xref: /linux/fs/ubifs/tnc.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25  * the UBIFS B-tree.
26  *
27  * At the moment the locking rules of the TNC tree are quite simple and
28  * straightforward. We just have a mutex and lock it when we traverse the
29  * tree. If a znode is not in memory, we read it from flash while still having
30  * the mutex locked.
31  */
32 
33 #include <linux/crc32.h>
34 #include "ubifs.h"
35 
36 /*
37  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38  * @NAME_LESS: name corresponding to the first argument is less than second
39  * @NAME_MATCHES: names match
40  * @NAME_GREATER: name corresponding to the second argument is greater than
41  *                first
42  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43  *
44  * These constants were introduce to improve readability.
45  */
46 enum {
47 	NAME_LESS    = 0,
48 	NAME_MATCHES = 1,
49 	NAME_GREATER = 2,
50 	NOT_ON_MEDIA = 3,
51 };
52 
53 /**
54  * insert_old_idx - record an index node obsoleted since the last commit start.
55  * @c: UBIFS file-system description object
56  * @lnum: LEB number of obsoleted index node
57  * @offs: offset of obsoleted index node
58  *
59  * Returns %0 on success, and a negative error code on failure.
60  *
61  * For recovery, there must always be a complete intact version of the index on
62  * flash at all times. That is called the "old index". It is the index as at the
63  * time of the last successful commit. Many of the index nodes in the old index
64  * may be dirty, but they must not be erased until the next successful commit
65  * (at which point that index becomes the old index).
66  *
67  * That means that the garbage collection and the in-the-gaps method of
68  * committing must be able to determine if an index node is in the old index.
69  * Most of the old index nodes can be found by looking up the TNC using the
70  * 'lookup_znode()' function. However, some of the old index nodes may have
71  * been deleted from the current index or may have been changed so much that
72  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73  * That is what this function does. The RB-tree is ordered by LEB number and
74  * offset because they uniquely identify the old index node.
75  */
76 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77 {
78 	struct ubifs_old_idx *old_idx, *o;
79 	struct rb_node **p, *parent = NULL;
80 
81 	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 	if (unlikely(!old_idx))
83 		return -ENOMEM;
84 	old_idx->lnum = lnum;
85 	old_idx->offs = offs;
86 
87 	p = &c->old_idx.rb_node;
88 	while (*p) {
89 		parent = *p;
90 		o = rb_entry(parent, struct ubifs_old_idx, rb);
91 		if (lnum < o->lnum)
92 			p = &(*p)->rb_left;
93 		else if (lnum > o->lnum)
94 			p = &(*p)->rb_right;
95 		else if (offs < o->offs)
96 			p = &(*p)->rb_left;
97 		else if (offs > o->offs)
98 			p = &(*p)->rb_right;
99 		else {
100 			ubifs_err("old idx added twice!");
101 			kfree(old_idx);
102 			return 0;
103 		}
104 	}
105 	rb_link_node(&old_idx->rb, parent, p);
106 	rb_insert_color(&old_idx->rb, &c->old_idx);
107 	return 0;
108 }
109 
110 /**
111  * insert_old_idx_znode - record a znode obsoleted since last commit start.
112  * @c: UBIFS file-system description object
113  * @znode: znode of obsoleted index node
114  *
115  * Returns %0 on success, and a negative error code on failure.
116  */
117 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118 {
119 	if (znode->parent) {
120 		struct ubifs_zbranch *zbr;
121 
122 		zbr = &znode->parent->zbranch[znode->iip];
123 		if (zbr->len)
124 			return insert_old_idx(c, zbr->lnum, zbr->offs);
125 	} else
126 		if (c->zroot.len)
127 			return insert_old_idx(c, c->zroot.lnum,
128 					      c->zroot.offs);
129 	return 0;
130 }
131 
132 /**
133  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134  * @c: UBIFS file-system description object
135  * @znode: znode of obsoleted index node
136  *
137  * Returns %0 on success, and a negative error code on failure.
138  */
139 static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 				 struct ubifs_znode *znode)
141 {
142 	int err;
143 
144 	if (znode->parent) {
145 		struct ubifs_zbranch *zbr;
146 
147 		zbr = &znode->parent->zbranch[znode->iip];
148 		if (zbr->len) {
149 			err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 			if (err)
151 				return err;
152 			zbr->lnum = 0;
153 			zbr->offs = 0;
154 			zbr->len = 0;
155 		}
156 	} else
157 		if (c->zroot.len) {
158 			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 			if (err)
160 				return err;
161 			c->zroot.lnum = 0;
162 			c->zroot.offs = 0;
163 			c->zroot.len = 0;
164 		}
165 	return 0;
166 }
167 
168 /**
169  * destroy_old_idx - destroy the old_idx RB-tree.
170  * @c: UBIFS file-system description object
171  *
172  * During start commit, the old_idx RB-tree is used to avoid overwriting index
173  * nodes that were in the index last commit but have since been deleted.  This
174  * is necessary for recovery i.e. the old index must be kept intact until the
175  * new index is successfully written.  The old-idx RB-tree is used for the
176  * in-the-gaps method of writing index nodes and is destroyed every commit.
177  */
178 void destroy_old_idx(struct ubifs_info *c)
179 {
180 	struct rb_node *this = c->old_idx.rb_node;
181 	struct ubifs_old_idx *old_idx;
182 
183 	while (this) {
184 		if (this->rb_left) {
185 			this = this->rb_left;
186 			continue;
187 		} else if (this->rb_right) {
188 			this = this->rb_right;
189 			continue;
190 		}
191 		old_idx = rb_entry(this, struct ubifs_old_idx, rb);
192 		this = rb_parent(this);
193 		if (this) {
194 			if (this->rb_left == &old_idx->rb)
195 				this->rb_left = NULL;
196 			else
197 				this->rb_right = NULL;
198 		}
199 		kfree(old_idx);
200 	}
201 	c->old_idx = RB_ROOT;
202 }
203 
204 /**
205  * copy_znode - copy a dirty znode.
206  * @c: UBIFS file-system description object
207  * @znode: znode to copy
208  *
209  * A dirty znode being committed may not be changed, so it is copied.
210  */
211 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
212 				      struct ubifs_znode *znode)
213 {
214 	struct ubifs_znode *zn;
215 
216 	zn = kmalloc(c->max_znode_sz, GFP_NOFS);
217 	if (unlikely(!zn))
218 		return ERR_PTR(-ENOMEM);
219 
220 	memcpy(zn, znode, c->max_znode_sz);
221 	zn->cnext = NULL;
222 	__set_bit(DIRTY_ZNODE, &zn->flags);
223 	__clear_bit(COW_ZNODE, &zn->flags);
224 
225 	ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
226 	__set_bit(OBSOLETE_ZNODE, &znode->flags);
227 
228 	if (znode->level != 0) {
229 		int i;
230 		const int n = zn->child_cnt;
231 
232 		/* The children now have new parent */
233 		for (i = 0; i < n; i++) {
234 			struct ubifs_zbranch *zbr = &zn->zbranch[i];
235 
236 			if (zbr->znode)
237 				zbr->znode->parent = zn;
238 		}
239 	}
240 
241 	atomic_long_inc(&c->dirty_zn_cnt);
242 	return zn;
243 }
244 
245 /**
246  * add_idx_dirt - add dirt due to a dirty znode.
247  * @c: UBIFS file-system description object
248  * @lnum: LEB number of index node
249  * @dirt: size of index node
250  *
251  * This function updates lprops dirty space and the new size of the index.
252  */
253 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
254 {
255 	c->calc_idx_sz -= ALIGN(dirt, 8);
256 	return ubifs_add_dirt(c, lnum, dirt);
257 }
258 
259 /**
260  * dirty_cow_znode - ensure a znode is not being committed.
261  * @c: UBIFS file-system description object
262  * @zbr: branch of znode to check
263  *
264  * Returns dirtied znode on success or negative error code on failure.
265  */
266 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
267 					   struct ubifs_zbranch *zbr)
268 {
269 	struct ubifs_znode *znode = zbr->znode;
270 	struct ubifs_znode *zn;
271 	int err;
272 
273 	if (!test_bit(COW_ZNODE, &znode->flags)) {
274 		/* znode is not being committed */
275 		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
276 			atomic_long_inc(&c->dirty_zn_cnt);
277 			atomic_long_dec(&c->clean_zn_cnt);
278 			atomic_long_dec(&ubifs_clean_zn_cnt);
279 			err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 			if (unlikely(err))
281 				return ERR_PTR(err);
282 		}
283 		return znode;
284 	}
285 
286 	zn = copy_znode(c, znode);
287 	if (IS_ERR(zn))
288 		return zn;
289 
290 	if (zbr->len) {
291 		err = insert_old_idx(c, zbr->lnum, zbr->offs);
292 		if (unlikely(err))
293 			return ERR_PTR(err);
294 		err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 	} else
296 		err = 0;
297 
298 	zbr->znode = zn;
299 	zbr->lnum = 0;
300 	zbr->offs = 0;
301 	zbr->len = 0;
302 
303 	if (unlikely(err))
304 		return ERR_PTR(err);
305 	return zn;
306 }
307 
308 /**
309  * lnc_add - add a leaf node to the leaf node cache.
310  * @c: UBIFS file-system description object
311  * @zbr: zbranch of leaf node
312  * @node: leaf node
313  *
314  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
315  * purpose of the leaf node cache is to save re-reading the same leaf node over
316  * and over again. Most things are cached by VFS, however the file system must
317  * cache directory entries for readdir and for resolving hash collisions. The
318  * present implementation of the leaf node cache is extremely simple, and
319  * allows for error returns that are not used but that may be needed if a more
320  * complex implementation is created.
321  *
322  * Note, this function does not add the @node object to LNC directly, but
323  * allocates a copy of the object and adds the copy to LNC. The reason for this
324  * is that @node has been allocated outside of the TNC subsystem and will be
325  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
326  * may be changed at any time, e.g. freed by the shrinker.
327  */
328 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
329 		   const void *node)
330 {
331 	int err;
332 	void *lnc_node;
333 	const struct ubifs_dent_node *dent = node;
334 
335 	ubifs_assert(!zbr->leaf);
336 	ubifs_assert(zbr->len != 0);
337 	ubifs_assert(is_hash_key(c, &zbr->key));
338 
339 	err = ubifs_validate_entry(c, dent);
340 	if (err) {
341 		dbg_dump_stack();
342 		dbg_dump_node(c, dent);
343 		return err;
344 	}
345 
346 	lnc_node = kmalloc(zbr->len, GFP_NOFS);
347 	if (!lnc_node)
348 		/* We don't have to have the cache, so no error */
349 		return 0;
350 
351 	memcpy(lnc_node, node, zbr->len);
352 	zbr->leaf = lnc_node;
353 	return 0;
354 }
355 
356  /**
357  * lnc_add_directly - add a leaf node to the leaf-node-cache.
358  * @c: UBIFS file-system description object
359  * @zbr: zbranch of leaf node
360  * @node: leaf node
361  *
362  * This function is similar to 'lnc_add()', but it does not create a copy of
363  * @node but inserts @node to TNC directly.
364  */
365 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 			    void *node)
367 {
368 	int err;
369 
370 	ubifs_assert(!zbr->leaf);
371 	ubifs_assert(zbr->len != 0);
372 
373 	err = ubifs_validate_entry(c, node);
374 	if (err) {
375 		dbg_dump_stack();
376 		dbg_dump_node(c, node);
377 		return err;
378 	}
379 
380 	zbr->leaf = node;
381 	return 0;
382 }
383 
384 /**
385  * lnc_free - remove a leaf node from the leaf node cache.
386  * @zbr: zbranch of leaf node
387  * @node: leaf node
388  */
389 static void lnc_free(struct ubifs_zbranch *zbr)
390 {
391 	if (!zbr->leaf)
392 		return;
393 	kfree(zbr->leaf);
394 	zbr->leaf = NULL;
395 }
396 
397 /**
398  * tnc_read_node_nm - read a "hashed" leaf node.
399  * @c: UBIFS file-system description object
400  * @zbr: key and position of the node
401  * @node: node is returned here
402  *
403  * This function reads a "hashed" node defined by @zbr from the leaf node cache
404  * (in it is there) or from the hash media, in which case the node is also
405  * added to LNC. Returns zero in case of success or a negative negative error
406  * code in case of failure.
407  */
408 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 			    void *node)
410 {
411 	int err;
412 
413 	ubifs_assert(is_hash_key(c, &zbr->key));
414 
415 	if (zbr->leaf) {
416 		/* Read from the leaf node cache */
417 		ubifs_assert(zbr->len != 0);
418 		memcpy(node, zbr->leaf, zbr->len);
419 		return 0;
420 	}
421 
422 	err = ubifs_tnc_read_node(c, zbr, node);
423 	if (err)
424 		return err;
425 
426 	/* Add the node to the leaf node cache */
427 	err = lnc_add(c, zbr, node);
428 	return err;
429 }
430 
431 /**
432  * try_read_node - read a node if it is a node.
433  * @c: UBIFS file-system description object
434  * @buf: buffer to read to
435  * @type: node type
436  * @len: node length (not aligned)
437  * @lnum: LEB number of node to read
438  * @offs: offset of node to read
439  *
440  * This function tries to read a node of known type and length, checks it and
441  * stores it in @buf. This function returns %1 if a node is present and %0 if
442  * a node is not present. A negative error code is returned for I/O errors.
443  * This function performs that same function as ubifs_read_node except that
444  * it does not require that there is actually a node present and instead
445  * the return code indicates if a node was read.
446  */
447 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 			 int len, int lnum, int offs)
449 {
450 	int err, node_len;
451 	struct ubifs_ch *ch = buf;
452 	uint32_t crc, node_crc;
453 
454 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
455 
456 	err = ubi_read(c->ubi, lnum, buf, offs, len);
457 	if (err) {
458 		ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
459 			  type, lnum, offs, err);
460 		return err;
461 	}
462 
463 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
464 		return 0;
465 
466 	if (ch->node_type != type)
467 		return 0;
468 
469 	node_len = le32_to_cpu(ch->len);
470 	if (node_len != len)
471 		return 0;
472 
473 	if (type == UBIFS_DATA_NODE && !c->always_chk_crc)
474 		if (c->no_chk_data_crc)
475 			return 0;
476 
477 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
478 	node_crc = le32_to_cpu(ch->crc);
479 	if (crc != node_crc)
480 		return 0;
481 
482 	return 1;
483 }
484 
485 /**
486  * fallible_read_node - try to read a leaf node.
487  * @c: UBIFS file-system description object
488  * @key:  key of node to read
489  * @zbr:  position of node
490  * @node: node returned
491  *
492  * This function tries to read a node and returns %1 if the node is read, %0
493  * if the node is not present, and a negative error code in the case of error.
494  */
495 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
496 			      struct ubifs_zbranch *zbr, void *node)
497 {
498 	int ret;
499 
500 	dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
501 
502 	ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
503 			    zbr->offs);
504 	if (ret == 1) {
505 		union ubifs_key node_key;
506 		struct ubifs_dent_node *dent = node;
507 
508 		/* All nodes have key in the same place */
509 		key_read(c, &dent->key, &node_key);
510 		if (keys_cmp(c, key, &node_key) != 0)
511 			ret = 0;
512 	}
513 	if (ret == 0 && c->replaying)
514 		dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
515 			zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
516 	return ret;
517 }
518 
519 /**
520  * matches_name - determine if a direntry or xattr entry matches a given name.
521  * @c: UBIFS file-system description object
522  * @zbr: zbranch of dent
523  * @nm: name to match
524  *
525  * This function checks if xentry/direntry referred by zbranch @zbr matches name
526  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
527  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
528  * of failure, a negative error code is returned.
529  */
530 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
531 			const struct qstr *nm)
532 {
533 	struct ubifs_dent_node *dent;
534 	int nlen, err;
535 
536 	/* If possible, match against the dent in the leaf node cache */
537 	if (!zbr->leaf) {
538 		dent = kmalloc(zbr->len, GFP_NOFS);
539 		if (!dent)
540 			return -ENOMEM;
541 
542 		err = ubifs_tnc_read_node(c, zbr, dent);
543 		if (err)
544 			goto out_free;
545 
546 		/* Add the node to the leaf node cache */
547 		err = lnc_add_directly(c, zbr, dent);
548 		if (err)
549 			goto out_free;
550 	} else
551 		dent = zbr->leaf;
552 
553 	nlen = le16_to_cpu(dent->nlen);
554 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
555 	if (err == 0) {
556 		if (nlen == nm->len)
557 			return NAME_MATCHES;
558 		else if (nlen < nm->len)
559 			return NAME_LESS;
560 		else
561 			return NAME_GREATER;
562 	} else if (err < 0)
563 		return NAME_LESS;
564 	else
565 		return NAME_GREATER;
566 
567 out_free:
568 	kfree(dent);
569 	return err;
570 }
571 
572 /**
573  * get_znode - get a TNC znode that may not be loaded yet.
574  * @c: UBIFS file-system description object
575  * @znode: parent znode
576  * @n: znode branch slot number
577  *
578  * This function returns the znode or a negative error code.
579  */
580 static struct ubifs_znode *get_znode(struct ubifs_info *c,
581 				     struct ubifs_znode *znode, int n)
582 {
583 	struct ubifs_zbranch *zbr;
584 
585 	zbr = &znode->zbranch[n];
586 	if (zbr->znode)
587 		znode = zbr->znode;
588 	else
589 		znode = ubifs_load_znode(c, zbr, znode, n);
590 	return znode;
591 }
592 
593 /**
594  * tnc_next - find next TNC entry.
595  * @c: UBIFS file-system description object
596  * @zn: znode is passed and returned here
597  * @n: znode branch slot number is passed and returned here
598  *
599  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
600  * no next entry, or a negative error code otherwise.
601  */
602 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
603 {
604 	struct ubifs_znode *znode = *zn;
605 	int nn = *n;
606 
607 	nn += 1;
608 	if (nn < znode->child_cnt) {
609 		*n = nn;
610 		return 0;
611 	}
612 	while (1) {
613 		struct ubifs_znode *zp;
614 
615 		zp = znode->parent;
616 		if (!zp)
617 			return -ENOENT;
618 		nn = znode->iip + 1;
619 		znode = zp;
620 		if (nn < znode->child_cnt) {
621 			znode = get_znode(c, znode, nn);
622 			if (IS_ERR(znode))
623 				return PTR_ERR(znode);
624 			while (znode->level != 0) {
625 				znode = get_znode(c, znode, 0);
626 				if (IS_ERR(znode))
627 					return PTR_ERR(znode);
628 			}
629 			nn = 0;
630 			break;
631 		}
632 	}
633 	*zn = znode;
634 	*n = nn;
635 	return 0;
636 }
637 
638 /**
639  * tnc_prev - find previous TNC entry.
640  * @c: UBIFS file-system description object
641  * @zn: znode is returned here
642  * @n: znode branch slot number is passed and returned here
643  *
644  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
645  * there is no next entry, or a negative error code otherwise.
646  */
647 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
648 {
649 	struct ubifs_znode *znode = *zn;
650 	int nn = *n;
651 
652 	if (nn > 0) {
653 		*n = nn - 1;
654 		return 0;
655 	}
656 	while (1) {
657 		struct ubifs_znode *zp;
658 
659 		zp = znode->parent;
660 		if (!zp)
661 			return -ENOENT;
662 		nn = znode->iip - 1;
663 		znode = zp;
664 		if (nn >= 0) {
665 			znode = get_znode(c, znode, nn);
666 			if (IS_ERR(znode))
667 				return PTR_ERR(znode);
668 			while (znode->level != 0) {
669 				nn = znode->child_cnt - 1;
670 				znode = get_znode(c, znode, nn);
671 				if (IS_ERR(znode))
672 					return PTR_ERR(znode);
673 			}
674 			nn = znode->child_cnt - 1;
675 			break;
676 		}
677 	}
678 	*zn = znode;
679 	*n = nn;
680 	return 0;
681 }
682 
683 /**
684  * resolve_collision - resolve a collision.
685  * @c: UBIFS file-system description object
686  * @key: key of a directory or extended attribute entry
687  * @zn: znode is returned here
688  * @n: zbranch number is passed and returned here
689  * @nm: name of the entry
690  *
691  * This function is called for "hashed" keys to make sure that the found key
692  * really corresponds to the looked up node (directory or extended attribute
693  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
694  * %0 is returned if @nm is not found and @zn and @n are set to the previous
695  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
696  * This means that @n may be set to %-1 if the leftmost key in @zn is the
697  * previous one. A negative error code is returned on failures.
698  */
699 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
700 			     struct ubifs_znode **zn, int *n,
701 			     const struct qstr *nm)
702 {
703 	int err;
704 
705 	err = matches_name(c, &(*zn)->zbranch[*n], nm);
706 	if (unlikely(err < 0))
707 		return err;
708 	if (err == NAME_MATCHES)
709 		return 1;
710 
711 	if (err == NAME_GREATER) {
712 		/* Look left */
713 		while (1) {
714 			err = tnc_prev(c, zn, n);
715 			if (err == -ENOENT) {
716 				ubifs_assert(*n == 0);
717 				*n = -1;
718 				return 0;
719 			}
720 			if (err < 0)
721 				return err;
722 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
723 				/*
724 				 * We have found the branch after which we would
725 				 * like to insert, but inserting in this znode
726 				 * may still be wrong. Consider the following 3
727 				 * znodes, in the case where we are resolving a
728 				 * collision with Key2.
729 				 *
730 				 *                  znode zp
731 				 *            ----------------------
732 				 * level 1     |  Key0  |  Key1  |
733 				 *            -----------------------
734 				 *                 |            |
735 				 *       znode za  |            |  znode zb
736 				 *          ------------      ------------
737 				 * level 0  |  Key0  |        |  Key2  |
738 				 *          ------------      ------------
739 				 *
740 				 * The lookup finds Key2 in znode zb. Lets say
741 				 * there is no match and the name is greater so
742 				 * we look left. When we find Key0, we end up
743 				 * here. If we return now, we will insert into
744 				 * znode za at slot n = 1.  But that is invalid
745 				 * according to the parent's keys.  Key2 must
746 				 * be inserted into znode zb.
747 				 *
748 				 * Note, this problem is not relevant for the
749 				 * case when we go right, because
750 				 * 'tnc_insert()' would correct the parent key.
751 				 */
752 				if (*n == (*zn)->child_cnt - 1) {
753 					err = tnc_next(c, zn, n);
754 					if (err) {
755 						/* Should be impossible */
756 						ubifs_assert(0);
757 						if (err == -ENOENT)
758 							err = -EINVAL;
759 						return err;
760 					}
761 					ubifs_assert(*n == 0);
762 					*n = -1;
763 				}
764 				return 0;
765 			}
766 			err = matches_name(c, &(*zn)->zbranch[*n], nm);
767 			if (err < 0)
768 				return err;
769 			if (err == NAME_LESS)
770 				return 0;
771 			if (err == NAME_MATCHES)
772 				return 1;
773 			ubifs_assert(err == NAME_GREATER);
774 		}
775 	} else {
776 		int nn = *n;
777 		struct ubifs_znode *znode = *zn;
778 
779 		/* Look right */
780 		while (1) {
781 			err = tnc_next(c, &znode, &nn);
782 			if (err == -ENOENT)
783 				return 0;
784 			if (err < 0)
785 				return err;
786 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
787 				return 0;
788 			err = matches_name(c, &znode->zbranch[nn], nm);
789 			if (err < 0)
790 				return err;
791 			if (err == NAME_GREATER)
792 				return 0;
793 			*zn = znode;
794 			*n = nn;
795 			if (err == NAME_MATCHES)
796 				return 1;
797 			ubifs_assert(err == NAME_LESS);
798 		}
799 	}
800 }
801 
802 /**
803  * fallible_matches_name - determine if a dent matches a given name.
804  * @c: UBIFS file-system description object
805  * @zbr: zbranch of dent
806  * @nm: name to match
807  *
808  * This is a "fallible" version of 'matches_name()' function which does not
809  * panic if the direntry/xentry referred by @zbr does not exist on the media.
810  *
811  * This function checks if xentry/direntry referred by zbranch @zbr matches name
812  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
813  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
814  * if xentry/direntry referred by @zbr does not exist on the media. A negative
815  * error code is returned in case of failure.
816  */
817 static int fallible_matches_name(struct ubifs_info *c,
818 				 struct ubifs_zbranch *zbr,
819 				 const struct qstr *nm)
820 {
821 	struct ubifs_dent_node *dent;
822 	int nlen, err;
823 
824 	/* If possible, match against the dent in the leaf node cache */
825 	if (!zbr->leaf) {
826 		dent = kmalloc(zbr->len, GFP_NOFS);
827 		if (!dent)
828 			return -ENOMEM;
829 
830 		err = fallible_read_node(c, &zbr->key, zbr, dent);
831 		if (err < 0)
832 			goto out_free;
833 		if (err == 0) {
834 			/* The node was not present */
835 			err = NOT_ON_MEDIA;
836 			goto out_free;
837 		}
838 		ubifs_assert(err == 1);
839 
840 		err = lnc_add_directly(c, zbr, dent);
841 		if (err)
842 			goto out_free;
843 	} else
844 		dent = zbr->leaf;
845 
846 	nlen = le16_to_cpu(dent->nlen);
847 	err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
848 	if (err == 0) {
849 		if (nlen == nm->len)
850 			return NAME_MATCHES;
851 		else if (nlen < nm->len)
852 			return NAME_LESS;
853 		else
854 			return NAME_GREATER;
855 	} else if (err < 0)
856 		return NAME_LESS;
857 	else
858 		return NAME_GREATER;
859 
860 out_free:
861 	kfree(dent);
862 	return err;
863 }
864 
865 /**
866  * fallible_resolve_collision - resolve a collision even if nodes are missing.
867  * @c: UBIFS file-system description object
868  * @key: key
869  * @zn: znode is returned here
870  * @n: branch number is passed and returned here
871  * @nm: name of directory entry
872  * @adding: indicates caller is adding a key to the TNC
873  *
874  * This is a "fallible" version of the 'resolve_collision()' function which
875  * does not panic if one of the nodes referred to by TNC does not exist on the
876  * media. This may happen when replaying the journal if a deleted node was
877  * Garbage-collected and the commit was not done. A branch that refers to a node
878  * that is not present is called a dangling branch. The following are the return
879  * codes for this function:
880  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
881  *    branch;
882  *  o if we are @adding and @nm was not found, %0 is returned;
883  *  o if we are not @adding and @nm was not found, but a dangling branch was
884  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
885  *  o a negative error code is returned in case of failure.
886  */
887 static int fallible_resolve_collision(struct ubifs_info *c,
888 				      const union ubifs_key *key,
889 				      struct ubifs_znode **zn, int *n,
890 				      const struct qstr *nm, int adding)
891 {
892 	struct ubifs_znode *o_znode = NULL, *znode = *zn;
893 	int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
894 
895 	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
896 	if (unlikely(cmp < 0))
897 		return cmp;
898 	if (cmp == NAME_MATCHES)
899 		return 1;
900 	if (cmp == NOT_ON_MEDIA) {
901 		o_znode = znode;
902 		o_n = nn;
903 		/*
904 		 * We are unlucky and hit a dangling branch straight away.
905 		 * Now we do not really know where to go to find the needed
906 		 * branch - to the left or to the right. Well, let's try left.
907 		 */
908 		unsure = 1;
909 	} else if (!adding)
910 		unsure = 1; /* Remove a dangling branch wherever it is */
911 
912 	if (cmp == NAME_GREATER || unsure) {
913 		/* Look left */
914 		while (1) {
915 			err = tnc_prev(c, zn, n);
916 			if (err == -ENOENT) {
917 				ubifs_assert(*n == 0);
918 				*n = -1;
919 				break;
920 			}
921 			if (err < 0)
922 				return err;
923 			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
924 				/* See comments in 'resolve_collision()' */
925 				if (*n == (*zn)->child_cnt - 1) {
926 					err = tnc_next(c, zn, n);
927 					if (err) {
928 						/* Should be impossible */
929 						ubifs_assert(0);
930 						if (err == -ENOENT)
931 							err = -EINVAL;
932 						return err;
933 					}
934 					ubifs_assert(*n == 0);
935 					*n = -1;
936 				}
937 				break;
938 			}
939 			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
940 			if (err < 0)
941 				return err;
942 			if (err == NAME_MATCHES)
943 				return 1;
944 			if (err == NOT_ON_MEDIA) {
945 				o_znode = *zn;
946 				o_n = *n;
947 				continue;
948 			}
949 			if (!adding)
950 				continue;
951 			if (err == NAME_LESS)
952 				break;
953 			else
954 				unsure = 0;
955 		}
956 	}
957 
958 	if (cmp == NAME_LESS || unsure) {
959 		/* Look right */
960 		*zn = znode;
961 		*n = nn;
962 		while (1) {
963 			err = tnc_next(c, &znode, &nn);
964 			if (err == -ENOENT)
965 				break;
966 			if (err < 0)
967 				return err;
968 			if (keys_cmp(c, &znode->zbranch[nn].key, key))
969 				break;
970 			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
971 			if (err < 0)
972 				return err;
973 			if (err == NAME_GREATER)
974 				break;
975 			*zn = znode;
976 			*n = nn;
977 			if (err == NAME_MATCHES)
978 				return 1;
979 			if (err == NOT_ON_MEDIA) {
980 				o_znode = znode;
981 				o_n = nn;
982 			}
983 		}
984 	}
985 
986 	/* Never match a dangling branch when adding */
987 	if (adding || !o_znode)
988 		return 0;
989 
990 	dbg_mnt("dangling match LEB %d:%d len %d %s",
991 		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
992 		o_znode->zbranch[o_n].len, DBGKEY(key));
993 	*zn = o_znode;
994 	*n = o_n;
995 	return 1;
996 }
997 
998 /**
999  * matches_position - determine if a zbranch matches a given position.
1000  * @zbr: zbranch of dent
1001  * @lnum: LEB number of dent to match
1002  * @offs: offset of dent to match
1003  *
1004  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1005  */
1006 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1007 {
1008 	if (zbr->lnum == lnum && zbr->offs == offs)
1009 		return 1;
1010 	else
1011 		return 0;
1012 }
1013 
1014 /**
1015  * resolve_collision_directly - resolve a collision directly.
1016  * @c: UBIFS file-system description object
1017  * @key: key of directory entry
1018  * @zn: znode is passed and returned here
1019  * @n: zbranch number is passed and returned here
1020  * @lnum: LEB number of dent node to match
1021  * @offs: offset of dent node to match
1022  *
1023  * This function is used for "hashed" keys to make sure the found directory or
1024  * extended attribute entry node is what was looked for. It is used when the
1025  * flash address of the right node is known (@lnum:@offs) which makes it much
1026  * easier to resolve collisions (no need to read entries and match full
1027  * names). This function returns %1 and sets @zn and @n if the collision is
1028  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1029  * previous directory entry. Otherwise a negative error code is returned.
1030  */
1031 static int resolve_collision_directly(struct ubifs_info *c,
1032 				      const union ubifs_key *key,
1033 				      struct ubifs_znode **zn, int *n,
1034 				      int lnum, int offs)
1035 {
1036 	struct ubifs_znode *znode;
1037 	int nn, err;
1038 
1039 	znode = *zn;
1040 	nn = *n;
1041 	if (matches_position(&znode->zbranch[nn], lnum, offs))
1042 		return 1;
1043 
1044 	/* Look left */
1045 	while (1) {
1046 		err = tnc_prev(c, &znode, &nn);
1047 		if (err == -ENOENT)
1048 			break;
1049 		if (err < 0)
1050 			return err;
1051 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1052 			break;
1053 		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1054 			*zn = znode;
1055 			*n = nn;
1056 			return 1;
1057 		}
1058 	}
1059 
1060 	/* Look right */
1061 	znode = *zn;
1062 	nn = *n;
1063 	while (1) {
1064 		err = tnc_next(c, &znode, &nn);
1065 		if (err == -ENOENT)
1066 			return 0;
1067 		if (err < 0)
1068 			return err;
1069 		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1070 			return 0;
1071 		*zn = znode;
1072 		*n = nn;
1073 		if (matches_position(&znode->zbranch[nn], lnum, offs))
1074 			return 1;
1075 	}
1076 }
1077 
1078 /**
1079  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1080  * @c: UBIFS file-system description object
1081  * @znode: znode to dirty
1082  *
1083  * If we do not have a unique key that resides in a znode, then we cannot
1084  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1085  * This function records the path back to the last dirty ancestor, and then
1086  * dirties the znodes on that path.
1087  */
1088 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1089 					       struct ubifs_znode *znode)
1090 {
1091 	struct ubifs_znode *zp;
1092 	int *path = c->bottom_up_buf, p = 0;
1093 
1094 	ubifs_assert(c->zroot.znode);
1095 	ubifs_assert(znode);
1096 	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1097 		kfree(c->bottom_up_buf);
1098 		c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1099 					   GFP_NOFS);
1100 		if (!c->bottom_up_buf)
1101 			return ERR_PTR(-ENOMEM);
1102 		path = c->bottom_up_buf;
1103 	}
1104 	if (c->zroot.znode->level) {
1105 		/* Go up until parent is dirty */
1106 		while (1) {
1107 			int n;
1108 
1109 			zp = znode->parent;
1110 			if (!zp)
1111 				break;
1112 			n = znode->iip;
1113 			ubifs_assert(p < c->zroot.znode->level);
1114 			path[p++] = n;
1115 			if (!zp->cnext && ubifs_zn_dirty(znode))
1116 				break;
1117 			znode = zp;
1118 		}
1119 	}
1120 
1121 	/* Come back down, dirtying as we go */
1122 	while (1) {
1123 		struct ubifs_zbranch *zbr;
1124 
1125 		zp = znode->parent;
1126 		if (zp) {
1127 			ubifs_assert(path[p - 1] >= 0);
1128 			ubifs_assert(path[p - 1] < zp->child_cnt);
1129 			zbr = &zp->zbranch[path[--p]];
1130 			znode = dirty_cow_znode(c, zbr);
1131 		} else {
1132 			ubifs_assert(znode == c->zroot.znode);
1133 			znode = dirty_cow_znode(c, &c->zroot);
1134 		}
1135 		if (IS_ERR(znode) || !p)
1136 			break;
1137 		ubifs_assert(path[p - 1] >= 0);
1138 		ubifs_assert(path[p - 1] < znode->child_cnt);
1139 		znode = znode->zbranch[path[p - 1]].znode;
1140 	}
1141 
1142 	return znode;
1143 }
1144 
1145 /**
1146  * ubifs_lookup_level0 - search for zero-level znode.
1147  * @c: UBIFS file-system description object
1148  * @key:  key to lookup
1149  * @zn: znode is returned here
1150  * @n: znode branch slot number is returned here
1151  *
1152  * This function looks up the TNC tree and search for zero-level znode which
1153  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1154  * cases:
1155  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1156  *     is returned and slot number of the matched branch is stored in @n;
1157  *   o not exact match, which means that zero-level znode does not contain
1158  *     @key, then %0 is returned and slot number of the closed branch is stored
1159  *     in  @n;
1160  *   o @key is so small that it is even less than the lowest key of the
1161  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1162  *
1163  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1164  * function reads corresponding indexing nodes and inserts them to TNC. In
1165  * case of failure, a negative error code is returned.
1166  */
1167 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1168 			struct ubifs_znode **zn, int *n)
1169 {
1170 	int err, exact;
1171 	struct ubifs_znode *znode;
1172 	unsigned long time = get_seconds();
1173 
1174 	dbg_tnc("search key %s", DBGKEY(key));
1175 
1176 	znode = c->zroot.znode;
1177 	if (unlikely(!znode)) {
1178 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1179 		if (IS_ERR(znode))
1180 			return PTR_ERR(znode);
1181 	}
1182 
1183 	znode->time = time;
1184 
1185 	while (1) {
1186 		struct ubifs_zbranch *zbr;
1187 
1188 		exact = ubifs_search_zbranch(c, znode, key, n);
1189 
1190 		if (znode->level == 0)
1191 			break;
1192 
1193 		if (*n < 0)
1194 			*n = 0;
1195 		zbr = &znode->zbranch[*n];
1196 
1197 		if (zbr->znode) {
1198 			znode->time = time;
1199 			znode = zbr->znode;
1200 			continue;
1201 		}
1202 
1203 		/* znode is not in TNC cache, load it from the media */
1204 		znode = ubifs_load_znode(c, zbr, znode, *n);
1205 		if (IS_ERR(znode))
1206 			return PTR_ERR(znode);
1207 	}
1208 
1209 	*zn = znode;
1210 	if (exact || !is_hash_key(c, key) || *n != -1) {
1211 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1212 		return exact;
1213 	}
1214 
1215 	/*
1216 	 * Here is a tricky place. We have not found the key and this is a
1217 	 * "hashed" key, which may collide. The rest of the code deals with
1218 	 * situations like this:
1219 	 *
1220 	 *                  | 3 | 5 |
1221 	 *                  /       \
1222 	 *          | 3 | 5 |      | 6 | 7 | (x)
1223 	 *
1224 	 * Or more a complex example:
1225 	 *
1226 	 *                | 1 | 5 |
1227 	 *                /       \
1228 	 *       | 1 | 3 |         | 5 | 8 |
1229 	 *              \           /
1230 	 *          | 5 | 5 |   | 6 | 7 | (x)
1231 	 *
1232 	 * In the examples, if we are looking for key "5", we may reach nodes
1233 	 * marked with "(x)". In this case what we have do is to look at the
1234 	 * left and see if there is "5" key there. If there is, we have to
1235 	 * return it.
1236 	 *
1237 	 * Note, this whole situation is possible because we allow to have
1238 	 * elements which are equivalent to the next key in the parent in the
1239 	 * children of current znode. For example, this happens if we split a
1240 	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1241 	 * like this:
1242 	 *                      | 3 | 5 |
1243 	 *                       /     \
1244 	 *                | 3 | 5 |   | 5 | 6 | 7 |
1245 	 *                              ^
1246 	 * And this becomes what is at the first "picture" after key "5" marked
1247 	 * with "^" is removed. What could be done is we could prohibit
1248 	 * splitting in the middle of the colliding sequence. Also, when
1249 	 * removing the leftmost key, we would have to correct the key of the
1250 	 * parent node, which would introduce additional complications. Namely,
1251 	 * if we changed the the leftmost key of the parent znode, the garbage
1252 	 * collector would be unable to find it (GC is doing this when GC'ing
1253 	 * indexing LEBs). Although we already have an additional RB-tree where
1254 	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1255 	 * after the commit. But anyway, this does not look easy to implement
1256 	 * so we did not try this.
1257 	 */
1258 	err = tnc_prev(c, &znode, n);
1259 	if (err == -ENOENT) {
1260 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1261 		*n = -1;
1262 		return 0;
1263 	}
1264 	if (unlikely(err < 0))
1265 		return err;
1266 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1267 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1268 		*n = -1;
1269 		return 0;
1270 	}
1271 
1272 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1273 	*zn = znode;
1274 	return 1;
1275 }
1276 
1277 /**
1278  * lookup_level0_dirty - search for zero-level znode dirtying.
1279  * @c: UBIFS file-system description object
1280  * @key:  key to lookup
1281  * @zn: znode is returned here
1282  * @n: znode branch slot number is returned here
1283  *
1284  * This function looks up the TNC tree and search for zero-level znode which
1285  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1286  * cases:
1287  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1288  *     is returned and slot number of the matched branch is stored in @n;
1289  *   o not exact match, which means that zero-level znode does not contain @key
1290  *     then %0 is returned and slot number of the closed branch is stored in
1291  *     @n;
1292  *   o @key is so small that it is even less than the lowest key of the
1293  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1294  *
1295  * Additionally all znodes in the path from the root to the located zero-level
1296  * znode are marked as dirty.
1297  *
1298  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1299  * function reads corresponding indexing nodes and inserts them to TNC. In
1300  * case of failure, a negative error code is returned.
1301  */
1302 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1303 			       struct ubifs_znode **zn, int *n)
1304 {
1305 	int err, exact;
1306 	struct ubifs_znode *znode;
1307 	unsigned long time = get_seconds();
1308 
1309 	dbg_tnc("search and dirty key %s", DBGKEY(key));
1310 
1311 	znode = c->zroot.znode;
1312 	if (unlikely(!znode)) {
1313 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1314 		if (IS_ERR(znode))
1315 			return PTR_ERR(znode);
1316 	}
1317 
1318 	znode = dirty_cow_znode(c, &c->zroot);
1319 	if (IS_ERR(znode))
1320 		return PTR_ERR(znode);
1321 
1322 	znode->time = time;
1323 
1324 	while (1) {
1325 		struct ubifs_zbranch *zbr;
1326 
1327 		exact = ubifs_search_zbranch(c, znode, key, n);
1328 
1329 		if (znode->level == 0)
1330 			break;
1331 
1332 		if (*n < 0)
1333 			*n = 0;
1334 		zbr = &znode->zbranch[*n];
1335 
1336 		if (zbr->znode) {
1337 			znode->time = time;
1338 			znode = dirty_cow_znode(c, zbr);
1339 			if (IS_ERR(znode))
1340 				return PTR_ERR(znode);
1341 			continue;
1342 		}
1343 
1344 		/* znode is not in TNC cache, load it from the media */
1345 		znode = ubifs_load_znode(c, zbr, znode, *n);
1346 		if (IS_ERR(znode))
1347 			return PTR_ERR(znode);
1348 		znode = dirty_cow_znode(c, zbr);
1349 		if (IS_ERR(znode))
1350 			return PTR_ERR(znode);
1351 	}
1352 
1353 	*zn = znode;
1354 	if (exact || !is_hash_key(c, key) || *n != -1) {
1355 		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1356 		return exact;
1357 	}
1358 
1359 	/*
1360 	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1361 	 * code.
1362 	 */
1363 	err = tnc_prev(c, &znode, n);
1364 	if (err == -ENOENT) {
1365 		*n = -1;
1366 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1367 		return 0;
1368 	}
1369 	if (unlikely(err < 0))
1370 		return err;
1371 	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1372 		*n = -1;
1373 		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1374 		return 0;
1375 	}
1376 
1377 	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1378 		znode = dirty_cow_bottom_up(c, znode);
1379 		if (IS_ERR(znode))
1380 			return PTR_ERR(znode);
1381 	}
1382 
1383 	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1384 	*zn = znode;
1385 	return 1;
1386 }
1387 
1388 /**
1389  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1390  * @c: UBIFS file-system description object
1391  * @lnum: LEB number
1392  * @gc_seq1: garbage collection sequence number
1393  *
1394  * This function determines if @lnum may have been garbage collected since
1395  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1396  * %0 is returned.
1397  */
1398 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1399 {
1400 	int gc_seq2, gced_lnum;
1401 
1402 	gced_lnum = c->gced_lnum;
1403 	smp_rmb();
1404 	gc_seq2 = c->gc_seq;
1405 	/* Same seq means no GC */
1406 	if (gc_seq1 == gc_seq2)
1407 		return 0;
1408 	/* Different by more than 1 means we don't know */
1409 	if (gc_seq1 + 1 != gc_seq2)
1410 		return 1;
1411 	/*
1412 	 * We have seen the sequence number has increased by 1. Now we need to
1413 	 * be sure we read the right LEB number, so read it again.
1414 	 */
1415 	smp_rmb();
1416 	if (gced_lnum != c->gced_lnum)
1417 		return 1;
1418 	/* Finally we can check lnum */
1419 	if (gced_lnum == lnum)
1420 		return 1;
1421 	return 0;
1422 }
1423 
1424 /**
1425  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1426  * @c: UBIFS file-system description object
1427  * @key: node key to lookup
1428  * @node: the node is returned here
1429  * @lnum: LEB number is returned here
1430  * @offs: offset is returned here
1431  *
1432  * This function look up and reads node with key @key. The caller has to make
1433  * sure the @node buffer is large enough to fit the node. Returns zero in case
1434  * of success, %-ENOENT if the node was not found, and a negative error code in
1435  * case of failure. The node location can be returned in @lnum and @offs.
1436  */
1437 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1438 		     void *node, int *lnum, int *offs)
1439 {
1440 	int found, n, err, safely = 0, gc_seq1;
1441 	struct ubifs_znode *znode;
1442 	struct ubifs_zbranch zbr, *zt;
1443 
1444 again:
1445 	mutex_lock(&c->tnc_mutex);
1446 	found = ubifs_lookup_level0(c, key, &znode, &n);
1447 	if (!found) {
1448 		err = -ENOENT;
1449 		goto out;
1450 	} else if (found < 0) {
1451 		err = found;
1452 		goto out;
1453 	}
1454 	zt = &znode->zbranch[n];
1455 	if (lnum) {
1456 		*lnum = zt->lnum;
1457 		*offs = zt->offs;
1458 	}
1459 	if (is_hash_key(c, key)) {
1460 		/*
1461 		 * In this case the leaf node cache gets used, so we pass the
1462 		 * address of the zbranch and keep the mutex locked
1463 		 */
1464 		err = tnc_read_node_nm(c, zt, node);
1465 		goto out;
1466 	}
1467 	if (safely) {
1468 		err = ubifs_tnc_read_node(c, zt, node);
1469 		goto out;
1470 	}
1471 	/* Drop the TNC mutex prematurely and race with garbage collection */
1472 	zbr = znode->zbranch[n];
1473 	gc_seq1 = c->gc_seq;
1474 	mutex_unlock(&c->tnc_mutex);
1475 
1476 	if (ubifs_get_wbuf(c, zbr.lnum)) {
1477 		/* We do not GC journal heads */
1478 		err = ubifs_tnc_read_node(c, &zbr, node);
1479 		return err;
1480 	}
1481 
1482 	err = fallible_read_node(c, key, &zbr, node);
1483 	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1484 		/*
1485 		 * The node may have been GC'ed out from under us so try again
1486 		 * while keeping the TNC mutex locked.
1487 		 */
1488 		safely = 1;
1489 		goto again;
1490 	}
1491 	return 0;
1492 
1493 out:
1494 	mutex_unlock(&c->tnc_mutex);
1495 	return err;
1496 }
1497 
1498 /**
1499  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1500  * @c: UBIFS file-system description object
1501  * @bu: bulk-read parameters and results
1502  *
1503  * Lookup consecutive data node keys for the same inode that reside
1504  * consecutively in the same LEB.
1505  */
1506 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1507 {
1508 	int n, err = 0, lnum = -1, uninitialized_var(offs);
1509 	int uninitialized_var(len);
1510 	unsigned int block = key_block(c, &bu->key);
1511 	struct ubifs_znode *znode;
1512 
1513 	bu->cnt = 0;
1514 	bu->blk_cnt = 0;
1515 	bu->eof = 0;
1516 
1517 	mutex_lock(&c->tnc_mutex);
1518 	/* Find first key */
1519 	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1520 	if (err < 0)
1521 		goto out;
1522 	if (err) {
1523 		/* Key found */
1524 		len = znode->zbranch[n].len;
1525 		/* The buffer must be big enough for at least 1 node */
1526 		if (len > bu->buf_len) {
1527 			err = -EINVAL;
1528 			goto out;
1529 		}
1530 		/* Add this key */
1531 		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1532 		bu->blk_cnt += 1;
1533 		lnum = znode->zbranch[n].lnum;
1534 		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1535 	}
1536 	while (1) {
1537 		struct ubifs_zbranch *zbr;
1538 		union ubifs_key *key;
1539 		unsigned int next_block;
1540 
1541 		/* Find next key */
1542 		err = tnc_next(c, &znode, &n);
1543 		if (err)
1544 			goto out;
1545 		zbr = &znode->zbranch[n];
1546 		key = &zbr->key;
1547 		/* See if there is another data key for this file */
1548 		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1549 		    key_type(c, key) != UBIFS_DATA_KEY) {
1550 			err = -ENOENT;
1551 			goto out;
1552 		}
1553 		if (lnum < 0) {
1554 			/* First key found */
1555 			lnum = zbr->lnum;
1556 			offs = ALIGN(zbr->offs + zbr->len, 8);
1557 			len = zbr->len;
1558 			if (len > bu->buf_len) {
1559 				err = -EINVAL;
1560 				goto out;
1561 			}
1562 		} else {
1563 			/*
1564 			 * The data nodes must be in consecutive positions in
1565 			 * the same LEB.
1566 			 */
1567 			if (zbr->lnum != lnum || zbr->offs != offs)
1568 				goto out;
1569 			offs += ALIGN(zbr->len, 8);
1570 			len = ALIGN(len, 8) + zbr->len;
1571 			/* Must not exceed buffer length */
1572 			if (len > bu->buf_len)
1573 				goto out;
1574 		}
1575 		/* Allow for holes */
1576 		next_block = key_block(c, key);
1577 		bu->blk_cnt += (next_block - block - 1);
1578 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1579 			goto out;
1580 		block = next_block;
1581 		/* Add this key */
1582 		bu->zbranch[bu->cnt++] = *zbr;
1583 		bu->blk_cnt += 1;
1584 		/* See if we have room for more */
1585 		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1586 			goto out;
1587 		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588 			goto out;
1589 	}
1590 out:
1591 	if (err == -ENOENT) {
1592 		bu->eof = 1;
1593 		err = 0;
1594 	}
1595 	bu->gc_seq = c->gc_seq;
1596 	mutex_unlock(&c->tnc_mutex);
1597 	if (err)
1598 		return err;
1599 	/*
1600 	 * An enormous hole could cause bulk-read to encompass too many
1601 	 * page cache pages, so limit the number here.
1602 	 */
1603 	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1604 		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1605 	/*
1606 	 * Ensure that bulk-read covers a whole number of page cache
1607 	 * pages.
1608 	 */
1609 	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1610 	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1611 		return 0;
1612 	if (bu->eof) {
1613 		/* At the end of file we can round up */
1614 		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1615 		return 0;
1616 	}
1617 	/* Exclude data nodes that do not make up a whole page cache page */
1618 	block = key_block(c, &bu->key) + bu->blk_cnt;
1619 	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1620 	while (bu->cnt) {
1621 		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1622 			break;
1623 		bu->cnt -= 1;
1624 	}
1625 	return 0;
1626 }
1627 
1628 /**
1629  * read_wbuf - bulk-read from a LEB with a wbuf.
1630  * @wbuf: wbuf that may overlap the read
1631  * @buf: buffer into which to read
1632  * @len: read length
1633  * @lnum: LEB number from which to read
1634  * @offs: offset from which to read
1635  *
1636  * This functions returns %0 on success or a negative error code on failure.
1637  */
1638 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1639 		     int offs)
1640 {
1641 	const struct ubifs_info *c = wbuf->c;
1642 	int rlen, overlap;
1643 
1644 	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1645 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1646 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
1647 	ubifs_assert(offs + len <= c->leb_size);
1648 
1649 	spin_lock(&wbuf->lock);
1650 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1651 	if (!overlap) {
1652 		/* We may safely unlock the write-buffer and read the data */
1653 		spin_unlock(&wbuf->lock);
1654 		return ubi_read(c->ubi, lnum, buf, offs, len);
1655 	}
1656 
1657 	/* Don't read under wbuf */
1658 	rlen = wbuf->offs - offs;
1659 	if (rlen < 0)
1660 		rlen = 0;
1661 
1662 	/* Copy the rest from the write-buffer */
1663 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1664 	spin_unlock(&wbuf->lock);
1665 
1666 	if (rlen > 0)
1667 		/* Read everything that goes before write-buffer */
1668 		return ubi_read(c->ubi, lnum, buf, offs, rlen);
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  * validate_data_node - validate data nodes for bulk-read.
1675  * @c: UBIFS file-system description object
1676  * @buf: buffer containing data node to validate
1677  * @zbr: zbranch of data node to validate
1678  *
1679  * This functions returns %0 on success or a negative error code on failure.
1680  */
1681 static int validate_data_node(struct ubifs_info *c, void *buf,
1682 			      struct ubifs_zbranch *zbr)
1683 {
1684 	union ubifs_key key1;
1685 	struct ubifs_ch *ch = buf;
1686 	int err, len;
1687 
1688 	if (ch->node_type != UBIFS_DATA_NODE) {
1689 		ubifs_err("bad node type (%d but expected %d)",
1690 			  ch->node_type, UBIFS_DATA_NODE);
1691 		goto out_err;
1692 	}
1693 
1694 	err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1695 	if (err) {
1696 		ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1697 		goto out;
1698 	}
1699 
1700 	len = le32_to_cpu(ch->len);
1701 	if (len != zbr->len) {
1702 		ubifs_err("bad node length %d, expected %d", len, zbr->len);
1703 		goto out_err;
1704 	}
1705 
1706 	/* Make sure the key of the read node is correct */
1707 	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1708 	if (!keys_eq(c, &zbr->key, &key1)) {
1709 		ubifs_err("bad key in node at LEB %d:%d",
1710 			  zbr->lnum, zbr->offs);
1711 		dbg_tnc("looked for key %s found node's key %s",
1712 			DBGKEY(&zbr->key), DBGKEY1(&key1));
1713 		goto out_err;
1714 	}
1715 
1716 	return 0;
1717 
1718 out_err:
1719 	err = -EINVAL;
1720 out:
1721 	ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1722 	dbg_dump_node(c, buf);
1723 	dbg_dump_stack();
1724 	return err;
1725 }
1726 
1727 /**
1728  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1729  * @c: UBIFS file-system description object
1730  * @bu: bulk-read parameters and results
1731  *
1732  * This functions reads and validates the data nodes that were identified by the
1733  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1734  * -EAGAIN to indicate a race with GC, or another negative error code on
1735  * failure.
1736  */
1737 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1738 {
1739 	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1740 	struct ubifs_wbuf *wbuf;
1741 	void *buf;
1742 
1743 	len = bu->zbranch[bu->cnt - 1].offs;
1744 	len += bu->zbranch[bu->cnt - 1].len - offs;
1745 	if (len > bu->buf_len) {
1746 		ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1747 		return -EINVAL;
1748 	}
1749 
1750 	/* Do the read */
1751 	wbuf = ubifs_get_wbuf(c, lnum);
1752 	if (wbuf)
1753 		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1754 	else
1755 		err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1756 
1757 	/* Check for a race with GC */
1758 	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1759 		return -EAGAIN;
1760 
1761 	if (err && err != -EBADMSG) {
1762 		ubifs_err("failed to read from LEB %d:%d, error %d",
1763 			  lnum, offs, err);
1764 		dbg_dump_stack();
1765 		dbg_tnc("key %s", DBGKEY(&bu->key));
1766 		return err;
1767 	}
1768 
1769 	/* Validate the nodes read */
1770 	buf = bu->buf;
1771 	for (i = 0; i < bu->cnt; i++) {
1772 		err = validate_data_node(c, buf, &bu->zbranch[i]);
1773 		if (err)
1774 			return err;
1775 		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 /**
1782  * do_lookup_nm- look up a "hashed" node.
1783  * @c: UBIFS file-system description object
1784  * @key: node key to lookup
1785  * @node: the node is returned here
1786  * @nm: node name
1787  *
1788  * This function look up and reads a node which contains name hash in the key.
1789  * Since the hash may have collisions, there may be many nodes with the same
1790  * key, so we have to sequentially look to all of them until the needed one is
1791  * found. This function returns zero in case of success, %-ENOENT if the node
1792  * was not found, and a negative error code in case of failure.
1793  */
1794 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1795 			void *node, const struct qstr *nm)
1796 {
1797 	int found, n, err;
1798 	struct ubifs_znode *znode;
1799 
1800 	dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1801 	mutex_lock(&c->tnc_mutex);
1802 	found = ubifs_lookup_level0(c, key, &znode, &n);
1803 	if (!found) {
1804 		err = -ENOENT;
1805 		goto out_unlock;
1806 	} else if (found < 0) {
1807 		err = found;
1808 		goto out_unlock;
1809 	}
1810 
1811 	ubifs_assert(n >= 0);
1812 
1813 	err = resolve_collision(c, key, &znode, &n, nm);
1814 	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1815 	if (unlikely(err < 0))
1816 		goto out_unlock;
1817 	if (err == 0) {
1818 		err = -ENOENT;
1819 		goto out_unlock;
1820 	}
1821 
1822 	err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1823 
1824 out_unlock:
1825 	mutex_unlock(&c->tnc_mutex);
1826 	return err;
1827 }
1828 
1829 /**
1830  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1831  * @c: UBIFS file-system description object
1832  * @key: node key to lookup
1833  * @node: the node is returned here
1834  * @nm: node name
1835  *
1836  * This function look up and reads a node which contains name hash in the key.
1837  * Since the hash may have collisions, there may be many nodes with the same
1838  * key, so we have to sequentially look to all of them until the needed one is
1839  * found. This function returns zero in case of success, %-ENOENT if the node
1840  * was not found, and a negative error code in case of failure.
1841  */
1842 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1843 			void *node, const struct qstr *nm)
1844 {
1845 	int err, len;
1846 	const struct ubifs_dent_node *dent = node;
1847 
1848 	/*
1849 	 * We assume that in most of the cases there are no name collisions and
1850 	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1851 	 */
1852 	err = ubifs_tnc_lookup(c, key, node);
1853 	if (err)
1854 		return err;
1855 
1856 	len = le16_to_cpu(dent->nlen);
1857 	if (nm->len == len && !memcmp(dent->name, nm->name, len))
1858 		return 0;
1859 
1860 	/*
1861 	 * Unluckily, there are hash collisions and we have to iterate over
1862 	 * them look at each direntry with colliding name hash sequentially.
1863 	 */
1864 	return do_lookup_nm(c, key, node, nm);
1865 }
1866 
1867 /**
1868  * correct_parent_keys - correct parent znodes' keys.
1869  * @c: UBIFS file-system description object
1870  * @znode: znode to correct parent znodes for
1871  *
1872  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1873  * zbranch changes, keys of parent znodes have to be corrected. This helper
1874  * function is called in such situations and corrects the keys if needed.
1875  */
1876 static void correct_parent_keys(const struct ubifs_info *c,
1877 				struct ubifs_znode *znode)
1878 {
1879 	union ubifs_key *key, *key1;
1880 
1881 	ubifs_assert(znode->parent);
1882 	ubifs_assert(znode->iip == 0);
1883 
1884 	key = &znode->zbranch[0].key;
1885 	key1 = &znode->parent->zbranch[0].key;
1886 
1887 	while (keys_cmp(c, key, key1) < 0) {
1888 		key_copy(c, key, key1);
1889 		znode = znode->parent;
1890 		znode->alt = 1;
1891 		if (!znode->parent || znode->iip)
1892 			break;
1893 		key1 = &znode->parent->zbranch[0].key;
1894 	}
1895 }
1896 
1897 /**
1898  * insert_zbranch - insert a zbranch into a znode.
1899  * @znode: znode into which to insert
1900  * @zbr: zbranch to insert
1901  * @n: slot number to insert to
1902  *
1903  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1904  * znode's array of zbranches and keeps zbranches consolidated, so when a new
1905  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1906  * slot, zbranches starting from @n have to be moved right.
1907  */
1908 static void insert_zbranch(struct ubifs_znode *znode,
1909 			   const struct ubifs_zbranch *zbr, int n)
1910 {
1911 	int i;
1912 
1913 	ubifs_assert(ubifs_zn_dirty(znode));
1914 
1915 	if (znode->level) {
1916 		for (i = znode->child_cnt; i > n; i--) {
1917 			znode->zbranch[i] = znode->zbranch[i - 1];
1918 			if (znode->zbranch[i].znode)
1919 				znode->zbranch[i].znode->iip = i;
1920 		}
1921 		if (zbr->znode)
1922 			zbr->znode->iip = n;
1923 	} else
1924 		for (i = znode->child_cnt; i > n; i--)
1925 			znode->zbranch[i] = znode->zbranch[i - 1];
1926 
1927 	znode->zbranch[n] = *zbr;
1928 	znode->child_cnt += 1;
1929 
1930 	/*
1931 	 * After inserting at slot zero, the lower bound of the key range of
1932 	 * this znode may have changed. If this znode is subsequently split
1933 	 * then the upper bound of the key range may change, and furthermore
1934 	 * it could change to be lower than the original lower bound. If that
1935 	 * happens, then it will no longer be possible to find this znode in the
1936 	 * TNC using the key from the index node on flash. That is bad because
1937 	 * if it is not found, we will assume it is obsolete and may overwrite
1938 	 * it. Then if there is an unclean unmount, we will start using the
1939 	 * old index which will be broken.
1940 	 *
1941 	 * So we first mark znodes that have insertions at slot zero, and then
1942 	 * if they are split we add their lnum/offs to the old_idx tree.
1943 	 */
1944 	if (n == 0)
1945 		znode->alt = 1;
1946 }
1947 
1948 /**
1949  * tnc_insert - insert a node into TNC.
1950  * @c: UBIFS file-system description object
1951  * @znode: znode to insert into
1952  * @zbr: branch to insert
1953  * @n: slot number to insert new zbranch to
1954  *
1955  * This function inserts a new node described by @zbr into znode @znode. If
1956  * znode does not have a free slot for new zbranch, it is split. Parent znodes
1957  * are splat as well if needed. Returns zero in case of success or a negative
1958  * error code in case of failure.
1959  */
1960 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1961 		      struct ubifs_zbranch *zbr, int n)
1962 {
1963 	struct ubifs_znode *zn, *zi, *zp;
1964 	int i, keep, move, appending = 0;
1965 	union ubifs_key *key = &zbr->key, *key1;
1966 
1967 	ubifs_assert(n >= 0 && n <= c->fanout);
1968 
1969 	/* Implement naive insert for now */
1970 again:
1971 	zp = znode->parent;
1972 	if (znode->child_cnt < c->fanout) {
1973 		ubifs_assert(n != c->fanout);
1974 		dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1975 			DBGKEY(key));
1976 
1977 		insert_zbranch(znode, zbr, n);
1978 
1979 		/* Ensure parent's key is correct */
1980 		if (n == 0 && zp && znode->iip == 0)
1981 			correct_parent_keys(c, znode);
1982 
1983 		return 0;
1984 	}
1985 
1986 	/*
1987 	 * Unfortunately, @znode does not have more empty slots and we have to
1988 	 * split it.
1989 	 */
1990 	dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
1991 
1992 	if (znode->alt)
1993 		/*
1994 		 * We can no longer be sure of finding this znode by key, so we
1995 		 * record it in the old_idx tree.
1996 		 */
1997 		ins_clr_old_idx_znode(c, znode);
1998 
1999 	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2000 	if (!zn)
2001 		return -ENOMEM;
2002 	zn->parent = zp;
2003 	zn->level = znode->level;
2004 
2005 	/* Decide where to split */
2006 	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2007 		/* Try not to split consecutive data keys */
2008 		if (n == c->fanout) {
2009 			key1 = &znode->zbranch[n - 1].key;
2010 			if (key_inum(c, key1) == key_inum(c, key) &&
2011 			    key_type(c, key1) == UBIFS_DATA_KEY)
2012 				appending = 1;
2013 		} else
2014 			goto check_split;
2015 	} else if (appending && n != c->fanout) {
2016 		/* Try not to split consecutive data keys */
2017 		appending = 0;
2018 check_split:
2019 		if (n >= (c->fanout + 1) / 2) {
2020 			key1 = &znode->zbranch[0].key;
2021 			if (key_inum(c, key1) == key_inum(c, key) &&
2022 			    key_type(c, key1) == UBIFS_DATA_KEY) {
2023 				key1 = &znode->zbranch[n].key;
2024 				if (key_inum(c, key1) != key_inum(c, key) ||
2025 				    key_type(c, key1) != UBIFS_DATA_KEY) {
2026 					keep = n;
2027 					move = c->fanout - keep;
2028 					zi = znode;
2029 					goto do_split;
2030 				}
2031 			}
2032 		}
2033 	}
2034 
2035 	if (appending) {
2036 		keep = c->fanout;
2037 		move = 0;
2038 	} else {
2039 		keep = (c->fanout + 1) / 2;
2040 		move = c->fanout - keep;
2041 	}
2042 
2043 	/*
2044 	 * Although we don't at present, we could look at the neighbors and see
2045 	 * if we can move some zbranches there.
2046 	 */
2047 
2048 	if (n < keep) {
2049 		/* Insert into existing znode */
2050 		zi = znode;
2051 		move += 1;
2052 		keep -= 1;
2053 	} else {
2054 		/* Insert into new znode */
2055 		zi = zn;
2056 		n -= keep;
2057 		/* Re-parent */
2058 		if (zn->level != 0)
2059 			zbr->znode->parent = zn;
2060 	}
2061 
2062 do_split:
2063 
2064 	__set_bit(DIRTY_ZNODE, &zn->flags);
2065 	atomic_long_inc(&c->dirty_zn_cnt);
2066 
2067 	zn->child_cnt = move;
2068 	znode->child_cnt = keep;
2069 
2070 	dbg_tnc("moving %d, keeping %d", move, keep);
2071 
2072 	/* Move zbranch */
2073 	for (i = 0; i < move; i++) {
2074 		zn->zbranch[i] = znode->zbranch[keep + i];
2075 		/* Re-parent */
2076 		if (zn->level != 0)
2077 			if (zn->zbranch[i].znode) {
2078 				zn->zbranch[i].znode->parent = zn;
2079 				zn->zbranch[i].znode->iip = i;
2080 			}
2081 	}
2082 
2083 	/* Insert new key and branch */
2084 	dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2085 
2086 	insert_zbranch(zi, zbr, n);
2087 
2088 	/* Insert new znode (produced by spitting) into the parent */
2089 	if (zp) {
2090 		if (n == 0 && zi == znode && znode->iip == 0)
2091 			correct_parent_keys(c, znode);
2092 
2093 		/* Locate insertion point */
2094 		n = znode->iip + 1;
2095 
2096 		/* Tail recursion */
2097 		zbr->key = zn->zbranch[0].key;
2098 		zbr->znode = zn;
2099 		zbr->lnum = 0;
2100 		zbr->offs = 0;
2101 		zbr->len = 0;
2102 		znode = zp;
2103 
2104 		goto again;
2105 	}
2106 
2107 	/* We have to split root znode */
2108 	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2109 
2110 	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2111 	if (!zi)
2112 		return -ENOMEM;
2113 
2114 	zi->child_cnt = 2;
2115 	zi->level = znode->level + 1;
2116 
2117 	__set_bit(DIRTY_ZNODE, &zi->flags);
2118 	atomic_long_inc(&c->dirty_zn_cnt);
2119 
2120 	zi->zbranch[0].key = znode->zbranch[0].key;
2121 	zi->zbranch[0].znode = znode;
2122 	zi->zbranch[0].lnum = c->zroot.lnum;
2123 	zi->zbranch[0].offs = c->zroot.offs;
2124 	zi->zbranch[0].len = c->zroot.len;
2125 	zi->zbranch[1].key = zn->zbranch[0].key;
2126 	zi->zbranch[1].znode = zn;
2127 
2128 	c->zroot.lnum = 0;
2129 	c->zroot.offs = 0;
2130 	c->zroot.len = 0;
2131 	c->zroot.znode = zi;
2132 
2133 	zn->parent = zi;
2134 	zn->iip = 1;
2135 	znode->parent = zi;
2136 	znode->iip = 0;
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * ubifs_tnc_add - add a node to TNC.
2143  * @c: UBIFS file-system description object
2144  * @key: key to add
2145  * @lnum: LEB number of node
2146  * @offs: node offset
2147  * @len: node length
2148  *
2149  * This function adds a node with key @key to TNC. The node may be new or it may
2150  * obsolete some existing one. Returns %0 on success or negative error code on
2151  * failure.
2152  */
2153 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2154 		  int offs, int len)
2155 {
2156 	int found, n, err = 0;
2157 	struct ubifs_znode *znode;
2158 
2159 	mutex_lock(&c->tnc_mutex);
2160 	dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2161 	found = lookup_level0_dirty(c, key, &znode, &n);
2162 	if (!found) {
2163 		struct ubifs_zbranch zbr;
2164 
2165 		zbr.znode = NULL;
2166 		zbr.lnum = lnum;
2167 		zbr.offs = offs;
2168 		zbr.len = len;
2169 		key_copy(c, key, &zbr.key);
2170 		err = tnc_insert(c, znode, &zbr, n + 1);
2171 	} else if (found == 1) {
2172 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2173 
2174 		lnc_free(zbr);
2175 		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2176 		zbr->lnum = lnum;
2177 		zbr->offs = offs;
2178 		zbr->len = len;
2179 	} else
2180 		err = found;
2181 	if (!err)
2182 		err = dbg_check_tnc(c, 0);
2183 	mutex_unlock(&c->tnc_mutex);
2184 
2185 	return err;
2186 }
2187 
2188 /**
2189  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2190  * @c: UBIFS file-system description object
2191  * @key: key to add
2192  * @old_lnum: LEB number of old node
2193  * @old_offs: old node offset
2194  * @lnum: LEB number of node
2195  * @offs: node offset
2196  * @len: node length
2197  *
2198  * This function replaces a node with key @key in the TNC only if the old node
2199  * is found.  This function is called by garbage collection when node are moved.
2200  * Returns %0 on success or negative error code on failure.
2201  */
2202 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2203 		      int old_lnum, int old_offs, int lnum, int offs, int len)
2204 {
2205 	int found, n, err = 0;
2206 	struct ubifs_znode *znode;
2207 
2208 	mutex_lock(&c->tnc_mutex);
2209 	dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2210 		old_offs, lnum, offs, len, DBGKEY(key));
2211 	found = lookup_level0_dirty(c, key, &znode, &n);
2212 	if (found < 0) {
2213 		err = found;
2214 		goto out_unlock;
2215 	}
2216 
2217 	if (found == 1) {
2218 		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2219 
2220 		found = 0;
2221 		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2222 			lnc_free(zbr);
2223 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2224 			if (err)
2225 				goto out_unlock;
2226 			zbr->lnum = lnum;
2227 			zbr->offs = offs;
2228 			zbr->len = len;
2229 			found = 1;
2230 		} else if (is_hash_key(c, key)) {
2231 			found = resolve_collision_directly(c, key, &znode, &n,
2232 							   old_lnum, old_offs);
2233 			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2234 				found, znode, n, old_lnum, old_offs);
2235 			if (found < 0) {
2236 				err = found;
2237 				goto out_unlock;
2238 			}
2239 
2240 			if (found) {
2241 				/* Ensure the znode is dirtied */
2242 				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2243 					    znode = dirty_cow_bottom_up(c,
2244 									znode);
2245 					    if (IS_ERR(znode)) {
2246 						    err = PTR_ERR(znode);
2247 						    goto out_unlock;
2248 					    }
2249 				}
2250 				zbr = &znode->zbranch[n];
2251 				lnc_free(zbr);
2252 				err = ubifs_add_dirt(c, zbr->lnum,
2253 						     zbr->len);
2254 				if (err)
2255 					goto out_unlock;
2256 				zbr->lnum = lnum;
2257 				zbr->offs = offs;
2258 				zbr->len = len;
2259 			}
2260 		}
2261 	}
2262 
2263 	if (!found)
2264 		err = ubifs_add_dirt(c, lnum, len);
2265 
2266 	if (!err)
2267 		err = dbg_check_tnc(c, 0);
2268 
2269 out_unlock:
2270 	mutex_unlock(&c->tnc_mutex);
2271 	return err;
2272 }
2273 
2274 /**
2275  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2276  * @c: UBIFS file-system description object
2277  * @key: key to add
2278  * @lnum: LEB number of node
2279  * @offs: node offset
2280  * @len: node length
2281  * @nm: node name
2282  *
2283  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2284  * may have collisions, like directory entry keys.
2285  */
2286 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2287 		     int lnum, int offs, int len, const struct qstr *nm)
2288 {
2289 	int found, n, err = 0;
2290 	struct ubifs_znode *znode;
2291 
2292 	mutex_lock(&c->tnc_mutex);
2293 	dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2294 		DBGKEY(key));
2295 	found = lookup_level0_dirty(c, key, &znode, &n);
2296 	if (found < 0) {
2297 		err = found;
2298 		goto out_unlock;
2299 	}
2300 
2301 	if (found == 1) {
2302 		if (c->replaying)
2303 			found = fallible_resolve_collision(c, key, &znode, &n,
2304 							   nm, 1);
2305 		else
2306 			found = resolve_collision(c, key, &znode, &n, nm);
2307 		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2308 		if (found < 0) {
2309 			err = found;
2310 			goto out_unlock;
2311 		}
2312 
2313 		/* Ensure the znode is dirtied */
2314 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2315 			    znode = dirty_cow_bottom_up(c, znode);
2316 			    if (IS_ERR(znode)) {
2317 				    err = PTR_ERR(znode);
2318 				    goto out_unlock;
2319 			    }
2320 		}
2321 
2322 		if (found == 1) {
2323 			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2324 
2325 			lnc_free(zbr);
2326 			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2327 			zbr->lnum = lnum;
2328 			zbr->offs = offs;
2329 			zbr->len = len;
2330 			goto out_unlock;
2331 		}
2332 	}
2333 
2334 	if (!found) {
2335 		struct ubifs_zbranch zbr;
2336 
2337 		zbr.znode = NULL;
2338 		zbr.lnum = lnum;
2339 		zbr.offs = offs;
2340 		zbr.len = len;
2341 		key_copy(c, key, &zbr.key);
2342 		err = tnc_insert(c, znode, &zbr, n + 1);
2343 		if (err)
2344 			goto out_unlock;
2345 		if (c->replaying) {
2346 			/*
2347 			 * We did not find it in the index so there may be a
2348 			 * dangling branch still in the index. So we remove it
2349 			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2350 			 * an unmatchable name.
2351 			 */
2352 			struct qstr noname = { .len = 0, .name = "" };
2353 
2354 			err = dbg_check_tnc(c, 0);
2355 			mutex_unlock(&c->tnc_mutex);
2356 			if (err)
2357 				return err;
2358 			return ubifs_tnc_remove_nm(c, key, &noname);
2359 		}
2360 	}
2361 
2362 out_unlock:
2363 	if (!err)
2364 		err = dbg_check_tnc(c, 0);
2365 	mutex_unlock(&c->tnc_mutex);
2366 	return err;
2367 }
2368 
2369 /**
2370  * tnc_delete - delete a znode form TNC.
2371  * @c: UBIFS file-system description object
2372  * @znode: znode to delete from
2373  * @n: zbranch slot number to delete
2374  *
2375  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2376  * case of success and a negative error code in case of failure.
2377  */
2378 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2379 {
2380 	struct ubifs_zbranch *zbr;
2381 	struct ubifs_znode *zp;
2382 	int i, err;
2383 
2384 	/* Delete without merge for now */
2385 	ubifs_assert(znode->level == 0);
2386 	ubifs_assert(n >= 0 && n < c->fanout);
2387 	dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2388 
2389 	zbr = &znode->zbranch[n];
2390 	lnc_free(zbr);
2391 
2392 	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2393 	if (err) {
2394 		dbg_dump_znode(c, znode);
2395 		return err;
2396 	}
2397 
2398 	/* We do not "gap" zbranch slots */
2399 	for (i = n; i < znode->child_cnt - 1; i++)
2400 		znode->zbranch[i] = znode->zbranch[i + 1];
2401 	znode->child_cnt -= 1;
2402 
2403 	if (znode->child_cnt > 0)
2404 		return 0;
2405 
2406 	/*
2407 	 * This was the last zbranch, we have to delete this znode from the
2408 	 * parent.
2409 	 */
2410 
2411 	do {
2412 		ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2413 		ubifs_assert(ubifs_zn_dirty(znode));
2414 
2415 		zp = znode->parent;
2416 		n = znode->iip;
2417 
2418 		atomic_long_dec(&c->dirty_zn_cnt);
2419 
2420 		err = insert_old_idx_znode(c, znode);
2421 		if (err)
2422 			return err;
2423 
2424 		if (znode->cnext) {
2425 			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2426 			atomic_long_inc(&c->clean_zn_cnt);
2427 			atomic_long_inc(&ubifs_clean_zn_cnt);
2428 		} else
2429 			kfree(znode);
2430 		znode = zp;
2431 	} while (znode->child_cnt == 1); /* while removing last child */
2432 
2433 	/* Remove from znode, entry n - 1 */
2434 	znode->child_cnt -= 1;
2435 	ubifs_assert(znode->level != 0);
2436 	for (i = n; i < znode->child_cnt; i++) {
2437 		znode->zbranch[i] = znode->zbranch[i + 1];
2438 		if (znode->zbranch[i].znode)
2439 			znode->zbranch[i].znode->iip = i;
2440 	}
2441 
2442 	/*
2443 	 * If this is the root and it has only 1 child then
2444 	 * collapse the tree.
2445 	 */
2446 	if (!znode->parent) {
2447 		while (znode->child_cnt == 1 && znode->level != 0) {
2448 			zp = znode;
2449 			zbr = &znode->zbranch[0];
2450 			znode = get_znode(c, znode, 0);
2451 			if (IS_ERR(znode))
2452 				return PTR_ERR(znode);
2453 			znode = dirty_cow_znode(c, zbr);
2454 			if (IS_ERR(znode))
2455 				return PTR_ERR(znode);
2456 			znode->parent = NULL;
2457 			znode->iip = 0;
2458 			if (c->zroot.len) {
2459 				err = insert_old_idx(c, c->zroot.lnum,
2460 						     c->zroot.offs);
2461 				if (err)
2462 					return err;
2463 			}
2464 			c->zroot.lnum = zbr->lnum;
2465 			c->zroot.offs = zbr->offs;
2466 			c->zroot.len = zbr->len;
2467 			c->zroot.znode = znode;
2468 			ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2469 				     &zp->flags));
2470 			ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2471 			atomic_long_dec(&c->dirty_zn_cnt);
2472 
2473 			if (zp->cnext) {
2474 				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2475 				atomic_long_inc(&c->clean_zn_cnt);
2476 				atomic_long_inc(&ubifs_clean_zn_cnt);
2477 			} else
2478 				kfree(zp);
2479 		}
2480 	}
2481 
2482 	return 0;
2483 }
2484 
2485 /**
2486  * ubifs_tnc_remove - remove an index entry of a node.
2487  * @c: UBIFS file-system description object
2488  * @key: key of node
2489  *
2490  * Returns %0 on success or negative error code on failure.
2491  */
2492 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2493 {
2494 	int found, n, err = 0;
2495 	struct ubifs_znode *znode;
2496 
2497 	mutex_lock(&c->tnc_mutex);
2498 	dbg_tnc("key %s", DBGKEY(key));
2499 	found = lookup_level0_dirty(c, key, &znode, &n);
2500 	if (found < 0) {
2501 		err = found;
2502 		goto out_unlock;
2503 	}
2504 	if (found == 1)
2505 		err = tnc_delete(c, znode, n);
2506 	if (!err)
2507 		err = dbg_check_tnc(c, 0);
2508 
2509 out_unlock:
2510 	mutex_unlock(&c->tnc_mutex);
2511 	return err;
2512 }
2513 
2514 /**
2515  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2516  * @c: UBIFS file-system description object
2517  * @key: key of node
2518  * @nm: directory entry name
2519  *
2520  * Returns %0 on success or negative error code on failure.
2521  */
2522 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2523 			const struct qstr *nm)
2524 {
2525 	int n, err;
2526 	struct ubifs_znode *znode;
2527 
2528 	mutex_lock(&c->tnc_mutex);
2529 	dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2530 	err = lookup_level0_dirty(c, key, &znode, &n);
2531 	if (err < 0)
2532 		goto out_unlock;
2533 
2534 	if (err) {
2535 		if (c->replaying)
2536 			err = fallible_resolve_collision(c, key, &znode, &n,
2537 							 nm, 0);
2538 		else
2539 			err = resolve_collision(c, key, &znode, &n, nm);
2540 		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2541 		if (err < 0)
2542 			goto out_unlock;
2543 		if (err) {
2544 			/* Ensure the znode is dirtied */
2545 			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2546 				    znode = dirty_cow_bottom_up(c, znode);
2547 				    if (IS_ERR(znode)) {
2548 					    err = PTR_ERR(znode);
2549 					    goto out_unlock;
2550 				    }
2551 			}
2552 			err = tnc_delete(c, znode, n);
2553 		}
2554 	}
2555 
2556 out_unlock:
2557 	if (!err)
2558 		err = dbg_check_tnc(c, 0);
2559 	mutex_unlock(&c->tnc_mutex);
2560 	return err;
2561 }
2562 
2563 /**
2564  * key_in_range - determine if a key falls within a range of keys.
2565  * @c: UBIFS file-system description object
2566  * @key: key to check
2567  * @from_key: lowest key in range
2568  * @to_key: highest key in range
2569  *
2570  * This function returns %1 if the key is in range and %0 otherwise.
2571  */
2572 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2573 			union ubifs_key *from_key, union ubifs_key *to_key)
2574 {
2575 	if (keys_cmp(c, key, from_key) < 0)
2576 		return 0;
2577 	if (keys_cmp(c, key, to_key) > 0)
2578 		return 0;
2579 	return 1;
2580 }
2581 
2582 /**
2583  * ubifs_tnc_remove_range - remove index entries in range.
2584  * @c: UBIFS file-system description object
2585  * @from_key: lowest key to remove
2586  * @to_key: highest key to remove
2587  *
2588  * This function removes index entries starting at @from_key and ending at
2589  * @to_key.  This function returns zero in case of success and a negative error
2590  * code in case of failure.
2591  */
2592 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2593 			   union ubifs_key *to_key)
2594 {
2595 	int i, n, k, err = 0;
2596 	struct ubifs_znode *znode;
2597 	union ubifs_key *key;
2598 
2599 	mutex_lock(&c->tnc_mutex);
2600 	while (1) {
2601 		/* Find first level 0 znode that contains keys to remove */
2602 		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2603 		if (err < 0)
2604 			goto out_unlock;
2605 
2606 		if (err)
2607 			key = from_key;
2608 		else {
2609 			err = tnc_next(c, &znode, &n);
2610 			if (err == -ENOENT) {
2611 				err = 0;
2612 				goto out_unlock;
2613 			}
2614 			if (err < 0)
2615 				goto out_unlock;
2616 			key = &znode->zbranch[n].key;
2617 			if (!key_in_range(c, key, from_key, to_key)) {
2618 				err = 0;
2619 				goto out_unlock;
2620 			}
2621 		}
2622 
2623 		/* Ensure the znode is dirtied */
2624 		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2625 			    znode = dirty_cow_bottom_up(c, znode);
2626 			    if (IS_ERR(znode)) {
2627 				    err = PTR_ERR(znode);
2628 				    goto out_unlock;
2629 			    }
2630 		}
2631 
2632 		/* Remove all keys in range except the first */
2633 		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2634 			key = &znode->zbranch[i].key;
2635 			if (!key_in_range(c, key, from_key, to_key))
2636 				break;
2637 			lnc_free(&znode->zbranch[i]);
2638 			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2639 					     znode->zbranch[i].len);
2640 			if (err) {
2641 				dbg_dump_znode(c, znode);
2642 				goto out_unlock;
2643 			}
2644 			dbg_tnc("removing %s", DBGKEY(key));
2645 		}
2646 		if (k) {
2647 			for (i = n + 1 + k; i < znode->child_cnt; i++)
2648 				znode->zbranch[i - k] = znode->zbranch[i];
2649 			znode->child_cnt -= k;
2650 		}
2651 
2652 		/* Now delete the first */
2653 		err = tnc_delete(c, znode, n);
2654 		if (err)
2655 			goto out_unlock;
2656 	}
2657 
2658 out_unlock:
2659 	if (!err)
2660 		err = dbg_check_tnc(c, 0);
2661 	mutex_unlock(&c->tnc_mutex);
2662 	return err;
2663 }
2664 
2665 /**
2666  * ubifs_tnc_remove_ino - remove an inode from TNC.
2667  * @c: UBIFS file-system description object
2668  * @inum: inode number to remove
2669  *
2670  * This function remove inode @inum and all the extended attributes associated
2671  * with the anode from TNC and returns zero in case of success or a negative
2672  * error code in case of failure.
2673  */
2674 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2675 {
2676 	union ubifs_key key1, key2;
2677 	struct ubifs_dent_node *xent, *pxent = NULL;
2678 	struct qstr nm = { .name = NULL };
2679 
2680 	dbg_tnc("ino %lu", inum);
2681 
2682 	/*
2683 	 * Walk all extended attribute entries and remove them together with
2684 	 * corresponding extended attribute inodes.
2685 	 */
2686 	lowest_xent_key(c, &key1, inum);
2687 	while (1) {
2688 		ino_t xattr_inum;
2689 		int err;
2690 
2691 		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2692 		if (IS_ERR(xent)) {
2693 			err = PTR_ERR(xent);
2694 			if (err == -ENOENT)
2695 				break;
2696 			return err;
2697 		}
2698 
2699 		xattr_inum = le64_to_cpu(xent->inum);
2700 		dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum);
2701 
2702 		nm.name = xent->name;
2703 		nm.len = le16_to_cpu(xent->nlen);
2704 		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2705 		if (err) {
2706 			kfree(xent);
2707 			return err;
2708 		}
2709 
2710 		lowest_ino_key(c, &key1, xattr_inum);
2711 		highest_ino_key(c, &key2, xattr_inum);
2712 		err = ubifs_tnc_remove_range(c, &key1, &key2);
2713 		if (err) {
2714 			kfree(xent);
2715 			return err;
2716 		}
2717 
2718 		kfree(pxent);
2719 		pxent = xent;
2720 		key_read(c, &xent->key, &key1);
2721 	}
2722 
2723 	kfree(pxent);
2724 	lowest_ino_key(c, &key1, inum);
2725 	highest_ino_key(c, &key2, inum);
2726 
2727 	return ubifs_tnc_remove_range(c, &key1, &key2);
2728 }
2729 
2730 /**
2731  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2732  * @c: UBIFS file-system description object
2733  * @key: key of last entry
2734  * @nm: name of last entry found or %NULL
2735  *
2736  * This function finds and reads the next directory or extended attribute entry
2737  * after the given key (@key) if there is one. @nm is used to resolve
2738  * collisions.
2739  *
2740  * If the name of the current entry is not known and only the key is known,
2741  * @nm->name has to be %NULL. In this case the semantics of this function is a
2742  * little bit different and it returns the entry corresponding to this key, not
2743  * the next one. If the key was not found, the closest "right" entry is
2744  * returned.
2745  *
2746  * If the fist entry has to be found, @key has to contain the lowest possible
2747  * key value for this inode and @name has to be %NULL.
2748  *
2749  * This function returns the found directory or extended attribute entry node
2750  * in case of success, %-ENOENT is returned if no entry was found, and a
2751  * negative error code is returned in case of failure.
2752  */
2753 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2754 					   union ubifs_key *key,
2755 					   const struct qstr *nm)
2756 {
2757 	int n, err, type = key_type(c, key);
2758 	struct ubifs_znode *znode;
2759 	struct ubifs_dent_node *dent;
2760 	struct ubifs_zbranch *zbr;
2761 	union ubifs_key *dkey;
2762 
2763 	dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2764 	ubifs_assert(is_hash_key(c, key));
2765 
2766 	mutex_lock(&c->tnc_mutex);
2767 	err = ubifs_lookup_level0(c, key, &znode, &n);
2768 	if (unlikely(err < 0))
2769 		goto out_unlock;
2770 
2771 	if (nm->name) {
2772 		if (err) {
2773 			/* Handle collisions */
2774 			err = resolve_collision(c, key, &znode, &n, nm);
2775 			dbg_tnc("rc returned %d, znode %p, n %d",
2776 				err, znode, n);
2777 			if (unlikely(err < 0))
2778 				goto out_unlock;
2779 		}
2780 
2781 		/* Now find next entry */
2782 		err = tnc_next(c, &znode, &n);
2783 		if (unlikely(err))
2784 			goto out_unlock;
2785 	} else {
2786 		/*
2787 		 * The full name of the entry was not given, in which case the
2788 		 * behavior of this function is a little different and it
2789 		 * returns current entry, not the next one.
2790 		 */
2791 		if (!err) {
2792 			/*
2793 			 * However, the given key does not exist in the TNC
2794 			 * tree and @znode/@n variables contain the closest
2795 			 * "preceding" element. Switch to the next one.
2796 			 */
2797 			err = tnc_next(c, &znode, &n);
2798 			if (err)
2799 				goto out_unlock;
2800 		}
2801 	}
2802 
2803 	zbr = &znode->zbranch[n];
2804 	dent = kmalloc(zbr->len, GFP_NOFS);
2805 	if (unlikely(!dent)) {
2806 		err = -ENOMEM;
2807 		goto out_unlock;
2808 	}
2809 
2810 	/*
2811 	 * The above 'tnc_next()' call could lead us to the next inode, check
2812 	 * this.
2813 	 */
2814 	dkey = &zbr->key;
2815 	if (key_inum(c, dkey) != key_inum(c, key) ||
2816 	    key_type(c, dkey) != type) {
2817 		err = -ENOENT;
2818 		goto out_free;
2819 	}
2820 
2821 	err = tnc_read_node_nm(c, zbr, dent);
2822 	if (unlikely(err))
2823 		goto out_free;
2824 
2825 	mutex_unlock(&c->tnc_mutex);
2826 	return dent;
2827 
2828 out_free:
2829 	kfree(dent);
2830 out_unlock:
2831 	mutex_unlock(&c->tnc_mutex);
2832 	return ERR_PTR(err);
2833 }
2834 
2835 /**
2836  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2837  * @c: UBIFS file-system description object
2838  *
2839  * Destroy left-over obsolete znodes from a failed commit.
2840  */
2841 static void tnc_destroy_cnext(struct ubifs_info *c)
2842 {
2843 	struct ubifs_znode *cnext;
2844 
2845 	if (!c->cnext)
2846 		return;
2847 	ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2848 	cnext = c->cnext;
2849 	do {
2850 		struct ubifs_znode *znode = cnext;
2851 
2852 		cnext = cnext->cnext;
2853 		if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2854 			kfree(znode);
2855 	} while (cnext && cnext != c->cnext);
2856 }
2857 
2858 /**
2859  * ubifs_tnc_close - close TNC subsystem and free all related resources.
2860  * @c: UBIFS file-system description object
2861  */
2862 void ubifs_tnc_close(struct ubifs_info *c)
2863 {
2864 	long clean_freed;
2865 
2866 	tnc_destroy_cnext(c);
2867 	if (c->zroot.znode) {
2868 		clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2869 		atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2870 	}
2871 	kfree(c->gap_lebs);
2872 	kfree(c->ilebs);
2873 	destroy_old_idx(c);
2874 }
2875 
2876 /**
2877  * left_znode - get the znode to the left.
2878  * @c: UBIFS file-system description object
2879  * @znode: znode
2880  *
2881  * This function returns a pointer to the znode to the left of @znode or NULL if
2882  * there is not one. A negative error code is returned on failure.
2883  */
2884 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2885 				      struct ubifs_znode *znode)
2886 {
2887 	int level = znode->level;
2888 
2889 	while (1) {
2890 		int n = znode->iip - 1;
2891 
2892 		/* Go up until we can go left */
2893 		znode = znode->parent;
2894 		if (!znode)
2895 			return NULL;
2896 		if (n >= 0) {
2897 			/* Now go down the rightmost branch to 'level' */
2898 			znode = get_znode(c, znode, n);
2899 			if (IS_ERR(znode))
2900 				return znode;
2901 			while (znode->level != level) {
2902 				n = znode->child_cnt - 1;
2903 				znode = get_znode(c, znode, n);
2904 				if (IS_ERR(znode))
2905 					return znode;
2906 			}
2907 			break;
2908 		}
2909 	}
2910 	return znode;
2911 }
2912 
2913 /**
2914  * right_znode - get the znode to the right.
2915  * @c: UBIFS file-system description object
2916  * @znode: znode
2917  *
2918  * This function returns a pointer to the znode to the right of @znode or NULL
2919  * if there is not one. A negative error code is returned on failure.
2920  */
2921 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2922 				       struct ubifs_znode *znode)
2923 {
2924 	int level = znode->level;
2925 
2926 	while (1) {
2927 		int n = znode->iip + 1;
2928 
2929 		/* Go up until we can go right */
2930 		znode = znode->parent;
2931 		if (!znode)
2932 			return NULL;
2933 		if (n < znode->child_cnt) {
2934 			/* Now go down the leftmost branch to 'level' */
2935 			znode = get_znode(c, znode, n);
2936 			if (IS_ERR(znode))
2937 				return znode;
2938 			while (znode->level != level) {
2939 				znode = get_znode(c, znode, 0);
2940 				if (IS_ERR(znode))
2941 					return znode;
2942 			}
2943 			break;
2944 		}
2945 	}
2946 	return znode;
2947 }
2948 
2949 /**
2950  * lookup_znode - find a particular indexing node from TNC.
2951  * @c: UBIFS file-system description object
2952  * @key: index node key to lookup
2953  * @level: index node level
2954  * @lnum: index node LEB number
2955  * @offs: index node offset
2956  *
2957  * This function searches an indexing node by its first key @key and its
2958  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2959  * nodes it traverses to TNC. This function is called fro indexing nodes which
2960  * were found on the media by scanning, for example when garbage-collecting or
2961  * when doing in-the-gaps commit. This means that the indexing node which is
2962  * looked for does not have to have exactly the same leftmost key @key, because
2963  * the leftmost key may have been changed, in which case TNC will contain a
2964  * dirty znode which still refers the same @lnum:@offs. This function is clever
2965  * enough to recognize such indexing nodes.
2966  *
2967  * Note, if a znode was deleted or changed too much, then this function will
2968  * not find it. For situations like this UBIFS has the old index RB-tree
2969  * (indexed by @lnum:@offs).
2970  *
2971  * This function returns a pointer to the znode found or %NULL if it is not
2972  * found. A negative error code is returned on failure.
2973  */
2974 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2975 					union ubifs_key *key, int level,
2976 					int lnum, int offs)
2977 {
2978 	struct ubifs_znode *znode, *zn;
2979 	int n, nn;
2980 
2981 	/*
2982 	 * The arguments have probably been read off flash, so don't assume
2983 	 * they are valid.
2984 	 */
2985 	if (level < 0)
2986 		return ERR_PTR(-EINVAL);
2987 
2988 	/* Get the root znode */
2989 	znode = c->zroot.znode;
2990 	if (!znode) {
2991 		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2992 		if (IS_ERR(znode))
2993 			return znode;
2994 	}
2995 	/* Check if it is the one we are looking for */
2996 	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2997 		return znode;
2998 	/* Descend to the parent level i.e. (level + 1) */
2999 	if (level >= znode->level)
3000 		return NULL;
3001 	while (1) {
3002 		ubifs_search_zbranch(c, znode, key, &n);
3003 		if (n < 0) {
3004 			/*
3005 			 * We reached a znode where the leftmost key is greater
3006 			 * than the key we are searching for. This is the same
3007 			 * situation as the one described in a huge comment at
3008 			 * the end of the 'ubifs_lookup_level0()' function. And
3009 			 * for exactly the same reasons we have to try to look
3010 			 * left before giving up.
3011 			 */
3012 			znode = left_znode(c, znode);
3013 			if (!znode)
3014 				return NULL;
3015 			if (IS_ERR(znode))
3016 				return znode;
3017 			ubifs_search_zbranch(c, znode, key, &n);
3018 			ubifs_assert(n >= 0);
3019 		}
3020 		if (znode->level == level + 1)
3021 			break;
3022 		znode = get_znode(c, znode, n);
3023 		if (IS_ERR(znode))
3024 			return znode;
3025 	}
3026 	/* Check if the child is the one we are looking for */
3027 	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3028 		return get_znode(c, znode, n);
3029 	/* If the key is unique, there is nowhere else to look */
3030 	if (!is_hash_key(c, key))
3031 		return NULL;
3032 	/*
3033 	 * The key is not unique and so may be also in the znodes to either
3034 	 * side.
3035 	 */
3036 	zn = znode;
3037 	nn = n;
3038 	/* Look left */
3039 	while (1) {
3040 		/* Move one branch to the left */
3041 		if (n)
3042 			n -= 1;
3043 		else {
3044 			znode = left_znode(c, znode);
3045 			if (!znode)
3046 				break;
3047 			if (IS_ERR(znode))
3048 				return znode;
3049 			n = znode->child_cnt - 1;
3050 		}
3051 		/* Check it */
3052 		if (znode->zbranch[n].lnum == lnum &&
3053 		    znode->zbranch[n].offs == offs)
3054 			return get_znode(c, znode, n);
3055 		/* Stop if the key is less than the one we are looking for */
3056 		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3057 			break;
3058 	}
3059 	/* Back to the middle */
3060 	znode = zn;
3061 	n = nn;
3062 	/* Look right */
3063 	while (1) {
3064 		/* Move one branch to the right */
3065 		if (++n >= znode->child_cnt) {
3066 			znode = right_znode(c, znode);
3067 			if (!znode)
3068 				break;
3069 			if (IS_ERR(znode))
3070 				return znode;
3071 			n = 0;
3072 		}
3073 		/* Check it */
3074 		if (znode->zbranch[n].lnum == lnum &&
3075 		    znode->zbranch[n].offs == offs)
3076 			return get_znode(c, znode, n);
3077 		/* Stop if the key is greater than the one we are looking for */
3078 		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3079 			break;
3080 	}
3081 	return NULL;
3082 }
3083 
3084 /**
3085  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3086  * @c: UBIFS file-system description object
3087  * @key: key of index node
3088  * @level: index node level
3089  * @lnum: LEB number of index node
3090  * @offs: offset of index node
3091  *
3092  * This function returns %0 if the index node is not referred to in the TNC, %1
3093  * if the index node is referred to in the TNC and the corresponding znode is
3094  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3095  * znode is clean, and a negative error code in case of failure.
3096  *
3097  * Note, the @key argument has to be the key of the first child. Also note,
3098  * this function relies on the fact that 0:0 is never a valid LEB number and
3099  * offset for a main-area node.
3100  */
3101 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3102 		       int lnum, int offs)
3103 {
3104 	struct ubifs_znode *znode;
3105 
3106 	znode = lookup_znode(c, key, level, lnum, offs);
3107 	if (!znode)
3108 		return 0;
3109 	if (IS_ERR(znode))
3110 		return PTR_ERR(znode);
3111 
3112 	return ubifs_zn_dirty(znode) ? 1 : 2;
3113 }
3114 
3115 /**
3116  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3117  * @c: UBIFS file-system description object
3118  * @key: node key
3119  * @lnum: node LEB number
3120  * @offs: node offset
3121  *
3122  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3123  * not, and a negative error code in case of failure.
3124  *
3125  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3126  * and offset for a main-area node.
3127  */
3128 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3129 			       int lnum, int offs)
3130 {
3131 	struct ubifs_zbranch *zbr;
3132 	struct ubifs_znode *znode, *zn;
3133 	int n, found, err, nn;
3134 	const int unique = !is_hash_key(c, key);
3135 
3136 	found = ubifs_lookup_level0(c, key, &znode, &n);
3137 	if (found < 0)
3138 		return found; /* Error code */
3139 	if (!found)
3140 		return 0;
3141 	zbr = &znode->zbranch[n];
3142 	if (lnum == zbr->lnum && offs == zbr->offs)
3143 		return 1; /* Found it */
3144 	if (unique)
3145 		return 0;
3146 	/*
3147 	 * Because the key is not unique, we have to look left
3148 	 * and right as well
3149 	 */
3150 	zn = znode;
3151 	nn = n;
3152 	/* Look left */
3153 	while (1) {
3154 		err = tnc_prev(c, &znode, &n);
3155 		if (err == -ENOENT)
3156 			break;
3157 		if (err)
3158 			return err;
3159 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3160 			break;
3161 		zbr = &znode->zbranch[n];
3162 		if (lnum == zbr->lnum && offs == zbr->offs)
3163 			return 1; /* Found it */
3164 	}
3165 	/* Look right */
3166 	znode = zn;
3167 	n = nn;
3168 	while (1) {
3169 		err = tnc_next(c, &znode, &n);
3170 		if (err) {
3171 			if (err == -ENOENT)
3172 				return 0;
3173 			return err;
3174 		}
3175 		if (keys_cmp(c, key, &znode->zbranch[n].key))
3176 			break;
3177 		zbr = &znode->zbranch[n];
3178 		if (lnum == zbr->lnum && offs == zbr->offs)
3179 			return 1; /* Found it */
3180 	}
3181 	return 0;
3182 }
3183 
3184 /**
3185  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3186  * @c: UBIFS file-system description object
3187  * @key: node key
3188  * @level: index node level (if it is an index node)
3189  * @lnum: node LEB number
3190  * @offs: node offset
3191  * @is_idx: non-zero if the node is an index node
3192  *
3193  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3194  * negative error code in case of failure. For index nodes, @key has to be the
3195  * key of the first child. An index node is considered to be in the TNC only if
3196  * the corresponding znode is clean or has not been loaded.
3197  */
3198 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3199 		       int lnum, int offs, int is_idx)
3200 {
3201 	int err;
3202 
3203 	mutex_lock(&c->tnc_mutex);
3204 	if (is_idx) {
3205 		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3206 		if (err < 0)
3207 			goto out_unlock;
3208 		if (err == 1)
3209 			/* The index node was found but it was dirty */
3210 			err = 0;
3211 		else if (err == 2)
3212 			/* The index node was found and it was clean */
3213 			err = 1;
3214 		else
3215 			BUG_ON(err != 0);
3216 	} else
3217 		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3218 
3219 out_unlock:
3220 	mutex_unlock(&c->tnc_mutex);
3221 	return err;
3222 }
3223 
3224 /**
3225  * ubifs_dirty_idx_node - dirty an index node.
3226  * @c: UBIFS file-system description object
3227  * @key: index node key
3228  * @level: index node level
3229  * @lnum: index node LEB number
3230  * @offs: index node offset
3231  *
3232  * This function loads and dirties an index node so that it can be garbage
3233  * collected. The @key argument has to be the key of the first child. This
3234  * function relies on the fact that 0:0 is never a valid LEB number and offset
3235  * for a main-area node. Returns %0 on success and a negative error code on
3236  * failure.
3237  */
3238 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3239 			 int lnum, int offs)
3240 {
3241 	struct ubifs_znode *znode;
3242 	int err = 0;
3243 
3244 	mutex_lock(&c->tnc_mutex);
3245 	znode = lookup_znode(c, key, level, lnum, offs);
3246 	if (!znode)
3247 		goto out_unlock;
3248 	if (IS_ERR(znode)) {
3249 		err = PTR_ERR(znode);
3250 		goto out_unlock;
3251 	}
3252 	znode = dirty_cow_bottom_up(c, znode);
3253 	if (IS_ERR(znode)) {
3254 		err = PTR_ERR(znode);
3255 		goto out_unlock;
3256 	}
3257 
3258 out_unlock:
3259 	mutex_unlock(&c->tnc_mutex);
3260 	return err;
3261 }
3262