1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of 25 * the UBIFS B-tree. 26 * 27 * At the moment the locking rules of the TNC tree are quite simple and 28 * straightforward. We just have a mutex and lock it when we traverse the 29 * tree. If a znode is not in memory, we read it from flash while still having 30 * the mutex locked. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 /* 38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. 39 * @NAME_LESS: name corresponding to the first argument is less than second 40 * @NAME_MATCHES: names match 41 * @NAME_GREATER: name corresponding to the second argument is greater than 42 * first 43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media 44 * 45 * These constants were introduce to improve readability. 46 */ 47 enum { 48 NAME_LESS = 0, 49 NAME_MATCHES = 1, 50 NAME_GREATER = 2, 51 NOT_ON_MEDIA = 3, 52 }; 53 54 /** 55 * insert_old_idx - record an index node obsoleted since the last commit start. 56 * @c: UBIFS file-system description object 57 * @lnum: LEB number of obsoleted index node 58 * @offs: offset of obsoleted index node 59 * 60 * Returns %0 on success, and a negative error code on failure. 61 * 62 * For recovery, there must always be a complete intact version of the index on 63 * flash at all times. That is called the "old index". It is the index as at the 64 * time of the last successful commit. Many of the index nodes in the old index 65 * may be dirty, but they must not be erased until the next successful commit 66 * (at which point that index becomes the old index). 67 * 68 * That means that the garbage collection and the in-the-gaps method of 69 * committing must be able to determine if an index node is in the old index. 70 * Most of the old index nodes can be found by looking up the TNC using the 71 * 'lookup_znode()' function. However, some of the old index nodes may have 72 * been deleted from the current index or may have been changed so much that 73 * they cannot be easily found. In those cases, an entry is added to an RB-tree. 74 * That is what this function does. The RB-tree is ordered by LEB number and 75 * offset because they uniquely identify the old index node. 76 */ 77 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) 78 { 79 struct ubifs_old_idx *old_idx, *o; 80 struct rb_node **p, *parent = NULL; 81 82 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); 83 if (unlikely(!old_idx)) 84 return -ENOMEM; 85 old_idx->lnum = lnum; 86 old_idx->offs = offs; 87 88 p = &c->old_idx.rb_node; 89 while (*p) { 90 parent = *p; 91 o = rb_entry(parent, struct ubifs_old_idx, rb); 92 if (lnum < o->lnum) 93 p = &(*p)->rb_left; 94 else if (lnum > o->lnum) 95 p = &(*p)->rb_right; 96 else if (offs < o->offs) 97 p = &(*p)->rb_left; 98 else if (offs > o->offs) 99 p = &(*p)->rb_right; 100 else { 101 ubifs_err(c, "old idx added twice!"); 102 kfree(old_idx); 103 return 0; 104 } 105 } 106 rb_link_node(&old_idx->rb, parent, p); 107 rb_insert_color(&old_idx->rb, &c->old_idx); 108 return 0; 109 } 110 111 /** 112 * insert_old_idx_znode - record a znode obsoleted since last commit start. 113 * @c: UBIFS file-system description object 114 * @znode: znode of obsoleted index node 115 * 116 * Returns %0 on success, and a negative error code on failure. 117 */ 118 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) 119 { 120 if (znode->parent) { 121 struct ubifs_zbranch *zbr; 122 123 zbr = &znode->parent->zbranch[znode->iip]; 124 if (zbr->len) 125 return insert_old_idx(c, zbr->lnum, zbr->offs); 126 } else 127 if (c->zroot.len) 128 return insert_old_idx(c, c->zroot.lnum, 129 c->zroot.offs); 130 return 0; 131 } 132 133 /** 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. 135 * @c: UBIFS file-system description object 136 * @znode: znode of obsoleted index node 137 * 138 * Returns %0 on success, and a negative error code on failure. 139 */ 140 static int ins_clr_old_idx_znode(struct ubifs_info *c, 141 struct ubifs_znode *znode) 142 { 143 int err; 144 145 if (znode->parent) { 146 struct ubifs_zbranch *zbr; 147 148 zbr = &znode->parent->zbranch[znode->iip]; 149 if (zbr->len) { 150 err = insert_old_idx(c, zbr->lnum, zbr->offs); 151 if (err) 152 return err; 153 zbr->lnum = 0; 154 zbr->offs = 0; 155 zbr->len = 0; 156 } 157 } else 158 if (c->zroot.len) { 159 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); 160 if (err) 161 return err; 162 c->zroot.lnum = 0; 163 c->zroot.offs = 0; 164 c->zroot.len = 0; 165 } 166 return 0; 167 } 168 169 /** 170 * destroy_old_idx - destroy the old_idx RB-tree. 171 * @c: UBIFS file-system description object 172 * 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index 174 * nodes that were in the index last commit but have since been deleted. This 175 * is necessary for recovery i.e. the old index must be kept intact until the 176 * new index is successfully written. The old-idx RB-tree is used for the 177 * in-the-gaps method of writing index nodes and is destroyed every commit. 178 */ 179 void destroy_old_idx(struct ubifs_info *c) 180 { 181 struct ubifs_old_idx *old_idx, *n; 182 183 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb) 184 kfree(old_idx); 185 186 c->old_idx = RB_ROOT; 187 } 188 189 /** 190 * copy_znode - copy a dirty znode. 191 * @c: UBIFS file-system description object 192 * @znode: znode to copy 193 * 194 * A dirty znode being committed may not be changed, so it is copied. 195 */ 196 static struct ubifs_znode *copy_znode(struct ubifs_info *c, 197 struct ubifs_znode *znode) 198 { 199 struct ubifs_znode *zn; 200 201 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS); 202 if (unlikely(!zn)) 203 return ERR_PTR(-ENOMEM); 204 205 zn->cnext = NULL; 206 __set_bit(DIRTY_ZNODE, &zn->flags); 207 __clear_bit(COW_ZNODE, &zn->flags); 208 209 ubifs_assert(!ubifs_zn_obsolete(znode)); 210 __set_bit(OBSOLETE_ZNODE, &znode->flags); 211 212 if (znode->level != 0) { 213 int i; 214 const int n = zn->child_cnt; 215 216 /* The children now have new parent */ 217 for (i = 0; i < n; i++) { 218 struct ubifs_zbranch *zbr = &zn->zbranch[i]; 219 220 if (zbr->znode) 221 zbr->znode->parent = zn; 222 } 223 } 224 225 atomic_long_inc(&c->dirty_zn_cnt); 226 return zn; 227 } 228 229 /** 230 * add_idx_dirt - add dirt due to a dirty znode. 231 * @c: UBIFS file-system description object 232 * @lnum: LEB number of index node 233 * @dirt: size of index node 234 * 235 * This function updates lprops dirty space and the new size of the index. 236 */ 237 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) 238 { 239 c->calc_idx_sz -= ALIGN(dirt, 8); 240 return ubifs_add_dirt(c, lnum, dirt); 241 } 242 243 /** 244 * dirty_cow_znode - ensure a znode is not being committed. 245 * @c: UBIFS file-system description object 246 * @zbr: branch of znode to check 247 * 248 * Returns dirtied znode on success or negative error code on failure. 249 */ 250 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, 251 struct ubifs_zbranch *zbr) 252 { 253 struct ubifs_znode *znode = zbr->znode; 254 struct ubifs_znode *zn; 255 int err; 256 257 if (!ubifs_zn_cow(znode)) { 258 /* znode is not being committed */ 259 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { 260 atomic_long_inc(&c->dirty_zn_cnt); 261 atomic_long_dec(&c->clean_zn_cnt); 262 atomic_long_dec(&ubifs_clean_zn_cnt); 263 err = add_idx_dirt(c, zbr->lnum, zbr->len); 264 if (unlikely(err)) 265 return ERR_PTR(err); 266 } 267 return znode; 268 } 269 270 zn = copy_znode(c, znode); 271 if (IS_ERR(zn)) 272 return zn; 273 274 if (zbr->len) { 275 err = insert_old_idx(c, zbr->lnum, zbr->offs); 276 if (unlikely(err)) 277 return ERR_PTR(err); 278 err = add_idx_dirt(c, zbr->lnum, zbr->len); 279 } else 280 err = 0; 281 282 zbr->znode = zn; 283 zbr->lnum = 0; 284 zbr->offs = 0; 285 zbr->len = 0; 286 287 if (unlikely(err)) 288 return ERR_PTR(err); 289 return zn; 290 } 291 292 /** 293 * lnc_add - add a leaf node to the leaf node cache. 294 * @c: UBIFS file-system description object 295 * @zbr: zbranch of leaf node 296 * @node: leaf node 297 * 298 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The 299 * purpose of the leaf node cache is to save re-reading the same leaf node over 300 * and over again. Most things are cached by VFS, however the file system must 301 * cache directory entries for readdir and for resolving hash collisions. The 302 * present implementation of the leaf node cache is extremely simple, and 303 * allows for error returns that are not used but that may be needed if a more 304 * complex implementation is created. 305 * 306 * Note, this function does not add the @node object to LNC directly, but 307 * allocates a copy of the object and adds the copy to LNC. The reason for this 308 * is that @node has been allocated outside of the TNC subsystem and will be 309 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC 310 * may be changed at any time, e.g. freed by the shrinker. 311 */ 312 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, 313 const void *node) 314 { 315 int err; 316 void *lnc_node; 317 const struct ubifs_dent_node *dent = node; 318 319 ubifs_assert(!zbr->leaf); 320 ubifs_assert(zbr->len != 0); 321 ubifs_assert(is_hash_key(c, &zbr->key)); 322 323 err = ubifs_validate_entry(c, dent); 324 if (err) { 325 dump_stack(); 326 ubifs_dump_node(c, dent); 327 return err; 328 } 329 330 lnc_node = kmemdup(node, zbr->len, GFP_NOFS); 331 if (!lnc_node) 332 /* We don't have to have the cache, so no error */ 333 return 0; 334 335 zbr->leaf = lnc_node; 336 return 0; 337 } 338 339 /** 340 * lnc_add_directly - add a leaf node to the leaf-node-cache. 341 * @c: UBIFS file-system description object 342 * @zbr: zbranch of leaf node 343 * @node: leaf node 344 * 345 * This function is similar to 'lnc_add()', but it does not create a copy of 346 * @node but inserts @node to TNC directly. 347 */ 348 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, 349 void *node) 350 { 351 int err; 352 353 ubifs_assert(!zbr->leaf); 354 ubifs_assert(zbr->len != 0); 355 356 err = ubifs_validate_entry(c, node); 357 if (err) { 358 dump_stack(); 359 ubifs_dump_node(c, node); 360 return err; 361 } 362 363 zbr->leaf = node; 364 return 0; 365 } 366 367 /** 368 * lnc_free - remove a leaf node from the leaf node cache. 369 * @zbr: zbranch of leaf node 370 * @node: leaf node 371 */ 372 static void lnc_free(struct ubifs_zbranch *zbr) 373 { 374 if (!zbr->leaf) 375 return; 376 kfree(zbr->leaf); 377 zbr->leaf = NULL; 378 } 379 380 /** 381 * tnc_read_node_nm - read a "hashed" leaf node. 382 * @c: UBIFS file-system description object 383 * @zbr: key and position of the node 384 * @node: node is returned here 385 * 386 * This function reads a "hashed" node defined by @zbr from the leaf node cache 387 * (in it is there) or from the hash media, in which case the node is also 388 * added to LNC. Returns zero in case of success or a negative negative error 389 * code in case of failure. 390 */ 391 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, 392 void *node) 393 { 394 int err; 395 396 ubifs_assert(is_hash_key(c, &zbr->key)); 397 398 if (zbr->leaf) { 399 /* Read from the leaf node cache */ 400 ubifs_assert(zbr->len != 0); 401 memcpy(node, zbr->leaf, zbr->len); 402 return 0; 403 } 404 405 err = ubifs_tnc_read_node(c, zbr, node); 406 if (err) 407 return err; 408 409 /* Add the node to the leaf node cache */ 410 err = lnc_add(c, zbr, node); 411 return err; 412 } 413 414 /** 415 * try_read_node - read a node if it is a node. 416 * @c: UBIFS file-system description object 417 * @buf: buffer to read to 418 * @type: node type 419 * @len: node length (not aligned) 420 * @lnum: LEB number of node to read 421 * @offs: offset of node to read 422 * 423 * This function tries to read a node of known type and length, checks it and 424 * stores it in @buf. This function returns %1 if a node is present and %0 if 425 * a node is not present. A negative error code is returned for I/O errors. 426 * This function performs that same function as ubifs_read_node except that 427 * it does not require that there is actually a node present and instead 428 * the return code indicates if a node was read. 429 * 430 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc 431 * is true (it is controlled by corresponding mount option). However, if 432 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to 433 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is 434 * because during mounting or re-mounting from R/O mode to R/W mode we may read 435 * journal nodes (when replying the journal or doing the recovery) and the 436 * journal nodes may potentially be corrupted, so checking is required. 437 */ 438 static int try_read_node(const struct ubifs_info *c, void *buf, int type, 439 int len, int lnum, int offs) 440 { 441 int err, node_len; 442 struct ubifs_ch *ch = buf; 443 uint32_t crc, node_crc; 444 445 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 446 447 err = ubifs_leb_read(c, lnum, buf, offs, len, 1); 448 if (err) { 449 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d", 450 type, lnum, offs, err); 451 return err; 452 } 453 454 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 455 return 0; 456 457 if (ch->node_type != type) 458 return 0; 459 460 node_len = le32_to_cpu(ch->len); 461 if (node_len != len) 462 return 0; 463 464 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && 465 !c->remounting_rw) 466 return 1; 467 468 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 469 node_crc = le32_to_cpu(ch->crc); 470 if (crc != node_crc) 471 return 0; 472 473 return 1; 474 } 475 476 /** 477 * fallible_read_node - try to read a leaf node. 478 * @c: UBIFS file-system description object 479 * @key: key of node to read 480 * @zbr: position of node 481 * @node: node returned 482 * 483 * This function tries to read a node and returns %1 if the node is read, %0 484 * if the node is not present, and a negative error code in the case of error. 485 */ 486 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, 487 struct ubifs_zbranch *zbr, void *node) 488 { 489 int ret; 490 491 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs); 492 493 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, 494 zbr->offs); 495 if (ret == 1) { 496 union ubifs_key node_key; 497 struct ubifs_dent_node *dent = node; 498 499 /* All nodes have key in the same place */ 500 key_read(c, &dent->key, &node_key); 501 if (keys_cmp(c, key, &node_key) != 0) 502 ret = 0; 503 } 504 if (ret == 0 && c->replaying) 505 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ", 506 zbr->lnum, zbr->offs, zbr->len); 507 return ret; 508 } 509 510 /** 511 * matches_name - determine if a direntry or xattr entry matches a given name. 512 * @c: UBIFS file-system description object 513 * @zbr: zbranch of dent 514 * @nm: name to match 515 * 516 * This function checks if xentry/direntry referred by zbranch @zbr matches name 517 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by 518 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case 519 * of failure, a negative error code is returned. 520 */ 521 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, 522 const struct qstr *nm) 523 { 524 struct ubifs_dent_node *dent; 525 int nlen, err; 526 527 /* If possible, match against the dent in the leaf node cache */ 528 if (!zbr->leaf) { 529 dent = kmalloc(zbr->len, GFP_NOFS); 530 if (!dent) 531 return -ENOMEM; 532 533 err = ubifs_tnc_read_node(c, zbr, dent); 534 if (err) 535 goto out_free; 536 537 /* Add the node to the leaf node cache */ 538 err = lnc_add_directly(c, zbr, dent); 539 if (err) 540 goto out_free; 541 } else 542 dent = zbr->leaf; 543 544 nlen = le16_to_cpu(dent->nlen); 545 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 546 if (err == 0) { 547 if (nlen == nm->len) 548 return NAME_MATCHES; 549 else if (nlen < nm->len) 550 return NAME_LESS; 551 else 552 return NAME_GREATER; 553 } else if (err < 0) 554 return NAME_LESS; 555 else 556 return NAME_GREATER; 557 558 out_free: 559 kfree(dent); 560 return err; 561 } 562 563 /** 564 * get_znode - get a TNC znode that may not be loaded yet. 565 * @c: UBIFS file-system description object 566 * @znode: parent znode 567 * @n: znode branch slot number 568 * 569 * This function returns the znode or a negative error code. 570 */ 571 static struct ubifs_znode *get_znode(struct ubifs_info *c, 572 struct ubifs_znode *znode, int n) 573 { 574 struct ubifs_zbranch *zbr; 575 576 zbr = &znode->zbranch[n]; 577 if (zbr->znode) 578 znode = zbr->znode; 579 else 580 znode = ubifs_load_znode(c, zbr, znode, n); 581 return znode; 582 } 583 584 /** 585 * tnc_next - find next TNC entry. 586 * @c: UBIFS file-system description object 587 * @zn: znode is passed and returned here 588 * @n: znode branch slot number is passed and returned here 589 * 590 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is 591 * no next entry, or a negative error code otherwise. 592 */ 593 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 594 { 595 struct ubifs_znode *znode = *zn; 596 int nn = *n; 597 598 nn += 1; 599 if (nn < znode->child_cnt) { 600 *n = nn; 601 return 0; 602 } 603 while (1) { 604 struct ubifs_znode *zp; 605 606 zp = znode->parent; 607 if (!zp) 608 return -ENOENT; 609 nn = znode->iip + 1; 610 znode = zp; 611 if (nn < znode->child_cnt) { 612 znode = get_znode(c, znode, nn); 613 if (IS_ERR(znode)) 614 return PTR_ERR(znode); 615 while (znode->level != 0) { 616 znode = get_znode(c, znode, 0); 617 if (IS_ERR(znode)) 618 return PTR_ERR(znode); 619 } 620 nn = 0; 621 break; 622 } 623 } 624 *zn = znode; 625 *n = nn; 626 return 0; 627 } 628 629 /** 630 * tnc_prev - find previous TNC entry. 631 * @c: UBIFS file-system description object 632 * @zn: znode is returned here 633 * @n: znode branch slot number is passed and returned here 634 * 635 * This function returns %0 if the previous TNC entry is found, %-ENOENT if 636 * there is no next entry, or a negative error code otherwise. 637 */ 638 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) 639 { 640 struct ubifs_znode *znode = *zn; 641 int nn = *n; 642 643 if (nn > 0) { 644 *n = nn - 1; 645 return 0; 646 } 647 while (1) { 648 struct ubifs_znode *zp; 649 650 zp = znode->parent; 651 if (!zp) 652 return -ENOENT; 653 nn = znode->iip - 1; 654 znode = zp; 655 if (nn >= 0) { 656 znode = get_znode(c, znode, nn); 657 if (IS_ERR(znode)) 658 return PTR_ERR(znode); 659 while (znode->level != 0) { 660 nn = znode->child_cnt - 1; 661 znode = get_znode(c, znode, nn); 662 if (IS_ERR(znode)) 663 return PTR_ERR(znode); 664 } 665 nn = znode->child_cnt - 1; 666 break; 667 } 668 } 669 *zn = znode; 670 *n = nn; 671 return 0; 672 } 673 674 /** 675 * resolve_collision - resolve a collision. 676 * @c: UBIFS file-system description object 677 * @key: key of a directory or extended attribute entry 678 * @zn: znode is returned here 679 * @n: zbranch number is passed and returned here 680 * @nm: name of the entry 681 * 682 * This function is called for "hashed" keys to make sure that the found key 683 * really corresponds to the looked up node (directory or extended attribute 684 * entry). It returns %1 and sets @zn and @n if the collision is resolved. 685 * %0 is returned if @nm is not found and @zn and @n are set to the previous 686 * entry, i.e. to the entry after which @nm could follow if it were in TNC. 687 * This means that @n may be set to %-1 if the leftmost key in @zn is the 688 * previous one. A negative error code is returned on failures. 689 */ 690 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, 691 struct ubifs_znode **zn, int *n, 692 const struct qstr *nm) 693 { 694 int err; 695 696 err = matches_name(c, &(*zn)->zbranch[*n], nm); 697 if (unlikely(err < 0)) 698 return err; 699 if (err == NAME_MATCHES) 700 return 1; 701 702 if (err == NAME_GREATER) { 703 /* Look left */ 704 while (1) { 705 err = tnc_prev(c, zn, n); 706 if (err == -ENOENT) { 707 ubifs_assert(*n == 0); 708 *n = -1; 709 return 0; 710 } 711 if (err < 0) 712 return err; 713 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 714 /* 715 * We have found the branch after which we would 716 * like to insert, but inserting in this znode 717 * may still be wrong. Consider the following 3 718 * znodes, in the case where we are resolving a 719 * collision with Key2. 720 * 721 * znode zp 722 * ---------------------- 723 * level 1 | Key0 | Key1 | 724 * ----------------------- 725 * | | 726 * znode za | | znode zb 727 * ------------ ------------ 728 * level 0 | Key0 | | Key2 | 729 * ------------ ------------ 730 * 731 * The lookup finds Key2 in znode zb. Lets say 732 * there is no match and the name is greater so 733 * we look left. When we find Key0, we end up 734 * here. If we return now, we will insert into 735 * znode za at slot n = 1. But that is invalid 736 * according to the parent's keys. Key2 must 737 * be inserted into znode zb. 738 * 739 * Note, this problem is not relevant for the 740 * case when we go right, because 741 * 'tnc_insert()' would correct the parent key. 742 */ 743 if (*n == (*zn)->child_cnt - 1) { 744 err = tnc_next(c, zn, n); 745 if (err) { 746 /* Should be impossible */ 747 ubifs_assert(0); 748 if (err == -ENOENT) 749 err = -EINVAL; 750 return err; 751 } 752 ubifs_assert(*n == 0); 753 *n = -1; 754 } 755 return 0; 756 } 757 err = matches_name(c, &(*zn)->zbranch[*n], nm); 758 if (err < 0) 759 return err; 760 if (err == NAME_LESS) 761 return 0; 762 if (err == NAME_MATCHES) 763 return 1; 764 ubifs_assert(err == NAME_GREATER); 765 } 766 } else { 767 int nn = *n; 768 struct ubifs_znode *znode = *zn; 769 770 /* Look right */ 771 while (1) { 772 err = tnc_next(c, &znode, &nn); 773 if (err == -ENOENT) 774 return 0; 775 if (err < 0) 776 return err; 777 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 778 return 0; 779 err = matches_name(c, &znode->zbranch[nn], nm); 780 if (err < 0) 781 return err; 782 if (err == NAME_GREATER) 783 return 0; 784 *zn = znode; 785 *n = nn; 786 if (err == NAME_MATCHES) 787 return 1; 788 ubifs_assert(err == NAME_LESS); 789 } 790 } 791 } 792 793 /** 794 * fallible_matches_name - determine if a dent matches a given name. 795 * @c: UBIFS file-system description object 796 * @zbr: zbranch of dent 797 * @nm: name to match 798 * 799 * This is a "fallible" version of 'matches_name()' function which does not 800 * panic if the direntry/xentry referred by @zbr does not exist on the media. 801 * 802 * This function checks if xentry/direntry referred by zbranch @zbr matches name 803 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr 804 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA 805 * if xentry/direntry referred by @zbr does not exist on the media. A negative 806 * error code is returned in case of failure. 807 */ 808 static int fallible_matches_name(struct ubifs_info *c, 809 struct ubifs_zbranch *zbr, 810 const struct qstr *nm) 811 { 812 struct ubifs_dent_node *dent; 813 int nlen, err; 814 815 /* If possible, match against the dent in the leaf node cache */ 816 if (!zbr->leaf) { 817 dent = kmalloc(zbr->len, GFP_NOFS); 818 if (!dent) 819 return -ENOMEM; 820 821 err = fallible_read_node(c, &zbr->key, zbr, dent); 822 if (err < 0) 823 goto out_free; 824 if (err == 0) { 825 /* The node was not present */ 826 err = NOT_ON_MEDIA; 827 goto out_free; 828 } 829 ubifs_assert(err == 1); 830 831 err = lnc_add_directly(c, zbr, dent); 832 if (err) 833 goto out_free; 834 } else 835 dent = zbr->leaf; 836 837 nlen = le16_to_cpu(dent->nlen); 838 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); 839 if (err == 0) { 840 if (nlen == nm->len) 841 return NAME_MATCHES; 842 else if (nlen < nm->len) 843 return NAME_LESS; 844 else 845 return NAME_GREATER; 846 } else if (err < 0) 847 return NAME_LESS; 848 else 849 return NAME_GREATER; 850 851 out_free: 852 kfree(dent); 853 return err; 854 } 855 856 /** 857 * fallible_resolve_collision - resolve a collision even if nodes are missing. 858 * @c: UBIFS file-system description object 859 * @key: key 860 * @zn: znode is returned here 861 * @n: branch number is passed and returned here 862 * @nm: name of directory entry 863 * @adding: indicates caller is adding a key to the TNC 864 * 865 * This is a "fallible" version of the 'resolve_collision()' function which 866 * does not panic if one of the nodes referred to by TNC does not exist on the 867 * media. This may happen when replaying the journal if a deleted node was 868 * Garbage-collected and the commit was not done. A branch that refers to a node 869 * that is not present is called a dangling branch. The following are the return 870 * codes for this function: 871 * o if @nm was found, %1 is returned and @zn and @n are set to the found 872 * branch; 873 * o if we are @adding and @nm was not found, %0 is returned; 874 * o if we are not @adding and @nm was not found, but a dangling branch was 875 * found, then %1 is returned and @zn and @n are set to the dangling branch; 876 * o a negative error code is returned in case of failure. 877 */ 878 static int fallible_resolve_collision(struct ubifs_info *c, 879 const union ubifs_key *key, 880 struct ubifs_znode **zn, int *n, 881 const struct qstr *nm, int adding) 882 { 883 struct ubifs_znode *o_znode = NULL, *znode = *zn; 884 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; 885 886 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); 887 if (unlikely(cmp < 0)) 888 return cmp; 889 if (cmp == NAME_MATCHES) 890 return 1; 891 if (cmp == NOT_ON_MEDIA) { 892 o_znode = znode; 893 o_n = nn; 894 /* 895 * We are unlucky and hit a dangling branch straight away. 896 * Now we do not really know where to go to find the needed 897 * branch - to the left or to the right. Well, let's try left. 898 */ 899 unsure = 1; 900 } else if (!adding) 901 unsure = 1; /* Remove a dangling branch wherever it is */ 902 903 if (cmp == NAME_GREATER || unsure) { 904 /* Look left */ 905 while (1) { 906 err = tnc_prev(c, zn, n); 907 if (err == -ENOENT) { 908 ubifs_assert(*n == 0); 909 *n = -1; 910 break; 911 } 912 if (err < 0) 913 return err; 914 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { 915 /* See comments in 'resolve_collision()' */ 916 if (*n == (*zn)->child_cnt - 1) { 917 err = tnc_next(c, zn, n); 918 if (err) { 919 /* Should be impossible */ 920 ubifs_assert(0); 921 if (err == -ENOENT) 922 err = -EINVAL; 923 return err; 924 } 925 ubifs_assert(*n == 0); 926 *n = -1; 927 } 928 break; 929 } 930 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); 931 if (err < 0) 932 return err; 933 if (err == NAME_MATCHES) 934 return 1; 935 if (err == NOT_ON_MEDIA) { 936 o_znode = *zn; 937 o_n = *n; 938 continue; 939 } 940 if (!adding) 941 continue; 942 if (err == NAME_LESS) 943 break; 944 else 945 unsure = 0; 946 } 947 } 948 949 if (cmp == NAME_LESS || unsure) { 950 /* Look right */ 951 *zn = znode; 952 *n = nn; 953 while (1) { 954 err = tnc_next(c, &znode, &nn); 955 if (err == -ENOENT) 956 break; 957 if (err < 0) 958 return err; 959 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 960 break; 961 err = fallible_matches_name(c, &znode->zbranch[nn], nm); 962 if (err < 0) 963 return err; 964 if (err == NAME_GREATER) 965 break; 966 *zn = znode; 967 *n = nn; 968 if (err == NAME_MATCHES) 969 return 1; 970 if (err == NOT_ON_MEDIA) { 971 o_znode = znode; 972 o_n = nn; 973 } 974 } 975 } 976 977 /* Never match a dangling branch when adding */ 978 if (adding || !o_znode) 979 return 0; 980 981 dbg_mntk(key, "dangling match LEB %d:%d len %d key ", 982 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, 983 o_znode->zbranch[o_n].len); 984 *zn = o_znode; 985 *n = o_n; 986 return 1; 987 } 988 989 /** 990 * matches_position - determine if a zbranch matches a given position. 991 * @zbr: zbranch of dent 992 * @lnum: LEB number of dent to match 993 * @offs: offset of dent to match 994 * 995 * This function returns %1 if @lnum:@offs matches, and %0 otherwise. 996 */ 997 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) 998 { 999 if (zbr->lnum == lnum && zbr->offs == offs) 1000 return 1; 1001 else 1002 return 0; 1003 } 1004 1005 /** 1006 * resolve_collision_directly - resolve a collision directly. 1007 * @c: UBIFS file-system description object 1008 * @key: key of directory entry 1009 * @zn: znode is passed and returned here 1010 * @n: zbranch number is passed and returned here 1011 * @lnum: LEB number of dent node to match 1012 * @offs: offset of dent node to match 1013 * 1014 * This function is used for "hashed" keys to make sure the found directory or 1015 * extended attribute entry node is what was looked for. It is used when the 1016 * flash address of the right node is known (@lnum:@offs) which makes it much 1017 * easier to resolve collisions (no need to read entries and match full 1018 * names). This function returns %1 and sets @zn and @n if the collision is 1019 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the 1020 * previous directory entry. Otherwise a negative error code is returned. 1021 */ 1022 static int resolve_collision_directly(struct ubifs_info *c, 1023 const union ubifs_key *key, 1024 struct ubifs_znode **zn, int *n, 1025 int lnum, int offs) 1026 { 1027 struct ubifs_znode *znode; 1028 int nn, err; 1029 1030 znode = *zn; 1031 nn = *n; 1032 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1033 return 1; 1034 1035 /* Look left */ 1036 while (1) { 1037 err = tnc_prev(c, &znode, &nn); 1038 if (err == -ENOENT) 1039 break; 1040 if (err < 0) 1041 return err; 1042 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1043 break; 1044 if (matches_position(&znode->zbranch[nn], lnum, offs)) { 1045 *zn = znode; 1046 *n = nn; 1047 return 1; 1048 } 1049 } 1050 1051 /* Look right */ 1052 znode = *zn; 1053 nn = *n; 1054 while (1) { 1055 err = tnc_next(c, &znode, &nn); 1056 if (err == -ENOENT) 1057 return 0; 1058 if (err < 0) 1059 return err; 1060 if (keys_cmp(c, &znode->zbranch[nn].key, key)) 1061 return 0; 1062 *zn = znode; 1063 *n = nn; 1064 if (matches_position(&znode->zbranch[nn], lnum, offs)) 1065 return 1; 1066 } 1067 } 1068 1069 /** 1070 * dirty_cow_bottom_up - dirty a znode and its ancestors. 1071 * @c: UBIFS file-system description object 1072 * @znode: znode to dirty 1073 * 1074 * If we do not have a unique key that resides in a znode, then we cannot 1075 * dirty that znode from the top down (i.e. by using lookup_level0_dirty) 1076 * This function records the path back to the last dirty ancestor, and then 1077 * dirties the znodes on that path. 1078 */ 1079 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, 1080 struct ubifs_znode *znode) 1081 { 1082 struct ubifs_znode *zp; 1083 int *path = c->bottom_up_buf, p = 0; 1084 1085 ubifs_assert(c->zroot.znode); 1086 ubifs_assert(znode); 1087 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { 1088 kfree(c->bottom_up_buf); 1089 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), 1090 GFP_NOFS); 1091 if (!c->bottom_up_buf) 1092 return ERR_PTR(-ENOMEM); 1093 path = c->bottom_up_buf; 1094 } 1095 if (c->zroot.znode->level) { 1096 /* Go up until parent is dirty */ 1097 while (1) { 1098 int n; 1099 1100 zp = znode->parent; 1101 if (!zp) 1102 break; 1103 n = znode->iip; 1104 ubifs_assert(p < c->zroot.znode->level); 1105 path[p++] = n; 1106 if (!zp->cnext && ubifs_zn_dirty(znode)) 1107 break; 1108 znode = zp; 1109 } 1110 } 1111 1112 /* Come back down, dirtying as we go */ 1113 while (1) { 1114 struct ubifs_zbranch *zbr; 1115 1116 zp = znode->parent; 1117 if (zp) { 1118 ubifs_assert(path[p - 1] >= 0); 1119 ubifs_assert(path[p - 1] < zp->child_cnt); 1120 zbr = &zp->zbranch[path[--p]]; 1121 znode = dirty_cow_znode(c, zbr); 1122 } else { 1123 ubifs_assert(znode == c->zroot.znode); 1124 znode = dirty_cow_znode(c, &c->zroot); 1125 } 1126 if (IS_ERR(znode) || !p) 1127 break; 1128 ubifs_assert(path[p - 1] >= 0); 1129 ubifs_assert(path[p - 1] < znode->child_cnt); 1130 znode = znode->zbranch[path[p - 1]].znode; 1131 } 1132 1133 return znode; 1134 } 1135 1136 /** 1137 * ubifs_lookup_level0 - search for zero-level znode. 1138 * @c: UBIFS file-system description object 1139 * @key: key to lookup 1140 * @zn: znode is returned here 1141 * @n: znode branch slot number is returned here 1142 * 1143 * This function looks up the TNC tree and search for zero-level znode which 1144 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1145 * cases: 1146 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1147 * is returned and slot number of the matched branch is stored in @n; 1148 * o not exact match, which means that zero-level znode does not contain 1149 * @key, then %0 is returned and slot number of the closest branch is stored 1150 * in @n; 1151 * o @key is so small that it is even less than the lowest key of the 1152 * leftmost zero-level node, then %0 is returned and %0 is stored in @n. 1153 * 1154 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1155 * function reads corresponding indexing nodes and inserts them to TNC. In 1156 * case of failure, a negative error code is returned. 1157 */ 1158 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, 1159 struct ubifs_znode **zn, int *n) 1160 { 1161 int err, exact; 1162 struct ubifs_znode *znode; 1163 unsigned long time = get_seconds(); 1164 1165 dbg_tnck(key, "search key "); 1166 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 1167 1168 znode = c->zroot.znode; 1169 if (unlikely(!znode)) { 1170 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1171 if (IS_ERR(znode)) 1172 return PTR_ERR(znode); 1173 } 1174 1175 znode->time = time; 1176 1177 while (1) { 1178 struct ubifs_zbranch *zbr; 1179 1180 exact = ubifs_search_zbranch(c, znode, key, n); 1181 1182 if (znode->level == 0) 1183 break; 1184 1185 if (*n < 0) 1186 *n = 0; 1187 zbr = &znode->zbranch[*n]; 1188 1189 if (zbr->znode) { 1190 znode->time = time; 1191 znode = zbr->znode; 1192 continue; 1193 } 1194 1195 /* znode is not in TNC cache, load it from the media */ 1196 znode = ubifs_load_znode(c, zbr, znode, *n); 1197 if (IS_ERR(znode)) 1198 return PTR_ERR(znode); 1199 } 1200 1201 *zn = znode; 1202 if (exact || !is_hash_key(c, key) || *n != -1) { 1203 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1204 return exact; 1205 } 1206 1207 /* 1208 * Here is a tricky place. We have not found the key and this is a 1209 * "hashed" key, which may collide. The rest of the code deals with 1210 * situations like this: 1211 * 1212 * | 3 | 5 | 1213 * / \ 1214 * | 3 | 5 | | 6 | 7 | (x) 1215 * 1216 * Or more a complex example: 1217 * 1218 * | 1 | 5 | 1219 * / \ 1220 * | 1 | 3 | | 5 | 8 | 1221 * \ / 1222 * | 5 | 5 | | 6 | 7 | (x) 1223 * 1224 * In the examples, if we are looking for key "5", we may reach nodes 1225 * marked with "(x)". In this case what we have do is to look at the 1226 * left and see if there is "5" key there. If there is, we have to 1227 * return it. 1228 * 1229 * Note, this whole situation is possible because we allow to have 1230 * elements which are equivalent to the next key in the parent in the 1231 * children of current znode. For example, this happens if we split a 1232 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something 1233 * like this: 1234 * | 3 | 5 | 1235 * / \ 1236 * | 3 | 5 | | 5 | 6 | 7 | 1237 * ^ 1238 * And this becomes what is at the first "picture" after key "5" marked 1239 * with "^" is removed. What could be done is we could prohibit 1240 * splitting in the middle of the colliding sequence. Also, when 1241 * removing the leftmost key, we would have to correct the key of the 1242 * parent node, which would introduce additional complications. Namely, 1243 * if we changed the leftmost key of the parent znode, the garbage 1244 * collector would be unable to find it (GC is doing this when GC'ing 1245 * indexing LEBs). Although we already have an additional RB-tree where 1246 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until 1247 * after the commit. But anyway, this does not look easy to implement 1248 * so we did not try this. 1249 */ 1250 err = tnc_prev(c, &znode, n); 1251 if (err == -ENOENT) { 1252 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1253 *n = -1; 1254 return 0; 1255 } 1256 if (unlikely(err < 0)) 1257 return err; 1258 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1259 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1260 *n = -1; 1261 return 0; 1262 } 1263 1264 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1265 *zn = znode; 1266 return 1; 1267 } 1268 1269 /** 1270 * lookup_level0_dirty - search for zero-level znode dirtying. 1271 * @c: UBIFS file-system description object 1272 * @key: key to lookup 1273 * @zn: znode is returned here 1274 * @n: znode branch slot number is returned here 1275 * 1276 * This function looks up the TNC tree and search for zero-level znode which 1277 * refers key @key. The found zero-level znode is returned in @zn. There are 3 1278 * cases: 1279 * o exact match, i.e. the found zero-level znode contains key @key, then %1 1280 * is returned and slot number of the matched branch is stored in @n; 1281 * o not exact match, which means that zero-level znode does not contain @key 1282 * then %0 is returned and slot number of the closed branch is stored in 1283 * @n; 1284 * o @key is so small that it is even less than the lowest key of the 1285 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. 1286 * 1287 * Additionally all znodes in the path from the root to the located zero-level 1288 * znode are marked as dirty. 1289 * 1290 * Note, when the TNC tree is traversed, some znodes may be absent, then this 1291 * function reads corresponding indexing nodes and inserts them to TNC. In 1292 * case of failure, a negative error code is returned. 1293 */ 1294 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, 1295 struct ubifs_znode **zn, int *n) 1296 { 1297 int err, exact; 1298 struct ubifs_znode *znode; 1299 unsigned long time = get_seconds(); 1300 1301 dbg_tnck(key, "search and dirty key "); 1302 1303 znode = c->zroot.znode; 1304 if (unlikely(!znode)) { 1305 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1306 if (IS_ERR(znode)) 1307 return PTR_ERR(znode); 1308 } 1309 1310 znode = dirty_cow_znode(c, &c->zroot); 1311 if (IS_ERR(znode)) 1312 return PTR_ERR(znode); 1313 1314 znode->time = time; 1315 1316 while (1) { 1317 struct ubifs_zbranch *zbr; 1318 1319 exact = ubifs_search_zbranch(c, znode, key, n); 1320 1321 if (znode->level == 0) 1322 break; 1323 1324 if (*n < 0) 1325 *n = 0; 1326 zbr = &znode->zbranch[*n]; 1327 1328 if (zbr->znode) { 1329 znode->time = time; 1330 znode = dirty_cow_znode(c, zbr); 1331 if (IS_ERR(znode)) 1332 return PTR_ERR(znode); 1333 continue; 1334 } 1335 1336 /* znode is not in TNC cache, load it from the media */ 1337 znode = ubifs_load_znode(c, zbr, znode, *n); 1338 if (IS_ERR(znode)) 1339 return PTR_ERR(znode); 1340 znode = dirty_cow_znode(c, zbr); 1341 if (IS_ERR(znode)) 1342 return PTR_ERR(znode); 1343 } 1344 1345 *zn = znode; 1346 if (exact || !is_hash_key(c, key) || *n != -1) { 1347 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); 1348 return exact; 1349 } 1350 1351 /* 1352 * See huge comment at 'lookup_level0_dirty()' what is the rest of the 1353 * code. 1354 */ 1355 err = tnc_prev(c, &znode, n); 1356 if (err == -ENOENT) { 1357 *n = -1; 1358 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1359 return 0; 1360 } 1361 if (unlikely(err < 0)) 1362 return err; 1363 if (keys_cmp(c, key, &znode->zbranch[*n].key)) { 1364 *n = -1; 1365 dbg_tnc("found 0, lvl %d, n -1", znode->level); 1366 return 0; 1367 } 1368 1369 if (znode->cnext || !ubifs_zn_dirty(znode)) { 1370 znode = dirty_cow_bottom_up(c, znode); 1371 if (IS_ERR(znode)) 1372 return PTR_ERR(znode); 1373 } 1374 1375 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); 1376 *zn = znode; 1377 return 1; 1378 } 1379 1380 /** 1381 * maybe_leb_gced - determine if a LEB may have been garbage collected. 1382 * @c: UBIFS file-system description object 1383 * @lnum: LEB number 1384 * @gc_seq1: garbage collection sequence number 1385 * 1386 * This function determines if @lnum may have been garbage collected since 1387 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise 1388 * %0 is returned. 1389 */ 1390 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) 1391 { 1392 int gc_seq2, gced_lnum; 1393 1394 gced_lnum = c->gced_lnum; 1395 smp_rmb(); 1396 gc_seq2 = c->gc_seq; 1397 /* Same seq means no GC */ 1398 if (gc_seq1 == gc_seq2) 1399 return 0; 1400 /* Different by more than 1 means we don't know */ 1401 if (gc_seq1 + 1 != gc_seq2) 1402 return 1; 1403 /* 1404 * We have seen the sequence number has increased by 1. Now we need to 1405 * be sure we read the right LEB number, so read it again. 1406 */ 1407 smp_rmb(); 1408 if (gced_lnum != c->gced_lnum) 1409 return 1; 1410 /* Finally we can check lnum */ 1411 if (gced_lnum == lnum) 1412 return 1; 1413 return 0; 1414 } 1415 1416 /** 1417 * ubifs_tnc_locate - look up a file-system node and return it and its location. 1418 * @c: UBIFS file-system description object 1419 * @key: node key to lookup 1420 * @node: the node is returned here 1421 * @lnum: LEB number is returned here 1422 * @offs: offset is returned here 1423 * 1424 * This function looks up and reads node with key @key. The caller has to make 1425 * sure the @node buffer is large enough to fit the node. Returns zero in case 1426 * of success, %-ENOENT if the node was not found, and a negative error code in 1427 * case of failure. The node location can be returned in @lnum and @offs. 1428 */ 1429 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, 1430 void *node, int *lnum, int *offs) 1431 { 1432 int found, n, err, safely = 0, gc_seq1; 1433 struct ubifs_znode *znode; 1434 struct ubifs_zbranch zbr, *zt; 1435 1436 again: 1437 mutex_lock(&c->tnc_mutex); 1438 found = ubifs_lookup_level0(c, key, &znode, &n); 1439 if (!found) { 1440 err = -ENOENT; 1441 goto out; 1442 } else if (found < 0) { 1443 err = found; 1444 goto out; 1445 } 1446 zt = &znode->zbranch[n]; 1447 if (lnum) { 1448 *lnum = zt->lnum; 1449 *offs = zt->offs; 1450 } 1451 if (is_hash_key(c, key)) { 1452 /* 1453 * In this case the leaf node cache gets used, so we pass the 1454 * address of the zbranch and keep the mutex locked 1455 */ 1456 err = tnc_read_node_nm(c, zt, node); 1457 goto out; 1458 } 1459 if (safely) { 1460 err = ubifs_tnc_read_node(c, zt, node); 1461 goto out; 1462 } 1463 /* Drop the TNC mutex prematurely and race with garbage collection */ 1464 zbr = znode->zbranch[n]; 1465 gc_seq1 = c->gc_seq; 1466 mutex_unlock(&c->tnc_mutex); 1467 1468 if (ubifs_get_wbuf(c, zbr.lnum)) { 1469 /* We do not GC journal heads */ 1470 err = ubifs_tnc_read_node(c, &zbr, node); 1471 return err; 1472 } 1473 1474 err = fallible_read_node(c, key, &zbr, node); 1475 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { 1476 /* 1477 * The node may have been GC'ed out from under us so try again 1478 * while keeping the TNC mutex locked. 1479 */ 1480 safely = 1; 1481 goto again; 1482 } 1483 return 0; 1484 1485 out: 1486 mutex_unlock(&c->tnc_mutex); 1487 return err; 1488 } 1489 1490 /** 1491 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. 1492 * @c: UBIFS file-system description object 1493 * @bu: bulk-read parameters and results 1494 * 1495 * Lookup consecutive data node keys for the same inode that reside 1496 * consecutively in the same LEB. This function returns zero in case of success 1497 * and a negative error code in case of failure. 1498 * 1499 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function 1500 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares 1501 * maximum possible amount of nodes for bulk-read. 1502 */ 1503 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) 1504 { 1505 int n, err = 0, lnum = -1, uninitialized_var(offs); 1506 int uninitialized_var(len); 1507 unsigned int block = key_block(c, &bu->key); 1508 struct ubifs_znode *znode; 1509 1510 bu->cnt = 0; 1511 bu->blk_cnt = 0; 1512 bu->eof = 0; 1513 1514 mutex_lock(&c->tnc_mutex); 1515 /* Find first key */ 1516 err = ubifs_lookup_level0(c, &bu->key, &znode, &n); 1517 if (err < 0) 1518 goto out; 1519 if (err) { 1520 /* Key found */ 1521 len = znode->zbranch[n].len; 1522 /* The buffer must be big enough for at least 1 node */ 1523 if (len > bu->buf_len) { 1524 err = -EINVAL; 1525 goto out; 1526 } 1527 /* Add this key */ 1528 bu->zbranch[bu->cnt++] = znode->zbranch[n]; 1529 bu->blk_cnt += 1; 1530 lnum = znode->zbranch[n].lnum; 1531 offs = ALIGN(znode->zbranch[n].offs + len, 8); 1532 } 1533 while (1) { 1534 struct ubifs_zbranch *zbr; 1535 union ubifs_key *key; 1536 unsigned int next_block; 1537 1538 /* Find next key */ 1539 err = tnc_next(c, &znode, &n); 1540 if (err) 1541 goto out; 1542 zbr = &znode->zbranch[n]; 1543 key = &zbr->key; 1544 /* See if there is another data key for this file */ 1545 if (key_inum(c, key) != key_inum(c, &bu->key) || 1546 key_type(c, key) != UBIFS_DATA_KEY) { 1547 err = -ENOENT; 1548 goto out; 1549 } 1550 if (lnum < 0) { 1551 /* First key found */ 1552 lnum = zbr->lnum; 1553 offs = ALIGN(zbr->offs + zbr->len, 8); 1554 len = zbr->len; 1555 if (len > bu->buf_len) { 1556 err = -EINVAL; 1557 goto out; 1558 } 1559 } else { 1560 /* 1561 * The data nodes must be in consecutive positions in 1562 * the same LEB. 1563 */ 1564 if (zbr->lnum != lnum || zbr->offs != offs) 1565 goto out; 1566 offs += ALIGN(zbr->len, 8); 1567 len = ALIGN(len, 8) + zbr->len; 1568 /* Must not exceed buffer length */ 1569 if (len > bu->buf_len) 1570 goto out; 1571 } 1572 /* Allow for holes */ 1573 next_block = key_block(c, key); 1574 bu->blk_cnt += (next_block - block - 1); 1575 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1576 goto out; 1577 block = next_block; 1578 /* Add this key */ 1579 bu->zbranch[bu->cnt++] = *zbr; 1580 bu->blk_cnt += 1; 1581 /* See if we have room for more */ 1582 if (bu->cnt >= UBIFS_MAX_BULK_READ) 1583 goto out; 1584 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) 1585 goto out; 1586 } 1587 out: 1588 if (err == -ENOENT) { 1589 bu->eof = 1; 1590 err = 0; 1591 } 1592 bu->gc_seq = c->gc_seq; 1593 mutex_unlock(&c->tnc_mutex); 1594 if (err) 1595 return err; 1596 /* 1597 * An enormous hole could cause bulk-read to encompass too many 1598 * page cache pages, so limit the number here. 1599 */ 1600 if (bu->blk_cnt > UBIFS_MAX_BULK_READ) 1601 bu->blk_cnt = UBIFS_MAX_BULK_READ; 1602 /* 1603 * Ensure that bulk-read covers a whole number of page cache 1604 * pages. 1605 */ 1606 if (UBIFS_BLOCKS_PER_PAGE == 1 || 1607 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) 1608 return 0; 1609 if (bu->eof) { 1610 /* At the end of file we can round up */ 1611 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; 1612 return 0; 1613 } 1614 /* Exclude data nodes that do not make up a whole page cache page */ 1615 block = key_block(c, &bu->key) + bu->blk_cnt; 1616 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); 1617 while (bu->cnt) { 1618 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) 1619 break; 1620 bu->cnt -= 1; 1621 } 1622 return 0; 1623 } 1624 1625 /** 1626 * read_wbuf - bulk-read from a LEB with a wbuf. 1627 * @wbuf: wbuf that may overlap the read 1628 * @buf: buffer into which to read 1629 * @len: read length 1630 * @lnum: LEB number from which to read 1631 * @offs: offset from which to read 1632 * 1633 * This functions returns %0 on success or a negative error code on failure. 1634 */ 1635 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum, 1636 int offs) 1637 { 1638 const struct ubifs_info *c = wbuf->c; 1639 int rlen, overlap; 1640 1641 dbg_io("LEB %d:%d, length %d", lnum, offs, len); 1642 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1643 ubifs_assert(!(offs & 7) && offs < c->leb_size); 1644 ubifs_assert(offs + len <= c->leb_size); 1645 1646 spin_lock(&wbuf->lock); 1647 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1648 if (!overlap) { 1649 /* We may safely unlock the write-buffer and read the data */ 1650 spin_unlock(&wbuf->lock); 1651 return ubifs_leb_read(c, lnum, buf, offs, len, 0); 1652 } 1653 1654 /* Don't read under wbuf */ 1655 rlen = wbuf->offs - offs; 1656 if (rlen < 0) 1657 rlen = 0; 1658 1659 /* Copy the rest from the write-buffer */ 1660 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1661 spin_unlock(&wbuf->lock); 1662 1663 if (rlen > 0) 1664 /* Read everything that goes before write-buffer */ 1665 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1666 1667 return 0; 1668 } 1669 1670 /** 1671 * validate_data_node - validate data nodes for bulk-read. 1672 * @c: UBIFS file-system description object 1673 * @buf: buffer containing data node to validate 1674 * @zbr: zbranch of data node to validate 1675 * 1676 * This functions returns %0 on success or a negative error code on failure. 1677 */ 1678 static int validate_data_node(struct ubifs_info *c, void *buf, 1679 struct ubifs_zbranch *zbr) 1680 { 1681 union ubifs_key key1; 1682 struct ubifs_ch *ch = buf; 1683 int err, len; 1684 1685 if (ch->node_type != UBIFS_DATA_NODE) { 1686 ubifs_err(c, "bad node type (%d but expected %d)", 1687 ch->node_type, UBIFS_DATA_NODE); 1688 goto out_err; 1689 } 1690 1691 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); 1692 if (err) { 1693 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE); 1694 goto out; 1695 } 1696 1697 len = le32_to_cpu(ch->len); 1698 if (len != zbr->len) { 1699 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len); 1700 goto out_err; 1701 } 1702 1703 /* Make sure the key of the read node is correct */ 1704 key_read(c, buf + UBIFS_KEY_OFFSET, &key1); 1705 if (!keys_eq(c, &zbr->key, &key1)) { 1706 ubifs_err(c, "bad key in node at LEB %d:%d", 1707 zbr->lnum, zbr->offs); 1708 dbg_tnck(&zbr->key, "looked for key "); 1709 dbg_tnck(&key1, "found node's key "); 1710 goto out_err; 1711 } 1712 1713 return 0; 1714 1715 out_err: 1716 err = -EINVAL; 1717 out: 1718 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs); 1719 ubifs_dump_node(c, buf); 1720 dump_stack(); 1721 return err; 1722 } 1723 1724 /** 1725 * ubifs_tnc_bulk_read - read a number of data nodes in one go. 1726 * @c: UBIFS file-system description object 1727 * @bu: bulk-read parameters and results 1728 * 1729 * This functions reads and validates the data nodes that were identified by the 1730 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, 1731 * -EAGAIN to indicate a race with GC, or another negative error code on 1732 * failure. 1733 */ 1734 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) 1735 { 1736 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; 1737 struct ubifs_wbuf *wbuf; 1738 void *buf; 1739 1740 len = bu->zbranch[bu->cnt - 1].offs; 1741 len += bu->zbranch[bu->cnt - 1].len - offs; 1742 if (len > bu->buf_len) { 1743 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len); 1744 return -EINVAL; 1745 } 1746 1747 /* Do the read */ 1748 wbuf = ubifs_get_wbuf(c, lnum); 1749 if (wbuf) 1750 err = read_wbuf(wbuf, bu->buf, len, lnum, offs); 1751 else 1752 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0); 1753 1754 /* Check for a race with GC */ 1755 if (maybe_leb_gced(c, lnum, bu->gc_seq)) 1756 return -EAGAIN; 1757 1758 if (err && err != -EBADMSG) { 1759 ubifs_err(c, "failed to read from LEB %d:%d, error %d", 1760 lnum, offs, err); 1761 dump_stack(); 1762 dbg_tnck(&bu->key, "key "); 1763 return err; 1764 } 1765 1766 /* Validate the nodes read */ 1767 buf = bu->buf; 1768 for (i = 0; i < bu->cnt; i++) { 1769 err = validate_data_node(c, buf, &bu->zbranch[i]); 1770 if (err) 1771 return err; 1772 buf = buf + ALIGN(bu->zbranch[i].len, 8); 1773 } 1774 1775 return 0; 1776 } 1777 1778 /** 1779 * do_lookup_nm- look up a "hashed" node. 1780 * @c: UBIFS file-system description object 1781 * @key: node key to lookup 1782 * @node: the node is returned here 1783 * @nm: node name 1784 * 1785 * This function look up and reads a node which contains name hash in the key. 1786 * Since the hash may have collisions, there may be many nodes with the same 1787 * key, so we have to sequentially look to all of them until the needed one is 1788 * found. This function returns zero in case of success, %-ENOENT if the node 1789 * was not found, and a negative error code in case of failure. 1790 */ 1791 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1792 void *node, const struct qstr *nm) 1793 { 1794 int found, n, err; 1795 struct ubifs_znode *znode; 1796 1797 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name); 1798 mutex_lock(&c->tnc_mutex); 1799 found = ubifs_lookup_level0(c, key, &znode, &n); 1800 if (!found) { 1801 err = -ENOENT; 1802 goto out_unlock; 1803 } else if (found < 0) { 1804 err = found; 1805 goto out_unlock; 1806 } 1807 1808 ubifs_assert(n >= 0); 1809 1810 err = resolve_collision(c, key, &znode, &n, nm); 1811 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 1812 if (unlikely(err < 0)) 1813 goto out_unlock; 1814 if (err == 0) { 1815 err = -ENOENT; 1816 goto out_unlock; 1817 } 1818 1819 err = tnc_read_node_nm(c, &znode->zbranch[n], node); 1820 1821 out_unlock: 1822 mutex_unlock(&c->tnc_mutex); 1823 return err; 1824 } 1825 1826 /** 1827 * ubifs_tnc_lookup_nm - look up a "hashed" node. 1828 * @c: UBIFS file-system description object 1829 * @key: node key to lookup 1830 * @node: the node is returned here 1831 * @nm: node name 1832 * 1833 * This function look up and reads a node which contains name hash in the key. 1834 * Since the hash may have collisions, there may be many nodes with the same 1835 * key, so we have to sequentially look to all of them until the needed one is 1836 * found. This function returns zero in case of success, %-ENOENT if the node 1837 * was not found, and a negative error code in case of failure. 1838 */ 1839 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, 1840 void *node, const struct qstr *nm) 1841 { 1842 int err, len; 1843 const struct ubifs_dent_node *dent = node; 1844 1845 /* 1846 * We assume that in most of the cases there are no name collisions and 1847 * 'ubifs_tnc_lookup()' returns us the right direntry. 1848 */ 1849 err = ubifs_tnc_lookup(c, key, node); 1850 if (err) 1851 return err; 1852 1853 len = le16_to_cpu(dent->nlen); 1854 if (nm->len == len && !memcmp(dent->name, nm->name, len)) 1855 return 0; 1856 1857 /* 1858 * Unluckily, there are hash collisions and we have to iterate over 1859 * them look at each direntry with colliding name hash sequentially. 1860 */ 1861 return do_lookup_nm(c, key, node, nm); 1862 } 1863 1864 /** 1865 * correct_parent_keys - correct parent znodes' keys. 1866 * @c: UBIFS file-system description object 1867 * @znode: znode to correct parent znodes for 1868 * 1869 * This is a helper function for 'tnc_insert()'. When the key of the leftmost 1870 * zbranch changes, keys of parent znodes have to be corrected. This helper 1871 * function is called in such situations and corrects the keys if needed. 1872 */ 1873 static void correct_parent_keys(const struct ubifs_info *c, 1874 struct ubifs_znode *znode) 1875 { 1876 union ubifs_key *key, *key1; 1877 1878 ubifs_assert(znode->parent); 1879 ubifs_assert(znode->iip == 0); 1880 1881 key = &znode->zbranch[0].key; 1882 key1 = &znode->parent->zbranch[0].key; 1883 1884 while (keys_cmp(c, key, key1) < 0) { 1885 key_copy(c, key, key1); 1886 znode = znode->parent; 1887 znode->alt = 1; 1888 if (!znode->parent || znode->iip) 1889 break; 1890 key1 = &znode->parent->zbranch[0].key; 1891 } 1892 } 1893 1894 /** 1895 * insert_zbranch - insert a zbranch into a znode. 1896 * @znode: znode into which to insert 1897 * @zbr: zbranch to insert 1898 * @n: slot number to insert to 1899 * 1900 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in 1901 * znode's array of zbranches and keeps zbranches consolidated, so when a new 1902 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th 1903 * slot, zbranches starting from @n have to be moved right. 1904 */ 1905 static void insert_zbranch(struct ubifs_znode *znode, 1906 const struct ubifs_zbranch *zbr, int n) 1907 { 1908 int i; 1909 1910 ubifs_assert(ubifs_zn_dirty(znode)); 1911 1912 if (znode->level) { 1913 for (i = znode->child_cnt; i > n; i--) { 1914 znode->zbranch[i] = znode->zbranch[i - 1]; 1915 if (znode->zbranch[i].znode) 1916 znode->zbranch[i].znode->iip = i; 1917 } 1918 if (zbr->znode) 1919 zbr->znode->iip = n; 1920 } else 1921 for (i = znode->child_cnt; i > n; i--) 1922 znode->zbranch[i] = znode->zbranch[i - 1]; 1923 1924 znode->zbranch[n] = *zbr; 1925 znode->child_cnt += 1; 1926 1927 /* 1928 * After inserting at slot zero, the lower bound of the key range of 1929 * this znode may have changed. If this znode is subsequently split 1930 * then the upper bound of the key range may change, and furthermore 1931 * it could change to be lower than the original lower bound. If that 1932 * happens, then it will no longer be possible to find this znode in the 1933 * TNC using the key from the index node on flash. That is bad because 1934 * if it is not found, we will assume it is obsolete and may overwrite 1935 * it. Then if there is an unclean unmount, we will start using the 1936 * old index which will be broken. 1937 * 1938 * So we first mark znodes that have insertions at slot zero, and then 1939 * if they are split we add their lnum/offs to the old_idx tree. 1940 */ 1941 if (n == 0) 1942 znode->alt = 1; 1943 } 1944 1945 /** 1946 * tnc_insert - insert a node into TNC. 1947 * @c: UBIFS file-system description object 1948 * @znode: znode to insert into 1949 * @zbr: branch to insert 1950 * @n: slot number to insert new zbranch to 1951 * 1952 * This function inserts a new node described by @zbr into znode @znode. If 1953 * znode does not have a free slot for new zbranch, it is split. Parent znodes 1954 * are splat as well if needed. Returns zero in case of success or a negative 1955 * error code in case of failure. 1956 */ 1957 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, 1958 struct ubifs_zbranch *zbr, int n) 1959 { 1960 struct ubifs_znode *zn, *zi, *zp; 1961 int i, keep, move, appending = 0; 1962 union ubifs_key *key = &zbr->key, *key1; 1963 1964 ubifs_assert(n >= 0 && n <= c->fanout); 1965 1966 /* Implement naive insert for now */ 1967 again: 1968 zp = znode->parent; 1969 if (znode->child_cnt < c->fanout) { 1970 ubifs_assert(n != c->fanout); 1971 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); 1972 1973 insert_zbranch(znode, zbr, n); 1974 1975 /* Ensure parent's key is correct */ 1976 if (n == 0 && zp && znode->iip == 0) 1977 correct_parent_keys(c, znode); 1978 1979 return 0; 1980 } 1981 1982 /* 1983 * Unfortunately, @znode does not have more empty slots and we have to 1984 * split it. 1985 */ 1986 dbg_tnck(key, "splitting level %d, key ", znode->level); 1987 1988 if (znode->alt) 1989 /* 1990 * We can no longer be sure of finding this znode by key, so we 1991 * record it in the old_idx tree. 1992 */ 1993 ins_clr_old_idx_znode(c, znode); 1994 1995 zn = kzalloc(c->max_znode_sz, GFP_NOFS); 1996 if (!zn) 1997 return -ENOMEM; 1998 zn->parent = zp; 1999 zn->level = znode->level; 2000 2001 /* Decide where to split */ 2002 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { 2003 /* Try not to split consecutive data keys */ 2004 if (n == c->fanout) { 2005 key1 = &znode->zbranch[n - 1].key; 2006 if (key_inum(c, key1) == key_inum(c, key) && 2007 key_type(c, key1) == UBIFS_DATA_KEY) 2008 appending = 1; 2009 } else 2010 goto check_split; 2011 } else if (appending && n != c->fanout) { 2012 /* Try not to split consecutive data keys */ 2013 appending = 0; 2014 check_split: 2015 if (n >= (c->fanout + 1) / 2) { 2016 key1 = &znode->zbranch[0].key; 2017 if (key_inum(c, key1) == key_inum(c, key) && 2018 key_type(c, key1) == UBIFS_DATA_KEY) { 2019 key1 = &znode->zbranch[n].key; 2020 if (key_inum(c, key1) != key_inum(c, key) || 2021 key_type(c, key1) != UBIFS_DATA_KEY) { 2022 keep = n; 2023 move = c->fanout - keep; 2024 zi = znode; 2025 goto do_split; 2026 } 2027 } 2028 } 2029 } 2030 2031 if (appending) { 2032 keep = c->fanout; 2033 move = 0; 2034 } else { 2035 keep = (c->fanout + 1) / 2; 2036 move = c->fanout - keep; 2037 } 2038 2039 /* 2040 * Although we don't at present, we could look at the neighbors and see 2041 * if we can move some zbranches there. 2042 */ 2043 2044 if (n < keep) { 2045 /* Insert into existing znode */ 2046 zi = znode; 2047 move += 1; 2048 keep -= 1; 2049 } else { 2050 /* Insert into new znode */ 2051 zi = zn; 2052 n -= keep; 2053 /* Re-parent */ 2054 if (zn->level != 0) 2055 zbr->znode->parent = zn; 2056 } 2057 2058 do_split: 2059 2060 __set_bit(DIRTY_ZNODE, &zn->flags); 2061 atomic_long_inc(&c->dirty_zn_cnt); 2062 2063 zn->child_cnt = move; 2064 znode->child_cnt = keep; 2065 2066 dbg_tnc("moving %d, keeping %d", move, keep); 2067 2068 /* Move zbranch */ 2069 for (i = 0; i < move; i++) { 2070 zn->zbranch[i] = znode->zbranch[keep + i]; 2071 /* Re-parent */ 2072 if (zn->level != 0) 2073 if (zn->zbranch[i].znode) { 2074 zn->zbranch[i].znode->parent = zn; 2075 zn->zbranch[i].znode->iip = i; 2076 } 2077 } 2078 2079 /* Insert new key and branch */ 2080 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); 2081 2082 insert_zbranch(zi, zbr, n); 2083 2084 /* Insert new znode (produced by spitting) into the parent */ 2085 if (zp) { 2086 if (n == 0 && zi == znode && znode->iip == 0) 2087 correct_parent_keys(c, znode); 2088 2089 /* Locate insertion point */ 2090 n = znode->iip + 1; 2091 2092 /* Tail recursion */ 2093 zbr->key = zn->zbranch[0].key; 2094 zbr->znode = zn; 2095 zbr->lnum = 0; 2096 zbr->offs = 0; 2097 zbr->len = 0; 2098 znode = zp; 2099 2100 goto again; 2101 } 2102 2103 /* We have to split root znode */ 2104 dbg_tnc("creating new zroot at level %d", znode->level + 1); 2105 2106 zi = kzalloc(c->max_znode_sz, GFP_NOFS); 2107 if (!zi) 2108 return -ENOMEM; 2109 2110 zi->child_cnt = 2; 2111 zi->level = znode->level + 1; 2112 2113 __set_bit(DIRTY_ZNODE, &zi->flags); 2114 atomic_long_inc(&c->dirty_zn_cnt); 2115 2116 zi->zbranch[0].key = znode->zbranch[0].key; 2117 zi->zbranch[0].znode = znode; 2118 zi->zbranch[0].lnum = c->zroot.lnum; 2119 zi->zbranch[0].offs = c->zroot.offs; 2120 zi->zbranch[0].len = c->zroot.len; 2121 zi->zbranch[1].key = zn->zbranch[0].key; 2122 zi->zbranch[1].znode = zn; 2123 2124 c->zroot.lnum = 0; 2125 c->zroot.offs = 0; 2126 c->zroot.len = 0; 2127 c->zroot.znode = zi; 2128 2129 zn->parent = zi; 2130 zn->iip = 1; 2131 znode->parent = zi; 2132 znode->iip = 0; 2133 2134 return 0; 2135 } 2136 2137 /** 2138 * ubifs_tnc_add - add a node to TNC. 2139 * @c: UBIFS file-system description object 2140 * @key: key to add 2141 * @lnum: LEB number of node 2142 * @offs: node offset 2143 * @len: node length 2144 * 2145 * This function adds a node with key @key to TNC. The node may be new or it may 2146 * obsolete some existing one. Returns %0 on success or negative error code on 2147 * failure. 2148 */ 2149 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, 2150 int offs, int len) 2151 { 2152 int found, n, err = 0; 2153 struct ubifs_znode *znode; 2154 2155 mutex_lock(&c->tnc_mutex); 2156 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len); 2157 found = lookup_level0_dirty(c, key, &znode, &n); 2158 if (!found) { 2159 struct ubifs_zbranch zbr; 2160 2161 zbr.znode = NULL; 2162 zbr.lnum = lnum; 2163 zbr.offs = offs; 2164 zbr.len = len; 2165 key_copy(c, key, &zbr.key); 2166 err = tnc_insert(c, znode, &zbr, n + 1); 2167 } else if (found == 1) { 2168 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2169 2170 lnc_free(zbr); 2171 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2172 zbr->lnum = lnum; 2173 zbr->offs = offs; 2174 zbr->len = len; 2175 } else 2176 err = found; 2177 if (!err) 2178 err = dbg_check_tnc(c, 0); 2179 mutex_unlock(&c->tnc_mutex); 2180 2181 return err; 2182 } 2183 2184 /** 2185 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. 2186 * @c: UBIFS file-system description object 2187 * @key: key to add 2188 * @old_lnum: LEB number of old node 2189 * @old_offs: old node offset 2190 * @lnum: LEB number of node 2191 * @offs: node offset 2192 * @len: node length 2193 * 2194 * This function replaces a node with key @key in the TNC only if the old node 2195 * is found. This function is called by garbage collection when node are moved. 2196 * Returns %0 on success or negative error code on failure. 2197 */ 2198 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, 2199 int old_lnum, int old_offs, int lnum, int offs, int len) 2200 { 2201 int found, n, err = 0; 2202 struct ubifs_znode *znode; 2203 2204 mutex_lock(&c->tnc_mutex); 2205 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum, 2206 old_offs, lnum, offs, len); 2207 found = lookup_level0_dirty(c, key, &znode, &n); 2208 if (found < 0) { 2209 err = found; 2210 goto out_unlock; 2211 } 2212 2213 if (found == 1) { 2214 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2215 2216 found = 0; 2217 if (zbr->lnum == old_lnum && zbr->offs == old_offs) { 2218 lnc_free(zbr); 2219 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2220 if (err) 2221 goto out_unlock; 2222 zbr->lnum = lnum; 2223 zbr->offs = offs; 2224 zbr->len = len; 2225 found = 1; 2226 } else if (is_hash_key(c, key)) { 2227 found = resolve_collision_directly(c, key, &znode, &n, 2228 old_lnum, old_offs); 2229 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", 2230 found, znode, n, old_lnum, old_offs); 2231 if (found < 0) { 2232 err = found; 2233 goto out_unlock; 2234 } 2235 2236 if (found) { 2237 /* Ensure the znode is dirtied */ 2238 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2239 znode = dirty_cow_bottom_up(c, znode); 2240 if (IS_ERR(znode)) { 2241 err = PTR_ERR(znode); 2242 goto out_unlock; 2243 } 2244 } 2245 zbr = &znode->zbranch[n]; 2246 lnc_free(zbr); 2247 err = ubifs_add_dirt(c, zbr->lnum, 2248 zbr->len); 2249 if (err) 2250 goto out_unlock; 2251 zbr->lnum = lnum; 2252 zbr->offs = offs; 2253 zbr->len = len; 2254 } 2255 } 2256 } 2257 2258 if (!found) 2259 err = ubifs_add_dirt(c, lnum, len); 2260 2261 if (!err) 2262 err = dbg_check_tnc(c, 0); 2263 2264 out_unlock: 2265 mutex_unlock(&c->tnc_mutex); 2266 return err; 2267 } 2268 2269 /** 2270 * ubifs_tnc_add_nm - add a "hashed" node to TNC. 2271 * @c: UBIFS file-system description object 2272 * @key: key to add 2273 * @lnum: LEB number of node 2274 * @offs: node offset 2275 * @len: node length 2276 * @nm: node name 2277 * 2278 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which 2279 * may have collisions, like directory entry keys. 2280 */ 2281 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, 2282 int lnum, int offs, int len, const struct qstr *nm) 2283 { 2284 int found, n, err = 0; 2285 struct ubifs_znode *znode; 2286 2287 mutex_lock(&c->tnc_mutex); 2288 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ", 2289 lnum, offs, nm->len, nm->name); 2290 found = lookup_level0_dirty(c, key, &znode, &n); 2291 if (found < 0) { 2292 err = found; 2293 goto out_unlock; 2294 } 2295 2296 if (found == 1) { 2297 if (c->replaying) 2298 found = fallible_resolve_collision(c, key, &znode, &n, 2299 nm, 1); 2300 else 2301 found = resolve_collision(c, key, &znode, &n, nm); 2302 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); 2303 if (found < 0) { 2304 err = found; 2305 goto out_unlock; 2306 } 2307 2308 /* Ensure the znode is dirtied */ 2309 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2310 znode = dirty_cow_bottom_up(c, znode); 2311 if (IS_ERR(znode)) { 2312 err = PTR_ERR(znode); 2313 goto out_unlock; 2314 } 2315 } 2316 2317 if (found == 1) { 2318 struct ubifs_zbranch *zbr = &znode->zbranch[n]; 2319 2320 lnc_free(zbr); 2321 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2322 zbr->lnum = lnum; 2323 zbr->offs = offs; 2324 zbr->len = len; 2325 goto out_unlock; 2326 } 2327 } 2328 2329 if (!found) { 2330 struct ubifs_zbranch zbr; 2331 2332 zbr.znode = NULL; 2333 zbr.lnum = lnum; 2334 zbr.offs = offs; 2335 zbr.len = len; 2336 key_copy(c, key, &zbr.key); 2337 err = tnc_insert(c, znode, &zbr, n + 1); 2338 if (err) 2339 goto out_unlock; 2340 if (c->replaying) { 2341 /* 2342 * We did not find it in the index so there may be a 2343 * dangling branch still in the index. So we remove it 2344 * by passing 'ubifs_tnc_remove_nm()' the same key but 2345 * an unmatchable name. 2346 */ 2347 struct qstr noname = { .name = "" }; 2348 2349 err = dbg_check_tnc(c, 0); 2350 mutex_unlock(&c->tnc_mutex); 2351 if (err) 2352 return err; 2353 return ubifs_tnc_remove_nm(c, key, &noname); 2354 } 2355 } 2356 2357 out_unlock: 2358 if (!err) 2359 err = dbg_check_tnc(c, 0); 2360 mutex_unlock(&c->tnc_mutex); 2361 return err; 2362 } 2363 2364 /** 2365 * tnc_delete - delete a znode form TNC. 2366 * @c: UBIFS file-system description object 2367 * @znode: znode to delete from 2368 * @n: zbranch slot number to delete 2369 * 2370 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in 2371 * case of success and a negative error code in case of failure. 2372 */ 2373 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) 2374 { 2375 struct ubifs_zbranch *zbr; 2376 struct ubifs_znode *zp; 2377 int i, err; 2378 2379 /* Delete without merge for now */ 2380 ubifs_assert(znode->level == 0); 2381 ubifs_assert(n >= 0 && n < c->fanout); 2382 dbg_tnck(&znode->zbranch[n].key, "deleting key "); 2383 2384 zbr = &znode->zbranch[n]; 2385 lnc_free(zbr); 2386 2387 err = ubifs_add_dirt(c, zbr->lnum, zbr->len); 2388 if (err) { 2389 ubifs_dump_znode(c, znode); 2390 return err; 2391 } 2392 2393 /* We do not "gap" zbranch slots */ 2394 for (i = n; i < znode->child_cnt - 1; i++) 2395 znode->zbranch[i] = znode->zbranch[i + 1]; 2396 znode->child_cnt -= 1; 2397 2398 if (znode->child_cnt > 0) 2399 return 0; 2400 2401 /* 2402 * This was the last zbranch, we have to delete this znode from the 2403 * parent. 2404 */ 2405 2406 do { 2407 ubifs_assert(!ubifs_zn_obsolete(znode)); 2408 ubifs_assert(ubifs_zn_dirty(znode)); 2409 2410 zp = znode->parent; 2411 n = znode->iip; 2412 2413 atomic_long_dec(&c->dirty_zn_cnt); 2414 2415 err = insert_old_idx_znode(c, znode); 2416 if (err) 2417 return err; 2418 2419 if (znode->cnext) { 2420 __set_bit(OBSOLETE_ZNODE, &znode->flags); 2421 atomic_long_inc(&c->clean_zn_cnt); 2422 atomic_long_inc(&ubifs_clean_zn_cnt); 2423 } else 2424 kfree(znode); 2425 znode = zp; 2426 } while (znode->child_cnt == 1); /* while removing last child */ 2427 2428 /* Remove from znode, entry n - 1 */ 2429 znode->child_cnt -= 1; 2430 ubifs_assert(znode->level != 0); 2431 for (i = n; i < znode->child_cnt; i++) { 2432 znode->zbranch[i] = znode->zbranch[i + 1]; 2433 if (znode->zbranch[i].znode) 2434 znode->zbranch[i].znode->iip = i; 2435 } 2436 2437 /* 2438 * If this is the root and it has only 1 child then 2439 * collapse the tree. 2440 */ 2441 if (!znode->parent) { 2442 while (znode->child_cnt == 1 && znode->level != 0) { 2443 zp = znode; 2444 zbr = &znode->zbranch[0]; 2445 znode = get_znode(c, znode, 0); 2446 if (IS_ERR(znode)) 2447 return PTR_ERR(znode); 2448 znode = dirty_cow_znode(c, zbr); 2449 if (IS_ERR(znode)) 2450 return PTR_ERR(znode); 2451 znode->parent = NULL; 2452 znode->iip = 0; 2453 if (c->zroot.len) { 2454 err = insert_old_idx(c, c->zroot.lnum, 2455 c->zroot.offs); 2456 if (err) 2457 return err; 2458 } 2459 c->zroot.lnum = zbr->lnum; 2460 c->zroot.offs = zbr->offs; 2461 c->zroot.len = zbr->len; 2462 c->zroot.znode = znode; 2463 ubifs_assert(!ubifs_zn_obsolete(zp)); 2464 ubifs_assert(ubifs_zn_dirty(zp)); 2465 atomic_long_dec(&c->dirty_zn_cnt); 2466 2467 if (zp->cnext) { 2468 __set_bit(OBSOLETE_ZNODE, &zp->flags); 2469 atomic_long_inc(&c->clean_zn_cnt); 2470 atomic_long_inc(&ubifs_clean_zn_cnt); 2471 } else 2472 kfree(zp); 2473 } 2474 } 2475 2476 return 0; 2477 } 2478 2479 /** 2480 * ubifs_tnc_remove - remove an index entry of a node. 2481 * @c: UBIFS file-system description object 2482 * @key: key of node 2483 * 2484 * Returns %0 on success or negative error code on failure. 2485 */ 2486 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) 2487 { 2488 int found, n, err = 0; 2489 struct ubifs_znode *znode; 2490 2491 mutex_lock(&c->tnc_mutex); 2492 dbg_tnck(key, "key "); 2493 found = lookup_level0_dirty(c, key, &znode, &n); 2494 if (found < 0) { 2495 err = found; 2496 goto out_unlock; 2497 } 2498 if (found == 1) 2499 err = tnc_delete(c, znode, n); 2500 if (!err) 2501 err = dbg_check_tnc(c, 0); 2502 2503 out_unlock: 2504 mutex_unlock(&c->tnc_mutex); 2505 return err; 2506 } 2507 2508 /** 2509 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. 2510 * @c: UBIFS file-system description object 2511 * @key: key of node 2512 * @nm: directory entry name 2513 * 2514 * Returns %0 on success or negative error code on failure. 2515 */ 2516 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, 2517 const struct qstr *nm) 2518 { 2519 int n, err; 2520 struct ubifs_znode *znode; 2521 2522 mutex_lock(&c->tnc_mutex); 2523 dbg_tnck(key, "%.*s, key ", nm->len, nm->name); 2524 err = lookup_level0_dirty(c, key, &znode, &n); 2525 if (err < 0) 2526 goto out_unlock; 2527 2528 if (err) { 2529 if (c->replaying) 2530 err = fallible_resolve_collision(c, key, &znode, &n, 2531 nm, 0); 2532 else 2533 err = resolve_collision(c, key, &znode, &n, nm); 2534 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); 2535 if (err < 0) 2536 goto out_unlock; 2537 if (err) { 2538 /* Ensure the znode is dirtied */ 2539 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2540 znode = dirty_cow_bottom_up(c, znode); 2541 if (IS_ERR(znode)) { 2542 err = PTR_ERR(znode); 2543 goto out_unlock; 2544 } 2545 } 2546 err = tnc_delete(c, znode, n); 2547 } 2548 } 2549 2550 out_unlock: 2551 if (!err) 2552 err = dbg_check_tnc(c, 0); 2553 mutex_unlock(&c->tnc_mutex); 2554 return err; 2555 } 2556 2557 /** 2558 * key_in_range - determine if a key falls within a range of keys. 2559 * @c: UBIFS file-system description object 2560 * @key: key to check 2561 * @from_key: lowest key in range 2562 * @to_key: highest key in range 2563 * 2564 * This function returns %1 if the key is in range and %0 otherwise. 2565 */ 2566 static int key_in_range(struct ubifs_info *c, union ubifs_key *key, 2567 union ubifs_key *from_key, union ubifs_key *to_key) 2568 { 2569 if (keys_cmp(c, key, from_key) < 0) 2570 return 0; 2571 if (keys_cmp(c, key, to_key) > 0) 2572 return 0; 2573 return 1; 2574 } 2575 2576 /** 2577 * ubifs_tnc_remove_range - remove index entries in range. 2578 * @c: UBIFS file-system description object 2579 * @from_key: lowest key to remove 2580 * @to_key: highest key to remove 2581 * 2582 * This function removes index entries starting at @from_key and ending at 2583 * @to_key. This function returns zero in case of success and a negative error 2584 * code in case of failure. 2585 */ 2586 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, 2587 union ubifs_key *to_key) 2588 { 2589 int i, n, k, err = 0; 2590 struct ubifs_znode *znode; 2591 union ubifs_key *key; 2592 2593 mutex_lock(&c->tnc_mutex); 2594 while (1) { 2595 /* Find first level 0 znode that contains keys to remove */ 2596 err = ubifs_lookup_level0(c, from_key, &znode, &n); 2597 if (err < 0) 2598 goto out_unlock; 2599 2600 if (err) 2601 key = from_key; 2602 else { 2603 err = tnc_next(c, &znode, &n); 2604 if (err == -ENOENT) { 2605 err = 0; 2606 goto out_unlock; 2607 } 2608 if (err < 0) 2609 goto out_unlock; 2610 key = &znode->zbranch[n].key; 2611 if (!key_in_range(c, key, from_key, to_key)) { 2612 err = 0; 2613 goto out_unlock; 2614 } 2615 } 2616 2617 /* Ensure the znode is dirtied */ 2618 if (znode->cnext || !ubifs_zn_dirty(znode)) { 2619 znode = dirty_cow_bottom_up(c, znode); 2620 if (IS_ERR(znode)) { 2621 err = PTR_ERR(znode); 2622 goto out_unlock; 2623 } 2624 } 2625 2626 /* Remove all keys in range except the first */ 2627 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { 2628 key = &znode->zbranch[i].key; 2629 if (!key_in_range(c, key, from_key, to_key)) 2630 break; 2631 lnc_free(&znode->zbranch[i]); 2632 err = ubifs_add_dirt(c, znode->zbranch[i].lnum, 2633 znode->zbranch[i].len); 2634 if (err) { 2635 ubifs_dump_znode(c, znode); 2636 goto out_unlock; 2637 } 2638 dbg_tnck(key, "removing key "); 2639 } 2640 if (k) { 2641 for (i = n + 1 + k; i < znode->child_cnt; i++) 2642 znode->zbranch[i - k] = znode->zbranch[i]; 2643 znode->child_cnt -= k; 2644 } 2645 2646 /* Now delete the first */ 2647 err = tnc_delete(c, znode, n); 2648 if (err) 2649 goto out_unlock; 2650 } 2651 2652 out_unlock: 2653 if (!err) 2654 err = dbg_check_tnc(c, 0); 2655 mutex_unlock(&c->tnc_mutex); 2656 return err; 2657 } 2658 2659 /** 2660 * ubifs_tnc_remove_ino - remove an inode from TNC. 2661 * @c: UBIFS file-system description object 2662 * @inum: inode number to remove 2663 * 2664 * This function remove inode @inum and all the extended attributes associated 2665 * with the anode from TNC and returns zero in case of success or a negative 2666 * error code in case of failure. 2667 */ 2668 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) 2669 { 2670 union ubifs_key key1, key2; 2671 struct ubifs_dent_node *xent, *pxent = NULL; 2672 struct qstr nm = { .name = NULL }; 2673 2674 dbg_tnc("ino %lu", (unsigned long)inum); 2675 2676 /* 2677 * Walk all extended attribute entries and remove them together with 2678 * corresponding extended attribute inodes. 2679 */ 2680 lowest_xent_key(c, &key1, inum); 2681 while (1) { 2682 ino_t xattr_inum; 2683 int err; 2684 2685 xent = ubifs_tnc_next_ent(c, &key1, &nm); 2686 if (IS_ERR(xent)) { 2687 err = PTR_ERR(xent); 2688 if (err == -ENOENT) 2689 break; 2690 return err; 2691 } 2692 2693 xattr_inum = le64_to_cpu(xent->inum); 2694 dbg_tnc("xent '%s', ino %lu", xent->name, 2695 (unsigned long)xattr_inum); 2696 2697 nm.name = xent->name; 2698 nm.len = le16_to_cpu(xent->nlen); 2699 err = ubifs_tnc_remove_nm(c, &key1, &nm); 2700 if (err) { 2701 kfree(xent); 2702 return err; 2703 } 2704 2705 lowest_ino_key(c, &key1, xattr_inum); 2706 highest_ino_key(c, &key2, xattr_inum); 2707 err = ubifs_tnc_remove_range(c, &key1, &key2); 2708 if (err) { 2709 kfree(xent); 2710 return err; 2711 } 2712 2713 kfree(pxent); 2714 pxent = xent; 2715 key_read(c, &xent->key, &key1); 2716 } 2717 2718 kfree(pxent); 2719 lowest_ino_key(c, &key1, inum); 2720 highest_ino_key(c, &key2, inum); 2721 2722 return ubifs_tnc_remove_range(c, &key1, &key2); 2723 } 2724 2725 /** 2726 * ubifs_tnc_next_ent - walk directory or extended attribute entries. 2727 * @c: UBIFS file-system description object 2728 * @key: key of last entry 2729 * @nm: name of last entry found or %NULL 2730 * 2731 * This function finds and reads the next directory or extended attribute entry 2732 * after the given key (@key) if there is one. @nm is used to resolve 2733 * collisions. 2734 * 2735 * If the name of the current entry is not known and only the key is known, 2736 * @nm->name has to be %NULL. In this case the semantics of this function is a 2737 * little bit different and it returns the entry corresponding to this key, not 2738 * the next one. If the key was not found, the closest "right" entry is 2739 * returned. 2740 * 2741 * If the fist entry has to be found, @key has to contain the lowest possible 2742 * key value for this inode and @name has to be %NULL. 2743 * 2744 * This function returns the found directory or extended attribute entry node 2745 * in case of success, %-ENOENT is returned if no entry was found, and a 2746 * negative error code is returned in case of failure. 2747 */ 2748 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, 2749 union ubifs_key *key, 2750 const struct qstr *nm) 2751 { 2752 int n, err, type = key_type(c, key); 2753 struct ubifs_znode *znode; 2754 struct ubifs_dent_node *dent; 2755 struct ubifs_zbranch *zbr; 2756 union ubifs_key *dkey; 2757 2758 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)"); 2759 ubifs_assert(is_hash_key(c, key)); 2760 2761 mutex_lock(&c->tnc_mutex); 2762 err = ubifs_lookup_level0(c, key, &znode, &n); 2763 if (unlikely(err < 0)) 2764 goto out_unlock; 2765 2766 if (nm->name) { 2767 if (err) { 2768 /* Handle collisions */ 2769 err = resolve_collision(c, key, &znode, &n, nm); 2770 dbg_tnc("rc returned %d, znode %p, n %d", 2771 err, znode, n); 2772 if (unlikely(err < 0)) 2773 goto out_unlock; 2774 } 2775 2776 /* Now find next entry */ 2777 err = tnc_next(c, &znode, &n); 2778 if (unlikely(err)) 2779 goto out_unlock; 2780 } else { 2781 /* 2782 * The full name of the entry was not given, in which case the 2783 * behavior of this function is a little different and it 2784 * returns current entry, not the next one. 2785 */ 2786 if (!err) { 2787 /* 2788 * However, the given key does not exist in the TNC 2789 * tree and @znode/@n variables contain the closest 2790 * "preceding" element. Switch to the next one. 2791 */ 2792 err = tnc_next(c, &znode, &n); 2793 if (err) 2794 goto out_unlock; 2795 } 2796 } 2797 2798 zbr = &znode->zbranch[n]; 2799 dent = kmalloc(zbr->len, GFP_NOFS); 2800 if (unlikely(!dent)) { 2801 err = -ENOMEM; 2802 goto out_unlock; 2803 } 2804 2805 /* 2806 * The above 'tnc_next()' call could lead us to the next inode, check 2807 * this. 2808 */ 2809 dkey = &zbr->key; 2810 if (key_inum(c, dkey) != key_inum(c, key) || 2811 key_type(c, dkey) != type) { 2812 err = -ENOENT; 2813 goto out_free; 2814 } 2815 2816 err = tnc_read_node_nm(c, zbr, dent); 2817 if (unlikely(err)) 2818 goto out_free; 2819 2820 mutex_unlock(&c->tnc_mutex); 2821 return dent; 2822 2823 out_free: 2824 kfree(dent); 2825 out_unlock: 2826 mutex_unlock(&c->tnc_mutex); 2827 return ERR_PTR(err); 2828 } 2829 2830 /** 2831 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit. 2832 * @c: UBIFS file-system description object 2833 * 2834 * Destroy left-over obsolete znodes from a failed commit. 2835 */ 2836 static void tnc_destroy_cnext(struct ubifs_info *c) 2837 { 2838 struct ubifs_znode *cnext; 2839 2840 if (!c->cnext) 2841 return; 2842 ubifs_assert(c->cmt_state == COMMIT_BROKEN); 2843 cnext = c->cnext; 2844 do { 2845 struct ubifs_znode *znode = cnext; 2846 2847 cnext = cnext->cnext; 2848 if (ubifs_zn_obsolete(znode)) 2849 kfree(znode); 2850 } while (cnext && cnext != c->cnext); 2851 } 2852 2853 /** 2854 * ubifs_tnc_close - close TNC subsystem and free all related resources. 2855 * @c: UBIFS file-system description object 2856 */ 2857 void ubifs_tnc_close(struct ubifs_info *c) 2858 { 2859 tnc_destroy_cnext(c); 2860 if (c->zroot.znode) { 2861 long n, freed; 2862 2863 n = atomic_long_read(&c->clean_zn_cnt); 2864 freed = ubifs_destroy_tnc_subtree(c->zroot.znode); 2865 ubifs_assert(freed == n); 2866 atomic_long_sub(n, &ubifs_clean_zn_cnt); 2867 } 2868 kfree(c->gap_lebs); 2869 kfree(c->ilebs); 2870 destroy_old_idx(c); 2871 } 2872 2873 /** 2874 * left_znode - get the znode to the left. 2875 * @c: UBIFS file-system description object 2876 * @znode: znode 2877 * 2878 * This function returns a pointer to the znode to the left of @znode or NULL if 2879 * there is not one. A negative error code is returned on failure. 2880 */ 2881 static struct ubifs_znode *left_znode(struct ubifs_info *c, 2882 struct ubifs_znode *znode) 2883 { 2884 int level = znode->level; 2885 2886 while (1) { 2887 int n = znode->iip - 1; 2888 2889 /* Go up until we can go left */ 2890 znode = znode->parent; 2891 if (!znode) 2892 return NULL; 2893 if (n >= 0) { 2894 /* Now go down the rightmost branch to 'level' */ 2895 znode = get_znode(c, znode, n); 2896 if (IS_ERR(znode)) 2897 return znode; 2898 while (znode->level != level) { 2899 n = znode->child_cnt - 1; 2900 znode = get_znode(c, znode, n); 2901 if (IS_ERR(znode)) 2902 return znode; 2903 } 2904 break; 2905 } 2906 } 2907 return znode; 2908 } 2909 2910 /** 2911 * right_znode - get the znode to the right. 2912 * @c: UBIFS file-system description object 2913 * @znode: znode 2914 * 2915 * This function returns a pointer to the znode to the right of @znode or NULL 2916 * if there is not one. A negative error code is returned on failure. 2917 */ 2918 static struct ubifs_znode *right_znode(struct ubifs_info *c, 2919 struct ubifs_znode *znode) 2920 { 2921 int level = znode->level; 2922 2923 while (1) { 2924 int n = znode->iip + 1; 2925 2926 /* Go up until we can go right */ 2927 znode = znode->parent; 2928 if (!znode) 2929 return NULL; 2930 if (n < znode->child_cnt) { 2931 /* Now go down the leftmost branch to 'level' */ 2932 znode = get_znode(c, znode, n); 2933 if (IS_ERR(znode)) 2934 return znode; 2935 while (znode->level != level) { 2936 znode = get_znode(c, znode, 0); 2937 if (IS_ERR(znode)) 2938 return znode; 2939 } 2940 break; 2941 } 2942 } 2943 return znode; 2944 } 2945 2946 /** 2947 * lookup_znode - find a particular indexing node from TNC. 2948 * @c: UBIFS file-system description object 2949 * @key: index node key to lookup 2950 * @level: index node level 2951 * @lnum: index node LEB number 2952 * @offs: index node offset 2953 * 2954 * This function searches an indexing node by its first key @key and its 2955 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing 2956 * nodes it traverses to TNC. This function is called for indexing nodes which 2957 * were found on the media by scanning, for example when garbage-collecting or 2958 * when doing in-the-gaps commit. This means that the indexing node which is 2959 * looked for does not have to have exactly the same leftmost key @key, because 2960 * the leftmost key may have been changed, in which case TNC will contain a 2961 * dirty znode which still refers the same @lnum:@offs. This function is clever 2962 * enough to recognize such indexing nodes. 2963 * 2964 * Note, if a znode was deleted or changed too much, then this function will 2965 * not find it. For situations like this UBIFS has the old index RB-tree 2966 * (indexed by @lnum:@offs). 2967 * 2968 * This function returns a pointer to the znode found or %NULL if it is not 2969 * found. A negative error code is returned on failure. 2970 */ 2971 static struct ubifs_znode *lookup_znode(struct ubifs_info *c, 2972 union ubifs_key *key, int level, 2973 int lnum, int offs) 2974 { 2975 struct ubifs_znode *znode, *zn; 2976 int n, nn; 2977 2978 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); 2979 2980 /* 2981 * The arguments have probably been read off flash, so don't assume 2982 * they are valid. 2983 */ 2984 if (level < 0) 2985 return ERR_PTR(-EINVAL); 2986 2987 /* Get the root znode */ 2988 znode = c->zroot.znode; 2989 if (!znode) { 2990 znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 2991 if (IS_ERR(znode)) 2992 return znode; 2993 } 2994 /* Check if it is the one we are looking for */ 2995 if (c->zroot.lnum == lnum && c->zroot.offs == offs) 2996 return znode; 2997 /* Descend to the parent level i.e. (level + 1) */ 2998 if (level >= znode->level) 2999 return NULL; 3000 while (1) { 3001 ubifs_search_zbranch(c, znode, key, &n); 3002 if (n < 0) { 3003 /* 3004 * We reached a znode where the leftmost key is greater 3005 * than the key we are searching for. This is the same 3006 * situation as the one described in a huge comment at 3007 * the end of the 'ubifs_lookup_level0()' function. And 3008 * for exactly the same reasons we have to try to look 3009 * left before giving up. 3010 */ 3011 znode = left_znode(c, znode); 3012 if (!znode) 3013 return NULL; 3014 if (IS_ERR(znode)) 3015 return znode; 3016 ubifs_search_zbranch(c, znode, key, &n); 3017 ubifs_assert(n >= 0); 3018 } 3019 if (znode->level == level + 1) 3020 break; 3021 znode = get_znode(c, znode, n); 3022 if (IS_ERR(znode)) 3023 return znode; 3024 } 3025 /* Check if the child is the one we are looking for */ 3026 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs) 3027 return get_znode(c, znode, n); 3028 /* If the key is unique, there is nowhere else to look */ 3029 if (!is_hash_key(c, key)) 3030 return NULL; 3031 /* 3032 * The key is not unique and so may be also in the znodes to either 3033 * side. 3034 */ 3035 zn = znode; 3036 nn = n; 3037 /* Look left */ 3038 while (1) { 3039 /* Move one branch to the left */ 3040 if (n) 3041 n -= 1; 3042 else { 3043 znode = left_znode(c, znode); 3044 if (!znode) 3045 break; 3046 if (IS_ERR(znode)) 3047 return znode; 3048 n = znode->child_cnt - 1; 3049 } 3050 /* Check it */ 3051 if (znode->zbranch[n].lnum == lnum && 3052 znode->zbranch[n].offs == offs) 3053 return get_znode(c, znode, n); 3054 /* Stop if the key is less than the one we are looking for */ 3055 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0) 3056 break; 3057 } 3058 /* Back to the middle */ 3059 znode = zn; 3060 n = nn; 3061 /* Look right */ 3062 while (1) { 3063 /* Move one branch to the right */ 3064 if (++n >= znode->child_cnt) { 3065 znode = right_znode(c, znode); 3066 if (!znode) 3067 break; 3068 if (IS_ERR(znode)) 3069 return znode; 3070 n = 0; 3071 } 3072 /* Check it */ 3073 if (znode->zbranch[n].lnum == lnum && 3074 znode->zbranch[n].offs == offs) 3075 return get_znode(c, znode, n); 3076 /* Stop if the key is greater than the one we are looking for */ 3077 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0) 3078 break; 3079 } 3080 return NULL; 3081 } 3082 3083 /** 3084 * is_idx_node_in_tnc - determine if an index node is in the TNC. 3085 * @c: UBIFS file-system description object 3086 * @key: key of index node 3087 * @level: index node level 3088 * @lnum: LEB number of index node 3089 * @offs: offset of index node 3090 * 3091 * This function returns %0 if the index node is not referred to in the TNC, %1 3092 * if the index node is referred to in the TNC and the corresponding znode is 3093 * dirty, %2 if an index node is referred to in the TNC and the corresponding 3094 * znode is clean, and a negative error code in case of failure. 3095 * 3096 * Note, the @key argument has to be the key of the first child. Also note, 3097 * this function relies on the fact that 0:0 is never a valid LEB number and 3098 * offset for a main-area node. 3099 */ 3100 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, 3101 int lnum, int offs) 3102 { 3103 struct ubifs_znode *znode; 3104 3105 znode = lookup_znode(c, key, level, lnum, offs); 3106 if (!znode) 3107 return 0; 3108 if (IS_ERR(znode)) 3109 return PTR_ERR(znode); 3110 3111 return ubifs_zn_dirty(znode) ? 1 : 2; 3112 } 3113 3114 /** 3115 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC. 3116 * @c: UBIFS file-system description object 3117 * @key: node key 3118 * @lnum: node LEB number 3119 * @offs: node offset 3120 * 3121 * This function returns %1 if the node is referred to in the TNC, %0 if it is 3122 * not, and a negative error code in case of failure. 3123 * 3124 * Note, this function relies on the fact that 0:0 is never a valid LEB number 3125 * and offset for a main-area node. 3126 */ 3127 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, 3128 int lnum, int offs) 3129 { 3130 struct ubifs_zbranch *zbr; 3131 struct ubifs_znode *znode, *zn; 3132 int n, found, err, nn; 3133 const int unique = !is_hash_key(c, key); 3134 3135 found = ubifs_lookup_level0(c, key, &znode, &n); 3136 if (found < 0) 3137 return found; /* Error code */ 3138 if (!found) 3139 return 0; 3140 zbr = &znode->zbranch[n]; 3141 if (lnum == zbr->lnum && offs == zbr->offs) 3142 return 1; /* Found it */ 3143 if (unique) 3144 return 0; 3145 /* 3146 * Because the key is not unique, we have to look left 3147 * and right as well 3148 */ 3149 zn = znode; 3150 nn = n; 3151 /* Look left */ 3152 while (1) { 3153 err = tnc_prev(c, &znode, &n); 3154 if (err == -ENOENT) 3155 break; 3156 if (err) 3157 return err; 3158 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3159 break; 3160 zbr = &znode->zbranch[n]; 3161 if (lnum == zbr->lnum && offs == zbr->offs) 3162 return 1; /* Found it */ 3163 } 3164 /* Look right */ 3165 znode = zn; 3166 n = nn; 3167 while (1) { 3168 err = tnc_next(c, &znode, &n); 3169 if (err) { 3170 if (err == -ENOENT) 3171 return 0; 3172 return err; 3173 } 3174 if (keys_cmp(c, key, &znode->zbranch[n].key)) 3175 break; 3176 zbr = &znode->zbranch[n]; 3177 if (lnum == zbr->lnum && offs == zbr->offs) 3178 return 1; /* Found it */ 3179 } 3180 return 0; 3181 } 3182 3183 /** 3184 * ubifs_tnc_has_node - determine whether a node is in the TNC. 3185 * @c: UBIFS file-system description object 3186 * @key: node key 3187 * @level: index node level (if it is an index node) 3188 * @lnum: node LEB number 3189 * @offs: node offset 3190 * @is_idx: non-zero if the node is an index node 3191 * 3192 * This function returns %1 if the node is in the TNC, %0 if it is not, and a 3193 * negative error code in case of failure. For index nodes, @key has to be the 3194 * key of the first child. An index node is considered to be in the TNC only if 3195 * the corresponding znode is clean or has not been loaded. 3196 */ 3197 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, 3198 int lnum, int offs, int is_idx) 3199 { 3200 int err; 3201 3202 mutex_lock(&c->tnc_mutex); 3203 if (is_idx) { 3204 err = is_idx_node_in_tnc(c, key, level, lnum, offs); 3205 if (err < 0) 3206 goto out_unlock; 3207 if (err == 1) 3208 /* The index node was found but it was dirty */ 3209 err = 0; 3210 else if (err == 2) 3211 /* The index node was found and it was clean */ 3212 err = 1; 3213 else 3214 BUG_ON(err != 0); 3215 } else 3216 err = is_leaf_node_in_tnc(c, key, lnum, offs); 3217 3218 out_unlock: 3219 mutex_unlock(&c->tnc_mutex); 3220 return err; 3221 } 3222 3223 /** 3224 * ubifs_dirty_idx_node - dirty an index node. 3225 * @c: UBIFS file-system description object 3226 * @key: index node key 3227 * @level: index node level 3228 * @lnum: index node LEB number 3229 * @offs: index node offset 3230 * 3231 * This function loads and dirties an index node so that it can be garbage 3232 * collected. The @key argument has to be the key of the first child. This 3233 * function relies on the fact that 0:0 is never a valid LEB number and offset 3234 * for a main-area node. Returns %0 on success and a negative error code on 3235 * failure. 3236 */ 3237 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, 3238 int lnum, int offs) 3239 { 3240 struct ubifs_znode *znode; 3241 int err = 0; 3242 3243 mutex_lock(&c->tnc_mutex); 3244 znode = lookup_znode(c, key, level, lnum, offs); 3245 if (!znode) 3246 goto out_unlock; 3247 if (IS_ERR(znode)) { 3248 err = PTR_ERR(znode); 3249 goto out_unlock; 3250 } 3251 znode = dirty_cow_bottom_up(c, znode); 3252 if (IS_ERR(znode)) { 3253 err = PTR_ERR(znode); 3254 goto out_unlock; 3255 } 3256 3257 out_unlock: 3258 mutex_unlock(&c->tnc_mutex); 3259 return err; 3260 } 3261 3262 /** 3263 * dbg_check_inode_size - check if inode size is correct. 3264 * @c: UBIFS file-system description object 3265 * @inum: inode number 3266 * @size: inode size 3267 * 3268 * This function makes sure that the inode size (@size) is correct and it does 3269 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL 3270 * if it has a data page beyond @size, and other negative error code in case of 3271 * other errors. 3272 */ 3273 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode, 3274 loff_t size) 3275 { 3276 int err, n; 3277 union ubifs_key from_key, to_key, *key; 3278 struct ubifs_znode *znode; 3279 unsigned int block; 3280 3281 if (!S_ISREG(inode->i_mode)) 3282 return 0; 3283 if (!dbg_is_chk_gen(c)) 3284 return 0; 3285 3286 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 3287 data_key_init(c, &from_key, inode->i_ino, block); 3288 highest_data_key(c, &to_key, inode->i_ino); 3289 3290 mutex_lock(&c->tnc_mutex); 3291 err = ubifs_lookup_level0(c, &from_key, &znode, &n); 3292 if (err < 0) 3293 goto out_unlock; 3294 3295 if (err) { 3296 key = &from_key; 3297 goto out_dump; 3298 } 3299 3300 err = tnc_next(c, &znode, &n); 3301 if (err == -ENOENT) { 3302 err = 0; 3303 goto out_unlock; 3304 } 3305 if (err < 0) 3306 goto out_unlock; 3307 3308 ubifs_assert(err == 0); 3309 key = &znode->zbranch[n].key; 3310 if (!key_in_range(c, key, &from_key, &to_key)) 3311 goto out_unlock; 3312 3313 out_dump: 3314 block = key_block(c, key); 3315 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld", 3316 (unsigned long)inode->i_ino, size, 3317 ((loff_t)block) << UBIFS_BLOCK_SHIFT); 3318 mutex_unlock(&c->tnc_mutex); 3319 ubifs_dump_inode(c, inode); 3320 dump_stack(); 3321 return -EINVAL; 3322 3323 out_unlock: 3324 mutex_unlock(&c->tnc_mutex); 3325 return err; 3326 } 3327