xref: /linux/fs/ubifs/tnc.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include "ubifs.h"
35 
36 /*
37  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38  * @NAME_LESS: name corresponding to the first argument is less than second
39  * @NAME_MATCHES: names match
40  * @NAME_GREATER: name corresponding to the second argument is greater than
41  *                first
42  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43  *
44  * These constants were introduce to improve readability.
45  */
46 enum {
47 	NAME_LESS    = 0,
48 	NAME_MATCHES = 1,
49 	NAME_GREATER = 2,
50 	NOT_ON_MEDIA = 3,
51 };
52 
53 /**
54  * insert_old_idx - record an index node obsoleted since the last commit start.
55  * @c: UBIFS file-system description object
56  * @lnum: LEB number of obsoleted index node
57  * @offs: offset of obsoleted index node
58  *
59  * Returns %0 on success, and a negative error code on failure.
60  *
61  * For recovery, there must always be a complete intact version of the index on
62  * flash at all times. That is called the "old index". It is the index as at the
63  * time of the last successful commit. Many of the index nodes in the old index
64  * may be dirty, but they must not be erased until the next successful commit
65  * (at which point that index becomes the old index).
66  *
67  * That means that the garbage collection and the in-the-gaps method of
68  * committing must be able to determine if an index node is in the old index.
69  * Most of the old index nodes can be found by looking up the TNC using the
70  * 'lookup_znode()' function. However, some of the old index nodes may have
71  * been deleted from the current index or may have been changed so much that
72  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73  * That is what this function does. The RB-tree is ordered by LEB number and
74  * offset because they uniquely identify the old index node.
75  */
76 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77 {
78 	struct ubifs_old_idx *old_idx, *o;
79 	struct rb_node **p, *parent = NULL;
80 
81 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 	if (unlikely(!old_idx))
83 		return -ENOMEM;
84 	old_idx->lnum = lnum;
85 	old_idx->offs = offs;
86 
87 	p = &c->old_idx.rb_node;
88 	while (*p) {
89 		parent = *p;
90 		o = rb_entry(parent, struct ubifs_old_idx, rb);
91 		if (lnum < o->lnum)
92 			p = &(*p)->rb_left;
93 		else if (lnum > o->lnum)
94 			p = &(*p)->rb_right;
95 		else if (offs < o->offs)
96 			p = &(*p)->rb_left;
97 		else if (offs > o->offs)
98 			p = &(*p)->rb_right;
99 		else {
100 			ubifs_err("old idx added twice!");
101 			kfree(old_idx);
102 			return 0;
103 		}
104 	}
105 	rb_link_node(&old_idx->rb, parent, p);
106 	rb_insert_color(&old_idx->rb, &c->old_idx);
107 	return 0;
108 }
109 
110 /**
111  * insert_old_idx_znode - record a znode obsoleted since last commit start.
112  * @c: UBIFS file-system description object
113  * @znode: znode of obsoleted index node
114  *
115  * Returns %0 on success, and a negative error code on failure.
116  */
117 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118 {
119 	if (znode->parent) {
120 		struct ubifs_zbranch *zbr;
121 
122 		zbr = &znode->parent->zbranch[znode->iip];
123 		if (zbr->len)
124 			return insert_old_idx(c, zbr->lnum, zbr->offs);
125 	} else
126 		if (c->zroot.len)
127 			return insert_old_idx(c, c->zroot.lnum,
128 					      c->zroot.offs);
129 	return 0;
130 }
131 
132 /**
133  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134  * @c: UBIFS file-system description object
135  * @znode: znode of obsoleted index node
136  *
137  * Returns %0 on success, and a negative error code on failure.
138  */
139 static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 				 struct ubifs_znode *znode)
141 {
142 	int err;
143 
144 	if (znode->parent) {
145 		struct ubifs_zbranch *zbr;
146 
147 		zbr = &znode->parent->zbranch[znode->iip];
148 		if (zbr->len) {
149 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 			if (err)
151 				return err;
152 			zbr->lnum = 0;
153 			zbr->offs = 0;
154 			zbr->len = 0;
155 		}
156 	} else
157 		if (c->zroot.len) {
158 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 			if (err)
160 				return err;
161 			c->zroot.lnum = 0;
162 			c->zroot.offs = 0;
163 			c->zroot.len = 0;
164 		}
165 	return 0;
166 }
167 
168 /**
169  * destroy_old_idx - destroy the old_idx RB-tree.
170  * @c: UBIFS file-system description object
171  *
172  * During start commit, the old_idx RB-tree is used to avoid overwriting index
173  * nodes that were in the index last commit but have since been deleted.  This
174  * is necessary for recovery i.e. the old index must be kept intact until the
175  * new index is successfully written.  The old-idx RB-tree is used for the
176  * in-the-gaps method of writing index nodes and is destroyed every commit.
177  */
178 void destroy_old_idx(struct ubifs_info *c)
179 {
180 	struct rb_node *this = c->old_idx.rb_node;
181 	struct ubifs_old_idx *old_idx;
182 
183 	while (this) {
184 		if (this->rb_left) {
185 			this = this->rb_left;
186 			continue;
187 		} else if (this->rb_right) {
188 			this = this->rb_right;
189 			continue;
190 		}
191 		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
192 		this = rb_parent(this);
193 		if (this) {
194 			if (this->rb_left == &old_idx->rb)
195 				this->rb_left = NULL;
196 			else
197 				this->rb_right = NULL;
198 		}
199 		kfree(old_idx);
200 	}
201 	c->old_idx = RB_ROOT;
202 }
203 
204 /**
205  * copy_znode - copy a dirty znode.
206  * @c: UBIFS file-system description object
207  * @znode: znode to copy
208  *
209  * A dirty znode being committed may not be changed, so it is copied.
210  */
211 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
212 				      struct ubifs_znode *znode)
213 {
214 	struct ubifs_znode *zn;
215 
216 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
217 	if (unlikely(!zn))
218 		return ERR_PTR(-ENOMEM);
219 
220 	memcpy(zn, znode, c->max_znode_sz);
221 	zn->cnext = NULL;
222 	__set_bit(DIRTY_ZNODE, &zn->flags);
223 	__clear_bit(COW_ZNODE, &zn->flags);
224 
225 	ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
226 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
227 
228 	if (znode->level != 0) {
229 		int i;
230 		const int n = zn->child_cnt;
231 
232 		/* The children now have new parent */
233 		for (i = 0; i < n; i++) {
234 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
235 
236 			if (zbr->znode)
237 				zbr->znode->parent = zn;
238 		}
239 	}
240 
241 	atomic_long_inc(&c->dirty_zn_cnt);
242 	return zn;
243 }
244 
245 /**
246  * add_idx_dirt - add dirt due to a dirty znode.
247  * @c: UBIFS file-system description object
248  * @lnum: LEB number of index node
249  * @dirt: size of index node
250  *
251  * This function updates lprops dirty space and the new size of the index.
252  */
253 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
254 {
255 	c->calc_idx_sz -= ALIGN(dirt, 8);
256 	return ubifs_add_dirt(c, lnum, dirt);
257 }
258 
259 /**
260  * dirty_cow_znode - ensure a znode is not being committed.
261  * @c: UBIFS file-system description object
262  * @zbr: branch of znode to check
263  *
264  * Returns dirtied znode on success or negative error code on failure.
265  */
266 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
267 					   struct ubifs_zbranch *zbr)
268 {
269 	struct ubifs_znode *znode = zbr->znode;
270 	struct ubifs_znode *zn;
271 	int err;
272 
273 	if (!test_bit(COW_ZNODE, &znode->flags)) {
274 		/* znode is not being committed */
275 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
276 			atomic_long_inc(&c->dirty_zn_cnt);
277 			atomic_long_dec(&c->clean_zn_cnt);
278 			atomic_long_dec(&ubifs_clean_zn_cnt);
279 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 			if (unlikely(err))
281 				return ERR_PTR(err);
282 		}
283 		return znode;
284 	}
285 
286 	zn = copy_znode(c, znode);
287 	if (IS_ERR(zn))
288 		return zn;
289 
290 	if (zbr->len) {
291 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
292 		if (unlikely(err))
293 			return ERR_PTR(err);
294 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 	} else
296 		err = 0;
297 
298 	zbr->znode = zn;
299 	zbr->lnum = 0;
300 	zbr->offs = 0;
301 	zbr->len = 0;
302 
303 	if (unlikely(err))
304 		return ERR_PTR(err);
305 	return zn;
306 }
307 
308 /**
309  * lnc_add - add a leaf node to the leaf node cache.
310  * @c: UBIFS file-system description object
311  * @zbr: zbranch of leaf node
312  * @node: leaf node
313  *
314  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
315  * purpose of the leaf node cache is to save re-reading the same leaf node over
316  * and over again. Most things are cached by VFS, however the file system must
317  * cache directory entries for readdir and for resolving hash collisions. The
318  * present implementation of the leaf node cache is extremely simple, and
319  * allows for error returns that are not used but that may be needed if a more
320  * complex implementation is created.
321  *
322  * Note, this function does not add the @node object to LNC directly, but
323  * allocates a copy of the object and adds the copy to LNC. The reason for this
324  * is that @node has been allocated outside of the TNC subsystem and will be
325  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
326  * may be changed at any time, e.g. freed by the shrinker.
327  */
328 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
329 		   const void *node)
330 {
331 	int err;
332 	void *lnc_node;
333 	const struct ubifs_dent_node *dent = node;
334 
335 	ubifs_assert(!zbr->leaf);
336 	ubifs_assert(zbr->len != 0);
337 	ubifs_assert(is_hash_key(c, &zbr->key));
338 
339 	err = ubifs_validate_entry(c, dent);
340 	if (err) {
341 		dbg_dump_stack();
342 		dbg_dump_node(c, dent);
343 		return err;
344 	}
345 
346 	lnc_node = kmalloc(zbr->len, GFP_NOFS);
347 	if (!lnc_node)
348 		/* We don't have to have the cache, so no error */
349 		return 0;
350 
351 	memcpy(lnc_node, node, zbr->len);
352 	zbr->leaf = lnc_node;
353 	return 0;
354 }
355 
356  /**
357  * lnc_add_directly - add a leaf node to the leaf-node-cache.
358  * @c: UBIFS file-system description object
359  * @zbr: zbranch of leaf node
360  * @node: leaf node
361  *
362  * This function is similar to 'lnc_add()', but it does not create a copy of
363  * @node but inserts @node to TNC directly.
364  */
365 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 			    void *node)
367 {
368 	int err;
369 
370 	ubifs_assert(!zbr->leaf);
371 	ubifs_assert(zbr->len != 0);
372 
373 	err = ubifs_validate_entry(c, node);
374 	if (err) {
375 		dbg_dump_stack();
376 		dbg_dump_node(c, node);
377 		return err;
378 	}
379 
380 	zbr->leaf = node;
381 	return 0;
382 }
383 
384 /**
385  * lnc_free - remove a leaf node from the leaf node cache.
386  * @zbr: zbranch of leaf node
387  * @node: leaf node
388  */
389 static void lnc_free(struct ubifs_zbranch *zbr)
390 {
391 	if (!zbr->leaf)
392 		return;
393 	kfree(zbr->leaf);
394 	zbr->leaf = NULL;
395 }
396 
397 /**
398  * tnc_read_node_nm - read a "hashed" leaf node.
399  * @c: UBIFS file-system description object
400  * @zbr: key and position of the node
401  * @node: node is returned here
402  *
403  * This function reads a "hashed" node defined by @zbr from the leaf node cache
404  * (in it is there) or from the hash media, in which case the node is also
405  * added to LNC. Returns zero in case of success or a negative negative error
406  * code in case of failure.
407  */
408 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 			    void *node)
410 {
411 	int err;
412 
413 	ubifs_assert(is_hash_key(c, &zbr->key));
414 
415 	if (zbr->leaf) {
416 		/* Read from the leaf node cache */
417 		ubifs_assert(zbr->len != 0);
418 		memcpy(node, zbr->leaf, zbr->len);
419 		return 0;
420 	}
421 
422 	err = ubifs_tnc_read_node(c, zbr, node);
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @len: node length (not aligned)
437  * @lnum: LEB number of node to read
438  * @offs: offset of node to read
439  *
440  * This function tries to read a node of known type and length, checks it and
441  * stores it in @buf. This function returns %1 if a node is present and %0 if
442  * a node is not present. A negative error code is returned for I/O errors.
443  * This function performs that same function as ubifs_read_node except that
444  * it does not require that there is actually a node present and instead
445  * the return code indicates if a node was read.
446  *
447  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448  * is true (it is controlled by corresponding mount option). However, if
449  * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
450  * checked.
451  */
452 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
453 			 int len, int lnum, int offs)
454 {
455 	int err, node_len;
456 	struct ubifs_ch *ch = buf;
457 	uint32_t crc, node_crc;
458 
459 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
460 
461 	err = ubi_read(c->ubi, lnum, buf, offs, len);
462 	if (err) {
463 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
464 			  type, lnum, offs, err);
465 		return err;
466 	}
467 
468 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
469 		return 0;
470 
471 	if (ch->node_type != type)
472 		return 0;
473 
474 	node_len = le32_to_cpu(ch->len);
475 	if (node_len != len)
476 		return 0;
477 
478 	if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
479 		return 1;
480 
481 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
482 	node_crc = le32_to_cpu(ch->crc);
483 	if (crc != node_crc)
484 		return 0;
485 
486 	return 1;
487 }
488 
489 /**
490  * fallible_read_node - try to read a leaf node.
491  * @c: UBIFS file-system description object
492  * @key:  key of node to read
493  * @zbr:  position of node
494  * @node: node returned
495  *
496  * This function tries to read a node and returns %1 if the node is read, %0
497  * if the node is not present, and a negative error code in the case of error.
498  */
499 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
500 			      struct ubifs_zbranch *zbr, void *node)
501 {
502 	int ret;
503 
504 	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
505 
506 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
507 			    zbr->offs);
508 	if (ret == 1) {
509 		union ubifs_key node_key;
510 		struct ubifs_dent_node *dent = node;
511 
512 		/* All nodes have key in the same place */
513 		key_read(c, &dent->key, &node_key);
514 		if (keys_cmp(c, key, &node_key) != 0)
515 			ret = 0;
516 	}
517 	if (ret == 0 && c->replaying)
518 		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
519 			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
520 	return ret;
521 }
522 
523 /**
524  * matches_name - determine if a direntry or xattr entry matches a given name.
525  * @c: UBIFS file-system description object
526  * @zbr: zbranch of dent
527  * @nm: name to match
528  *
529  * This function checks if xentry/direntry referred by zbranch @zbr matches name
530  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
531  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
532  * of failure, a negative error code is returned.
533  */
534 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
535 			const struct qstr *nm)
536 {
537 	struct ubifs_dent_node *dent;
538 	int nlen, err;
539 
540 	/* If possible, match against the dent in the leaf node cache */
541 	if (!zbr->leaf) {
542 		dent = kmalloc(zbr->len, GFP_NOFS);
543 		if (!dent)
544 			return -ENOMEM;
545 
546 		err = ubifs_tnc_read_node(c, zbr, dent);
547 		if (err)
548 			goto out_free;
549 
550 		/* Add the node to the leaf node cache */
551 		err = lnc_add_directly(c, zbr, dent);
552 		if (err)
553 			goto out_free;
554 	} else
555 		dent = zbr->leaf;
556 
557 	nlen = le16_to_cpu(dent->nlen);
558 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
559 	if (err == 0) {
560 		if (nlen == nm->len)
561 			return NAME_MATCHES;
562 		else if (nlen < nm->len)
563 			return NAME_LESS;
564 		else
565 			return NAME_GREATER;
566 	} else if (err < 0)
567 		return NAME_LESS;
568 	else
569 		return NAME_GREATER;
570 
571 out_free:
572 	kfree(dent);
573 	return err;
574 }
575 
576 /**
577  * get_znode - get a TNC znode that may not be loaded yet.
578  * @c: UBIFS file-system description object
579  * @znode: parent znode
580  * @n: znode branch slot number
581  *
582  * This function returns the znode or a negative error code.
583  */
584 static struct ubifs_znode *get_znode(struct ubifs_info *c,
585 				     struct ubifs_znode *znode, int n)
586 {
587 	struct ubifs_zbranch *zbr;
588 
589 	zbr = &znode->zbranch[n];
590 	if (zbr->znode)
591 		znode = zbr->znode;
592 	else
593 		znode = ubifs_load_znode(c, zbr, znode, n);
594 	return znode;
595 }
596 
597 /**
598  * tnc_next - find next TNC entry.
599  * @c: UBIFS file-system description object
600  * @zn: znode is passed and returned here
601  * @n: znode branch slot number is passed and returned here
602  *
603  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
604  * no next entry, or a negative error code otherwise.
605  */
606 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
607 {
608 	struct ubifs_znode *znode = *zn;
609 	int nn = *n;
610 
611 	nn += 1;
612 	if (nn < znode->child_cnt) {
613 		*n = nn;
614 		return 0;
615 	}
616 	while (1) {
617 		struct ubifs_znode *zp;
618 
619 		zp = znode->parent;
620 		if (!zp)
621 			return -ENOENT;
622 		nn = znode->iip + 1;
623 		znode = zp;
624 		if (nn < znode->child_cnt) {
625 			znode = get_znode(c, znode, nn);
626 			if (IS_ERR(znode))
627 				return PTR_ERR(znode);
628 			while (znode->level != 0) {
629 				znode = get_znode(c, znode, 0);
630 				if (IS_ERR(znode))
631 					return PTR_ERR(znode);
632 			}
633 			nn = 0;
634 			break;
635 		}
636 	}
637 	*zn = znode;
638 	*n = nn;
639 	return 0;
640 }
641 
642 /**
643  * tnc_prev - find previous TNC entry.
644  * @c: UBIFS file-system description object
645  * @zn: znode is returned here
646  * @n: znode branch slot number is passed and returned here
647  *
648  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
649  * there is no next entry, or a negative error code otherwise.
650  */
651 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
652 {
653 	struct ubifs_znode *znode = *zn;
654 	int nn = *n;
655 
656 	if (nn > 0) {
657 		*n = nn - 1;
658 		return 0;
659 	}
660 	while (1) {
661 		struct ubifs_znode *zp;
662 
663 		zp = znode->parent;
664 		if (!zp)
665 			return -ENOENT;
666 		nn = znode->iip - 1;
667 		znode = zp;
668 		if (nn >= 0) {
669 			znode = get_znode(c, znode, nn);
670 			if (IS_ERR(znode))
671 				return PTR_ERR(znode);
672 			while (znode->level != 0) {
673 				nn = znode->child_cnt - 1;
674 				znode = get_znode(c, znode, nn);
675 				if (IS_ERR(znode))
676 					return PTR_ERR(znode);
677 			}
678 			nn = znode->child_cnt - 1;
679 			break;
680 		}
681 	}
682 	*zn = znode;
683 	*n = nn;
684 	return 0;
685 }
686 
687 /**
688  * resolve_collision - resolve a collision.
689  * @c: UBIFS file-system description object
690  * @key: key of a directory or extended attribute entry
691  * @zn: znode is returned here
692  * @n: zbranch number is passed and returned here
693  * @nm: name of the entry
694  *
695  * This function is called for "hashed" keys to make sure that the found key
696  * really corresponds to the looked up node (directory or extended attribute
697  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
698  * %0 is returned if @nm is not found and @zn and @n are set to the previous
699  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
700  * This means that @n may be set to %-1 if the leftmost key in @zn is the
701  * previous one. A negative error code is returned on failures.
702  */
703 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
704 			     struct ubifs_znode **zn, int *n,
705 			     const struct qstr *nm)
706 {
707 	int err;
708 
709 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
710 	if (unlikely(err < 0))
711 		return err;
712 	if (err == NAME_MATCHES)
713 		return 1;
714 
715 	if (err == NAME_GREATER) {
716 		/* Look left */
717 		while (1) {
718 			err = tnc_prev(c, zn, n);
719 			if (err == -ENOENT) {
720 				ubifs_assert(*n == 0);
721 				*n = -1;
722 				return 0;
723 			}
724 			if (err < 0)
725 				return err;
726 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
727 				/*
728 				 * We have found the branch after which we would
729 				 * like to insert, but inserting in this znode
730 				 * may still be wrong. Consider the following 3
731 				 * znodes, in the case where we are resolving a
732 				 * collision with Key2.
733 				 *
734 				 *                  znode zp
735 				 *            ----------------------
736 				 * level 1     |  Key0  |  Key1  |
737 				 *            -----------------------
738 				 *                 |            |
739 				 *       znode za  |            |  znode zb
740 				 *          ------------      ------------
741 				 * level 0  |  Key0  |        |  Key2  |
742 				 *          ------------      ------------
743 				 *
744 				 * The lookup finds Key2 in znode zb. Lets say
745 				 * there is no match and the name is greater so
746 				 * we look left. When we find Key0, we end up
747 				 * here. If we return now, we will insert into
748 				 * znode za at slot n = 1.  But that is invalid
749 				 * according to the parent's keys.  Key2 must
750 				 * be inserted into znode zb.
751 				 *
752 				 * Note, this problem is not relevant for the
753 				 * case when we go right, because
754 				 * 'tnc_insert()' would correct the parent key.
755 				 */
756 				if (*n == (*zn)->child_cnt - 1) {
757 					err = tnc_next(c, zn, n);
758 					if (err) {
759 						/* Should be impossible */
760 						ubifs_assert(0);
761 						if (err == -ENOENT)
762 							err = -EINVAL;
763 						return err;
764 					}
765 					ubifs_assert(*n == 0);
766 					*n = -1;
767 				}
768 				return 0;
769 			}
770 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
771 			if (err < 0)
772 				return err;
773 			if (err == NAME_LESS)
774 				return 0;
775 			if (err == NAME_MATCHES)
776 				return 1;
777 			ubifs_assert(err == NAME_GREATER);
778 		}
779 	} else {
780 		int nn = *n;
781 		struct ubifs_znode *znode = *zn;
782 
783 		/* Look right */
784 		while (1) {
785 			err = tnc_next(c, &znode, &nn);
786 			if (err == -ENOENT)
787 				return 0;
788 			if (err < 0)
789 				return err;
790 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
791 				return 0;
792 			err = matches_name(c, &znode->zbranch[nn], nm);
793 			if (err < 0)
794 				return err;
795 			if (err == NAME_GREATER)
796 				return 0;
797 			*zn = znode;
798 			*n = nn;
799 			if (err == NAME_MATCHES)
800 				return 1;
801 			ubifs_assert(err == NAME_LESS);
802 		}
803 	}
804 }
805 
806 /**
807  * fallible_matches_name - determine if a dent matches a given name.
808  * @c: UBIFS file-system description object
809  * @zbr: zbranch of dent
810  * @nm: name to match
811  *
812  * This is a "fallible" version of 'matches_name()' function which does not
813  * panic if the direntry/xentry referred by @zbr does not exist on the media.
814  *
815  * This function checks if xentry/direntry referred by zbranch @zbr matches name
816  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
817  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
818  * if xentry/direntry referred by @zbr does not exist on the media. A negative
819  * error code is returned in case of failure.
820  */
821 static int fallible_matches_name(struct ubifs_info *c,
822 				 struct ubifs_zbranch *zbr,
823 				 const struct qstr *nm)
824 {
825 	struct ubifs_dent_node *dent;
826 	int nlen, err;
827 
828 	/* If possible, match against the dent in the leaf node cache */
829 	if (!zbr->leaf) {
830 		dent = kmalloc(zbr->len, GFP_NOFS);
831 		if (!dent)
832 			return -ENOMEM;
833 
834 		err = fallible_read_node(c, &zbr->key, zbr, dent);
835 		if (err < 0)
836 			goto out_free;
837 		if (err == 0) {
838 			/* The node was not present */
839 			err = NOT_ON_MEDIA;
840 			goto out_free;
841 		}
842 		ubifs_assert(err == 1);
843 
844 		err = lnc_add_directly(c, zbr, dent);
845 		if (err)
846 			goto out_free;
847 	} else
848 		dent = zbr->leaf;
849 
850 	nlen = le16_to_cpu(dent->nlen);
851 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
852 	if (err == 0) {
853 		if (nlen == nm->len)
854 			return NAME_MATCHES;
855 		else if (nlen < nm->len)
856 			return NAME_LESS;
857 		else
858 			return NAME_GREATER;
859 	} else if (err < 0)
860 		return NAME_LESS;
861 	else
862 		return NAME_GREATER;
863 
864 out_free:
865 	kfree(dent);
866 	return err;
867 }
868 
869 /**
870  * fallible_resolve_collision - resolve a collision even if nodes are missing.
871  * @c: UBIFS file-system description object
872  * @key: key
873  * @zn: znode is returned here
874  * @n: branch number is passed and returned here
875  * @nm: name of directory entry
876  * @adding: indicates caller is adding a key to the TNC
877  *
878  * This is a "fallible" version of the 'resolve_collision()' function which
879  * does not panic if one of the nodes referred to by TNC does not exist on the
880  * media. This may happen when replaying the journal if a deleted node was
881  * Garbage-collected and the commit was not done. A branch that refers to a node
882  * that is not present is called a dangling branch. The following are the return
883  * codes for this function:
884  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
885  *    branch;
886  *  o if we are @adding and @nm was not found, %0 is returned;
887  *  o if we are not @adding and @nm was not found, but a dangling branch was
888  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
889  *  o a negative error code is returned in case of failure.
890  */
891 static int fallible_resolve_collision(struct ubifs_info *c,
892 				      const union ubifs_key *key,
893 				      struct ubifs_znode **zn, int *n,
894 				      const struct qstr *nm, int adding)
895 {
896 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
897 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
898 
899 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
900 	if (unlikely(cmp < 0))
901 		return cmp;
902 	if (cmp == NAME_MATCHES)
903 		return 1;
904 	if (cmp == NOT_ON_MEDIA) {
905 		o_znode = znode;
906 		o_n = nn;
907 		/*
908 		 * We are unlucky and hit a dangling branch straight away.
909 		 * Now we do not really know where to go to find the needed
910 		 * branch - to the left or to the right. Well, let's try left.
911 		 */
912 		unsure = 1;
913 	} else if (!adding)
914 		unsure = 1; /* Remove a dangling branch wherever it is */
915 
916 	if (cmp == NAME_GREATER || unsure) {
917 		/* Look left */
918 		while (1) {
919 			err = tnc_prev(c, zn, n);
920 			if (err == -ENOENT) {
921 				ubifs_assert(*n == 0);
922 				*n = -1;
923 				break;
924 			}
925 			if (err < 0)
926 				return err;
927 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
928 				/* See comments in 'resolve_collision()' */
929 				if (*n == (*zn)->child_cnt - 1) {
930 					err = tnc_next(c, zn, n);
931 					if (err) {
932 						/* Should be impossible */
933 						ubifs_assert(0);
934 						if (err == -ENOENT)
935 							err = -EINVAL;
936 						return err;
937 					}
938 					ubifs_assert(*n == 0);
939 					*n = -1;
940 				}
941 				break;
942 			}
943 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
944 			if (err < 0)
945 				return err;
946 			if (err == NAME_MATCHES)
947 				return 1;
948 			if (err == NOT_ON_MEDIA) {
949 				o_znode = *zn;
950 				o_n = *n;
951 				continue;
952 			}
953 			if (!adding)
954 				continue;
955 			if (err == NAME_LESS)
956 				break;
957 			else
958 				unsure = 0;
959 		}
960 	}
961 
962 	if (cmp == NAME_LESS || unsure) {
963 		/* Look right */
964 		*zn = znode;
965 		*n = nn;
966 		while (1) {
967 			err = tnc_next(c, &znode, &nn);
968 			if (err == -ENOENT)
969 				break;
970 			if (err < 0)
971 				return err;
972 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
973 				break;
974 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
975 			if (err < 0)
976 				return err;
977 			if (err == NAME_GREATER)
978 				break;
979 			*zn = znode;
980 			*n = nn;
981 			if (err == NAME_MATCHES)
982 				return 1;
983 			if (err == NOT_ON_MEDIA) {
984 				o_znode = znode;
985 				o_n = nn;
986 			}
987 		}
988 	}
989 
990 	/* Never match a dangling branch when adding */
991 	if (adding || !o_znode)
992 		return 0;
993 
994 	dbg_mnt("dangling match LEB %d:%d len %d %s",
995 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
996 		o_znode->zbranch[o_n].len, DBGKEY(key));
997 	*zn = o_znode;
998 	*n = o_n;
999 	return 1;
1000 }
1001 
1002 /**
1003  * matches_position - determine if a zbranch matches a given position.
1004  * @zbr: zbranch of dent
1005  * @lnum: LEB number of dent to match
1006  * @offs: offset of dent to match
1007  *
1008  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1009  */
1010 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1011 {
1012 	if (zbr->lnum == lnum && zbr->offs == offs)
1013 		return 1;
1014 	else
1015 		return 0;
1016 }
1017 
1018 /**
1019  * resolve_collision_directly - resolve a collision directly.
1020  * @c: UBIFS file-system description object
1021  * @key: key of directory entry
1022  * @zn: znode is passed and returned here
1023  * @n: zbranch number is passed and returned here
1024  * @lnum: LEB number of dent node to match
1025  * @offs: offset of dent node to match
1026  *
1027  * This function is used for "hashed" keys to make sure the found directory or
1028  * extended attribute entry node is what was looked for. It is used when the
1029  * flash address of the right node is known (@lnum:@offs) which makes it much
1030  * easier to resolve collisions (no need to read entries and match full
1031  * names). This function returns %1 and sets @zn and @n if the collision is
1032  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1033  * previous directory entry. Otherwise a negative error code is returned.
1034  */
1035 static int resolve_collision_directly(struct ubifs_info *c,
1036 				      const union ubifs_key *key,
1037 				      struct ubifs_znode **zn, int *n,
1038 				      int lnum, int offs)
1039 {
1040 	struct ubifs_znode *znode;
1041 	int nn, err;
1042 
1043 	znode = *zn;
1044 	nn = *n;
1045 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1046 		return 1;
1047 
1048 	/* Look left */
1049 	while (1) {
1050 		err = tnc_prev(c, &znode, &nn);
1051 		if (err == -ENOENT)
1052 			break;
1053 		if (err < 0)
1054 			return err;
1055 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1056 			break;
1057 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1058 			*zn = znode;
1059 			*n = nn;
1060 			return 1;
1061 		}
1062 	}
1063 
1064 	/* Look right */
1065 	znode = *zn;
1066 	nn = *n;
1067 	while (1) {
1068 		err = tnc_next(c, &znode, &nn);
1069 		if (err == -ENOENT)
1070 			return 0;
1071 		if (err < 0)
1072 			return err;
1073 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1074 			return 0;
1075 		*zn = znode;
1076 		*n = nn;
1077 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1078 			return 1;
1079 	}
1080 }
1081 
1082 /**
1083  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1084  * @c: UBIFS file-system description object
1085  * @znode: znode to dirty
1086  *
1087  * If we do not have a unique key that resides in a znode, then we cannot
1088  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1089  * This function records the path back to the last dirty ancestor, and then
1090  * dirties the znodes on that path.
1091  */
1092 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1093 					       struct ubifs_znode *znode)
1094 {
1095 	struct ubifs_znode *zp;
1096 	int *path = c->bottom_up_buf, p = 0;
1097 
1098 	ubifs_assert(c->zroot.znode);
1099 	ubifs_assert(znode);
1100 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1101 		kfree(c->bottom_up_buf);
1102 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1103 					   GFP_NOFS);
1104 		if (!c->bottom_up_buf)
1105 			return ERR_PTR(-ENOMEM);
1106 		path = c->bottom_up_buf;
1107 	}
1108 	if (c->zroot.znode->level) {
1109 		/* Go up until parent is dirty */
1110 		while (1) {
1111 			int n;
1112 
1113 			zp = znode->parent;
1114 			if (!zp)
1115 				break;
1116 			n = znode->iip;
1117 			ubifs_assert(p < c->zroot.znode->level);
1118 			path[p++] = n;
1119 			if (!zp->cnext && ubifs_zn_dirty(znode))
1120 				break;
1121 			znode = zp;
1122 		}
1123 	}
1124 
1125 	/* Come back down, dirtying as we go */
1126 	while (1) {
1127 		struct ubifs_zbranch *zbr;
1128 
1129 		zp = znode->parent;
1130 		if (zp) {
1131 			ubifs_assert(path[p - 1] >= 0);
1132 			ubifs_assert(path[p - 1] < zp->child_cnt);
1133 			zbr = &zp->zbranch[path[--p]];
1134 			znode = dirty_cow_znode(c, zbr);
1135 		} else {
1136 			ubifs_assert(znode == c->zroot.znode);
1137 			znode = dirty_cow_znode(c, &c->zroot);
1138 		}
1139 		if (IS_ERR(znode) || !p)
1140 			break;
1141 		ubifs_assert(path[p - 1] >= 0);
1142 		ubifs_assert(path[p - 1] < znode->child_cnt);
1143 		znode = znode->zbranch[path[p - 1]].znode;
1144 	}
1145 
1146 	return znode;
1147 }
1148 
1149 /**
1150  * ubifs_lookup_level0 - search for zero-level znode.
1151  * @c: UBIFS file-system description object
1152  * @key:  key to lookup
1153  * @zn: znode is returned here
1154  * @n: znode branch slot number is returned here
1155  *
1156  * This function looks up the TNC tree and search for zero-level znode which
1157  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1158  * cases:
1159  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1160  *     is returned and slot number of the matched branch is stored in @n;
1161  *   o not exact match, which means that zero-level znode does not contain
1162  *     @key, then %0 is returned and slot number of the closest branch is stored
1163  *     in @n;
1164  *   o @key is so small that it is even less than the lowest key of the
1165  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1166  *
1167  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1168  * function reads corresponding indexing nodes and inserts them to TNC. In
1169  * case of failure, a negative error code is returned.
1170  */
1171 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1172 			struct ubifs_znode **zn, int *n)
1173 {
1174 	int err, exact;
1175 	struct ubifs_znode *znode;
1176 	unsigned long time = get_seconds();
1177 
1178 	dbg_tnc("search key %s", DBGKEY(key));
1179 
1180 	znode = c->zroot.znode;
1181 	if (unlikely(!znode)) {
1182 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1183 		if (IS_ERR(znode))
1184 			return PTR_ERR(znode);
1185 	}
1186 
1187 	znode->time = time;
1188 
1189 	while (1) {
1190 		struct ubifs_zbranch *zbr;
1191 
1192 		exact = ubifs_search_zbranch(c, znode, key, n);
1193 
1194 		if (znode->level == 0)
1195 			break;
1196 
1197 		if (*n < 0)
1198 			*n = 0;
1199 		zbr = &znode->zbranch[*n];
1200 
1201 		if (zbr->znode) {
1202 			znode->time = time;
1203 			znode = zbr->znode;
1204 			continue;
1205 		}
1206 
1207 		/* znode is not in TNC cache, load it from the media */
1208 		znode = ubifs_load_znode(c, zbr, znode, *n);
1209 		if (IS_ERR(znode))
1210 			return PTR_ERR(znode);
1211 	}
1212 
1213 	*zn = znode;
1214 	if (exact || !is_hash_key(c, key) || *n != -1) {
1215 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1216 		return exact;
1217 	}
1218 
1219 	/*
1220 	 * Here is a tricky place. We have not found the key and this is a
1221 	 * "hashed" key, which may collide. The rest of the code deals with
1222 	 * situations like this:
1223 	 *
1224 	 *                  | 3 | 5 |
1225 	 *                  /       \
1226 	 *          | 3 | 5 |      | 6 | 7 | (x)
1227 	 *
1228 	 * Or more a complex example:
1229 	 *
1230 	 *                | 1 | 5 |
1231 	 *                /       \
1232 	 *       | 1 | 3 |         | 5 | 8 |
1233 	 *              \           /
1234 	 *          | 5 | 5 |   | 6 | 7 | (x)
1235 	 *
1236 	 * In the examples, if we are looking for key "5", we may reach nodes
1237 	 * marked with "(x)". In this case what we have do is to look at the
1238 	 * left and see if there is "5" key there. If there is, we have to
1239 	 * return it.
1240 	 *
1241 	 * Note, this whole situation is possible because we allow to have
1242 	 * elements which are equivalent to the next key in the parent in the
1243 	 * children of current znode. For example, this happens if we split a
1244 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1245 	 * like this:
1246 	 *                      | 3 | 5 |
1247 	 *                       /     \
1248 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1249 	 *                              ^
1250 	 * And this becomes what is at the first "picture" after key "5" marked
1251 	 * with "^" is removed. What could be done is we could prohibit
1252 	 * splitting in the middle of the colliding sequence. Also, when
1253 	 * removing the leftmost key, we would have to correct the key of the
1254 	 * parent node, which would introduce additional complications. Namely,
1255 	 * if we changed the leftmost key of the parent znode, the garbage
1256 	 * collector would be unable to find it (GC is doing this when GC'ing
1257 	 * indexing LEBs). Although we already have an additional RB-tree where
1258 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1259 	 * after the commit. But anyway, this does not look easy to implement
1260 	 * so we did not try this.
1261 	 */
1262 	err = tnc_prev(c, &znode, n);
1263 	if (err == -ENOENT) {
1264 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1265 		*n = -1;
1266 		return 0;
1267 	}
1268 	if (unlikely(err < 0))
1269 		return err;
1270 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1271 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272 		*n = -1;
1273 		return 0;
1274 	}
1275 
1276 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1277 	*zn = znode;
1278 	return 1;
1279 }
1280 
1281 /**
1282  * lookup_level0_dirty - search for zero-level znode dirtying.
1283  * @c: UBIFS file-system description object
1284  * @key:  key to lookup
1285  * @zn: znode is returned here
1286  * @n: znode branch slot number is returned here
1287  *
1288  * This function looks up the TNC tree and search for zero-level znode which
1289  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1290  * cases:
1291  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1292  *     is returned and slot number of the matched branch is stored in @n;
1293  *   o not exact match, which means that zero-level znode does not contain @key
1294  *     then %0 is returned and slot number of the closed branch is stored in
1295  *     @n;
1296  *   o @key is so small that it is even less than the lowest key of the
1297  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1298  *
1299  * Additionally all znodes in the path from the root to the located zero-level
1300  * znode are marked as dirty.
1301  *
1302  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1303  * function reads corresponding indexing nodes and inserts them to TNC. In
1304  * case of failure, a negative error code is returned.
1305  */
1306 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1307 			       struct ubifs_znode **zn, int *n)
1308 {
1309 	int err, exact;
1310 	struct ubifs_znode *znode;
1311 	unsigned long time = get_seconds();
1312 
1313 	dbg_tnc("search and dirty key %s", DBGKEY(key));
1314 
1315 	znode = c->zroot.znode;
1316 	if (unlikely(!znode)) {
1317 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1318 		if (IS_ERR(znode))
1319 			return PTR_ERR(znode);
1320 	}
1321 
1322 	znode = dirty_cow_znode(c, &c->zroot);
1323 	if (IS_ERR(znode))
1324 		return PTR_ERR(znode);
1325 
1326 	znode->time = time;
1327 
1328 	while (1) {
1329 		struct ubifs_zbranch *zbr;
1330 
1331 		exact = ubifs_search_zbranch(c, znode, key, n);
1332 
1333 		if (znode->level == 0)
1334 			break;
1335 
1336 		if (*n < 0)
1337 			*n = 0;
1338 		zbr = &znode->zbranch[*n];
1339 
1340 		if (zbr->znode) {
1341 			znode->time = time;
1342 			znode = dirty_cow_znode(c, zbr);
1343 			if (IS_ERR(znode))
1344 				return PTR_ERR(znode);
1345 			continue;
1346 		}
1347 
1348 		/* znode is not in TNC cache, load it from the media */
1349 		znode = ubifs_load_znode(c, zbr, znode, *n);
1350 		if (IS_ERR(znode))
1351 			return PTR_ERR(znode);
1352 		znode = dirty_cow_znode(c, zbr);
1353 		if (IS_ERR(znode))
1354 			return PTR_ERR(znode);
1355 	}
1356 
1357 	*zn = znode;
1358 	if (exact || !is_hash_key(c, key) || *n != -1) {
1359 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1360 		return exact;
1361 	}
1362 
1363 	/*
1364 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1365 	 * code.
1366 	 */
1367 	err = tnc_prev(c, &znode, n);
1368 	if (err == -ENOENT) {
1369 		*n = -1;
1370 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1371 		return 0;
1372 	}
1373 	if (unlikely(err < 0))
1374 		return err;
1375 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1376 		*n = -1;
1377 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378 		return 0;
1379 	}
1380 
1381 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1382 		znode = dirty_cow_bottom_up(c, znode);
1383 		if (IS_ERR(znode))
1384 			return PTR_ERR(znode);
1385 	}
1386 
1387 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1388 	*zn = znode;
1389 	return 1;
1390 }
1391 
1392 /**
1393  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1394  * @c: UBIFS file-system description object
1395  * @lnum: LEB number
1396  * @gc_seq1: garbage collection sequence number
1397  *
1398  * This function determines if @lnum may have been garbage collected since
1399  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1400  * %0 is returned.
1401  */
1402 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1403 {
1404 	int gc_seq2, gced_lnum;
1405 
1406 	gced_lnum = c->gced_lnum;
1407 	smp_rmb();
1408 	gc_seq2 = c->gc_seq;
1409 	/* Same seq means no GC */
1410 	if (gc_seq1 == gc_seq2)
1411 		return 0;
1412 	/* Different by more than 1 means we don't know */
1413 	if (gc_seq1 + 1 != gc_seq2)
1414 		return 1;
1415 	/*
1416 	 * We have seen the sequence number has increased by 1. Now we need to
1417 	 * be sure we read the right LEB number, so read it again.
1418 	 */
1419 	smp_rmb();
1420 	if (gced_lnum != c->gced_lnum)
1421 		return 1;
1422 	/* Finally we can check lnum */
1423 	if (gced_lnum == lnum)
1424 		return 1;
1425 	return 0;
1426 }
1427 
1428 /**
1429  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1430  * @c: UBIFS file-system description object
1431  * @key: node key to lookup
1432  * @node: the node is returned here
1433  * @lnum: LEB number is returned here
1434  * @offs: offset is returned here
1435  *
1436  * This function looks up and reads node with key @key. The caller has to make
1437  * sure the @node buffer is large enough to fit the node. Returns zero in case
1438  * of success, %-ENOENT if the node was not found, and a negative error code in
1439  * case of failure. The node location can be returned in @lnum and @offs.
1440  */
1441 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1442 		     void *node, int *lnum, int *offs)
1443 {
1444 	int found, n, err, safely = 0, gc_seq1;
1445 	struct ubifs_znode *znode;
1446 	struct ubifs_zbranch zbr, *zt;
1447 
1448 again:
1449 	mutex_lock(&c->tnc_mutex);
1450 	found = ubifs_lookup_level0(c, key, &znode, &n);
1451 	if (!found) {
1452 		err = -ENOENT;
1453 		goto out;
1454 	} else if (found < 0) {
1455 		err = found;
1456 		goto out;
1457 	}
1458 	zt = &znode->zbranch[n];
1459 	if (lnum) {
1460 		*lnum = zt->lnum;
1461 		*offs = zt->offs;
1462 	}
1463 	if (is_hash_key(c, key)) {
1464 		/*
1465 		 * In this case the leaf node cache gets used, so we pass the
1466 		 * address of the zbranch and keep the mutex locked
1467 		 */
1468 		err = tnc_read_node_nm(c, zt, node);
1469 		goto out;
1470 	}
1471 	if (safely) {
1472 		err = ubifs_tnc_read_node(c, zt, node);
1473 		goto out;
1474 	}
1475 	/* Drop the TNC mutex prematurely and race with garbage collection */
1476 	zbr = znode->zbranch[n];
1477 	gc_seq1 = c->gc_seq;
1478 	mutex_unlock(&c->tnc_mutex);
1479 
1480 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1481 		/* We do not GC journal heads */
1482 		err = ubifs_tnc_read_node(c, &zbr, node);
1483 		return err;
1484 	}
1485 
1486 	err = fallible_read_node(c, key, &zbr, node);
1487 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1488 		/*
1489 		 * The node may have been GC'ed out from under us so try again
1490 		 * while keeping the TNC mutex locked.
1491 		 */
1492 		safely = 1;
1493 		goto again;
1494 	}
1495 	return 0;
1496 
1497 out:
1498 	mutex_unlock(&c->tnc_mutex);
1499 	return err;
1500 }
1501 
1502 /**
1503  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1504  * @c: UBIFS file-system description object
1505  * @bu: bulk-read parameters and results
1506  *
1507  * Lookup consecutive data node keys for the same inode that reside
1508  * consecutively in the same LEB. This function returns zero in case of success
1509  * and a negative error code in case of failure.
1510  *
1511  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1512  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1513  * maximum possible amount of nodes for bulk-read.
1514  */
1515 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1516 {
1517 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1518 	int uninitialized_var(len);
1519 	unsigned int block = key_block(c, &bu->key);
1520 	struct ubifs_znode *znode;
1521 
1522 	bu->cnt = 0;
1523 	bu->blk_cnt = 0;
1524 	bu->eof = 0;
1525 
1526 	mutex_lock(&c->tnc_mutex);
1527 	/* Find first key */
1528 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1529 	if (err < 0)
1530 		goto out;
1531 	if (err) {
1532 		/* Key found */
1533 		len = znode->zbranch[n].len;
1534 		/* The buffer must be big enough for at least 1 node */
1535 		if (len > bu->buf_len) {
1536 			err = -EINVAL;
1537 			goto out;
1538 		}
1539 		/* Add this key */
1540 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1541 		bu->blk_cnt += 1;
1542 		lnum = znode->zbranch[n].lnum;
1543 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1544 	}
1545 	while (1) {
1546 		struct ubifs_zbranch *zbr;
1547 		union ubifs_key *key;
1548 		unsigned int next_block;
1549 
1550 		/* Find next key */
1551 		err = tnc_next(c, &znode, &n);
1552 		if (err)
1553 			goto out;
1554 		zbr = &znode->zbranch[n];
1555 		key = &zbr->key;
1556 		/* See if there is another data key for this file */
1557 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1558 		    key_type(c, key) != UBIFS_DATA_KEY) {
1559 			err = -ENOENT;
1560 			goto out;
1561 		}
1562 		if (lnum < 0) {
1563 			/* First key found */
1564 			lnum = zbr->lnum;
1565 			offs = ALIGN(zbr->offs + zbr->len, 8);
1566 			len = zbr->len;
1567 			if (len > bu->buf_len) {
1568 				err = -EINVAL;
1569 				goto out;
1570 			}
1571 		} else {
1572 			/*
1573 			 * The data nodes must be in consecutive positions in
1574 			 * the same LEB.
1575 			 */
1576 			if (zbr->lnum != lnum || zbr->offs != offs)
1577 				goto out;
1578 			offs += ALIGN(zbr->len, 8);
1579 			len = ALIGN(len, 8) + zbr->len;
1580 			/* Must not exceed buffer length */
1581 			if (len > bu->buf_len)
1582 				goto out;
1583 		}
1584 		/* Allow for holes */
1585 		next_block = key_block(c, key);
1586 		bu->blk_cnt += (next_block - block - 1);
1587 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588 			goto out;
1589 		block = next_block;
1590 		/* Add this key */
1591 		bu->zbranch[bu->cnt++] = *zbr;
1592 		bu->blk_cnt += 1;
1593 		/* See if we have room for more */
1594 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1595 			goto out;
1596 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597 			goto out;
1598 	}
1599 out:
1600 	if (err == -ENOENT) {
1601 		bu->eof = 1;
1602 		err = 0;
1603 	}
1604 	bu->gc_seq = c->gc_seq;
1605 	mutex_unlock(&c->tnc_mutex);
1606 	if (err)
1607 		return err;
1608 	/*
1609 	 * An enormous hole could cause bulk-read to encompass too many
1610 	 * page cache pages, so limit the number here.
1611 	 */
1612 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1613 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1614 	/*
1615 	 * Ensure that bulk-read covers a whole number of page cache
1616 	 * pages.
1617 	 */
1618 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1619 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1620 		return 0;
1621 	if (bu->eof) {
1622 		/* At the end of file we can round up */
1623 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1624 		return 0;
1625 	}
1626 	/* Exclude data nodes that do not make up a whole page cache page */
1627 	block = key_block(c, &bu->key) + bu->blk_cnt;
1628 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1629 	while (bu->cnt) {
1630 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1631 			break;
1632 		bu->cnt -= 1;
1633 	}
1634 	return 0;
1635 }
1636 
1637 /**
1638  * read_wbuf - bulk-read from a LEB with a wbuf.
1639  * @wbuf: wbuf that may overlap the read
1640  * @buf: buffer into which to read
1641  * @len: read length
1642  * @lnum: LEB number from which to read
1643  * @offs: offset from which to read
1644  *
1645  * This functions returns %0 on success or a negative error code on failure.
1646  */
1647 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1648 		     int offs)
1649 {
1650 	const struct ubifs_info *c = wbuf->c;
1651 	int rlen, overlap;
1652 
1653 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1654 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1655 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1656 	ubifs_assert(offs + len <= c->leb_size);
1657 
1658 	spin_lock(&wbuf->lock);
1659 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1660 	if (!overlap) {
1661 		/* We may safely unlock the write-buffer and read the data */
1662 		spin_unlock(&wbuf->lock);
1663 		return ubi_read(c->ubi, lnum, buf, offs, len);
1664 	}
1665 
1666 	/* Don't read under wbuf */
1667 	rlen = wbuf->offs - offs;
1668 	if (rlen < 0)
1669 		rlen = 0;
1670 
1671 	/* Copy the rest from the write-buffer */
1672 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1673 	spin_unlock(&wbuf->lock);
1674 
1675 	if (rlen > 0)
1676 		/* Read everything that goes before write-buffer */
1677 		return ubi_read(c->ubi, lnum, buf, offs, rlen);
1678 
1679 	return 0;
1680 }
1681 
1682 /**
1683  * validate_data_node - validate data nodes for bulk-read.
1684  * @c: UBIFS file-system description object
1685  * @buf: buffer containing data node to validate
1686  * @zbr: zbranch of data node to validate
1687  *
1688  * This functions returns %0 on success or a negative error code on failure.
1689  */
1690 static int validate_data_node(struct ubifs_info *c, void *buf,
1691 			      struct ubifs_zbranch *zbr)
1692 {
1693 	union ubifs_key key1;
1694 	struct ubifs_ch *ch = buf;
1695 	int err, len;
1696 
1697 	if (ch->node_type != UBIFS_DATA_NODE) {
1698 		ubifs_err("bad node type (%d but expected %d)",
1699 			  ch->node_type, UBIFS_DATA_NODE);
1700 		goto out_err;
1701 	}
1702 
1703 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1704 	if (err) {
1705 		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1706 		goto out;
1707 	}
1708 
1709 	len = le32_to_cpu(ch->len);
1710 	if (len != zbr->len) {
1711 		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1712 		goto out_err;
1713 	}
1714 
1715 	/* Make sure the key of the read node is correct */
1716 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1717 	if (!keys_eq(c, &zbr->key, &key1)) {
1718 		ubifs_err("bad key in node at LEB %d:%d",
1719 			  zbr->lnum, zbr->offs);
1720 		dbg_tnc("looked for key %s found node's key %s",
1721 			DBGKEY(&zbr->key), DBGKEY1(&key1));
1722 		goto out_err;
1723 	}
1724 
1725 	return 0;
1726 
1727 out_err:
1728 	err = -EINVAL;
1729 out:
1730 	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1731 	dbg_dump_node(c, buf);
1732 	dbg_dump_stack();
1733 	return err;
1734 }
1735 
1736 /**
1737  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1738  * @c: UBIFS file-system description object
1739  * @bu: bulk-read parameters and results
1740  *
1741  * This functions reads and validates the data nodes that were identified by the
1742  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1743  * -EAGAIN to indicate a race with GC, or another negative error code on
1744  * failure.
1745  */
1746 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1747 {
1748 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1749 	struct ubifs_wbuf *wbuf;
1750 	void *buf;
1751 
1752 	len = bu->zbranch[bu->cnt - 1].offs;
1753 	len += bu->zbranch[bu->cnt - 1].len - offs;
1754 	if (len > bu->buf_len) {
1755 		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1756 		return -EINVAL;
1757 	}
1758 
1759 	/* Do the read */
1760 	wbuf = ubifs_get_wbuf(c, lnum);
1761 	if (wbuf)
1762 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1763 	else
1764 		err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1765 
1766 	/* Check for a race with GC */
1767 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1768 		return -EAGAIN;
1769 
1770 	if (err && err != -EBADMSG) {
1771 		ubifs_err("failed to read from LEB %d:%d, error %d",
1772 			  lnum, offs, err);
1773 		dbg_dump_stack();
1774 		dbg_tnc("key %s", DBGKEY(&bu->key));
1775 		return err;
1776 	}
1777 
1778 	/* Validate the nodes read */
1779 	buf = bu->buf;
1780 	for (i = 0; i < bu->cnt; i++) {
1781 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1782 		if (err)
1783 			return err;
1784 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  * do_lookup_nm- look up a "hashed" node.
1792  * @c: UBIFS file-system description object
1793  * @key: node key to lookup
1794  * @node: the node is returned here
1795  * @nm: node name
1796  *
1797  * This function look up and reads a node which contains name hash in the key.
1798  * Since the hash may have collisions, there may be many nodes with the same
1799  * key, so we have to sequentially look to all of them until the needed one is
1800  * found. This function returns zero in case of success, %-ENOENT if the node
1801  * was not found, and a negative error code in case of failure.
1802  */
1803 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1804 			void *node, const struct qstr *nm)
1805 {
1806 	int found, n, err;
1807 	struct ubifs_znode *znode;
1808 
1809 	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1810 	mutex_lock(&c->tnc_mutex);
1811 	found = ubifs_lookup_level0(c, key, &znode, &n);
1812 	if (!found) {
1813 		err = -ENOENT;
1814 		goto out_unlock;
1815 	} else if (found < 0) {
1816 		err = found;
1817 		goto out_unlock;
1818 	}
1819 
1820 	ubifs_assert(n >= 0);
1821 
1822 	err = resolve_collision(c, key, &znode, &n, nm);
1823 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1824 	if (unlikely(err < 0))
1825 		goto out_unlock;
1826 	if (err == 0) {
1827 		err = -ENOENT;
1828 		goto out_unlock;
1829 	}
1830 
1831 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1832 
1833 out_unlock:
1834 	mutex_unlock(&c->tnc_mutex);
1835 	return err;
1836 }
1837 
1838 /**
1839  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1840  * @c: UBIFS file-system description object
1841  * @key: node key to lookup
1842  * @node: the node is returned here
1843  * @nm: node name
1844  *
1845  * This function look up and reads a node which contains name hash in the key.
1846  * Since the hash may have collisions, there may be many nodes with the same
1847  * key, so we have to sequentially look to all of them until the needed one is
1848  * found. This function returns zero in case of success, %-ENOENT if the node
1849  * was not found, and a negative error code in case of failure.
1850  */
1851 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1852 			void *node, const struct qstr *nm)
1853 {
1854 	int err, len;
1855 	const struct ubifs_dent_node *dent = node;
1856 
1857 	/*
1858 	 * We assume that in most of the cases there are no name collisions and
1859 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1860 	 */
1861 	err = ubifs_tnc_lookup(c, key, node);
1862 	if (err)
1863 		return err;
1864 
1865 	len = le16_to_cpu(dent->nlen);
1866 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1867 		return 0;
1868 
1869 	/*
1870 	 * Unluckily, there are hash collisions and we have to iterate over
1871 	 * them look at each direntry with colliding name hash sequentially.
1872 	 */
1873 	return do_lookup_nm(c, key, node, nm);
1874 }
1875 
1876 /**
1877  * correct_parent_keys - correct parent znodes' keys.
1878  * @c: UBIFS file-system description object
1879  * @znode: znode to correct parent znodes for
1880  *
1881  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1882  * zbranch changes, keys of parent znodes have to be corrected. This helper
1883  * function is called in such situations and corrects the keys if needed.
1884  */
1885 static void correct_parent_keys(const struct ubifs_info *c,
1886 				struct ubifs_znode *znode)
1887 {
1888 	union ubifs_key *key, *key1;
1889 
1890 	ubifs_assert(znode->parent);
1891 	ubifs_assert(znode->iip == 0);
1892 
1893 	key = &znode->zbranch[0].key;
1894 	key1 = &znode->parent->zbranch[0].key;
1895 
1896 	while (keys_cmp(c, key, key1) < 0) {
1897 		key_copy(c, key, key1);
1898 		znode = znode->parent;
1899 		znode->alt = 1;
1900 		if (!znode->parent || znode->iip)
1901 			break;
1902 		key1 = &znode->parent->zbranch[0].key;
1903 	}
1904 }
1905 
1906 /**
1907  * insert_zbranch - insert a zbranch into a znode.
1908  * @znode: znode into which to insert
1909  * @zbr: zbranch to insert
1910  * @n: slot number to insert to
1911  *
1912  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1913  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1914  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1915  * slot, zbranches starting from @n have to be moved right.
1916  */
1917 static void insert_zbranch(struct ubifs_znode *znode,
1918 			   const struct ubifs_zbranch *zbr, int n)
1919 {
1920 	int i;
1921 
1922 	ubifs_assert(ubifs_zn_dirty(znode));
1923 
1924 	if (znode->level) {
1925 		for (i = znode->child_cnt; i > n; i--) {
1926 			znode->zbranch[i] = znode->zbranch[i - 1];
1927 			if (znode->zbranch[i].znode)
1928 				znode->zbranch[i].znode->iip = i;
1929 		}
1930 		if (zbr->znode)
1931 			zbr->znode->iip = n;
1932 	} else
1933 		for (i = znode->child_cnt; i > n; i--)
1934 			znode->zbranch[i] = znode->zbranch[i - 1];
1935 
1936 	znode->zbranch[n] = *zbr;
1937 	znode->child_cnt += 1;
1938 
1939 	/*
1940 	 * After inserting at slot zero, the lower bound of the key range of
1941 	 * this znode may have changed. If this znode is subsequently split
1942 	 * then the upper bound of the key range may change, and furthermore
1943 	 * it could change to be lower than the original lower bound. If that
1944 	 * happens, then it will no longer be possible to find this znode in the
1945 	 * TNC using the key from the index node on flash. That is bad because
1946 	 * if it is not found, we will assume it is obsolete and may overwrite
1947 	 * it. Then if there is an unclean unmount, we will start using the
1948 	 * old index which will be broken.
1949 	 *
1950 	 * So we first mark znodes that have insertions at slot zero, and then
1951 	 * if they are split we add their lnum/offs to the old_idx tree.
1952 	 */
1953 	if (n == 0)
1954 		znode->alt = 1;
1955 }
1956 
1957 /**
1958  * tnc_insert - insert a node into TNC.
1959  * @c: UBIFS file-system description object
1960  * @znode: znode to insert into
1961  * @zbr: branch to insert
1962  * @n: slot number to insert new zbranch to
1963  *
1964  * This function inserts a new node described by @zbr into znode @znode. If
1965  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1966  * are splat as well if needed. Returns zero in case of success or a negative
1967  * error code in case of failure.
1968  */
1969 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1970 		      struct ubifs_zbranch *zbr, int n)
1971 {
1972 	struct ubifs_znode *zn, *zi, *zp;
1973 	int i, keep, move, appending = 0;
1974 	union ubifs_key *key = &zbr->key, *key1;
1975 
1976 	ubifs_assert(n >= 0 && n <= c->fanout);
1977 
1978 	/* Implement naive insert for now */
1979 again:
1980 	zp = znode->parent;
1981 	if (znode->child_cnt < c->fanout) {
1982 		ubifs_assert(n != c->fanout);
1983 		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1984 			DBGKEY(key));
1985 
1986 		insert_zbranch(znode, zbr, n);
1987 
1988 		/* Ensure parent's key is correct */
1989 		if (n == 0 && zp && znode->iip == 0)
1990 			correct_parent_keys(c, znode);
1991 
1992 		return 0;
1993 	}
1994 
1995 	/*
1996 	 * Unfortunately, @znode does not have more empty slots and we have to
1997 	 * split it.
1998 	 */
1999 	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
2000 
2001 	if (znode->alt)
2002 		/*
2003 		 * We can no longer be sure of finding this znode by key, so we
2004 		 * record it in the old_idx tree.
2005 		 */
2006 		ins_clr_old_idx_znode(c, znode);
2007 
2008 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2009 	if (!zn)
2010 		return -ENOMEM;
2011 	zn->parent = zp;
2012 	zn->level = znode->level;
2013 
2014 	/* Decide where to split */
2015 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2016 		/* Try not to split consecutive data keys */
2017 		if (n == c->fanout) {
2018 			key1 = &znode->zbranch[n - 1].key;
2019 			if (key_inum(c, key1) == key_inum(c, key) &&
2020 			    key_type(c, key1) == UBIFS_DATA_KEY)
2021 				appending = 1;
2022 		} else
2023 			goto check_split;
2024 	} else if (appending && n != c->fanout) {
2025 		/* Try not to split consecutive data keys */
2026 		appending = 0;
2027 check_split:
2028 		if (n >= (c->fanout + 1) / 2) {
2029 			key1 = &znode->zbranch[0].key;
2030 			if (key_inum(c, key1) == key_inum(c, key) &&
2031 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2032 				key1 = &znode->zbranch[n].key;
2033 				if (key_inum(c, key1) != key_inum(c, key) ||
2034 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2035 					keep = n;
2036 					move = c->fanout - keep;
2037 					zi = znode;
2038 					goto do_split;
2039 				}
2040 			}
2041 		}
2042 	}
2043 
2044 	if (appending) {
2045 		keep = c->fanout;
2046 		move = 0;
2047 	} else {
2048 		keep = (c->fanout + 1) / 2;
2049 		move = c->fanout - keep;
2050 	}
2051 
2052 	/*
2053 	 * Although we don't at present, we could look at the neighbors and see
2054 	 * if we can move some zbranches there.
2055 	 */
2056 
2057 	if (n < keep) {
2058 		/* Insert into existing znode */
2059 		zi = znode;
2060 		move += 1;
2061 		keep -= 1;
2062 	} else {
2063 		/* Insert into new znode */
2064 		zi = zn;
2065 		n -= keep;
2066 		/* Re-parent */
2067 		if (zn->level != 0)
2068 			zbr->znode->parent = zn;
2069 	}
2070 
2071 do_split:
2072 
2073 	__set_bit(DIRTY_ZNODE, &zn->flags);
2074 	atomic_long_inc(&c->dirty_zn_cnt);
2075 
2076 	zn->child_cnt = move;
2077 	znode->child_cnt = keep;
2078 
2079 	dbg_tnc("moving %d, keeping %d", move, keep);
2080 
2081 	/* Move zbranch */
2082 	for (i = 0; i < move; i++) {
2083 		zn->zbranch[i] = znode->zbranch[keep + i];
2084 		/* Re-parent */
2085 		if (zn->level != 0)
2086 			if (zn->zbranch[i].znode) {
2087 				zn->zbranch[i].znode->parent = zn;
2088 				zn->zbranch[i].znode->iip = i;
2089 			}
2090 	}
2091 
2092 	/* Insert new key and branch */
2093 	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2094 
2095 	insert_zbranch(zi, zbr, n);
2096 
2097 	/* Insert new znode (produced by spitting) into the parent */
2098 	if (zp) {
2099 		if (n == 0 && zi == znode && znode->iip == 0)
2100 			correct_parent_keys(c, znode);
2101 
2102 		/* Locate insertion point */
2103 		n = znode->iip + 1;
2104 
2105 		/* Tail recursion */
2106 		zbr->key = zn->zbranch[0].key;
2107 		zbr->znode = zn;
2108 		zbr->lnum = 0;
2109 		zbr->offs = 0;
2110 		zbr->len = 0;
2111 		znode = zp;
2112 
2113 		goto again;
2114 	}
2115 
2116 	/* We have to split root znode */
2117 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2118 
2119 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2120 	if (!zi)
2121 		return -ENOMEM;
2122 
2123 	zi->child_cnt = 2;
2124 	zi->level = znode->level + 1;
2125 
2126 	__set_bit(DIRTY_ZNODE, &zi->flags);
2127 	atomic_long_inc(&c->dirty_zn_cnt);
2128 
2129 	zi->zbranch[0].key = znode->zbranch[0].key;
2130 	zi->zbranch[0].znode = znode;
2131 	zi->zbranch[0].lnum = c->zroot.lnum;
2132 	zi->zbranch[0].offs = c->zroot.offs;
2133 	zi->zbranch[0].len = c->zroot.len;
2134 	zi->zbranch[1].key = zn->zbranch[0].key;
2135 	zi->zbranch[1].znode = zn;
2136 
2137 	c->zroot.lnum = 0;
2138 	c->zroot.offs = 0;
2139 	c->zroot.len = 0;
2140 	c->zroot.znode = zi;
2141 
2142 	zn->parent = zi;
2143 	zn->iip = 1;
2144 	znode->parent = zi;
2145 	znode->iip = 0;
2146 
2147 	return 0;
2148 }
2149 
2150 /**
2151  * ubifs_tnc_add - add a node to TNC.
2152  * @c: UBIFS file-system description object
2153  * @key: key to add
2154  * @lnum: LEB number of node
2155  * @offs: node offset
2156  * @len: node length
2157  *
2158  * This function adds a node with key @key to TNC. The node may be new or it may
2159  * obsolete some existing one. Returns %0 on success or negative error code on
2160  * failure.
2161  */
2162 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2163 		  int offs, int len)
2164 {
2165 	int found, n, err = 0;
2166 	struct ubifs_znode *znode;
2167 
2168 	mutex_lock(&c->tnc_mutex);
2169 	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2170 	found = lookup_level0_dirty(c, key, &znode, &n);
2171 	if (!found) {
2172 		struct ubifs_zbranch zbr;
2173 
2174 		zbr.znode = NULL;
2175 		zbr.lnum = lnum;
2176 		zbr.offs = offs;
2177 		zbr.len = len;
2178 		key_copy(c, key, &zbr.key);
2179 		err = tnc_insert(c, znode, &zbr, n + 1);
2180 	} else if (found == 1) {
2181 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2182 
2183 		lnc_free(zbr);
2184 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2185 		zbr->lnum = lnum;
2186 		zbr->offs = offs;
2187 		zbr->len = len;
2188 	} else
2189 		err = found;
2190 	if (!err)
2191 		err = dbg_check_tnc(c, 0);
2192 	mutex_unlock(&c->tnc_mutex);
2193 
2194 	return err;
2195 }
2196 
2197 /**
2198  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2199  * @c: UBIFS file-system description object
2200  * @key: key to add
2201  * @old_lnum: LEB number of old node
2202  * @old_offs: old node offset
2203  * @lnum: LEB number of node
2204  * @offs: node offset
2205  * @len: node length
2206  *
2207  * This function replaces a node with key @key in the TNC only if the old node
2208  * is found.  This function is called by garbage collection when node are moved.
2209  * Returns %0 on success or negative error code on failure.
2210  */
2211 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2212 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2213 {
2214 	int found, n, err = 0;
2215 	struct ubifs_znode *znode;
2216 
2217 	mutex_lock(&c->tnc_mutex);
2218 	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2219 		old_offs, lnum, offs, len, DBGKEY(key));
2220 	found = lookup_level0_dirty(c, key, &znode, &n);
2221 	if (found < 0) {
2222 		err = found;
2223 		goto out_unlock;
2224 	}
2225 
2226 	if (found == 1) {
2227 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2228 
2229 		found = 0;
2230 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2231 			lnc_free(zbr);
2232 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2233 			if (err)
2234 				goto out_unlock;
2235 			zbr->lnum = lnum;
2236 			zbr->offs = offs;
2237 			zbr->len = len;
2238 			found = 1;
2239 		} else if (is_hash_key(c, key)) {
2240 			found = resolve_collision_directly(c, key, &znode, &n,
2241 							   old_lnum, old_offs);
2242 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2243 				found, znode, n, old_lnum, old_offs);
2244 			if (found < 0) {
2245 				err = found;
2246 				goto out_unlock;
2247 			}
2248 
2249 			if (found) {
2250 				/* Ensure the znode is dirtied */
2251 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2252 					znode = dirty_cow_bottom_up(c, znode);
2253 					if (IS_ERR(znode)) {
2254 						err = PTR_ERR(znode);
2255 						goto out_unlock;
2256 					}
2257 				}
2258 				zbr = &znode->zbranch[n];
2259 				lnc_free(zbr);
2260 				err = ubifs_add_dirt(c, zbr->lnum,
2261 						     zbr->len);
2262 				if (err)
2263 					goto out_unlock;
2264 				zbr->lnum = lnum;
2265 				zbr->offs = offs;
2266 				zbr->len = len;
2267 			}
2268 		}
2269 	}
2270 
2271 	if (!found)
2272 		err = ubifs_add_dirt(c, lnum, len);
2273 
2274 	if (!err)
2275 		err = dbg_check_tnc(c, 0);
2276 
2277 out_unlock:
2278 	mutex_unlock(&c->tnc_mutex);
2279 	return err;
2280 }
2281 
2282 /**
2283  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2284  * @c: UBIFS file-system description object
2285  * @key: key to add
2286  * @lnum: LEB number of node
2287  * @offs: node offset
2288  * @len: node length
2289  * @nm: node name
2290  *
2291  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2292  * may have collisions, like directory entry keys.
2293  */
2294 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2295 		     int lnum, int offs, int len, const struct qstr *nm)
2296 {
2297 	int found, n, err = 0;
2298 	struct ubifs_znode *znode;
2299 
2300 	mutex_lock(&c->tnc_mutex);
2301 	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2302 		DBGKEY(key));
2303 	found = lookup_level0_dirty(c, key, &znode, &n);
2304 	if (found < 0) {
2305 		err = found;
2306 		goto out_unlock;
2307 	}
2308 
2309 	if (found == 1) {
2310 		if (c->replaying)
2311 			found = fallible_resolve_collision(c, key, &znode, &n,
2312 							   nm, 1);
2313 		else
2314 			found = resolve_collision(c, key, &znode, &n, nm);
2315 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2316 		if (found < 0) {
2317 			err = found;
2318 			goto out_unlock;
2319 		}
2320 
2321 		/* Ensure the znode is dirtied */
2322 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2323 			znode = dirty_cow_bottom_up(c, znode);
2324 			if (IS_ERR(znode)) {
2325 				err = PTR_ERR(znode);
2326 				goto out_unlock;
2327 			}
2328 		}
2329 
2330 		if (found == 1) {
2331 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2332 
2333 			lnc_free(zbr);
2334 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2335 			zbr->lnum = lnum;
2336 			zbr->offs = offs;
2337 			zbr->len = len;
2338 			goto out_unlock;
2339 		}
2340 	}
2341 
2342 	if (!found) {
2343 		struct ubifs_zbranch zbr;
2344 
2345 		zbr.znode = NULL;
2346 		zbr.lnum = lnum;
2347 		zbr.offs = offs;
2348 		zbr.len = len;
2349 		key_copy(c, key, &zbr.key);
2350 		err = tnc_insert(c, znode, &zbr, n + 1);
2351 		if (err)
2352 			goto out_unlock;
2353 		if (c->replaying) {
2354 			/*
2355 			 * We did not find it in the index so there may be a
2356 			 * dangling branch still in the index. So we remove it
2357 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2358 			 * an unmatchable name.
2359 			 */
2360 			struct qstr noname = { .len = 0, .name = "" };
2361 
2362 			err = dbg_check_tnc(c, 0);
2363 			mutex_unlock(&c->tnc_mutex);
2364 			if (err)
2365 				return err;
2366 			return ubifs_tnc_remove_nm(c, key, &noname);
2367 		}
2368 	}
2369 
2370 out_unlock:
2371 	if (!err)
2372 		err = dbg_check_tnc(c, 0);
2373 	mutex_unlock(&c->tnc_mutex);
2374 	return err;
2375 }
2376 
2377 /**
2378  * tnc_delete - delete a znode form TNC.
2379  * @c: UBIFS file-system description object
2380  * @znode: znode to delete from
2381  * @n: zbranch slot number to delete
2382  *
2383  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2384  * case of success and a negative error code in case of failure.
2385  */
2386 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2387 {
2388 	struct ubifs_zbranch *zbr;
2389 	struct ubifs_znode *zp;
2390 	int i, err;
2391 
2392 	/* Delete without merge for now */
2393 	ubifs_assert(znode->level == 0);
2394 	ubifs_assert(n >= 0 && n < c->fanout);
2395 	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2396 
2397 	zbr = &znode->zbranch[n];
2398 	lnc_free(zbr);
2399 
2400 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2401 	if (err) {
2402 		dbg_dump_znode(c, znode);
2403 		return err;
2404 	}
2405 
2406 	/* We do not "gap" zbranch slots */
2407 	for (i = n; i < znode->child_cnt - 1; i++)
2408 		znode->zbranch[i] = znode->zbranch[i + 1];
2409 	znode->child_cnt -= 1;
2410 
2411 	if (znode->child_cnt > 0)
2412 		return 0;
2413 
2414 	/*
2415 	 * This was the last zbranch, we have to delete this znode from the
2416 	 * parent.
2417 	 */
2418 
2419 	do {
2420 		ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2421 		ubifs_assert(ubifs_zn_dirty(znode));
2422 
2423 		zp = znode->parent;
2424 		n = znode->iip;
2425 
2426 		atomic_long_dec(&c->dirty_zn_cnt);
2427 
2428 		err = insert_old_idx_znode(c, znode);
2429 		if (err)
2430 			return err;
2431 
2432 		if (znode->cnext) {
2433 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2434 			atomic_long_inc(&c->clean_zn_cnt);
2435 			atomic_long_inc(&ubifs_clean_zn_cnt);
2436 		} else
2437 			kfree(znode);
2438 		znode = zp;
2439 	} while (znode->child_cnt == 1); /* while removing last child */
2440 
2441 	/* Remove from znode, entry n - 1 */
2442 	znode->child_cnt -= 1;
2443 	ubifs_assert(znode->level != 0);
2444 	for (i = n; i < znode->child_cnt; i++) {
2445 		znode->zbranch[i] = znode->zbranch[i + 1];
2446 		if (znode->zbranch[i].znode)
2447 			znode->zbranch[i].znode->iip = i;
2448 	}
2449 
2450 	/*
2451 	 * If this is the root and it has only 1 child then
2452 	 * collapse the tree.
2453 	 */
2454 	if (!znode->parent) {
2455 		while (znode->child_cnt == 1 && znode->level != 0) {
2456 			zp = znode;
2457 			zbr = &znode->zbranch[0];
2458 			znode = get_znode(c, znode, 0);
2459 			if (IS_ERR(znode))
2460 				return PTR_ERR(znode);
2461 			znode = dirty_cow_znode(c, zbr);
2462 			if (IS_ERR(znode))
2463 				return PTR_ERR(znode);
2464 			znode->parent = NULL;
2465 			znode->iip = 0;
2466 			if (c->zroot.len) {
2467 				err = insert_old_idx(c, c->zroot.lnum,
2468 						     c->zroot.offs);
2469 				if (err)
2470 					return err;
2471 			}
2472 			c->zroot.lnum = zbr->lnum;
2473 			c->zroot.offs = zbr->offs;
2474 			c->zroot.len = zbr->len;
2475 			c->zroot.znode = znode;
2476 			ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2477 				     &zp->flags));
2478 			ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2479 			atomic_long_dec(&c->dirty_zn_cnt);
2480 
2481 			if (zp->cnext) {
2482 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2483 				atomic_long_inc(&c->clean_zn_cnt);
2484 				atomic_long_inc(&ubifs_clean_zn_cnt);
2485 			} else
2486 				kfree(zp);
2487 		}
2488 	}
2489 
2490 	return 0;
2491 }
2492 
2493 /**
2494  * ubifs_tnc_remove - remove an index entry of a node.
2495  * @c: UBIFS file-system description object
2496  * @key: key of node
2497  *
2498  * Returns %0 on success or negative error code on failure.
2499  */
2500 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2501 {
2502 	int found, n, err = 0;
2503 	struct ubifs_znode *znode;
2504 
2505 	mutex_lock(&c->tnc_mutex);
2506 	dbg_tnc("key %s", DBGKEY(key));
2507 	found = lookup_level0_dirty(c, key, &znode, &n);
2508 	if (found < 0) {
2509 		err = found;
2510 		goto out_unlock;
2511 	}
2512 	if (found == 1)
2513 		err = tnc_delete(c, znode, n);
2514 	if (!err)
2515 		err = dbg_check_tnc(c, 0);
2516 
2517 out_unlock:
2518 	mutex_unlock(&c->tnc_mutex);
2519 	return err;
2520 }
2521 
2522 /**
2523  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2524  * @c: UBIFS file-system description object
2525  * @key: key of node
2526  * @nm: directory entry name
2527  *
2528  * Returns %0 on success or negative error code on failure.
2529  */
2530 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2531 			const struct qstr *nm)
2532 {
2533 	int n, err;
2534 	struct ubifs_znode *znode;
2535 
2536 	mutex_lock(&c->tnc_mutex);
2537 	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2538 	err = lookup_level0_dirty(c, key, &znode, &n);
2539 	if (err < 0)
2540 		goto out_unlock;
2541 
2542 	if (err) {
2543 		if (c->replaying)
2544 			err = fallible_resolve_collision(c, key, &znode, &n,
2545 							 nm, 0);
2546 		else
2547 			err = resolve_collision(c, key, &znode, &n, nm);
2548 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2549 		if (err < 0)
2550 			goto out_unlock;
2551 		if (err) {
2552 			/* Ensure the znode is dirtied */
2553 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2554 				    znode = dirty_cow_bottom_up(c, znode);
2555 				    if (IS_ERR(znode)) {
2556 					    err = PTR_ERR(znode);
2557 					    goto out_unlock;
2558 				    }
2559 			}
2560 			err = tnc_delete(c, znode, n);
2561 		}
2562 	}
2563 
2564 out_unlock:
2565 	if (!err)
2566 		err = dbg_check_tnc(c, 0);
2567 	mutex_unlock(&c->tnc_mutex);
2568 	return err;
2569 }
2570 
2571 /**
2572  * key_in_range - determine if a key falls within a range of keys.
2573  * @c: UBIFS file-system description object
2574  * @key: key to check
2575  * @from_key: lowest key in range
2576  * @to_key: highest key in range
2577  *
2578  * This function returns %1 if the key is in range and %0 otherwise.
2579  */
2580 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2581 			union ubifs_key *from_key, union ubifs_key *to_key)
2582 {
2583 	if (keys_cmp(c, key, from_key) < 0)
2584 		return 0;
2585 	if (keys_cmp(c, key, to_key) > 0)
2586 		return 0;
2587 	return 1;
2588 }
2589 
2590 /**
2591  * ubifs_tnc_remove_range - remove index entries in range.
2592  * @c: UBIFS file-system description object
2593  * @from_key: lowest key to remove
2594  * @to_key: highest key to remove
2595  *
2596  * This function removes index entries starting at @from_key and ending at
2597  * @to_key.  This function returns zero in case of success and a negative error
2598  * code in case of failure.
2599  */
2600 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2601 			   union ubifs_key *to_key)
2602 {
2603 	int i, n, k, err = 0;
2604 	struct ubifs_znode *znode;
2605 	union ubifs_key *key;
2606 
2607 	mutex_lock(&c->tnc_mutex);
2608 	while (1) {
2609 		/* Find first level 0 znode that contains keys to remove */
2610 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2611 		if (err < 0)
2612 			goto out_unlock;
2613 
2614 		if (err)
2615 			key = from_key;
2616 		else {
2617 			err = tnc_next(c, &znode, &n);
2618 			if (err == -ENOENT) {
2619 				err = 0;
2620 				goto out_unlock;
2621 			}
2622 			if (err < 0)
2623 				goto out_unlock;
2624 			key = &znode->zbranch[n].key;
2625 			if (!key_in_range(c, key, from_key, to_key)) {
2626 				err = 0;
2627 				goto out_unlock;
2628 			}
2629 		}
2630 
2631 		/* Ensure the znode is dirtied */
2632 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2633 			znode = dirty_cow_bottom_up(c, znode);
2634 			if (IS_ERR(znode)) {
2635 				err = PTR_ERR(znode);
2636 				goto out_unlock;
2637 			}
2638 		}
2639 
2640 		/* Remove all keys in range except the first */
2641 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2642 			key = &znode->zbranch[i].key;
2643 			if (!key_in_range(c, key, from_key, to_key))
2644 				break;
2645 			lnc_free(&znode->zbranch[i]);
2646 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2647 					     znode->zbranch[i].len);
2648 			if (err) {
2649 				dbg_dump_znode(c, znode);
2650 				goto out_unlock;
2651 			}
2652 			dbg_tnc("removing %s", DBGKEY(key));
2653 		}
2654 		if (k) {
2655 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2656 				znode->zbranch[i - k] = znode->zbranch[i];
2657 			znode->child_cnt -= k;
2658 		}
2659 
2660 		/* Now delete the first */
2661 		err = tnc_delete(c, znode, n);
2662 		if (err)
2663 			goto out_unlock;
2664 	}
2665 
2666 out_unlock:
2667 	if (!err)
2668 		err = dbg_check_tnc(c, 0);
2669 	mutex_unlock(&c->tnc_mutex);
2670 	return err;
2671 }
2672 
2673 /**
2674  * ubifs_tnc_remove_ino - remove an inode from TNC.
2675  * @c: UBIFS file-system description object
2676  * @inum: inode number to remove
2677  *
2678  * This function remove inode @inum and all the extended attributes associated
2679  * with the anode from TNC and returns zero in case of success or a negative
2680  * error code in case of failure.
2681  */
2682 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2683 {
2684 	union ubifs_key key1, key2;
2685 	struct ubifs_dent_node *xent, *pxent = NULL;
2686 	struct qstr nm = { .name = NULL };
2687 
2688 	dbg_tnc("ino %lu", (unsigned long)inum);
2689 
2690 	/*
2691 	 * Walk all extended attribute entries and remove them together with
2692 	 * corresponding extended attribute inodes.
2693 	 */
2694 	lowest_xent_key(c, &key1, inum);
2695 	while (1) {
2696 		ino_t xattr_inum;
2697 		int err;
2698 
2699 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2700 		if (IS_ERR(xent)) {
2701 			err = PTR_ERR(xent);
2702 			if (err == -ENOENT)
2703 				break;
2704 			return err;
2705 		}
2706 
2707 		xattr_inum = le64_to_cpu(xent->inum);
2708 		dbg_tnc("xent '%s', ino %lu", xent->name,
2709 			(unsigned long)xattr_inum);
2710 
2711 		nm.name = xent->name;
2712 		nm.len = le16_to_cpu(xent->nlen);
2713 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2714 		if (err) {
2715 			kfree(xent);
2716 			return err;
2717 		}
2718 
2719 		lowest_ino_key(c, &key1, xattr_inum);
2720 		highest_ino_key(c, &key2, xattr_inum);
2721 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2722 		if (err) {
2723 			kfree(xent);
2724 			return err;
2725 		}
2726 
2727 		kfree(pxent);
2728 		pxent = xent;
2729 		key_read(c, &xent->key, &key1);
2730 	}
2731 
2732 	kfree(pxent);
2733 	lowest_ino_key(c, &key1, inum);
2734 	highest_ino_key(c, &key2, inum);
2735 
2736 	return ubifs_tnc_remove_range(c, &key1, &key2);
2737 }
2738 
2739 /**
2740  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2741  * @c: UBIFS file-system description object
2742  * @key: key of last entry
2743  * @nm: name of last entry found or %NULL
2744  *
2745  * This function finds and reads the next directory or extended attribute entry
2746  * after the given key (@key) if there is one. @nm is used to resolve
2747  * collisions.
2748  *
2749  * If the name of the current entry is not known and only the key is known,
2750  * @nm->name has to be %NULL. In this case the semantics of this function is a
2751  * little bit different and it returns the entry corresponding to this key, not
2752  * the next one. If the key was not found, the closest "right" entry is
2753  * returned.
2754  *
2755  * If the fist entry has to be found, @key has to contain the lowest possible
2756  * key value for this inode and @name has to be %NULL.
2757  *
2758  * This function returns the found directory or extended attribute entry node
2759  * in case of success, %-ENOENT is returned if no entry was found, and a
2760  * negative error code is returned in case of failure.
2761  */
2762 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2763 					   union ubifs_key *key,
2764 					   const struct qstr *nm)
2765 {
2766 	int n, err, type = key_type(c, key);
2767 	struct ubifs_znode *znode;
2768 	struct ubifs_dent_node *dent;
2769 	struct ubifs_zbranch *zbr;
2770 	union ubifs_key *dkey;
2771 
2772 	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2773 	ubifs_assert(is_hash_key(c, key));
2774 
2775 	mutex_lock(&c->tnc_mutex);
2776 	err = ubifs_lookup_level0(c, key, &znode, &n);
2777 	if (unlikely(err < 0))
2778 		goto out_unlock;
2779 
2780 	if (nm->name) {
2781 		if (err) {
2782 			/* Handle collisions */
2783 			err = resolve_collision(c, key, &znode, &n, nm);
2784 			dbg_tnc("rc returned %d, znode %p, n %d",
2785 				err, znode, n);
2786 			if (unlikely(err < 0))
2787 				goto out_unlock;
2788 		}
2789 
2790 		/* Now find next entry */
2791 		err = tnc_next(c, &znode, &n);
2792 		if (unlikely(err))
2793 			goto out_unlock;
2794 	} else {
2795 		/*
2796 		 * The full name of the entry was not given, in which case the
2797 		 * behavior of this function is a little different and it
2798 		 * returns current entry, not the next one.
2799 		 */
2800 		if (!err) {
2801 			/*
2802 			 * However, the given key does not exist in the TNC
2803 			 * tree and @znode/@n variables contain the closest
2804 			 * "preceding" element. Switch to the next one.
2805 			 */
2806 			err = tnc_next(c, &znode, &n);
2807 			if (err)
2808 				goto out_unlock;
2809 		}
2810 	}
2811 
2812 	zbr = &znode->zbranch[n];
2813 	dent = kmalloc(zbr->len, GFP_NOFS);
2814 	if (unlikely(!dent)) {
2815 		err = -ENOMEM;
2816 		goto out_unlock;
2817 	}
2818 
2819 	/*
2820 	 * The above 'tnc_next()' call could lead us to the next inode, check
2821 	 * this.
2822 	 */
2823 	dkey = &zbr->key;
2824 	if (key_inum(c, dkey) != key_inum(c, key) ||
2825 	    key_type(c, dkey) != type) {
2826 		err = -ENOENT;
2827 		goto out_free;
2828 	}
2829 
2830 	err = tnc_read_node_nm(c, zbr, dent);
2831 	if (unlikely(err))
2832 		goto out_free;
2833 
2834 	mutex_unlock(&c->tnc_mutex);
2835 	return dent;
2836 
2837 out_free:
2838 	kfree(dent);
2839 out_unlock:
2840 	mutex_unlock(&c->tnc_mutex);
2841 	return ERR_PTR(err);
2842 }
2843 
2844 /**
2845  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2846  * @c: UBIFS file-system description object
2847  *
2848  * Destroy left-over obsolete znodes from a failed commit.
2849  */
2850 static void tnc_destroy_cnext(struct ubifs_info *c)
2851 {
2852 	struct ubifs_znode *cnext;
2853 
2854 	if (!c->cnext)
2855 		return;
2856 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2857 	cnext = c->cnext;
2858 	do {
2859 		struct ubifs_znode *znode = cnext;
2860 
2861 		cnext = cnext->cnext;
2862 		if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2863 			kfree(znode);
2864 	} while (cnext && cnext != c->cnext);
2865 }
2866 
2867 /**
2868  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2869  * @c: UBIFS file-system description object
2870  */
2871 void ubifs_tnc_close(struct ubifs_info *c)
2872 {
2873 	long clean_freed;
2874 
2875 	tnc_destroy_cnext(c);
2876 	if (c->zroot.znode) {
2877 		clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2878 		atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2879 	}
2880 	kfree(c->gap_lebs);
2881 	kfree(c->ilebs);
2882 	destroy_old_idx(c);
2883 }
2884 
2885 /**
2886  * left_znode - get the znode to the left.
2887  * @c: UBIFS file-system description object
2888  * @znode: znode
2889  *
2890  * This function returns a pointer to the znode to the left of @znode or NULL if
2891  * there is not one. A negative error code is returned on failure.
2892  */
2893 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2894 				      struct ubifs_znode *znode)
2895 {
2896 	int level = znode->level;
2897 
2898 	while (1) {
2899 		int n = znode->iip - 1;
2900 
2901 		/* Go up until we can go left */
2902 		znode = znode->parent;
2903 		if (!znode)
2904 			return NULL;
2905 		if (n >= 0) {
2906 			/* Now go down the rightmost branch to 'level' */
2907 			znode = get_znode(c, znode, n);
2908 			if (IS_ERR(znode))
2909 				return znode;
2910 			while (znode->level != level) {
2911 				n = znode->child_cnt - 1;
2912 				znode = get_znode(c, znode, n);
2913 				if (IS_ERR(znode))
2914 					return znode;
2915 			}
2916 			break;
2917 		}
2918 	}
2919 	return znode;
2920 }
2921 
2922 /**
2923  * right_znode - get the znode to the right.
2924  * @c: UBIFS file-system description object
2925  * @znode: znode
2926  *
2927  * This function returns a pointer to the znode to the right of @znode or NULL
2928  * if there is not one. A negative error code is returned on failure.
2929  */
2930 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2931 				       struct ubifs_znode *znode)
2932 {
2933 	int level = znode->level;
2934 
2935 	while (1) {
2936 		int n = znode->iip + 1;
2937 
2938 		/* Go up until we can go right */
2939 		znode = znode->parent;
2940 		if (!znode)
2941 			return NULL;
2942 		if (n < znode->child_cnt) {
2943 			/* Now go down the leftmost branch to 'level' */
2944 			znode = get_znode(c, znode, n);
2945 			if (IS_ERR(znode))
2946 				return znode;
2947 			while (znode->level != level) {
2948 				znode = get_znode(c, znode, 0);
2949 				if (IS_ERR(znode))
2950 					return znode;
2951 			}
2952 			break;
2953 		}
2954 	}
2955 	return znode;
2956 }
2957 
2958 /**
2959  * lookup_znode - find a particular indexing node from TNC.
2960  * @c: UBIFS file-system description object
2961  * @key: index node key to lookup
2962  * @level: index node level
2963  * @lnum: index node LEB number
2964  * @offs: index node offset
2965  *
2966  * This function searches an indexing node by its first key @key and its
2967  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2968  * nodes it traverses to TNC. This function is called fro indexing nodes which
2969  * were found on the media by scanning, for example when garbage-collecting or
2970  * when doing in-the-gaps commit. This means that the indexing node which is
2971  * looked for does not have to have exactly the same leftmost key @key, because
2972  * the leftmost key may have been changed, in which case TNC will contain a
2973  * dirty znode which still refers the same @lnum:@offs. This function is clever
2974  * enough to recognize such indexing nodes.
2975  *
2976  * Note, if a znode was deleted or changed too much, then this function will
2977  * not find it. For situations like this UBIFS has the old index RB-tree
2978  * (indexed by @lnum:@offs).
2979  *
2980  * This function returns a pointer to the znode found or %NULL if it is not
2981  * found. A negative error code is returned on failure.
2982  */
2983 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2984 					union ubifs_key *key, int level,
2985 					int lnum, int offs)
2986 {
2987 	struct ubifs_znode *znode, *zn;
2988 	int n, nn;
2989 
2990 	/*
2991 	 * The arguments have probably been read off flash, so don't assume
2992 	 * they are valid.
2993 	 */
2994 	if (level < 0)
2995 		return ERR_PTR(-EINVAL);
2996 
2997 	/* Get the root znode */
2998 	znode = c->zroot.znode;
2999 	if (!znode) {
3000 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3001 		if (IS_ERR(znode))
3002 			return znode;
3003 	}
3004 	/* Check if it is the one we are looking for */
3005 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3006 		return znode;
3007 	/* Descend to the parent level i.e. (level + 1) */
3008 	if (level >= znode->level)
3009 		return NULL;
3010 	while (1) {
3011 		ubifs_search_zbranch(c, znode, key, &n);
3012 		if (n < 0) {
3013 			/*
3014 			 * We reached a znode where the leftmost key is greater
3015 			 * than the key we are searching for. This is the same
3016 			 * situation as the one described in a huge comment at
3017 			 * the end of the 'ubifs_lookup_level0()' function. And
3018 			 * for exactly the same reasons we have to try to look
3019 			 * left before giving up.
3020 			 */
3021 			znode = left_znode(c, znode);
3022 			if (!znode)
3023 				return NULL;
3024 			if (IS_ERR(znode))
3025 				return znode;
3026 			ubifs_search_zbranch(c, znode, key, &n);
3027 			ubifs_assert(n >= 0);
3028 		}
3029 		if (znode->level == level + 1)
3030 			break;
3031 		znode = get_znode(c, znode, n);
3032 		if (IS_ERR(znode))
3033 			return znode;
3034 	}
3035 	/* Check if the child is the one we are looking for */
3036 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3037 		return get_znode(c, znode, n);
3038 	/* If the key is unique, there is nowhere else to look */
3039 	if (!is_hash_key(c, key))
3040 		return NULL;
3041 	/*
3042 	 * The key is not unique and so may be also in the znodes to either
3043 	 * side.
3044 	 */
3045 	zn = znode;
3046 	nn = n;
3047 	/* Look left */
3048 	while (1) {
3049 		/* Move one branch to the left */
3050 		if (n)
3051 			n -= 1;
3052 		else {
3053 			znode = left_znode(c, znode);
3054 			if (!znode)
3055 				break;
3056 			if (IS_ERR(znode))
3057 				return znode;
3058 			n = znode->child_cnt - 1;
3059 		}
3060 		/* Check it */
3061 		if (znode->zbranch[n].lnum == lnum &&
3062 		    znode->zbranch[n].offs == offs)
3063 			return get_znode(c, znode, n);
3064 		/* Stop if the key is less than the one we are looking for */
3065 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3066 			break;
3067 	}
3068 	/* Back to the middle */
3069 	znode = zn;
3070 	n = nn;
3071 	/* Look right */
3072 	while (1) {
3073 		/* Move one branch to the right */
3074 		if (++n >= znode->child_cnt) {
3075 			znode = right_znode(c, znode);
3076 			if (!znode)
3077 				break;
3078 			if (IS_ERR(znode))
3079 				return znode;
3080 			n = 0;
3081 		}
3082 		/* Check it */
3083 		if (znode->zbranch[n].lnum == lnum &&
3084 		    znode->zbranch[n].offs == offs)
3085 			return get_znode(c, znode, n);
3086 		/* Stop if the key is greater than the one we are looking for */
3087 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3088 			break;
3089 	}
3090 	return NULL;
3091 }
3092 
3093 /**
3094  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3095  * @c: UBIFS file-system description object
3096  * @key: key of index node
3097  * @level: index node level
3098  * @lnum: LEB number of index node
3099  * @offs: offset of index node
3100  *
3101  * This function returns %0 if the index node is not referred to in the TNC, %1
3102  * if the index node is referred to in the TNC and the corresponding znode is
3103  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3104  * znode is clean, and a negative error code in case of failure.
3105  *
3106  * Note, the @key argument has to be the key of the first child. Also note,
3107  * this function relies on the fact that 0:0 is never a valid LEB number and
3108  * offset for a main-area node.
3109  */
3110 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3111 		       int lnum, int offs)
3112 {
3113 	struct ubifs_znode *znode;
3114 
3115 	znode = lookup_znode(c, key, level, lnum, offs);
3116 	if (!znode)
3117 		return 0;
3118 	if (IS_ERR(znode))
3119 		return PTR_ERR(znode);
3120 
3121 	return ubifs_zn_dirty(znode) ? 1 : 2;
3122 }
3123 
3124 /**
3125  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3126  * @c: UBIFS file-system description object
3127  * @key: node key
3128  * @lnum: node LEB number
3129  * @offs: node offset
3130  *
3131  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3132  * not, and a negative error code in case of failure.
3133  *
3134  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3135  * and offset for a main-area node.
3136  */
3137 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3138 			       int lnum, int offs)
3139 {
3140 	struct ubifs_zbranch *zbr;
3141 	struct ubifs_znode *znode, *zn;
3142 	int n, found, err, nn;
3143 	const int unique = !is_hash_key(c, key);
3144 
3145 	found = ubifs_lookup_level0(c, key, &znode, &n);
3146 	if (found < 0)
3147 		return found; /* Error code */
3148 	if (!found)
3149 		return 0;
3150 	zbr = &znode->zbranch[n];
3151 	if (lnum == zbr->lnum && offs == zbr->offs)
3152 		return 1; /* Found it */
3153 	if (unique)
3154 		return 0;
3155 	/*
3156 	 * Because the key is not unique, we have to look left
3157 	 * and right as well
3158 	 */
3159 	zn = znode;
3160 	nn = n;
3161 	/* Look left */
3162 	while (1) {
3163 		err = tnc_prev(c, &znode, &n);
3164 		if (err == -ENOENT)
3165 			break;
3166 		if (err)
3167 			return err;
3168 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3169 			break;
3170 		zbr = &znode->zbranch[n];
3171 		if (lnum == zbr->lnum && offs == zbr->offs)
3172 			return 1; /* Found it */
3173 	}
3174 	/* Look right */
3175 	znode = zn;
3176 	n = nn;
3177 	while (1) {
3178 		err = tnc_next(c, &znode, &n);
3179 		if (err) {
3180 			if (err == -ENOENT)
3181 				return 0;
3182 			return err;
3183 		}
3184 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3185 			break;
3186 		zbr = &znode->zbranch[n];
3187 		if (lnum == zbr->lnum && offs == zbr->offs)
3188 			return 1; /* Found it */
3189 	}
3190 	return 0;
3191 }
3192 
3193 /**
3194  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3195  * @c: UBIFS file-system description object
3196  * @key: node key
3197  * @level: index node level (if it is an index node)
3198  * @lnum: node LEB number
3199  * @offs: node offset
3200  * @is_idx: non-zero if the node is an index node
3201  *
3202  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3203  * negative error code in case of failure. For index nodes, @key has to be the
3204  * key of the first child. An index node is considered to be in the TNC only if
3205  * the corresponding znode is clean or has not been loaded.
3206  */
3207 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3208 		       int lnum, int offs, int is_idx)
3209 {
3210 	int err;
3211 
3212 	mutex_lock(&c->tnc_mutex);
3213 	if (is_idx) {
3214 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3215 		if (err < 0)
3216 			goto out_unlock;
3217 		if (err == 1)
3218 			/* The index node was found but it was dirty */
3219 			err = 0;
3220 		else if (err == 2)
3221 			/* The index node was found and it was clean */
3222 			err = 1;
3223 		else
3224 			BUG_ON(err != 0);
3225 	} else
3226 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3227 
3228 out_unlock:
3229 	mutex_unlock(&c->tnc_mutex);
3230 	return err;
3231 }
3232 
3233 /**
3234  * ubifs_dirty_idx_node - dirty an index node.
3235  * @c: UBIFS file-system description object
3236  * @key: index node key
3237  * @level: index node level
3238  * @lnum: index node LEB number
3239  * @offs: index node offset
3240  *
3241  * This function loads and dirties an index node so that it can be garbage
3242  * collected. The @key argument has to be the key of the first child. This
3243  * function relies on the fact that 0:0 is never a valid LEB number and offset
3244  * for a main-area node. Returns %0 on success and a negative error code on
3245  * failure.
3246  */
3247 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3248 			 int lnum, int offs)
3249 {
3250 	struct ubifs_znode *znode;
3251 	int err = 0;
3252 
3253 	mutex_lock(&c->tnc_mutex);
3254 	znode = lookup_znode(c, key, level, lnum, offs);
3255 	if (!znode)
3256 		goto out_unlock;
3257 	if (IS_ERR(znode)) {
3258 		err = PTR_ERR(znode);
3259 		goto out_unlock;
3260 	}
3261 	znode = dirty_cow_bottom_up(c, znode);
3262 	if (IS_ERR(znode)) {
3263 		err = PTR_ERR(znode);
3264 		goto out_unlock;
3265 	}
3266 
3267 out_unlock:
3268 	mutex_unlock(&c->tnc_mutex);
3269 	return err;
3270 }
3271 
3272 #ifdef CONFIG_UBIFS_FS_DEBUG
3273 
3274 /**
3275  * dbg_check_inode_size - check if inode size is correct.
3276  * @c: UBIFS file-system description object
3277  * @inum: inode number
3278  * @size: inode size
3279  *
3280  * This function makes sure that the inode size (@size) is correct and it does
3281  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3282  * if it has a data page beyond @size, and other negative error code in case of
3283  * other errors.
3284  */
3285 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3286 			 loff_t size)
3287 {
3288 	int err, n;
3289 	union ubifs_key from_key, to_key, *key;
3290 	struct ubifs_znode *znode;
3291 	unsigned int block;
3292 
3293 	if (!S_ISREG(inode->i_mode))
3294 		return 0;
3295 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
3296 		return 0;
3297 
3298 	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3299 	data_key_init(c, &from_key, inode->i_ino, block);
3300 	highest_data_key(c, &to_key, inode->i_ino);
3301 
3302 	mutex_lock(&c->tnc_mutex);
3303 	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3304 	if (err < 0)
3305 		goto out_unlock;
3306 
3307 	if (err) {
3308 		err = -EINVAL;
3309 		key = &from_key;
3310 		goto out_dump;
3311 	}
3312 
3313 	err = tnc_next(c, &znode, &n);
3314 	if (err == -ENOENT) {
3315 		err = 0;
3316 		goto out_unlock;
3317 	}
3318 	if (err < 0)
3319 		goto out_unlock;
3320 
3321 	ubifs_assert(err == 0);
3322 	key = &znode->zbranch[n].key;
3323 	if (!key_in_range(c, key, &from_key, &to_key))
3324 		goto out_unlock;
3325 
3326 out_dump:
3327 	block = key_block(c, key);
3328 	ubifs_err("inode %lu has size %lld, but there are data at offset %lld "
3329 		  "(data key %s)", (unsigned long)inode->i_ino, size,
3330 		  ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key));
3331 	dbg_dump_inode(c, inode);
3332 	dbg_dump_stack();
3333 	err = -EINVAL;
3334 
3335 out_unlock:
3336 	mutex_unlock(&c->tnc_mutex);
3337 	return err;
3338 }
3339 
3340 #endif /* CONFIG_UBIFS_FS_DEBUG */
3341