1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .shrink = ubifs_shrinker, 53 .seeks = DEFAULT_SEEKS, 54 }; 55 56 /** 57 * validate_inode - validate inode. 58 * @c: UBIFS file-system description object 59 * @inode: the inode to validate 60 * 61 * This is a helper function for 'ubifs_iget()' which validates various fields 62 * of a newly built inode to make sure they contain sane values and prevent 63 * possible vulnerabilities. Returns zero if the inode is all right and 64 * a non-zero error code if not. 65 */ 66 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 67 { 68 int err; 69 const struct ubifs_inode *ui = ubifs_inode(inode); 70 71 if (inode->i_size > c->max_inode_sz) { 72 ubifs_err("inode is too large (%lld)", 73 (long long)inode->i_size); 74 return 1; 75 } 76 77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 78 ubifs_err("unknown compression type %d", ui->compr_type); 79 return 2; 80 } 81 82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 83 return 3; 84 85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 86 return 4; 87 88 if (ui->xattr && !S_ISREG(inode->i_mode)) 89 return 5; 90 91 if (!ubifs_compr_present(ui->compr_type)) { 92 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in", 93 inode->i_ino, ubifs_compr_name(ui->compr_type)); 94 } 95 96 err = dbg_check_dir(c, inode); 97 return err; 98 } 99 100 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 101 { 102 int err; 103 union ubifs_key key; 104 struct ubifs_ino_node *ino; 105 struct ubifs_info *c = sb->s_fs_info; 106 struct inode *inode; 107 struct ubifs_inode *ui; 108 109 dbg_gen("inode %lu", inum); 110 111 inode = iget_locked(sb, inum); 112 if (!inode) 113 return ERR_PTR(-ENOMEM); 114 if (!(inode->i_state & I_NEW)) 115 return inode; 116 ui = ubifs_inode(inode); 117 118 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 119 if (!ino) { 120 err = -ENOMEM; 121 goto out; 122 } 123 124 ino_key_init(c, &key, inode->i_ino); 125 126 err = ubifs_tnc_lookup(c, &key, ino); 127 if (err) 128 goto out_ino; 129 130 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 131 set_nlink(inode, le32_to_cpu(ino->nlink)); 132 i_uid_write(inode, le32_to_cpu(ino->uid)); 133 i_gid_write(inode, le32_to_cpu(ino->gid)); 134 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 135 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 136 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 137 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 138 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 139 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 140 inode->i_mode = le32_to_cpu(ino->mode); 141 inode->i_size = le64_to_cpu(ino->size); 142 143 ui->data_len = le32_to_cpu(ino->data_len); 144 ui->flags = le32_to_cpu(ino->flags); 145 ui->compr_type = le16_to_cpu(ino->compr_type); 146 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 147 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 148 ui->xattr_size = le32_to_cpu(ino->xattr_size); 149 ui->xattr_names = le32_to_cpu(ino->xattr_names); 150 ui->synced_i_size = ui->ui_size = inode->i_size; 151 152 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 153 154 err = validate_inode(c, inode); 155 if (err) 156 goto out_invalid; 157 158 /* Disable read-ahead */ 159 inode->i_mapping->backing_dev_info = &c->bdi; 160 161 switch (inode->i_mode & S_IFMT) { 162 case S_IFREG: 163 inode->i_mapping->a_ops = &ubifs_file_address_operations; 164 inode->i_op = &ubifs_file_inode_operations; 165 inode->i_fop = &ubifs_file_operations; 166 if (ui->xattr) { 167 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 168 if (!ui->data) { 169 err = -ENOMEM; 170 goto out_ino; 171 } 172 memcpy(ui->data, ino->data, ui->data_len); 173 ((char *)ui->data)[ui->data_len] = '\0'; 174 } else if (ui->data_len != 0) { 175 err = 10; 176 goto out_invalid; 177 } 178 break; 179 case S_IFDIR: 180 inode->i_op = &ubifs_dir_inode_operations; 181 inode->i_fop = &ubifs_dir_operations; 182 if (ui->data_len != 0) { 183 err = 11; 184 goto out_invalid; 185 } 186 break; 187 case S_IFLNK: 188 inode->i_op = &ubifs_symlink_inode_operations; 189 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 190 err = 12; 191 goto out_invalid; 192 } 193 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 194 if (!ui->data) { 195 err = -ENOMEM; 196 goto out_ino; 197 } 198 memcpy(ui->data, ino->data, ui->data_len); 199 ((char *)ui->data)[ui->data_len] = '\0'; 200 break; 201 case S_IFBLK: 202 case S_IFCHR: 203 { 204 dev_t rdev; 205 union ubifs_dev_desc *dev; 206 207 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 208 if (!ui->data) { 209 err = -ENOMEM; 210 goto out_ino; 211 } 212 213 dev = (union ubifs_dev_desc *)ino->data; 214 if (ui->data_len == sizeof(dev->new)) 215 rdev = new_decode_dev(le32_to_cpu(dev->new)); 216 else if (ui->data_len == sizeof(dev->huge)) 217 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 218 else { 219 err = 13; 220 goto out_invalid; 221 } 222 memcpy(ui->data, ino->data, ui->data_len); 223 inode->i_op = &ubifs_file_inode_operations; 224 init_special_inode(inode, inode->i_mode, rdev); 225 break; 226 } 227 case S_IFSOCK: 228 case S_IFIFO: 229 inode->i_op = &ubifs_file_inode_operations; 230 init_special_inode(inode, inode->i_mode, 0); 231 if (ui->data_len != 0) { 232 err = 14; 233 goto out_invalid; 234 } 235 break; 236 default: 237 err = 15; 238 goto out_invalid; 239 } 240 241 kfree(ino); 242 ubifs_set_inode_flags(inode); 243 unlock_new_inode(inode); 244 return inode; 245 246 out_invalid: 247 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 248 ubifs_dump_node(c, ino); 249 ubifs_dump_inode(c, inode); 250 err = -EINVAL; 251 out_ino: 252 kfree(ino); 253 out: 254 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 255 iget_failed(inode); 256 return ERR_PTR(err); 257 } 258 259 static struct inode *ubifs_alloc_inode(struct super_block *sb) 260 { 261 struct ubifs_inode *ui; 262 263 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 264 if (!ui) 265 return NULL; 266 267 memset((void *)ui + sizeof(struct inode), 0, 268 sizeof(struct ubifs_inode) - sizeof(struct inode)); 269 mutex_init(&ui->ui_mutex); 270 spin_lock_init(&ui->ui_lock); 271 return &ui->vfs_inode; 272 }; 273 274 static void ubifs_i_callback(struct rcu_head *head) 275 { 276 struct inode *inode = container_of(head, struct inode, i_rcu); 277 struct ubifs_inode *ui = ubifs_inode(inode); 278 kmem_cache_free(ubifs_inode_slab, ui); 279 } 280 281 static void ubifs_destroy_inode(struct inode *inode) 282 { 283 struct ubifs_inode *ui = ubifs_inode(inode); 284 285 kfree(ui->data); 286 call_rcu(&inode->i_rcu, ubifs_i_callback); 287 } 288 289 /* 290 * Note, Linux write-back code calls this without 'i_mutex'. 291 */ 292 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 293 { 294 int err = 0; 295 struct ubifs_info *c = inode->i_sb->s_fs_info; 296 struct ubifs_inode *ui = ubifs_inode(inode); 297 298 ubifs_assert(!ui->xattr); 299 if (is_bad_inode(inode)) 300 return 0; 301 302 mutex_lock(&ui->ui_mutex); 303 /* 304 * Due to races between write-back forced by budgeting 305 * (see 'sync_some_inodes()') and background write-back, the inode may 306 * have already been synchronized, do not do this again. This might 307 * also happen if it was synchronized in an VFS operation, e.g. 308 * 'ubifs_link()'. 309 */ 310 if (!ui->dirty) { 311 mutex_unlock(&ui->ui_mutex); 312 return 0; 313 } 314 315 /* 316 * As an optimization, do not write orphan inodes to the media just 317 * because this is not needed. 318 */ 319 dbg_gen("inode %lu, mode %#x, nlink %u", 320 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 321 if (inode->i_nlink) { 322 err = ubifs_jnl_write_inode(c, inode); 323 if (err) 324 ubifs_err("can't write inode %lu, error %d", 325 inode->i_ino, err); 326 else 327 err = dbg_check_inode_size(c, inode, ui->ui_size); 328 } 329 330 ui->dirty = 0; 331 mutex_unlock(&ui->ui_mutex); 332 ubifs_release_dirty_inode_budget(c, ui); 333 return err; 334 } 335 336 static void ubifs_evict_inode(struct inode *inode) 337 { 338 int err; 339 struct ubifs_info *c = inode->i_sb->s_fs_info; 340 struct ubifs_inode *ui = ubifs_inode(inode); 341 342 if (ui->xattr) 343 /* 344 * Extended attribute inode deletions are fully handled in 345 * 'ubifs_removexattr()'. These inodes are special and have 346 * limited usage, so there is nothing to do here. 347 */ 348 goto out; 349 350 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 351 ubifs_assert(!atomic_read(&inode->i_count)); 352 353 truncate_inode_pages(&inode->i_data, 0); 354 355 if (inode->i_nlink) 356 goto done; 357 358 if (is_bad_inode(inode)) 359 goto out; 360 361 ui->ui_size = inode->i_size = 0; 362 err = ubifs_jnl_delete_inode(c, inode); 363 if (err) 364 /* 365 * Worst case we have a lost orphan inode wasting space, so a 366 * simple error message is OK here. 367 */ 368 ubifs_err("can't delete inode %lu, error %d", 369 inode->i_ino, err); 370 371 out: 372 if (ui->dirty) 373 ubifs_release_dirty_inode_budget(c, ui); 374 else { 375 /* We've deleted something - clean the "no space" flags */ 376 c->bi.nospace = c->bi.nospace_rp = 0; 377 smp_wmb(); 378 } 379 done: 380 clear_inode(inode); 381 } 382 383 static void ubifs_dirty_inode(struct inode *inode, int flags) 384 { 385 struct ubifs_inode *ui = ubifs_inode(inode); 386 387 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 388 if (!ui->dirty) { 389 ui->dirty = 1; 390 dbg_gen("inode %lu", inode->i_ino); 391 } 392 } 393 394 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 395 { 396 struct ubifs_info *c = dentry->d_sb->s_fs_info; 397 unsigned long long free; 398 __le32 *uuid = (__le32 *)c->uuid; 399 400 free = ubifs_get_free_space(c); 401 dbg_gen("free space %lld bytes (%lld blocks)", 402 free, free >> UBIFS_BLOCK_SHIFT); 403 404 buf->f_type = UBIFS_SUPER_MAGIC; 405 buf->f_bsize = UBIFS_BLOCK_SIZE; 406 buf->f_blocks = c->block_cnt; 407 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 408 if (free > c->report_rp_size) 409 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 410 else 411 buf->f_bavail = 0; 412 buf->f_files = 0; 413 buf->f_ffree = 0; 414 buf->f_namelen = UBIFS_MAX_NLEN; 415 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 416 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 417 ubifs_assert(buf->f_bfree <= c->block_cnt); 418 return 0; 419 } 420 421 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 422 { 423 struct ubifs_info *c = root->d_sb->s_fs_info; 424 425 if (c->mount_opts.unmount_mode == 2) 426 seq_printf(s, ",fast_unmount"); 427 else if (c->mount_opts.unmount_mode == 1) 428 seq_printf(s, ",norm_unmount"); 429 430 if (c->mount_opts.bulk_read == 2) 431 seq_printf(s, ",bulk_read"); 432 else if (c->mount_opts.bulk_read == 1) 433 seq_printf(s, ",no_bulk_read"); 434 435 if (c->mount_opts.chk_data_crc == 2) 436 seq_printf(s, ",chk_data_crc"); 437 else if (c->mount_opts.chk_data_crc == 1) 438 seq_printf(s, ",no_chk_data_crc"); 439 440 if (c->mount_opts.override_compr) { 441 seq_printf(s, ",compr=%s", 442 ubifs_compr_name(c->mount_opts.compr_type)); 443 } 444 445 return 0; 446 } 447 448 static int ubifs_sync_fs(struct super_block *sb, int wait) 449 { 450 int i, err; 451 struct ubifs_info *c = sb->s_fs_info; 452 453 /* 454 * Zero @wait is just an advisory thing to help the file system shove 455 * lots of data into the queues, and there will be the second 456 * '->sync_fs()' call, with non-zero @wait. 457 */ 458 if (!wait) 459 return 0; 460 461 /* 462 * Synchronize write buffers, because 'ubifs_run_commit()' does not 463 * do this if it waits for an already running commit. 464 */ 465 for (i = 0; i < c->jhead_cnt; i++) { 466 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 467 if (err) 468 return err; 469 } 470 471 /* 472 * Strictly speaking, it is not necessary to commit the journal here, 473 * synchronizing write-buffers would be enough. But committing makes 474 * UBIFS free space predictions much more accurate, so we want to let 475 * the user be able to get more accurate results of 'statfs()' after 476 * they synchronize the file system. 477 */ 478 err = ubifs_run_commit(c); 479 if (err) 480 return err; 481 482 return ubi_sync(c->vi.ubi_num); 483 } 484 485 /** 486 * init_constants_early - initialize UBIFS constants. 487 * @c: UBIFS file-system description object 488 * 489 * This function initialize UBIFS constants which do not need the superblock to 490 * be read. It also checks that the UBI volume satisfies basic UBIFS 491 * requirements. Returns zero in case of success and a negative error code in 492 * case of failure. 493 */ 494 static int init_constants_early(struct ubifs_info *c) 495 { 496 if (c->vi.corrupted) { 497 ubifs_warn("UBI volume is corrupted - read-only mode"); 498 c->ro_media = 1; 499 } 500 501 if (c->di.ro_mode) { 502 ubifs_msg("read-only UBI device"); 503 c->ro_media = 1; 504 } 505 506 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 507 ubifs_msg("static UBI volume - read-only mode"); 508 c->ro_media = 1; 509 } 510 511 c->leb_cnt = c->vi.size; 512 c->leb_size = c->vi.usable_leb_size; 513 c->leb_start = c->di.leb_start; 514 c->half_leb_size = c->leb_size / 2; 515 c->min_io_size = c->di.min_io_size; 516 c->min_io_shift = fls(c->min_io_size) - 1; 517 c->max_write_size = c->di.max_write_size; 518 c->max_write_shift = fls(c->max_write_size) - 1; 519 520 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 521 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 522 c->leb_size, UBIFS_MIN_LEB_SZ); 523 return -EINVAL; 524 } 525 526 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 527 ubifs_err("too few LEBs (%d), min. is %d", 528 c->leb_cnt, UBIFS_MIN_LEB_CNT); 529 return -EINVAL; 530 } 531 532 if (!is_power_of_2(c->min_io_size)) { 533 ubifs_err("bad min. I/O size %d", c->min_io_size); 534 return -EINVAL; 535 } 536 537 /* 538 * Maximum write size has to be greater or equivalent to min. I/O 539 * size, and be multiple of min. I/O size. 540 */ 541 if (c->max_write_size < c->min_io_size || 542 c->max_write_size % c->min_io_size || 543 !is_power_of_2(c->max_write_size)) { 544 ubifs_err("bad write buffer size %d for %d min. I/O unit", 545 c->max_write_size, c->min_io_size); 546 return -EINVAL; 547 } 548 549 /* 550 * UBIFS aligns all node to 8-byte boundary, so to make function in 551 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 552 * less than 8. 553 */ 554 if (c->min_io_size < 8) { 555 c->min_io_size = 8; 556 c->min_io_shift = 3; 557 if (c->max_write_size < c->min_io_size) { 558 c->max_write_size = c->min_io_size; 559 c->max_write_shift = c->min_io_shift; 560 } 561 } 562 563 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 564 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 565 566 /* 567 * Initialize node length ranges which are mostly needed for node 568 * length validation. 569 */ 570 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 571 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 572 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 573 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 574 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 575 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 576 577 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 578 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 579 c->ranges[UBIFS_ORPH_NODE].min_len = 580 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 581 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 582 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 583 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 584 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 585 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 586 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 587 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 588 /* 589 * Minimum indexing node size is amended later when superblock is 590 * read and the key length is known. 591 */ 592 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 593 /* 594 * Maximum indexing node size is amended later when superblock is 595 * read and the fanout is known. 596 */ 597 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 598 599 /* 600 * Initialize dead and dark LEB space watermarks. See gc.c for comments 601 * about these values. 602 */ 603 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 604 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 605 606 /* 607 * Calculate how many bytes would be wasted at the end of LEB if it was 608 * fully filled with data nodes of maximum size. This is used in 609 * calculations when reporting free space. 610 */ 611 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 612 613 /* Buffer size for bulk-reads */ 614 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 615 if (c->max_bu_buf_len > c->leb_size) 616 c->max_bu_buf_len = c->leb_size; 617 return 0; 618 } 619 620 /** 621 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 622 * @c: UBIFS file-system description object 623 * @lnum: LEB the write-buffer was synchronized to 624 * @free: how many free bytes left in this LEB 625 * @pad: how many bytes were padded 626 * 627 * This is a callback function which is called by the I/O unit when the 628 * write-buffer is synchronized. We need this to correctly maintain space 629 * accounting in bud logical eraseblocks. This function returns zero in case of 630 * success and a negative error code in case of failure. 631 * 632 * This function actually belongs to the journal, but we keep it here because 633 * we want to keep it static. 634 */ 635 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 636 { 637 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 638 } 639 640 /* 641 * init_constants_sb - initialize UBIFS constants. 642 * @c: UBIFS file-system description object 643 * 644 * This is a helper function which initializes various UBIFS constants after 645 * the superblock has been read. It also checks various UBIFS parameters and 646 * makes sure they are all right. Returns zero in case of success and a 647 * negative error code in case of failure. 648 */ 649 static int init_constants_sb(struct ubifs_info *c) 650 { 651 int tmp, err; 652 long long tmp64; 653 654 c->main_bytes = (long long)c->main_lebs * c->leb_size; 655 c->max_znode_sz = sizeof(struct ubifs_znode) + 656 c->fanout * sizeof(struct ubifs_zbranch); 657 658 tmp = ubifs_idx_node_sz(c, 1); 659 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 660 c->min_idx_node_sz = ALIGN(tmp, 8); 661 662 tmp = ubifs_idx_node_sz(c, c->fanout); 663 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 664 c->max_idx_node_sz = ALIGN(tmp, 8); 665 666 /* Make sure LEB size is large enough to fit full commit */ 667 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 668 tmp = ALIGN(tmp, c->min_io_size); 669 if (tmp > c->leb_size) { 670 ubifs_err("too small LEB size %d, at least %d needed", 671 c->leb_size, tmp); 672 return -EINVAL; 673 } 674 675 /* 676 * Make sure that the log is large enough to fit reference nodes for 677 * all buds plus one reserved LEB. 678 */ 679 tmp64 = c->max_bud_bytes + c->leb_size - 1; 680 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 681 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 682 tmp /= c->leb_size; 683 tmp += 1; 684 if (c->log_lebs < tmp) { 685 ubifs_err("too small log %d LEBs, required min. %d LEBs", 686 c->log_lebs, tmp); 687 return -EINVAL; 688 } 689 690 /* 691 * When budgeting we assume worst-case scenarios when the pages are not 692 * be compressed and direntries are of the maximum size. 693 * 694 * Note, data, which may be stored in inodes is budgeted separately, so 695 * it is not included into 'c->bi.inode_budget'. 696 */ 697 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 698 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 699 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 700 701 /* 702 * When the amount of flash space used by buds becomes 703 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 704 * The writers are unblocked when the commit is finished. To avoid 705 * writers to be blocked UBIFS initiates background commit in advance, 706 * when number of bud bytes becomes above the limit defined below. 707 */ 708 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 709 710 /* 711 * Ensure minimum journal size. All the bytes in the journal heads are 712 * considered to be used, when calculating the current journal usage. 713 * Consequently, if the journal is too small, UBIFS will treat it as 714 * always full. 715 */ 716 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 717 if (c->bg_bud_bytes < tmp64) 718 c->bg_bud_bytes = tmp64; 719 if (c->max_bud_bytes < tmp64 + c->leb_size) 720 c->max_bud_bytes = tmp64 + c->leb_size; 721 722 err = ubifs_calc_lpt_geom(c); 723 if (err) 724 return err; 725 726 /* Initialize effective LEB size used in budgeting calculations */ 727 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 728 return 0; 729 } 730 731 /* 732 * init_constants_master - initialize UBIFS constants. 733 * @c: UBIFS file-system description object 734 * 735 * This is a helper function which initializes various UBIFS constants after 736 * the master node has been read. It also checks various UBIFS parameters and 737 * makes sure they are all right. 738 */ 739 static void init_constants_master(struct ubifs_info *c) 740 { 741 long long tmp64; 742 743 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 744 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 745 746 /* 747 * Calculate total amount of FS blocks. This number is not used 748 * internally because it does not make much sense for UBIFS, but it is 749 * necessary to report something for the 'statfs()' call. 750 * 751 * Subtract the LEB reserved for GC, the LEB which is reserved for 752 * deletions, minimum LEBs for the index, and assume only one journal 753 * head is available. 754 */ 755 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 756 tmp64 *= (long long)c->leb_size - c->leb_overhead; 757 tmp64 = ubifs_reported_space(c, tmp64); 758 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 759 } 760 761 /** 762 * take_gc_lnum - reserve GC LEB. 763 * @c: UBIFS file-system description object 764 * 765 * This function ensures that the LEB reserved for garbage collection is marked 766 * as "taken" in lprops. We also have to set free space to LEB size and dirty 767 * space to zero, because lprops may contain out-of-date information if the 768 * file-system was un-mounted before it has been committed. This function 769 * returns zero in case of success and a negative error code in case of 770 * failure. 771 */ 772 static int take_gc_lnum(struct ubifs_info *c) 773 { 774 int err; 775 776 if (c->gc_lnum == -1) { 777 ubifs_err("no LEB for GC"); 778 return -EINVAL; 779 } 780 781 /* And we have to tell lprops that this LEB is taken */ 782 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 783 LPROPS_TAKEN, 0, 0); 784 return err; 785 } 786 787 /** 788 * alloc_wbufs - allocate write-buffers. 789 * @c: UBIFS file-system description object 790 * 791 * This helper function allocates and initializes UBIFS write-buffers. Returns 792 * zero in case of success and %-ENOMEM in case of failure. 793 */ 794 static int alloc_wbufs(struct ubifs_info *c) 795 { 796 int i, err; 797 798 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 799 GFP_KERNEL); 800 if (!c->jheads) 801 return -ENOMEM; 802 803 /* Initialize journal heads */ 804 for (i = 0; i < c->jhead_cnt; i++) { 805 INIT_LIST_HEAD(&c->jheads[i].buds_list); 806 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 807 if (err) 808 return err; 809 810 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 811 c->jheads[i].wbuf.jhead = i; 812 c->jheads[i].grouped = 1; 813 } 814 815 /* 816 * Garbage Collector head does not need to be synchronized by timer. 817 * Also GC head nodes are not grouped. 818 */ 819 c->jheads[GCHD].wbuf.no_timer = 1; 820 c->jheads[GCHD].grouped = 0; 821 822 return 0; 823 } 824 825 /** 826 * free_wbufs - free write-buffers. 827 * @c: UBIFS file-system description object 828 */ 829 static void free_wbufs(struct ubifs_info *c) 830 { 831 int i; 832 833 if (c->jheads) { 834 for (i = 0; i < c->jhead_cnt; i++) { 835 kfree(c->jheads[i].wbuf.buf); 836 kfree(c->jheads[i].wbuf.inodes); 837 } 838 kfree(c->jheads); 839 c->jheads = NULL; 840 } 841 } 842 843 /** 844 * free_orphans - free orphans. 845 * @c: UBIFS file-system description object 846 */ 847 static void free_orphans(struct ubifs_info *c) 848 { 849 struct ubifs_orphan *orph; 850 851 while (c->orph_dnext) { 852 orph = c->orph_dnext; 853 c->orph_dnext = orph->dnext; 854 list_del(&orph->list); 855 kfree(orph); 856 } 857 858 while (!list_empty(&c->orph_list)) { 859 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 860 list_del(&orph->list); 861 kfree(orph); 862 ubifs_err("orphan list not empty at unmount"); 863 } 864 865 vfree(c->orph_buf); 866 c->orph_buf = NULL; 867 } 868 869 /** 870 * free_buds - free per-bud objects. 871 * @c: UBIFS file-system description object 872 */ 873 static void free_buds(struct ubifs_info *c) 874 { 875 struct rb_node *this = c->buds.rb_node; 876 struct ubifs_bud *bud; 877 878 while (this) { 879 if (this->rb_left) 880 this = this->rb_left; 881 else if (this->rb_right) 882 this = this->rb_right; 883 else { 884 bud = rb_entry(this, struct ubifs_bud, rb); 885 this = rb_parent(this); 886 if (this) { 887 if (this->rb_left == &bud->rb) 888 this->rb_left = NULL; 889 else 890 this->rb_right = NULL; 891 } 892 kfree(bud); 893 } 894 } 895 } 896 897 /** 898 * check_volume_empty - check if the UBI volume is empty. 899 * @c: UBIFS file-system description object 900 * 901 * This function checks if the UBIFS volume is empty by looking if its LEBs are 902 * mapped or not. The result of checking is stored in the @c->empty variable. 903 * Returns zero in case of success and a negative error code in case of 904 * failure. 905 */ 906 static int check_volume_empty(struct ubifs_info *c) 907 { 908 int lnum, err; 909 910 c->empty = 1; 911 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 912 err = ubifs_is_mapped(c, lnum); 913 if (unlikely(err < 0)) 914 return err; 915 if (err == 1) { 916 c->empty = 0; 917 break; 918 } 919 920 cond_resched(); 921 } 922 923 return 0; 924 } 925 926 /* 927 * UBIFS mount options. 928 * 929 * Opt_fast_unmount: do not run a journal commit before un-mounting 930 * Opt_norm_unmount: run a journal commit before un-mounting 931 * Opt_bulk_read: enable bulk-reads 932 * Opt_no_bulk_read: disable bulk-reads 933 * Opt_chk_data_crc: check CRCs when reading data nodes 934 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 935 * Opt_override_compr: override default compressor 936 * Opt_err: just end of array marker 937 */ 938 enum { 939 Opt_fast_unmount, 940 Opt_norm_unmount, 941 Opt_bulk_read, 942 Opt_no_bulk_read, 943 Opt_chk_data_crc, 944 Opt_no_chk_data_crc, 945 Opt_override_compr, 946 Opt_err, 947 }; 948 949 static const match_table_t tokens = { 950 {Opt_fast_unmount, "fast_unmount"}, 951 {Opt_norm_unmount, "norm_unmount"}, 952 {Opt_bulk_read, "bulk_read"}, 953 {Opt_no_bulk_read, "no_bulk_read"}, 954 {Opt_chk_data_crc, "chk_data_crc"}, 955 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 956 {Opt_override_compr, "compr=%s"}, 957 {Opt_err, NULL}, 958 }; 959 960 /** 961 * parse_standard_option - parse a standard mount option. 962 * @option: the option to parse 963 * 964 * Normally, standard mount options like "sync" are passed to file-systems as 965 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 966 * be present in the options string. This function tries to deal with this 967 * situation and parse standard options. Returns 0 if the option was not 968 * recognized, and the corresponding integer flag if it was. 969 * 970 * UBIFS is only interested in the "sync" option, so do not check for anything 971 * else. 972 */ 973 static int parse_standard_option(const char *option) 974 { 975 ubifs_msg("parse %s", option); 976 if (!strcmp(option, "sync")) 977 return MS_SYNCHRONOUS; 978 return 0; 979 } 980 981 /** 982 * ubifs_parse_options - parse mount parameters. 983 * @c: UBIFS file-system description object 984 * @options: parameters to parse 985 * @is_remount: non-zero if this is FS re-mount 986 * 987 * This function parses UBIFS mount options and returns zero in case success 988 * and a negative error code in case of failure. 989 */ 990 static int ubifs_parse_options(struct ubifs_info *c, char *options, 991 int is_remount) 992 { 993 char *p; 994 substring_t args[MAX_OPT_ARGS]; 995 996 if (!options) 997 return 0; 998 999 while ((p = strsep(&options, ","))) { 1000 int token; 1001 1002 if (!*p) 1003 continue; 1004 1005 token = match_token(p, tokens, args); 1006 switch (token) { 1007 /* 1008 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1009 * We accept them in order to be backward-compatible. But this 1010 * should be removed at some point. 1011 */ 1012 case Opt_fast_unmount: 1013 c->mount_opts.unmount_mode = 2; 1014 break; 1015 case Opt_norm_unmount: 1016 c->mount_opts.unmount_mode = 1; 1017 break; 1018 case Opt_bulk_read: 1019 c->mount_opts.bulk_read = 2; 1020 c->bulk_read = 1; 1021 break; 1022 case Opt_no_bulk_read: 1023 c->mount_opts.bulk_read = 1; 1024 c->bulk_read = 0; 1025 break; 1026 case Opt_chk_data_crc: 1027 c->mount_opts.chk_data_crc = 2; 1028 c->no_chk_data_crc = 0; 1029 break; 1030 case Opt_no_chk_data_crc: 1031 c->mount_opts.chk_data_crc = 1; 1032 c->no_chk_data_crc = 1; 1033 break; 1034 case Opt_override_compr: 1035 { 1036 char *name = match_strdup(&args[0]); 1037 1038 if (!name) 1039 return -ENOMEM; 1040 if (!strcmp(name, "none")) 1041 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1042 else if (!strcmp(name, "lzo")) 1043 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1044 else if (!strcmp(name, "zlib")) 1045 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1046 else { 1047 ubifs_err("unknown compressor \"%s\"", name); 1048 kfree(name); 1049 return -EINVAL; 1050 } 1051 kfree(name); 1052 c->mount_opts.override_compr = 1; 1053 c->default_compr = c->mount_opts.compr_type; 1054 break; 1055 } 1056 default: 1057 { 1058 unsigned long flag; 1059 struct super_block *sb = c->vfs_sb; 1060 1061 flag = parse_standard_option(p); 1062 if (!flag) { 1063 ubifs_err("unrecognized mount option \"%s\" or missing value", 1064 p); 1065 return -EINVAL; 1066 } 1067 sb->s_flags |= flag; 1068 break; 1069 } 1070 } 1071 } 1072 1073 return 0; 1074 } 1075 1076 /** 1077 * destroy_journal - destroy journal data structures. 1078 * @c: UBIFS file-system description object 1079 * 1080 * This function destroys journal data structures including those that may have 1081 * been created by recovery functions. 1082 */ 1083 static void destroy_journal(struct ubifs_info *c) 1084 { 1085 while (!list_empty(&c->unclean_leb_list)) { 1086 struct ubifs_unclean_leb *ucleb; 1087 1088 ucleb = list_entry(c->unclean_leb_list.next, 1089 struct ubifs_unclean_leb, list); 1090 list_del(&ucleb->list); 1091 kfree(ucleb); 1092 } 1093 while (!list_empty(&c->old_buds)) { 1094 struct ubifs_bud *bud; 1095 1096 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1097 list_del(&bud->list); 1098 kfree(bud); 1099 } 1100 ubifs_destroy_idx_gc(c); 1101 ubifs_destroy_size_tree(c); 1102 ubifs_tnc_close(c); 1103 free_buds(c); 1104 } 1105 1106 /** 1107 * bu_init - initialize bulk-read information. 1108 * @c: UBIFS file-system description object 1109 */ 1110 static void bu_init(struct ubifs_info *c) 1111 { 1112 ubifs_assert(c->bulk_read == 1); 1113 1114 if (c->bu.buf) 1115 return; /* Already initialized */ 1116 1117 again: 1118 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1119 if (!c->bu.buf) { 1120 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1121 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1122 goto again; 1123 } 1124 1125 /* Just disable bulk-read */ 1126 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it", 1127 c->max_bu_buf_len); 1128 c->mount_opts.bulk_read = 1; 1129 c->bulk_read = 0; 1130 return; 1131 } 1132 } 1133 1134 /** 1135 * check_free_space - check if there is enough free space to mount. 1136 * @c: UBIFS file-system description object 1137 * 1138 * This function makes sure UBIFS has enough free space to be mounted in 1139 * read/write mode. UBIFS must always have some free space to allow deletions. 1140 */ 1141 static int check_free_space(struct ubifs_info *c) 1142 { 1143 ubifs_assert(c->dark_wm > 0); 1144 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1145 ubifs_err("insufficient free space to mount in R/W mode"); 1146 ubifs_dump_budg(c, &c->bi); 1147 ubifs_dump_lprops(c); 1148 return -ENOSPC; 1149 } 1150 return 0; 1151 } 1152 1153 /** 1154 * mount_ubifs - mount UBIFS file-system. 1155 * @c: UBIFS file-system description object 1156 * 1157 * This function mounts UBIFS file system. Returns zero in case of success and 1158 * a negative error code in case of failure. 1159 */ 1160 static int mount_ubifs(struct ubifs_info *c) 1161 { 1162 int err; 1163 long long x, y; 1164 size_t sz; 1165 1166 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1167 err = init_constants_early(c); 1168 if (err) 1169 return err; 1170 1171 err = ubifs_debugging_init(c); 1172 if (err) 1173 return err; 1174 1175 err = check_volume_empty(c); 1176 if (err) 1177 goto out_free; 1178 1179 if (c->empty && (c->ro_mount || c->ro_media)) { 1180 /* 1181 * This UBI volume is empty, and read-only, or the file system 1182 * is mounted read-only - we cannot format it. 1183 */ 1184 ubifs_err("can't format empty UBI volume: read-only %s", 1185 c->ro_media ? "UBI volume" : "mount"); 1186 err = -EROFS; 1187 goto out_free; 1188 } 1189 1190 if (c->ro_media && !c->ro_mount) { 1191 ubifs_err("cannot mount read-write - read-only media"); 1192 err = -EROFS; 1193 goto out_free; 1194 } 1195 1196 /* 1197 * The requirement for the buffer is that it should fit indexing B-tree 1198 * height amount of integers. We assume the height if the TNC tree will 1199 * never exceed 64. 1200 */ 1201 err = -ENOMEM; 1202 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1203 if (!c->bottom_up_buf) 1204 goto out_free; 1205 1206 c->sbuf = vmalloc(c->leb_size); 1207 if (!c->sbuf) 1208 goto out_free; 1209 1210 if (!c->ro_mount) { 1211 c->ileb_buf = vmalloc(c->leb_size); 1212 if (!c->ileb_buf) 1213 goto out_free; 1214 } 1215 1216 if (c->bulk_read == 1) 1217 bu_init(c); 1218 1219 if (!c->ro_mount) { 1220 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1221 GFP_KERNEL); 1222 if (!c->write_reserve_buf) 1223 goto out_free; 1224 } 1225 1226 c->mounting = 1; 1227 1228 err = ubifs_read_superblock(c); 1229 if (err) 1230 goto out_free; 1231 1232 /* 1233 * Make sure the compressor which is set as default in the superblock 1234 * or overridden by mount options is actually compiled in. 1235 */ 1236 if (!ubifs_compr_present(c->default_compr)) { 1237 ubifs_err("'compressor \"%s\" is not compiled in", 1238 ubifs_compr_name(c->default_compr)); 1239 err = -ENOTSUPP; 1240 goto out_free; 1241 } 1242 1243 err = init_constants_sb(c); 1244 if (err) 1245 goto out_free; 1246 1247 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1248 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1249 c->cbuf = kmalloc(sz, GFP_NOFS); 1250 if (!c->cbuf) { 1251 err = -ENOMEM; 1252 goto out_free; 1253 } 1254 1255 err = alloc_wbufs(c); 1256 if (err) 1257 goto out_cbuf; 1258 1259 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1260 if (!c->ro_mount) { 1261 /* Create background thread */ 1262 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1263 if (IS_ERR(c->bgt)) { 1264 err = PTR_ERR(c->bgt); 1265 c->bgt = NULL; 1266 ubifs_err("cannot spawn \"%s\", error %d", 1267 c->bgt_name, err); 1268 goto out_wbufs; 1269 } 1270 wake_up_process(c->bgt); 1271 } 1272 1273 err = ubifs_read_master(c); 1274 if (err) 1275 goto out_master; 1276 1277 init_constants_master(c); 1278 1279 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1280 ubifs_msg("recovery needed"); 1281 c->need_recovery = 1; 1282 } 1283 1284 if (c->need_recovery && !c->ro_mount) { 1285 err = ubifs_recover_inl_heads(c, c->sbuf); 1286 if (err) 1287 goto out_master; 1288 } 1289 1290 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1291 if (err) 1292 goto out_master; 1293 1294 if (!c->ro_mount && c->space_fixup) { 1295 err = ubifs_fixup_free_space(c); 1296 if (err) 1297 goto out_lpt; 1298 } 1299 1300 if (!c->ro_mount) { 1301 /* 1302 * Set the "dirty" flag so that if we reboot uncleanly we 1303 * will notice this immediately on the next mount. 1304 */ 1305 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1306 err = ubifs_write_master(c); 1307 if (err) 1308 goto out_lpt; 1309 } 1310 1311 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1312 if (err) 1313 goto out_lpt; 1314 1315 err = ubifs_replay_journal(c); 1316 if (err) 1317 goto out_journal; 1318 1319 /* Calculate 'min_idx_lebs' after journal replay */ 1320 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1321 1322 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1323 if (err) 1324 goto out_orphans; 1325 1326 if (!c->ro_mount) { 1327 int lnum; 1328 1329 err = check_free_space(c); 1330 if (err) 1331 goto out_orphans; 1332 1333 /* Check for enough log space */ 1334 lnum = c->lhead_lnum + 1; 1335 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1336 lnum = UBIFS_LOG_LNUM; 1337 if (lnum == c->ltail_lnum) { 1338 err = ubifs_consolidate_log(c); 1339 if (err) 1340 goto out_orphans; 1341 } 1342 1343 if (c->need_recovery) { 1344 err = ubifs_recover_size(c); 1345 if (err) 1346 goto out_orphans; 1347 err = ubifs_rcvry_gc_commit(c); 1348 if (err) 1349 goto out_orphans; 1350 } else { 1351 err = take_gc_lnum(c); 1352 if (err) 1353 goto out_orphans; 1354 1355 /* 1356 * GC LEB may contain garbage if there was an unclean 1357 * reboot, and it should be un-mapped. 1358 */ 1359 err = ubifs_leb_unmap(c, c->gc_lnum); 1360 if (err) 1361 goto out_orphans; 1362 } 1363 1364 err = dbg_check_lprops(c); 1365 if (err) 1366 goto out_orphans; 1367 } else if (c->need_recovery) { 1368 err = ubifs_recover_size(c); 1369 if (err) 1370 goto out_orphans; 1371 } else { 1372 /* 1373 * Even if we mount read-only, we have to set space in GC LEB 1374 * to proper value because this affects UBIFS free space 1375 * reporting. We do not want to have a situation when 1376 * re-mounting from R/O to R/W changes amount of free space. 1377 */ 1378 err = take_gc_lnum(c); 1379 if (err) 1380 goto out_orphans; 1381 } 1382 1383 spin_lock(&ubifs_infos_lock); 1384 list_add_tail(&c->infos_list, &ubifs_infos); 1385 spin_unlock(&ubifs_infos_lock); 1386 1387 if (c->need_recovery) { 1388 if (c->ro_mount) 1389 ubifs_msg("recovery deferred"); 1390 else { 1391 c->need_recovery = 0; 1392 ubifs_msg("recovery completed"); 1393 /* 1394 * GC LEB has to be empty and taken at this point. But 1395 * the journal head LEBs may also be accounted as 1396 * "empty taken" if they are empty. 1397 */ 1398 ubifs_assert(c->lst.taken_empty_lebs > 0); 1399 } 1400 } else 1401 ubifs_assert(c->lst.taken_empty_lebs > 0); 1402 1403 err = dbg_check_filesystem(c); 1404 if (err) 1405 goto out_infos; 1406 1407 err = dbg_debugfs_init_fs(c); 1408 if (err) 1409 goto out_infos; 1410 1411 c->mounting = 0; 1412 1413 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s", 1414 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1415 c->ro_mount ? ", R/O mode" : NULL); 1416 x = (long long)c->main_lebs * c->leb_size; 1417 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1418 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1419 c->leb_size, c->leb_size >> 10, c->min_io_size, 1420 c->max_write_size); 1421 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1422 x, x >> 20, c->main_lebs, 1423 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1424 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1425 c->report_rp_size, c->report_rp_size >> 10); 1426 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1427 c->fmt_version, c->ro_compat_version, 1428 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1429 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1430 1431 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1432 dbg_gen("data journal heads: %d", 1433 c->jhead_cnt - NONDATA_JHEADS_CNT); 1434 dbg_gen("log LEBs: %d (%d - %d)", 1435 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1436 dbg_gen("LPT area LEBs: %d (%d - %d)", 1437 c->lpt_lebs, c->lpt_first, c->lpt_last); 1438 dbg_gen("orphan area LEBs: %d (%d - %d)", 1439 c->orph_lebs, c->orph_first, c->orph_last); 1440 dbg_gen("main area LEBs: %d (%d - %d)", 1441 c->main_lebs, c->main_first, c->leb_cnt - 1); 1442 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1443 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1444 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1445 c->bi.old_idx_sz >> 20); 1446 dbg_gen("key hash type: %d", c->key_hash_type); 1447 dbg_gen("tree fanout: %d", c->fanout); 1448 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1449 dbg_gen("max. znode size %d", c->max_znode_sz); 1450 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1451 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1452 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1453 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1454 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1455 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1456 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1457 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1458 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1459 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1460 dbg_gen("dead watermark: %d", c->dead_wm); 1461 dbg_gen("dark watermark: %d", c->dark_wm); 1462 dbg_gen("LEB overhead: %d", c->leb_overhead); 1463 x = (long long)c->main_lebs * c->dark_wm; 1464 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1465 x, x >> 10, x >> 20); 1466 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1467 c->max_bud_bytes, c->max_bud_bytes >> 10, 1468 c->max_bud_bytes >> 20); 1469 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1470 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1471 c->bg_bud_bytes >> 20); 1472 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1473 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1474 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1475 dbg_gen("commit number: %llu", c->cmt_no); 1476 1477 return 0; 1478 1479 out_infos: 1480 spin_lock(&ubifs_infos_lock); 1481 list_del(&c->infos_list); 1482 spin_unlock(&ubifs_infos_lock); 1483 out_orphans: 1484 free_orphans(c); 1485 out_journal: 1486 destroy_journal(c); 1487 out_lpt: 1488 ubifs_lpt_free(c, 0); 1489 out_master: 1490 kfree(c->mst_node); 1491 kfree(c->rcvrd_mst_node); 1492 if (c->bgt) 1493 kthread_stop(c->bgt); 1494 out_wbufs: 1495 free_wbufs(c); 1496 out_cbuf: 1497 kfree(c->cbuf); 1498 out_free: 1499 kfree(c->write_reserve_buf); 1500 kfree(c->bu.buf); 1501 vfree(c->ileb_buf); 1502 vfree(c->sbuf); 1503 kfree(c->bottom_up_buf); 1504 ubifs_debugging_exit(c); 1505 return err; 1506 } 1507 1508 /** 1509 * ubifs_umount - un-mount UBIFS file-system. 1510 * @c: UBIFS file-system description object 1511 * 1512 * Note, this function is called to free allocated resourced when un-mounting, 1513 * as well as free resources when an error occurred while we were half way 1514 * through mounting (error path cleanup function). So it has to make sure the 1515 * resource was actually allocated before freeing it. 1516 */ 1517 static void ubifs_umount(struct ubifs_info *c) 1518 { 1519 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1520 c->vi.vol_id); 1521 1522 dbg_debugfs_exit_fs(c); 1523 spin_lock(&ubifs_infos_lock); 1524 list_del(&c->infos_list); 1525 spin_unlock(&ubifs_infos_lock); 1526 1527 if (c->bgt) 1528 kthread_stop(c->bgt); 1529 1530 destroy_journal(c); 1531 free_wbufs(c); 1532 free_orphans(c); 1533 ubifs_lpt_free(c, 0); 1534 1535 kfree(c->cbuf); 1536 kfree(c->rcvrd_mst_node); 1537 kfree(c->mst_node); 1538 kfree(c->write_reserve_buf); 1539 kfree(c->bu.buf); 1540 vfree(c->ileb_buf); 1541 vfree(c->sbuf); 1542 kfree(c->bottom_up_buf); 1543 ubifs_debugging_exit(c); 1544 } 1545 1546 /** 1547 * ubifs_remount_rw - re-mount in read-write mode. 1548 * @c: UBIFS file-system description object 1549 * 1550 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1551 * mode. This function allocates the needed resources and re-mounts UBIFS in 1552 * read-write mode. 1553 */ 1554 static int ubifs_remount_rw(struct ubifs_info *c) 1555 { 1556 int err, lnum; 1557 1558 if (c->rw_incompat) { 1559 ubifs_err("the file-system is not R/W-compatible"); 1560 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1561 c->fmt_version, c->ro_compat_version, 1562 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1563 return -EROFS; 1564 } 1565 1566 mutex_lock(&c->umount_mutex); 1567 dbg_save_space_info(c); 1568 c->remounting_rw = 1; 1569 c->ro_mount = 0; 1570 1571 if (c->space_fixup) { 1572 err = ubifs_fixup_free_space(c); 1573 if (err) 1574 return err; 1575 } 1576 1577 err = check_free_space(c); 1578 if (err) 1579 goto out; 1580 1581 if (c->old_leb_cnt != c->leb_cnt) { 1582 struct ubifs_sb_node *sup; 1583 1584 sup = ubifs_read_sb_node(c); 1585 if (IS_ERR(sup)) { 1586 err = PTR_ERR(sup); 1587 goto out; 1588 } 1589 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1590 err = ubifs_write_sb_node(c, sup); 1591 kfree(sup); 1592 if (err) 1593 goto out; 1594 } 1595 1596 if (c->need_recovery) { 1597 ubifs_msg("completing deferred recovery"); 1598 err = ubifs_write_rcvrd_mst_node(c); 1599 if (err) 1600 goto out; 1601 err = ubifs_recover_size(c); 1602 if (err) 1603 goto out; 1604 err = ubifs_clean_lebs(c, c->sbuf); 1605 if (err) 1606 goto out; 1607 err = ubifs_recover_inl_heads(c, c->sbuf); 1608 if (err) 1609 goto out; 1610 } else { 1611 /* A readonly mount is not allowed to have orphans */ 1612 ubifs_assert(c->tot_orphans == 0); 1613 err = ubifs_clear_orphans(c); 1614 if (err) 1615 goto out; 1616 } 1617 1618 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1619 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1620 err = ubifs_write_master(c); 1621 if (err) 1622 goto out; 1623 } 1624 1625 c->ileb_buf = vmalloc(c->leb_size); 1626 if (!c->ileb_buf) { 1627 err = -ENOMEM; 1628 goto out; 1629 } 1630 1631 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1632 if (!c->write_reserve_buf) 1633 goto out; 1634 1635 err = ubifs_lpt_init(c, 0, 1); 1636 if (err) 1637 goto out; 1638 1639 /* Create background thread */ 1640 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1641 if (IS_ERR(c->bgt)) { 1642 err = PTR_ERR(c->bgt); 1643 c->bgt = NULL; 1644 ubifs_err("cannot spawn \"%s\", error %d", 1645 c->bgt_name, err); 1646 goto out; 1647 } 1648 wake_up_process(c->bgt); 1649 1650 c->orph_buf = vmalloc(c->leb_size); 1651 if (!c->orph_buf) { 1652 err = -ENOMEM; 1653 goto out; 1654 } 1655 1656 /* Check for enough log space */ 1657 lnum = c->lhead_lnum + 1; 1658 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1659 lnum = UBIFS_LOG_LNUM; 1660 if (lnum == c->ltail_lnum) { 1661 err = ubifs_consolidate_log(c); 1662 if (err) 1663 goto out; 1664 } 1665 1666 if (c->need_recovery) 1667 err = ubifs_rcvry_gc_commit(c); 1668 else 1669 err = ubifs_leb_unmap(c, c->gc_lnum); 1670 if (err) 1671 goto out; 1672 1673 dbg_gen("re-mounted read-write"); 1674 c->remounting_rw = 0; 1675 1676 if (c->need_recovery) { 1677 c->need_recovery = 0; 1678 ubifs_msg("deferred recovery completed"); 1679 } else { 1680 /* 1681 * Do not run the debugging space check if the were doing 1682 * recovery, because when we saved the information we had the 1683 * file-system in a state where the TNC and lprops has been 1684 * modified in memory, but all the I/O operations (including a 1685 * commit) were deferred. So the file-system was in 1686 * "non-committed" state. Now the file-system is in committed 1687 * state, and of course the amount of free space will change 1688 * because, for example, the old index size was imprecise. 1689 */ 1690 err = dbg_check_space_info(c); 1691 } 1692 1693 mutex_unlock(&c->umount_mutex); 1694 return err; 1695 1696 out: 1697 c->ro_mount = 1; 1698 vfree(c->orph_buf); 1699 c->orph_buf = NULL; 1700 if (c->bgt) { 1701 kthread_stop(c->bgt); 1702 c->bgt = NULL; 1703 } 1704 free_wbufs(c); 1705 kfree(c->write_reserve_buf); 1706 c->write_reserve_buf = NULL; 1707 vfree(c->ileb_buf); 1708 c->ileb_buf = NULL; 1709 ubifs_lpt_free(c, 1); 1710 c->remounting_rw = 0; 1711 mutex_unlock(&c->umount_mutex); 1712 return err; 1713 } 1714 1715 /** 1716 * ubifs_remount_ro - re-mount in read-only mode. 1717 * @c: UBIFS file-system description object 1718 * 1719 * We assume VFS has stopped writing. Possibly the background thread could be 1720 * running a commit, however kthread_stop will wait in that case. 1721 */ 1722 static void ubifs_remount_ro(struct ubifs_info *c) 1723 { 1724 int i, err; 1725 1726 ubifs_assert(!c->need_recovery); 1727 ubifs_assert(!c->ro_mount); 1728 1729 mutex_lock(&c->umount_mutex); 1730 if (c->bgt) { 1731 kthread_stop(c->bgt); 1732 c->bgt = NULL; 1733 } 1734 1735 dbg_save_space_info(c); 1736 1737 for (i = 0; i < c->jhead_cnt; i++) 1738 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1739 1740 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1741 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1742 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1743 err = ubifs_write_master(c); 1744 if (err) 1745 ubifs_ro_mode(c, err); 1746 1747 vfree(c->orph_buf); 1748 c->orph_buf = NULL; 1749 kfree(c->write_reserve_buf); 1750 c->write_reserve_buf = NULL; 1751 vfree(c->ileb_buf); 1752 c->ileb_buf = NULL; 1753 ubifs_lpt_free(c, 1); 1754 c->ro_mount = 1; 1755 err = dbg_check_space_info(c); 1756 if (err) 1757 ubifs_ro_mode(c, err); 1758 mutex_unlock(&c->umount_mutex); 1759 } 1760 1761 static void ubifs_put_super(struct super_block *sb) 1762 { 1763 int i; 1764 struct ubifs_info *c = sb->s_fs_info; 1765 1766 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1767 c->vi.vol_id); 1768 1769 /* 1770 * The following asserts are only valid if there has not been a failure 1771 * of the media. For example, there will be dirty inodes if we failed 1772 * to write them back because of I/O errors. 1773 */ 1774 if (!c->ro_error) { 1775 ubifs_assert(c->bi.idx_growth == 0); 1776 ubifs_assert(c->bi.dd_growth == 0); 1777 ubifs_assert(c->bi.data_growth == 0); 1778 } 1779 1780 /* 1781 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1782 * and file system un-mount. Namely, it prevents the shrinker from 1783 * picking this superblock for shrinking - it will be just skipped if 1784 * the mutex is locked. 1785 */ 1786 mutex_lock(&c->umount_mutex); 1787 if (!c->ro_mount) { 1788 /* 1789 * First of all kill the background thread to make sure it does 1790 * not interfere with un-mounting and freeing resources. 1791 */ 1792 if (c->bgt) { 1793 kthread_stop(c->bgt); 1794 c->bgt = NULL; 1795 } 1796 1797 /* 1798 * On fatal errors c->ro_error is set to 1, in which case we do 1799 * not write the master node. 1800 */ 1801 if (!c->ro_error) { 1802 int err; 1803 1804 /* Synchronize write-buffers */ 1805 for (i = 0; i < c->jhead_cnt; i++) 1806 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1807 1808 /* 1809 * We are being cleanly unmounted which means the 1810 * orphans were killed - indicate this in the master 1811 * node. Also save the reserved GC LEB number. 1812 */ 1813 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1814 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1815 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1816 err = ubifs_write_master(c); 1817 if (err) 1818 /* 1819 * Recovery will attempt to fix the master area 1820 * next mount, so we just print a message and 1821 * continue to unmount normally. 1822 */ 1823 ubifs_err("failed to write master node, error %d", 1824 err); 1825 } else { 1826 for (i = 0; i < c->jhead_cnt; i++) 1827 /* Make sure write-buffer timers are canceled */ 1828 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1829 } 1830 } 1831 1832 ubifs_umount(c); 1833 bdi_destroy(&c->bdi); 1834 ubi_close_volume(c->ubi); 1835 mutex_unlock(&c->umount_mutex); 1836 } 1837 1838 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1839 { 1840 int err; 1841 struct ubifs_info *c = sb->s_fs_info; 1842 1843 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1844 1845 err = ubifs_parse_options(c, data, 1); 1846 if (err) { 1847 ubifs_err("invalid or unknown remount parameter"); 1848 return err; 1849 } 1850 1851 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1852 if (c->ro_error) { 1853 ubifs_msg("cannot re-mount R/W due to prior errors"); 1854 return -EROFS; 1855 } 1856 if (c->ro_media) { 1857 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 1858 return -EROFS; 1859 } 1860 err = ubifs_remount_rw(c); 1861 if (err) 1862 return err; 1863 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1864 if (c->ro_error) { 1865 ubifs_msg("cannot re-mount R/O due to prior errors"); 1866 return -EROFS; 1867 } 1868 ubifs_remount_ro(c); 1869 } 1870 1871 if (c->bulk_read == 1) 1872 bu_init(c); 1873 else { 1874 dbg_gen("disable bulk-read"); 1875 kfree(c->bu.buf); 1876 c->bu.buf = NULL; 1877 } 1878 1879 ubifs_assert(c->lst.taken_empty_lebs > 0); 1880 return 0; 1881 } 1882 1883 const struct super_operations ubifs_super_operations = { 1884 .alloc_inode = ubifs_alloc_inode, 1885 .destroy_inode = ubifs_destroy_inode, 1886 .put_super = ubifs_put_super, 1887 .write_inode = ubifs_write_inode, 1888 .evict_inode = ubifs_evict_inode, 1889 .statfs = ubifs_statfs, 1890 .dirty_inode = ubifs_dirty_inode, 1891 .remount_fs = ubifs_remount_fs, 1892 .show_options = ubifs_show_options, 1893 .sync_fs = ubifs_sync_fs, 1894 }; 1895 1896 /** 1897 * open_ubi - parse UBI device name string and open the UBI device. 1898 * @name: UBI volume name 1899 * @mode: UBI volume open mode 1900 * 1901 * The primary method of mounting UBIFS is by specifying the UBI volume 1902 * character device node path. However, UBIFS may also be mounted withoug any 1903 * character device node using one of the following methods: 1904 * 1905 * o ubiX_Y - mount UBI device number X, volume Y; 1906 * o ubiY - mount UBI device number 0, volume Y; 1907 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1908 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1909 * 1910 * Alternative '!' separator may be used instead of ':' (because some shells 1911 * like busybox may interpret ':' as an NFS host name separator). This function 1912 * returns UBI volume description object in case of success and a negative 1913 * error code in case of failure. 1914 */ 1915 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1916 { 1917 struct ubi_volume_desc *ubi; 1918 int dev, vol; 1919 char *endptr; 1920 1921 /* First, try to open using the device node path method */ 1922 ubi = ubi_open_volume_path(name, mode); 1923 if (!IS_ERR(ubi)) 1924 return ubi; 1925 1926 /* Try the "nodev" method */ 1927 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1928 return ERR_PTR(-EINVAL); 1929 1930 /* ubi:NAME method */ 1931 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1932 return ubi_open_volume_nm(0, name + 4, mode); 1933 1934 if (!isdigit(name[3])) 1935 return ERR_PTR(-EINVAL); 1936 1937 dev = simple_strtoul(name + 3, &endptr, 0); 1938 1939 /* ubiY method */ 1940 if (*endptr == '\0') 1941 return ubi_open_volume(0, dev, mode); 1942 1943 /* ubiX_Y method */ 1944 if (*endptr == '_' && isdigit(endptr[1])) { 1945 vol = simple_strtoul(endptr + 1, &endptr, 0); 1946 if (*endptr != '\0') 1947 return ERR_PTR(-EINVAL); 1948 return ubi_open_volume(dev, vol, mode); 1949 } 1950 1951 /* ubiX:NAME method */ 1952 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1953 return ubi_open_volume_nm(dev, ++endptr, mode); 1954 1955 return ERR_PTR(-EINVAL); 1956 } 1957 1958 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1959 { 1960 struct ubifs_info *c; 1961 1962 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1963 if (c) { 1964 spin_lock_init(&c->cnt_lock); 1965 spin_lock_init(&c->cs_lock); 1966 spin_lock_init(&c->buds_lock); 1967 spin_lock_init(&c->space_lock); 1968 spin_lock_init(&c->orphan_lock); 1969 init_rwsem(&c->commit_sem); 1970 mutex_init(&c->lp_mutex); 1971 mutex_init(&c->tnc_mutex); 1972 mutex_init(&c->log_mutex); 1973 mutex_init(&c->mst_mutex); 1974 mutex_init(&c->umount_mutex); 1975 mutex_init(&c->bu_mutex); 1976 mutex_init(&c->write_reserve_mutex); 1977 init_waitqueue_head(&c->cmt_wq); 1978 c->buds = RB_ROOT; 1979 c->old_idx = RB_ROOT; 1980 c->size_tree = RB_ROOT; 1981 c->orph_tree = RB_ROOT; 1982 INIT_LIST_HEAD(&c->infos_list); 1983 INIT_LIST_HEAD(&c->idx_gc); 1984 INIT_LIST_HEAD(&c->replay_list); 1985 INIT_LIST_HEAD(&c->replay_buds); 1986 INIT_LIST_HEAD(&c->uncat_list); 1987 INIT_LIST_HEAD(&c->empty_list); 1988 INIT_LIST_HEAD(&c->freeable_list); 1989 INIT_LIST_HEAD(&c->frdi_idx_list); 1990 INIT_LIST_HEAD(&c->unclean_leb_list); 1991 INIT_LIST_HEAD(&c->old_buds); 1992 INIT_LIST_HEAD(&c->orph_list); 1993 INIT_LIST_HEAD(&c->orph_new); 1994 c->no_chk_data_crc = 1; 1995 1996 c->highest_inum = UBIFS_FIRST_INO; 1997 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1998 1999 ubi_get_volume_info(ubi, &c->vi); 2000 ubi_get_device_info(c->vi.ubi_num, &c->di); 2001 } 2002 return c; 2003 } 2004 2005 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2006 { 2007 struct ubifs_info *c = sb->s_fs_info; 2008 struct inode *root; 2009 int err; 2010 2011 c->vfs_sb = sb; 2012 /* Re-open the UBI device in read-write mode */ 2013 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2014 if (IS_ERR(c->ubi)) { 2015 err = PTR_ERR(c->ubi); 2016 goto out; 2017 } 2018 2019 /* 2020 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2021 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2022 * which means the user would have to wait not just for their own I/O 2023 * but the read-ahead I/O as well i.e. completely pointless. 2024 * 2025 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2026 */ 2027 c->bdi.name = "ubifs", 2028 c->bdi.capabilities = BDI_CAP_MAP_COPY; 2029 err = bdi_init(&c->bdi); 2030 if (err) 2031 goto out_close; 2032 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2033 c->vi.ubi_num, c->vi.vol_id); 2034 if (err) 2035 goto out_bdi; 2036 2037 err = ubifs_parse_options(c, data, 0); 2038 if (err) 2039 goto out_bdi; 2040 2041 sb->s_bdi = &c->bdi; 2042 sb->s_fs_info = c; 2043 sb->s_magic = UBIFS_SUPER_MAGIC; 2044 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2045 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2046 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2047 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2048 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2049 sb->s_op = &ubifs_super_operations; 2050 2051 mutex_lock(&c->umount_mutex); 2052 err = mount_ubifs(c); 2053 if (err) { 2054 ubifs_assert(err < 0); 2055 goto out_unlock; 2056 } 2057 2058 /* Read the root inode */ 2059 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2060 if (IS_ERR(root)) { 2061 err = PTR_ERR(root); 2062 goto out_umount; 2063 } 2064 2065 sb->s_root = d_make_root(root); 2066 if (!sb->s_root) 2067 goto out_umount; 2068 2069 mutex_unlock(&c->umount_mutex); 2070 return 0; 2071 2072 out_umount: 2073 ubifs_umount(c); 2074 out_unlock: 2075 mutex_unlock(&c->umount_mutex); 2076 out_bdi: 2077 bdi_destroy(&c->bdi); 2078 out_close: 2079 ubi_close_volume(c->ubi); 2080 out: 2081 return err; 2082 } 2083 2084 static int sb_test(struct super_block *sb, void *data) 2085 { 2086 struct ubifs_info *c1 = data; 2087 struct ubifs_info *c = sb->s_fs_info; 2088 2089 return c->vi.cdev == c1->vi.cdev; 2090 } 2091 2092 static int sb_set(struct super_block *sb, void *data) 2093 { 2094 sb->s_fs_info = data; 2095 return set_anon_super(sb, NULL); 2096 } 2097 2098 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2099 const char *name, void *data) 2100 { 2101 struct ubi_volume_desc *ubi; 2102 struct ubifs_info *c; 2103 struct super_block *sb; 2104 int err; 2105 2106 dbg_gen("name %s, flags %#x", name, flags); 2107 2108 /* 2109 * Get UBI device number and volume ID. Mount it read-only so far 2110 * because this might be a new mount point, and UBI allows only one 2111 * read-write user at a time. 2112 */ 2113 ubi = open_ubi(name, UBI_READONLY); 2114 if (IS_ERR(ubi)) { 2115 ubifs_err("cannot open \"%s\", error %d", 2116 name, (int)PTR_ERR(ubi)); 2117 return ERR_CAST(ubi); 2118 } 2119 2120 c = alloc_ubifs_info(ubi); 2121 if (!c) { 2122 err = -ENOMEM; 2123 goto out_close; 2124 } 2125 2126 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2127 2128 sb = sget(fs_type, sb_test, sb_set, flags, c); 2129 if (IS_ERR(sb)) { 2130 err = PTR_ERR(sb); 2131 kfree(c); 2132 goto out_close; 2133 } 2134 2135 if (sb->s_root) { 2136 struct ubifs_info *c1 = sb->s_fs_info; 2137 kfree(c); 2138 /* A new mount point for already mounted UBIFS */ 2139 dbg_gen("this ubi volume is already mounted"); 2140 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2141 err = -EBUSY; 2142 goto out_deact; 2143 } 2144 } else { 2145 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2146 if (err) 2147 goto out_deact; 2148 /* We do not support atime */ 2149 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2150 } 2151 2152 /* 'fill_super()' opens ubi again so we must close it here */ 2153 ubi_close_volume(ubi); 2154 2155 return dget(sb->s_root); 2156 2157 out_deact: 2158 deactivate_locked_super(sb); 2159 out_close: 2160 ubi_close_volume(ubi); 2161 return ERR_PTR(err); 2162 } 2163 2164 static void kill_ubifs_super(struct super_block *s) 2165 { 2166 struct ubifs_info *c = s->s_fs_info; 2167 kill_anon_super(s); 2168 kfree(c); 2169 } 2170 2171 static struct file_system_type ubifs_fs_type = { 2172 .name = "ubifs", 2173 .owner = THIS_MODULE, 2174 .mount = ubifs_mount, 2175 .kill_sb = kill_ubifs_super, 2176 }; 2177 MODULE_ALIAS_FS("ubifs"); 2178 2179 /* 2180 * Inode slab cache constructor. 2181 */ 2182 static void inode_slab_ctor(void *obj) 2183 { 2184 struct ubifs_inode *ui = obj; 2185 inode_init_once(&ui->vfs_inode); 2186 } 2187 2188 static int __init ubifs_init(void) 2189 { 2190 int err; 2191 2192 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2193 2194 /* Make sure node sizes are 8-byte aligned */ 2195 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2196 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2197 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2198 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2199 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2200 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2201 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2202 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2203 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2204 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2205 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2206 2207 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2208 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2209 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2210 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2211 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2212 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2213 2214 /* Check min. node size */ 2215 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2216 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2217 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2218 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2219 2220 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2221 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2222 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2223 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2224 2225 /* Defined node sizes */ 2226 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2227 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2228 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2229 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2230 2231 /* 2232 * We use 2 bit wide bit-fields to store compression type, which should 2233 * be amended if more compressors are added. The bit-fields are: 2234 * @compr_type in 'struct ubifs_inode', @default_compr in 2235 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2236 */ 2237 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2238 2239 /* 2240 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2241 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2242 */ 2243 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2244 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2245 (unsigned int)PAGE_CACHE_SIZE); 2246 return -EINVAL; 2247 } 2248 2249 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2250 sizeof(struct ubifs_inode), 0, 2251 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2252 &inode_slab_ctor); 2253 if (!ubifs_inode_slab) 2254 return -ENOMEM; 2255 2256 register_shrinker(&ubifs_shrinker_info); 2257 2258 err = ubifs_compressors_init(); 2259 if (err) 2260 goto out_shrinker; 2261 2262 err = dbg_debugfs_init(); 2263 if (err) 2264 goto out_compr; 2265 2266 err = register_filesystem(&ubifs_fs_type); 2267 if (err) { 2268 ubifs_err("cannot register file system, error %d", err); 2269 goto out_dbg; 2270 } 2271 return 0; 2272 2273 out_dbg: 2274 dbg_debugfs_exit(); 2275 out_compr: 2276 ubifs_compressors_exit(); 2277 out_shrinker: 2278 unregister_shrinker(&ubifs_shrinker_info); 2279 kmem_cache_destroy(ubifs_inode_slab); 2280 return err; 2281 } 2282 /* late_initcall to let compressors initialize first */ 2283 late_initcall(ubifs_init); 2284 2285 static void __exit ubifs_exit(void) 2286 { 2287 ubifs_assert(list_empty(&ubifs_infos)); 2288 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2289 2290 dbg_debugfs_exit(); 2291 ubifs_compressors_exit(); 2292 unregister_shrinker(&ubifs_shrinker_info); 2293 2294 /* 2295 * Make sure all delayed rcu free inodes are flushed before we 2296 * destroy cache. 2297 */ 2298 rcu_barrier(); 2299 kmem_cache_destroy(ubifs_inode_slab); 2300 unregister_filesystem(&ubifs_fs_type); 2301 } 2302 module_exit(ubifs_exit); 2303 2304 MODULE_LICENSE("GPL"); 2305 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2306 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2307 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2308