 if (ubifs_zn_obsolete(znode)) 3047 kfree(znode); 3048 } while (cnext && cnext != c->cnext); 3049 } 3050 3051 /** 3052 * ubifs_tnc_close - close TNC subsystem and free all related resources. 3053 * @c: UBIFS file-system description object 3054 */ 3055 void ubifs_tnc_close(struct ubifs_info *c) 3056 { 3057 tnc_destroy_cnext(c); 3058 if (c->zroot.znode) { 3059 long n, freed; 3060 3061 n = atomic_long_read(&c->clean_zn_cnt); 3062 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode); 3063 ubifs_assert(c, freed == n); 3064 atomic_long_sub(n, &ubifs_clean_zn_cnt); 3065 } 3066 kfree(c->gap_lebs); 3067 kfree(c->ilebs); 3068 destroy_old_idx(c); 3069 } 3070 3071 /** 3072 * left_znode - get the znode to the left. 3073 * @c: UBIFS file-system description object 3074 * @znode: znode 3075 * 3076 * This function returns a pointer to the znode to the left of @znode or NULL if 3077 * there is not one. A negative error code is returned on failure. 3078 */ 3079 static struct ubifs_znode *left_znode(struct ubifs_info *c, 3080 struct ubifs_znode *znode) 3081 { 3082 int level = znode->level; 3083 3084 while (1) { 3085 int n = znode->iip - 1; 3086 3087 /* Go up until we can go left */ 3088 znode = znode->parent; 3089 if (!znode) 3090 return NULL; 3091 if (n >= 0) { 3092 /* Now go down the rightmost branch to 'level' */ 3093 znode = get_znode(c, znode, n); 3094 if (IS_ERR(znode)) 3095 return znode; 3096 while (znode->level != level) { 3097 n = znode->child_cnt - 1; 3098 znode = get_znode(c, znode, n); 3099 if (IS_ERR(znode)) 3100 return znode; 3101 } 3102 break; 3103 } 3104 } 3105 return znode; 3106 } 3107 3108 /** 3109 * right_znode - get the znode to the right. 3110 * @c: UBIFS file-system description object 3111 * @znode: znode 3112 * 3113 * This function returns a pointer to the znode to the right of @znode or NULL 3114 * if there is not one. A negative error code is returned on failure. 3115 */ 3116 static struct ubifs_znode *right_znode(struct ubifs_info *c, 3117 struct ubifs_znode *znode) 3118 { 3119 int level = znode->level; 3120 3121 while (1) { 3122 int n = znode->iip + 1; 3123 3124 /* Go up until we can go right */ 3125 znode = znode->parent; 3126 if (!znode) 3127 return NULL; 3128 if (n < znode->child_cnt) { 3129 /* Now go down the leftmost branch to 'level' */ 3130 znode = get_znode(c, znode, n); 3131 if (IS_ERR(znode)) 3132 return znode; 3133 while (znode->level != level) { 3134 znode = get_znode(c, znode, 0); 3135 if (IS_ERR(znode)) 3136 return znode; 3137 } 3138 break; 3139 } 3140 } 3141 return znode; 3142 } 3143 3144 /** 3145 * lookup_znode - find a particular indexing node from TNC. 3146 * @c: UBIFS file-system description object 3147 * @key: index node key to lookup 3148 * @level: index node level 3149 * @lnum: index node LEB number 3150 * @offs: index node offset 3151 * 3152 * This function searches an indexing node by its first key @key and its 3153 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 3154 * nodes it traverses to TNC. This function is called for indexing nodes which 3155 * were found on the media by scanning, for example when garbage-collecting or 3156 * when doing in-the-gaps commit. This means that the indexing node which is 3157 * looked for does not have to have exactly the same leftmost key @key, because 3158 * the leftmost key may have been changed, in which case TNC will contain a 3159 * dirty znode which still refers the same @lnum:@offs. This function is clever 3160 * enough to recognize such indexing nodes. 3161 * 3162 * Note, if a znode was deleted or changed too much, then this function will 3163 * not find it. For situations like this UBIFS has the old index RB-tree 3164 * (indexed by @lnum:@offs). 3165 * 3166 * This function returns a pointer to the znode found or %NULL if it is not 3167 * found. A negative error code is returned on failure. 3168 */ 3169 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 3170 union ubifs_key *key, int level, 3171 int lnum, int offs) 3172 { 3173 struct ubifs_znode *znode, *zn; 3174 int n, nn; 3175 3176 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); 3177 3178 /* 3179 * The arguments have probably been read off flash, so don't assume 3180 * they are valid. 3181 */ 3182 if (level < 0) 3183 return ERR_PTR(-EINVAL); 3184 3185 /* Get the root znode */ 3186 znode = c->zroot.znode; 3187 if (!znode) { 3188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 3189 if (IS_ERR(znode)) 3190 return znode; 3191 } 3192 /* Check if it is the one we are looking for */ 3193 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 3194 return znode; 3195 /* Descend to the parent level i.e. (level + 1) */ 3196 if (level >= znode->level) 3197 return NULL; 3198 while (1) { 3199 ubifs_search_zbranch(c, znode, key, &n); 3200 if (n < 0) { 3201 /* 3202 * We reached a znode where the leftmost key is greater 3203 * than the key we are searching for. This is the same 3204 * situation as the one described in a huge comment at 3205 * the end of the 'ubifs_lookup_level0()' function. And 3206 * for exactly the same reasons we have to try to look 3207 * left before giving up. 3208 */ 3209 znode = left_znode(c, znode); 3210 if (!znode) 3211 return NULL; 3212 if (IS_ERR(znode)) 3213 return znode; 3214 ubifs_search_zbranch(c, znode, key, &n); 3215 ubifs_assert(c, n >= 0); 3216 } 3217 if (znode->level == level + 1) 3218 break; 3219 znode = get_znode(c, znode, n); 3220 if (IS_ERR(znode)) 3221 return znode; 3222 } 3223 /* Check if the child is the one we are looking for */ 3224 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3225 return get_znode(c, znode, n); 3226 /* If the key is unique, there is nowhere else to look */ 3227 if (!is_hash_key(c, key)) 3228 return NULL; 3229 /* 3230 * The key is not unique and so may be also in the znodes to either 3231 * side. 3232 */ 3233 zn = znode; 3234 nn = n; 3235 /* Look left */ 3236 while (1) { 3237 /* Move one branch to the left */ 3238 if (n) 3239 n -= 1; 3240 else { 3241 znode = left_znode(c, znode); 3242 if (!znode) 3243 break; 3244 if (IS_ERR(znode)) 3245 return znode; 3246 n = znode->child_cnt - 1; 3247 } 3248 /* Check it */ 3249 if (znode->zbranch[n].lnum == lnum && 3250 znode->zbranch[n].offs == offs) 3251 return get_znode(c, znode, n); 3252 /* Stop if the key is less than the one we are looking for */ 3253 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3254 break; 3255 } 3256 /* Back to the middle */ 3257 znode = zn; 3258 n = nn; 3259 /* Look right */ 3260 while (1) { 3261 /* Move one branch to the right */ 3262 if (++n >= znode->child_cnt) { 3263 znode = right_znode(c, znode); 3264 if (!znode) 3265 break; 3266 if (IS_ERR(znode)) 3267 return znode; 3268 n = 0; 3269 } 3270 /* Check it */ 3271 if (znode->zbranch[n].lnum == lnum && 3272 znode->zbranch[n].offs == offs) 3273 return get_znode(c, znode, n); 3274 /* Stop if the key is greater than the one we are looking for */ 3275 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3276 break; 3277 } 3278 return NULL; 3279 } 3280 3281 /** 3282 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3283 * @c: UBIFS file-system description object 3284 * @key: key of index node 3285 * @level: index node level 3286 * @lnum: LEB number of index node 3287 * @offs: offset of index node 3288 * 3289 * This function returns %0 if the index node is not referred to in the TNC, %1 3290 * if the index node is referred to in the TNC and the corresponding znode is 3291 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3292 * znode is clean, and a negative error code in case of failure. 3293 * 3294 * Note, the @key argument has to be the key of the first child. Also note, 3295 * this function relies on the fact that 0:0 is never a valid LEB number and 3296 * offset for a main-area node. 3297 */ 3298 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3299 int lnum, int offs) 3300 { 3301 struct ubifs_znode *znode; 3302 3303 znode = lookup_znode(c, key, level, lnum, offs); 3304 if (!znode) 3305 return 0; 3306 if (IS_ERR(znode)) 3307 return PTR_ERR(znode); 3308 3309 return ubifs_zn_dirty(znode) ? 1 : 2; 3310 } 3311 3312 /** 3313 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3314 * @c: UBIFS file-system description object 3315 * @key: node key 3316 * @lnum: node LEB number 3317 * @offs: node offset 3318 * 3319 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3320 * not, and a negative error code in case of failure. 3321 * 3322 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3323 * and offset for a main-area node. 3324 */ 3325 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3326 int lnum, int offs) 3327 { 3328 struct ubifs_zbranch *zbr; 3329 struct ubifs_znode *znode, *zn; 3330 int n, found, err, nn; 3331 const int unique = !is_hash_key(c, key); 3332 3333 found = ubifs_lookup_level0(c, key, &znode, &n); 3334 if (found < 0) 3335 return found; /* Error code */ 3336 if (!found) 3337 return 0; 3338 zbr = &znode->zbranch[n]; 3339 if (lnum == zbr->lnum && offs == zbr->offs) 3340 return 1; /* Found it */ 3341 if (unique) 3342 return 0; 3343 /* 3344 * Because the key is not unique, we have to look left 3345 * and right as well 3346 */ 3347 zn = znode; 3348 nn = n; 3349 /* Look left */ 3350 while (1) { 3351 err = tnc_prev(c, &znode, &n); 3352 if (err == -ENOENT) 3353 break; 3354 if (err) 3355 return err; 3356 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3357 break; 3358 zbr = &znode->zbranch[n]; 3359 if (lnum == zbr->lnum && offs == zbr->offs) 3360 return 1; /* Found it */ 3361 } 3362 /* Look right */ 3363 znode = zn; 3364 n = nn; 3365 while (1) { 3366 err = tnc_next(c, &znode, &n); 3367 if (err) { 3368 if (err == -ENOENT) 3369 return 0; 3370 return err; 3371 } 3372 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3373 break; 3374 zbr = &znode->zbranch[n]; 3375 if (lnum == zbr->lnum && offs == zbr->offs) 3376 return 1; /* Found it */ 3377 } 3378 return 0; 3379 } 3380 3381 /** 3382 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3383 * @c: UBIFS file-system description object 3384 * @key: node key 3385 * @level: index node level (if it is an index node) 3386 * @lnum: node LEB number 3387 * @offs: node offset 3388 * @is_idx: non-zero if the node is an index node 3389 * 3390 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3391 * negative error code in case of failure. For index nodes, @key has to be the 3392 * key of the first child. An index node is considered to be in the TNC only if 3393 * the corresponding znode is clean or has not been loaded. 3394 */ 3395 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3396 int lnum, int offs, int is_idx) 3397 { 3398 int err; 3399 3400 mutex_lock(&c->tnc_mutex); 3401 if (is_idx) { 3402 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3403 if (err < 0) 3404 goto out_unlock; 3405 if (err == 1) 3406 /* The index node was found but it was dirty */ 3407 err = 0; 3408 else if (err == 2) 3409 /* The index node was found and it was clean */ 3410 err = 1; 3411 else 3412 BUG_ON(err != 0); 3413 } else 3414 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3415 3416 out_unlock: 3417 mutex_unlock(&c->tnc_mutex); 3418 return err; 3419 } 3420 3421 /** 3422 * ubifs_dirty_idx_node - dirty an index node. 3423 * @c: UBIFS file-system description object 3424 * @key: index node key 3425 * @level: index node level 3426 * @lnum: index node LEB number 3427 * @offs: index node offset 3428 * 3429 * This function loads and dirties an index node so that it can be garbage 3430 * collected. The @key argument has to be the key of the first child. This 3431 * function relies on the fact that 0:0 is never a valid LEB number and offset 3432 * for a main-area node. Returns %0 on success and a negative error code on 3433 * failure. 3434 */ 3435 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3436 int lnum, int offs) 3437 { 3438 struct ubifs_znode *znode; 3439 int err = 0; 3440 3441 mutex_lock(&c->tnc_mutex); 3442 znode = lookup_znode(c, key, level, lnum, offs); 3443 if (!znode) 3444 goto out_unlock; 3445 if (IS_ERR(znode)) { 3446 err = PTR_ERR(znode); 3447 goto out_unlock; 3448 } 3449 znode = dirty_cow_bottom_up(c, znode); 3450 if (IS_ERR(znode)) { 3451 err = PTR_ERR(znode); 3452 goto out_unlock; 3453 } 3454 3455 out_unlock: 3456 mutex_unlock(&c->tnc_mutex); 3457 return err; 3458 } 3459 3460 /** 3461 * dbg_check_inode_size - check if inode size is correct. 3462 * @c: UBIFS file-system description object 3463 * @inum: inode number 3464 * @size: inode size 3465 * 3466 * This function makes sure that the inode size (@size) is correct and it does 3467 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3468 * if it has a data page beyond @size, and other negative error code in case of 3469 * other errors. 3470 */ 3471 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3472 loff_t size) 3473 { 3474 int err, n; 3475 union ubifs_key from_key, to_key, *key; 3476 struct ubifs_znode *znode; 3477 unsigned int block; 3478 3479 if (!S_ISREG(inode->i_mode)) 3480 return 0; 3481 if (!dbg_is_chk_gen(c)) 3482 return 0; 3483 3484 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3485 data_key_init(c, &from_key, inode->i_ino, block); 3486 highest_data_key(c, &to_key, inode->i_ino); 3487 3488 mutex_lock(&c->tnc_mutex); 3489 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3490 if (err < 0) 3491 goto out_unlock; 3492 3493 if (err) { 3494 key = &from_key; 3495 goto out_dump; 3496 } 3497 3498 err = tnc_next(c, &znode, &n); 3499 if (err == -ENOENT) { 3500 err = 0; 3501 goto out_unlock; 3502 } 3503 if (err < 0) 3504 goto out_unlock; 3505 3506 ubifs_assert(c, err == 0); 3507 key = &znode->zbranch[n].key; 3508 if (!key_in_range(c, key, &from_key, &to_key)) 3509 goto out_unlock; 3510 3511 out_dump: 3512 block = key_block(c, key); 3513 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3514 (unsigned long)inode->i_ino, size, 3515 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3516 mutex_unlock(&c->tnc_mutex); 3517 ubifs_dump_inode(c, inode); 3518 dump_stack(); 3519 return -EINVAL; 3520 3521 out_unlock: 3522 mutex_unlock(&c->tnc_mutex); 3523 return err; 3524 } 3525