1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include <linux/smp_lock.h> 40 #include "ubifs.h" 41 42 /* 43 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 44 * allocating too much. 45 */ 46 #define UBIFS_KMALLOC_OK (128*1024) 47 48 /* Slab cache for UBIFS inodes */ 49 struct kmem_cache *ubifs_inode_slab; 50 51 /* UBIFS TNC shrinker description */ 52 static struct shrinker ubifs_shrinker_info = { 53 .shrink = ubifs_shrinker, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err("inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err("unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 90 return 5; 91 92 if (!ubifs_compr_present(ui->compr_type)) { 93 ubifs_warn("inode %lu uses '%s' compression, but it was not " 94 "compiled in", inode->i_ino, 95 ubifs_compr_name(ui->compr_type)); 96 } 97 98 err = dbg_check_dir_size(c, inode); 99 return err; 100 } 101 102 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 103 { 104 int err; 105 union ubifs_key key; 106 struct ubifs_ino_node *ino; 107 struct ubifs_info *c = sb->s_fs_info; 108 struct inode *inode; 109 struct ubifs_inode *ui; 110 111 dbg_gen("inode %lu", inum); 112 113 inode = iget_locked(sb, inum); 114 if (!inode) 115 return ERR_PTR(-ENOMEM); 116 if (!(inode->i_state & I_NEW)) 117 return inode; 118 ui = ubifs_inode(inode); 119 120 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 121 if (!ino) { 122 err = -ENOMEM; 123 goto out; 124 } 125 126 ino_key_init(c, &key, inode->i_ino); 127 128 err = ubifs_tnc_lookup(c, &key, ino); 129 if (err) 130 goto out_ino; 131 132 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 133 inode->i_nlink = le32_to_cpu(ino->nlink); 134 inode->i_uid = le32_to_cpu(ino->uid); 135 inode->i_gid = le32_to_cpu(ino->gid); 136 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 137 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 138 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 139 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 140 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 141 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 142 inode->i_mode = le32_to_cpu(ino->mode); 143 inode->i_size = le64_to_cpu(ino->size); 144 145 ui->data_len = le32_to_cpu(ino->data_len); 146 ui->flags = le32_to_cpu(ino->flags); 147 ui->compr_type = le16_to_cpu(ino->compr_type); 148 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 149 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 150 ui->xattr_size = le32_to_cpu(ino->xattr_size); 151 ui->xattr_names = le32_to_cpu(ino->xattr_names); 152 ui->synced_i_size = ui->ui_size = inode->i_size; 153 154 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 155 156 err = validate_inode(c, inode); 157 if (err) 158 goto out_invalid; 159 160 /* Disable read-ahead */ 161 inode->i_mapping->backing_dev_info = &c->bdi; 162 163 switch (inode->i_mode & S_IFMT) { 164 case S_IFREG: 165 inode->i_mapping->a_ops = &ubifs_file_address_operations; 166 inode->i_op = &ubifs_file_inode_operations; 167 inode->i_fop = &ubifs_file_operations; 168 if (ui->xattr) { 169 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 170 if (!ui->data) { 171 err = -ENOMEM; 172 goto out_ino; 173 } 174 memcpy(ui->data, ino->data, ui->data_len); 175 ((char *)ui->data)[ui->data_len] = '\0'; 176 } else if (ui->data_len != 0) { 177 err = 10; 178 goto out_invalid; 179 } 180 break; 181 case S_IFDIR: 182 inode->i_op = &ubifs_dir_inode_operations; 183 inode->i_fop = &ubifs_dir_operations; 184 if (ui->data_len != 0) { 185 err = 11; 186 goto out_invalid; 187 } 188 break; 189 case S_IFLNK: 190 inode->i_op = &ubifs_symlink_inode_operations; 191 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 192 err = 12; 193 goto out_invalid; 194 } 195 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 196 if (!ui->data) { 197 err = -ENOMEM; 198 goto out_ino; 199 } 200 memcpy(ui->data, ino->data, ui->data_len); 201 ((char *)ui->data)[ui->data_len] = '\0'; 202 break; 203 case S_IFBLK: 204 case S_IFCHR: 205 { 206 dev_t rdev; 207 union ubifs_dev_desc *dev; 208 209 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 210 if (!ui->data) { 211 err = -ENOMEM; 212 goto out_ino; 213 } 214 215 dev = (union ubifs_dev_desc *)ino->data; 216 if (ui->data_len == sizeof(dev->new)) 217 rdev = new_decode_dev(le32_to_cpu(dev->new)); 218 else if (ui->data_len == sizeof(dev->huge)) 219 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 220 else { 221 err = 13; 222 goto out_invalid; 223 } 224 memcpy(ui->data, ino->data, ui->data_len); 225 inode->i_op = &ubifs_file_inode_operations; 226 init_special_inode(inode, inode->i_mode, rdev); 227 break; 228 } 229 case S_IFSOCK: 230 case S_IFIFO: 231 inode->i_op = &ubifs_file_inode_operations; 232 init_special_inode(inode, inode->i_mode, 0); 233 if (ui->data_len != 0) { 234 err = 14; 235 goto out_invalid; 236 } 237 break; 238 default: 239 err = 15; 240 goto out_invalid; 241 } 242 243 kfree(ino); 244 ubifs_set_inode_flags(inode); 245 unlock_new_inode(inode); 246 return inode; 247 248 out_invalid: 249 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 250 dbg_dump_node(c, ino); 251 dbg_dump_inode(c, inode); 252 err = -EINVAL; 253 out_ino: 254 kfree(ino); 255 out: 256 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 257 iget_failed(inode); 258 return ERR_PTR(err); 259 } 260 261 static struct inode *ubifs_alloc_inode(struct super_block *sb) 262 { 263 struct ubifs_inode *ui; 264 265 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 266 if (!ui) 267 return NULL; 268 269 memset((void *)ui + sizeof(struct inode), 0, 270 sizeof(struct ubifs_inode) - sizeof(struct inode)); 271 mutex_init(&ui->ui_mutex); 272 spin_lock_init(&ui->ui_lock); 273 return &ui->vfs_inode; 274 }; 275 276 static void ubifs_destroy_inode(struct inode *inode) 277 { 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 280 kfree(ui->data); 281 kmem_cache_free(ubifs_inode_slab, inode); 282 } 283 284 /* 285 * Note, Linux write-back code calls this without 'i_mutex'. 286 */ 287 static int ubifs_write_inode(struct inode *inode, int wait) 288 { 289 int err = 0; 290 struct ubifs_info *c = inode->i_sb->s_fs_info; 291 struct ubifs_inode *ui = ubifs_inode(inode); 292 293 ubifs_assert(!ui->xattr); 294 if (is_bad_inode(inode)) 295 return 0; 296 297 mutex_lock(&ui->ui_mutex); 298 /* 299 * Due to races between write-back forced by budgeting 300 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 301 * have already been synchronized, do not do this again. This might 302 * also happen if it was synchronized in an VFS operation, e.g. 303 * 'ubifs_link()'. 304 */ 305 if (!ui->dirty) { 306 mutex_unlock(&ui->ui_mutex); 307 return 0; 308 } 309 310 /* 311 * As an optimization, do not write orphan inodes to the media just 312 * because this is not needed. 313 */ 314 dbg_gen("inode %lu, mode %#x, nlink %u", 315 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 316 if (inode->i_nlink) { 317 err = ubifs_jnl_write_inode(c, inode); 318 if (err) 319 ubifs_err("can't write inode %lu, error %d", 320 inode->i_ino, err); 321 } 322 323 ui->dirty = 0; 324 mutex_unlock(&ui->ui_mutex); 325 ubifs_release_dirty_inode_budget(c, ui); 326 return err; 327 } 328 329 static void ubifs_delete_inode(struct inode *inode) 330 { 331 int err; 332 struct ubifs_info *c = inode->i_sb->s_fs_info; 333 struct ubifs_inode *ui = ubifs_inode(inode); 334 335 if (ui->xattr) 336 /* 337 * Extended attribute inode deletions are fully handled in 338 * 'ubifs_removexattr()'. These inodes are special and have 339 * limited usage, so there is nothing to do here. 340 */ 341 goto out; 342 343 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 344 ubifs_assert(!atomic_read(&inode->i_count)); 345 ubifs_assert(inode->i_nlink == 0); 346 347 truncate_inode_pages(&inode->i_data, 0); 348 if (is_bad_inode(inode)) 349 goto out; 350 351 ui->ui_size = inode->i_size = 0; 352 err = ubifs_jnl_delete_inode(c, inode); 353 if (err) 354 /* 355 * Worst case we have a lost orphan inode wasting space, so a 356 * simple error message is OK here. 357 */ 358 ubifs_err("can't delete inode %lu, error %d", 359 inode->i_ino, err); 360 361 out: 362 if (ui->dirty) 363 ubifs_release_dirty_inode_budget(c, ui); 364 else { 365 /* We've deleted something - clean the "no space" flags */ 366 c->nospace = c->nospace_rp = 0; 367 smp_wmb(); 368 } 369 clear_inode(inode); 370 } 371 372 static void ubifs_dirty_inode(struct inode *inode) 373 { 374 struct ubifs_inode *ui = ubifs_inode(inode); 375 376 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 377 if (!ui->dirty) { 378 ui->dirty = 1; 379 dbg_gen("inode %lu", inode->i_ino); 380 } 381 } 382 383 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 384 { 385 struct ubifs_info *c = dentry->d_sb->s_fs_info; 386 unsigned long long free; 387 __le32 *uuid = (__le32 *)c->uuid; 388 389 free = ubifs_get_free_space(c); 390 dbg_gen("free space %lld bytes (%lld blocks)", 391 free, free >> UBIFS_BLOCK_SHIFT); 392 393 buf->f_type = UBIFS_SUPER_MAGIC; 394 buf->f_bsize = UBIFS_BLOCK_SIZE; 395 buf->f_blocks = c->block_cnt; 396 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 397 if (free > c->report_rp_size) 398 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 399 else 400 buf->f_bavail = 0; 401 buf->f_files = 0; 402 buf->f_ffree = 0; 403 buf->f_namelen = UBIFS_MAX_NLEN; 404 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 405 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 406 ubifs_assert(buf->f_bfree <= c->block_cnt); 407 return 0; 408 } 409 410 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 411 { 412 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 413 414 if (c->mount_opts.unmount_mode == 2) 415 seq_printf(s, ",fast_unmount"); 416 else if (c->mount_opts.unmount_mode == 1) 417 seq_printf(s, ",norm_unmount"); 418 419 if (c->mount_opts.bulk_read == 2) 420 seq_printf(s, ",bulk_read"); 421 else if (c->mount_opts.bulk_read == 1) 422 seq_printf(s, ",no_bulk_read"); 423 424 if (c->mount_opts.chk_data_crc == 2) 425 seq_printf(s, ",chk_data_crc"); 426 else if (c->mount_opts.chk_data_crc == 1) 427 seq_printf(s, ",no_chk_data_crc"); 428 429 if (c->mount_opts.override_compr) { 430 seq_printf(s, ",compr=%s", 431 ubifs_compr_name(c->mount_opts.compr_type)); 432 } 433 434 return 0; 435 } 436 437 static int ubifs_sync_fs(struct super_block *sb, int wait) 438 { 439 int i, err; 440 struct ubifs_info *c = sb->s_fs_info; 441 struct writeback_control wbc = { 442 .sync_mode = WB_SYNC_ALL, 443 .range_start = 0, 444 .range_end = LLONG_MAX, 445 .nr_to_write = LONG_MAX, 446 }; 447 448 /* 449 * Zero @wait is just an advisory thing to help the file system shove 450 * lots of data into the queues, and there will be the second 451 * '->sync_fs()' call, with non-zero @wait. 452 */ 453 if (!wait) 454 return 0; 455 456 /* 457 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and 458 * pages, so synchronize them first, then commit the journal. Strictly 459 * speaking, it is not necessary to commit the journal here, 460 * synchronizing write-buffers would be enough. But committing makes 461 * UBIFS free space predictions much more accurate, so we want to let 462 * the user be able to get more accurate results of 'statfs()' after 463 * they synchronize the file system. 464 */ 465 generic_sync_sb_inodes(sb, &wbc); 466 467 /* 468 * Synchronize write buffers, because 'ubifs_run_commit()' does not 469 * do this if it waits for an already running commit. 470 */ 471 for (i = 0; i < c->jhead_cnt; i++) { 472 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 473 if (err) 474 return err; 475 } 476 477 err = ubifs_run_commit(c); 478 if (err) 479 return err; 480 481 return ubi_sync(c->vi.ubi_num); 482 } 483 484 /** 485 * init_constants_early - initialize UBIFS constants. 486 * @c: UBIFS file-system description object 487 * 488 * This function initialize UBIFS constants which do not need the superblock to 489 * be read. It also checks that the UBI volume satisfies basic UBIFS 490 * requirements. Returns zero in case of success and a negative error code in 491 * case of failure. 492 */ 493 static int init_constants_early(struct ubifs_info *c) 494 { 495 if (c->vi.corrupted) { 496 ubifs_warn("UBI volume is corrupted - read-only mode"); 497 c->ro_media = 1; 498 } 499 500 if (c->di.ro_mode) { 501 ubifs_msg("read-only UBI device"); 502 c->ro_media = 1; 503 } 504 505 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 506 ubifs_msg("static UBI volume - read-only mode"); 507 c->ro_media = 1; 508 } 509 510 c->leb_cnt = c->vi.size; 511 c->leb_size = c->vi.usable_leb_size; 512 c->half_leb_size = c->leb_size / 2; 513 c->min_io_size = c->di.min_io_size; 514 c->min_io_shift = fls(c->min_io_size) - 1; 515 516 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 517 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 518 c->leb_size, UBIFS_MIN_LEB_SZ); 519 return -EINVAL; 520 } 521 522 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 523 ubifs_err("too few LEBs (%d), min. is %d", 524 c->leb_cnt, UBIFS_MIN_LEB_CNT); 525 return -EINVAL; 526 } 527 528 if (!is_power_of_2(c->min_io_size)) { 529 ubifs_err("bad min. I/O size %d", c->min_io_size); 530 return -EINVAL; 531 } 532 533 /* 534 * UBIFS aligns all node to 8-byte boundary, so to make function in 535 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 536 * less than 8. 537 */ 538 if (c->min_io_size < 8) { 539 c->min_io_size = 8; 540 c->min_io_shift = 3; 541 } 542 543 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 544 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 545 546 /* 547 * Initialize node length ranges which are mostly needed for node 548 * length validation. 549 */ 550 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 551 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 552 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 553 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 554 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 555 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 556 557 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 558 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 559 c->ranges[UBIFS_ORPH_NODE].min_len = 560 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 561 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 562 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 563 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 564 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 565 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 566 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 567 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 568 /* 569 * Minimum indexing node size is amended later when superblock is 570 * read and the key length is known. 571 */ 572 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 573 /* 574 * Maximum indexing node size is amended later when superblock is 575 * read and the fanout is known. 576 */ 577 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 578 579 /* 580 * Initialize dead and dark LEB space watermarks. See gc.c for comments 581 * about these values. 582 */ 583 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 584 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 585 586 /* 587 * Calculate how many bytes would be wasted at the end of LEB if it was 588 * fully filled with data nodes of maximum size. This is used in 589 * calculations when reporting free space. 590 */ 591 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 592 593 /* Buffer size for bulk-reads */ 594 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 595 if (c->max_bu_buf_len > c->leb_size) 596 c->max_bu_buf_len = c->leb_size; 597 return 0; 598 } 599 600 /** 601 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 602 * @c: UBIFS file-system description object 603 * @lnum: LEB the write-buffer was synchronized to 604 * @free: how many free bytes left in this LEB 605 * @pad: how many bytes were padded 606 * 607 * This is a callback function which is called by the I/O unit when the 608 * write-buffer is synchronized. We need this to correctly maintain space 609 * accounting in bud logical eraseblocks. This function returns zero in case of 610 * success and a negative error code in case of failure. 611 * 612 * This function actually belongs to the journal, but we keep it here because 613 * we want to keep it static. 614 */ 615 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 616 { 617 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 618 } 619 620 /* 621 * init_constants_sb - initialize UBIFS constants. 622 * @c: UBIFS file-system description object 623 * 624 * This is a helper function which initializes various UBIFS constants after 625 * the superblock has been read. It also checks various UBIFS parameters and 626 * makes sure they are all right. Returns zero in case of success and a 627 * negative error code in case of failure. 628 */ 629 static int init_constants_sb(struct ubifs_info *c) 630 { 631 int tmp, err; 632 long long tmp64; 633 634 c->main_bytes = (long long)c->main_lebs * c->leb_size; 635 c->max_znode_sz = sizeof(struct ubifs_znode) + 636 c->fanout * sizeof(struct ubifs_zbranch); 637 638 tmp = ubifs_idx_node_sz(c, 1); 639 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 640 c->min_idx_node_sz = ALIGN(tmp, 8); 641 642 tmp = ubifs_idx_node_sz(c, c->fanout); 643 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 644 c->max_idx_node_sz = ALIGN(tmp, 8); 645 646 /* Make sure LEB size is large enough to fit full commit */ 647 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 648 tmp = ALIGN(tmp, c->min_io_size); 649 if (tmp > c->leb_size) { 650 dbg_err("too small LEB size %d, at least %d needed", 651 c->leb_size, tmp); 652 return -EINVAL; 653 } 654 655 /* 656 * Make sure that the log is large enough to fit reference nodes for 657 * all buds plus one reserved LEB. 658 */ 659 tmp64 = c->max_bud_bytes + c->leb_size - 1; 660 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 661 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 662 tmp /= c->leb_size; 663 tmp += 1; 664 if (c->log_lebs < tmp) { 665 dbg_err("too small log %d LEBs, required min. %d LEBs", 666 c->log_lebs, tmp); 667 return -EINVAL; 668 } 669 670 /* 671 * When budgeting we assume worst-case scenarios when the pages are not 672 * be compressed and direntries are of the maximum size. 673 * 674 * Note, data, which may be stored in inodes is budgeted separately, so 675 * it is not included into 'c->inode_budget'. 676 */ 677 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 678 c->inode_budget = UBIFS_INO_NODE_SZ; 679 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 680 681 /* 682 * When the amount of flash space used by buds becomes 683 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 684 * The writers are unblocked when the commit is finished. To avoid 685 * writers to be blocked UBIFS initiates background commit in advance, 686 * when number of bud bytes becomes above the limit defined below. 687 */ 688 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 689 690 /* 691 * Ensure minimum journal size. All the bytes in the journal heads are 692 * considered to be used, when calculating the current journal usage. 693 * Consequently, if the journal is too small, UBIFS will treat it as 694 * always full. 695 */ 696 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 697 if (c->bg_bud_bytes < tmp64) 698 c->bg_bud_bytes = tmp64; 699 if (c->max_bud_bytes < tmp64 + c->leb_size) 700 c->max_bud_bytes = tmp64 + c->leb_size; 701 702 err = ubifs_calc_lpt_geom(c); 703 if (err) 704 return err; 705 706 /* Initialize effective LEB size used in budgeting calculations */ 707 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 708 return 0; 709 } 710 711 /* 712 * init_constants_master - initialize UBIFS constants. 713 * @c: UBIFS file-system description object 714 * 715 * This is a helper function which initializes various UBIFS constants after 716 * the master node has been read. It also checks various UBIFS parameters and 717 * makes sure they are all right. 718 */ 719 static void init_constants_master(struct ubifs_info *c) 720 { 721 long long tmp64; 722 723 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 724 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 725 726 /* 727 * Calculate total amount of FS blocks. This number is not used 728 * internally because it does not make much sense for UBIFS, but it is 729 * necessary to report something for the 'statfs()' call. 730 * 731 * Subtract the LEB reserved for GC, the LEB which is reserved for 732 * deletions, minimum LEBs for the index, and assume only one journal 733 * head is available. 734 */ 735 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 736 tmp64 *= (long long)c->leb_size - c->leb_overhead; 737 tmp64 = ubifs_reported_space(c, tmp64); 738 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 739 } 740 741 /** 742 * take_gc_lnum - reserve GC LEB. 743 * @c: UBIFS file-system description object 744 * 745 * This function ensures that the LEB reserved for garbage collection is marked 746 * as "taken" in lprops. We also have to set free space to LEB size and dirty 747 * space to zero, because lprops may contain out-of-date information if the 748 * file-system was un-mounted before it has been committed. This function 749 * returns zero in case of success and a negative error code in case of 750 * failure. 751 */ 752 static int take_gc_lnum(struct ubifs_info *c) 753 { 754 int err; 755 756 if (c->gc_lnum == -1) { 757 ubifs_err("no LEB for GC"); 758 return -EINVAL; 759 } 760 761 /* And we have to tell lprops that this LEB is taken */ 762 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 763 LPROPS_TAKEN, 0, 0); 764 return err; 765 } 766 767 /** 768 * alloc_wbufs - allocate write-buffers. 769 * @c: UBIFS file-system description object 770 * 771 * This helper function allocates and initializes UBIFS write-buffers. Returns 772 * zero in case of success and %-ENOMEM in case of failure. 773 */ 774 static int alloc_wbufs(struct ubifs_info *c) 775 { 776 int i, err; 777 778 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 779 GFP_KERNEL); 780 if (!c->jheads) 781 return -ENOMEM; 782 783 /* Initialize journal heads */ 784 for (i = 0; i < c->jhead_cnt; i++) { 785 INIT_LIST_HEAD(&c->jheads[i].buds_list); 786 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 787 if (err) 788 return err; 789 790 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 791 c->jheads[i].wbuf.jhead = i; 792 } 793 794 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 795 /* 796 * Garbage Collector head likely contains long-term data and 797 * does not need to be synchronized by timer. 798 */ 799 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 800 c->jheads[GCHD].wbuf.no_timer = 1; 801 802 return 0; 803 } 804 805 /** 806 * free_wbufs - free write-buffers. 807 * @c: UBIFS file-system description object 808 */ 809 static void free_wbufs(struct ubifs_info *c) 810 { 811 int i; 812 813 if (c->jheads) { 814 for (i = 0; i < c->jhead_cnt; i++) { 815 kfree(c->jheads[i].wbuf.buf); 816 kfree(c->jheads[i].wbuf.inodes); 817 } 818 kfree(c->jheads); 819 c->jheads = NULL; 820 } 821 } 822 823 /** 824 * free_orphans - free orphans. 825 * @c: UBIFS file-system description object 826 */ 827 static void free_orphans(struct ubifs_info *c) 828 { 829 struct ubifs_orphan *orph; 830 831 while (c->orph_dnext) { 832 orph = c->orph_dnext; 833 c->orph_dnext = orph->dnext; 834 list_del(&orph->list); 835 kfree(orph); 836 } 837 838 while (!list_empty(&c->orph_list)) { 839 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 840 list_del(&orph->list); 841 kfree(orph); 842 dbg_err("orphan list not empty at unmount"); 843 } 844 845 vfree(c->orph_buf); 846 c->orph_buf = NULL; 847 } 848 849 /** 850 * free_buds - free per-bud objects. 851 * @c: UBIFS file-system description object 852 */ 853 static void free_buds(struct ubifs_info *c) 854 { 855 struct rb_node *this = c->buds.rb_node; 856 struct ubifs_bud *bud; 857 858 while (this) { 859 if (this->rb_left) 860 this = this->rb_left; 861 else if (this->rb_right) 862 this = this->rb_right; 863 else { 864 bud = rb_entry(this, struct ubifs_bud, rb); 865 this = rb_parent(this); 866 if (this) { 867 if (this->rb_left == &bud->rb) 868 this->rb_left = NULL; 869 else 870 this->rb_right = NULL; 871 } 872 kfree(bud); 873 } 874 } 875 } 876 877 /** 878 * check_volume_empty - check if the UBI volume is empty. 879 * @c: UBIFS file-system description object 880 * 881 * This function checks if the UBIFS volume is empty by looking if its LEBs are 882 * mapped or not. The result of checking is stored in the @c->empty variable. 883 * Returns zero in case of success and a negative error code in case of 884 * failure. 885 */ 886 static int check_volume_empty(struct ubifs_info *c) 887 { 888 int lnum, err; 889 890 c->empty = 1; 891 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 892 err = ubi_is_mapped(c->ubi, lnum); 893 if (unlikely(err < 0)) 894 return err; 895 if (err == 1) { 896 c->empty = 0; 897 break; 898 } 899 900 cond_resched(); 901 } 902 903 return 0; 904 } 905 906 /* 907 * UBIFS mount options. 908 * 909 * Opt_fast_unmount: do not run a journal commit before un-mounting 910 * Opt_norm_unmount: run a journal commit before un-mounting 911 * Opt_bulk_read: enable bulk-reads 912 * Opt_no_bulk_read: disable bulk-reads 913 * Opt_chk_data_crc: check CRCs when reading data nodes 914 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 915 * Opt_override_compr: override default compressor 916 * Opt_err: just end of array marker 917 */ 918 enum { 919 Opt_fast_unmount, 920 Opt_norm_unmount, 921 Opt_bulk_read, 922 Opt_no_bulk_read, 923 Opt_chk_data_crc, 924 Opt_no_chk_data_crc, 925 Opt_override_compr, 926 Opt_err, 927 }; 928 929 static const match_table_t tokens = { 930 {Opt_fast_unmount, "fast_unmount"}, 931 {Opt_norm_unmount, "norm_unmount"}, 932 {Opt_bulk_read, "bulk_read"}, 933 {Opt_no_bulk_read, "no_bulk_read"}, 934 {Opt_chk_data_crc, "chk_data_crc"}, 935 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 936 {Opt_override_compr, "compr=%s"}, 937 {Opt_err, NULL}, 938 }; 939 940 /** 941 * parse_standard_option - parse a standard mount option. 942 * @option: the option to parse 943 * 944 * Normally, standard mount options like "sync" are passed to file-systems as 945 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 946 * be present in the options string. This function tries to deal with this 947 * situation and parse standard options. Returns 0 if the option was not 948 * recognized, and the corresponding integer flag if it was. 949 * 950 * UBIFS is only interested in the "sync" option, so do not check for anything 951 * else. 952 */ 953 static int parse_standard_option(const char *option) 954 { 955 ubifs_msg("parse %s", option); 956 if (!strcmp(option, "sync")) 957 return MS_SYNCHRONOUS; 958 return 0; 959 } 960 961 /** 962 * ubifs_parse_options - parse mount parameters. 963 * @c: UBIFS file-system description object 964 * @options: parameters to parse 965 * @is_remount: non-zero if this is FS re-mount 966 * 967 * This function parses UBIFS mount options and returns zero in case success 968 * and a negative error code in case of failure. 969 */ 970 static int ubifs_parse_options(struct ubifs_info *c, char *options, 971 int is_remount) 972 { 973 char *p; 974 substring_t args[MAX_OPT_ARGS]; 975 976 if (!options) 977 return 0; 978 979 while ((p = strsep(&options, ","))) { 980 int token; 981 982 if (!*p) 983 continue; 984 985 token = match_token(p, tokens, args); 986 switch (token) { 987 /* 988 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 989 * We accept them in order to be backward-compatible. But this 990 * should be removed at some point. 991 */ 992 case Opt_fast_unmount: 993 c->mount_opts.unmount_mode = 2; 994 break; 995 case Opt_norm_unmount: 996 c->mount_opts.unmount_mode = 1; 997 break; 998 case Opt_bulk_read: 999 c->mount_opts.bulk_read = 2; 1000 c->bulk_read = 1; 1001 break; 1002 case Opt_no_bulk_read: 1003 c->mount_opts.bulk_read = 1; 1004 c->bulk_read = 0; 1005 break; 1006 case Opt_chk_data_crc: 1007 c->mount_opts.chk_data_crc = 2; 1008 c->no_chk_data_crc = 0; 1009 break; 1010 case Opt_no_chk_data_crc: 1011 c->mount_opts.chk_data_crc = 1; 1012 c->no_chk_data_crc = 1; 1013 break; 1014 case Opt_override_compr: 1015 { 1016 char *name = match_strdup(&args[0]); 1017 1018 if (!name) 1019 return -ENOMEM; 1020 if (!strcmp(name, "none")) 1021 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1022 else if (!strcmp(name, "lzo")) 1023 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1024 else if (!strcmp(name, "zlib")) 1025 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1026 else { 1027 ubifs_err("unknown compressor \"%s\"", name); 1028 kfree(name); 1029 return -EINVAL; 1030 } 1031 kfree(name); 1032 c->mount_opts.override_compr = 1; 1033 c->default_compr = c->mount_opts.compr_type; 1034 break; 1035 } 1036 default: 1037 { 1038 unsigned long flag; 1039 struct super_block *sb = c->vfs_sb; 1040 1041 flag = parse_standard_option(p); 1042 if (!flag) { 1043 ubifs_err("unrecognized mount option \"%s\" " 1044 "or missing value", p); 1045 return -EINVAL; 1046 } 1047 sb->s_flags |= flag; 1048 break; 1049 } 1050 } 1051 } 1052 1053 return 0; 1054 } 1055 1056 /** 1057 * destroy_journal - destroy journal data structures. 1058 * @c: UBIFS file-system description object 1059 * 1060 * This function destroys journal data structures including those that may have 1061 * been created by recovery functions. 1062 */ 1063 static void destroy_journal(struct ubifs_info *c) 1064 { 1065 while (!list_empty(&c->unclean_leb_list)) { 1066 struct ubifs_unclean_leb *ucleb; 1067 1068 ucleb = list_entry(c->unclean_leb_list.next, 1069 struct ubifs_unclean_leb, list); 1070 list_del(&ucleb->list); 1071 kfree(ucleb); 1072 } 1073 while (!list_empty(&c->old_buds)) { 1074 struct ubifs_bud *bud; 1075 1076 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1077 list_del(&bud->list); 1078 kfree(bud); 1079 } 1080 ubifs_destroy_idx_gc(c); 1081 ubifs_destroy_size_tree(c); 1082 ubifs_tnc_close(c); 1083 free_buds(c); 1084 } 1085 1086 /** 1087 * bu_init - initialize bulk-read information. 1088 * @c: UBIFS file-system description object 1089 */ 1090 static void bu_init(struct ubifs_info *c) 1091 { 1092 ubifs_assert(c->bulk_read == 1); 1093 1094 if (c->bu.buf) 1095 return; /* Already initialized */ 1096 1097 again: 1098 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1099 if (!c->bu.buf) { 1100 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1101 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1102 goto again; 1103 } 1104 1105 /* Just disable bulk-read */ 1106 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " 1107 "disabling it", c->max_bu_buf_len); 1108 c->mount_opts.bulk_read = 1; 1109 c->bulk_read = 0; 1110 return; 1111 } 1112 } 1113 1114 /** 1115 * check_free_space - check if there is enough free space to mount. 1116 * @c: UBIFS file-system description object 1117 * 1118 * This function makes sure UBIFS has enough free space to be mounted in 1119 * read/write mode. UBIFS must always have some free space to allow deletions. 1120 */ 1121 static int check_free_space(struct ubifs_info *c) 1122 { 1123 ubifs_assert(c->dark_wm > 0); 1124 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1125 ubifs_err("insufficient free space to mount in read/write mode"); 1126 dbg_dump_budg(c); 1127 dbg_dump_lprops(c); 1128 return -ENOSPC; 1129 } 1130 return 0; 1131 } 1132 1133 /** 1134 * mount_ubifs - mount UBIFS file-system. 1135 * @c: UBIFS file-system description object 1136 * 1137 * This function mounts UBIFS file system. Returns zero in case of success and 1138 * a negative error code in case of failure. 1139 * 1140 * Note, the function does not de-allocate resources it it fails half way 1141 * through, and the caller has to do this instead. 1142 */ 1143 static int mount_ubifs(struct ubifs_info *c) 1144 { 1145 struct super_block *sb = c->vfs_sb; 1146 int err, mounted_read_only = (sb->s_flags & MS_RDONLY); 1147 long long x; 1148 size_t sz; 1149 1150 err = init_constants_early(c); 1151 if (err) 1152 return err; 1153 1154 err = ubifs_debugging_init(c); 1155 if (err) 1156 return err; 1157 1158 err = check_volume_empty(c); 1159 if (err) 1160 goto out_free; 1161 1162 if (c->empty && (mounted_read_only || c->ro_media)) { 1163 /* 1164 * This UBI volume is empty, and read-only, or the file system 1165 * is mounted read-only - we cannot format it. 1166 */ 1167 ubifs_err("can't format empty UBI volume: read-only %s", 1168 c->ro_media ? "UBI volume" : "mount"); 1169 err = -EROFS; 1170 goto out_free; 1171 } 1172 1173 if (c->ro_media && !mounted_read_only) { 1174 ubifs_err("cannot mount read-write - read-only media"); 1175 err = -EROFS; 1176 goto out_free; 1177 } 1178 1179 /* 1180 * The requirement for the buffer is that it should fit indexing B-tree 1181 * height amount of integers. We assume the height if the TNC tree will 1182 * never exceed 64. 1183 */ 1184 err = -ENOMEM; 1185 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1186 if (!c->bottom_up_buf) 1187 goto out_free; 1188 1189 c->sbuf = vmalloc(c->leb_size); 1190 if (!c->sbuf) 1191 goto out_free; 1192 1193 if (!mounted_read_only) { 1194 c->ileb_buf = vmalloc(c->leb_size); 1195 if (!c->ileb_buf) 1196 goto out_free; 1197 } 1198 1199 if (c->bulk_read == 1) 1200 bu_init(c); 1201 1202 /* 1203 * We have to check all CRCs, even for data nodes, when we mount the FS 1204 * (specifically, when we are replaying). 1205 */ 1206 c->always_chk_crc = 1; 1207 1208 err = ubifs_read_superblock(c); 1209 if (err) 1210 goto out_free; 1211 1212 /* 1213 * Make sure the compressor which is set as default in the superblock 1214 * or overridden by mount options is actually compiled in. 1215 */ 1216 if (!ubifs_compr_present(c->default_compr)) { 1217 ubifs_err("'compressor \"%s\" is not compiled in", 1218 ubifs_compr_name(c->default_compr)); 1219 err = -ENOTSUPP; 1220 goto out_free; 1221 } 1222 1223 err = init_constants_sb(c); 1224 if (err) 1225 goto out_free; 1226 1227 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1228 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1229 c->cbuf = kmalloc(sz, GFP_NOFS); 1230 if (!c->cbuf) { 1231 err = -ENOMEM; 1232 goto out_free; 1233 } 1234 1235 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1236 if (!mounted_read_only) { 1237 err = alloc_wbufs(c); 1238 if (err) 1239 goto out_cbuf; 1240 1241 /* Create background thread */ 1242 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1243 if (IS_ERR(c->bgt)) { 1244 err = PTR_ERR(c->bgt); 1245 c->bgt = NULL; 1246 ubifs_err("cannot spawn \"%s\", error %d", 1247 c->bgt_name, err); 1248 goto out_wbufs; 1249 } 1250 wake_up_process(c->bgt); 1251 } 1252 1253 err = ubifs_read_master(c); 1254 if (err) 1255 goto out_master; 1256 1257 init_constants_master(c); 1258 1259 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1260 ubifs_msg("recovery needed"); 1261 c->need_recovery = 1; 1262 if (!mounted_read_only) { 1263 err = ubifs_recover_inl_heads(c, c->sbuf); 1264 if (err) 1265 goto out_master; 1266 } 1267 } else if (!mounted_read_only) { 1268 /* 1269 * Set the "dirty" flag so that if we reboot uncleanly we 1270 * will notice this immediately on the next mount. 1271 */ 1272 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1273 err = ubifs_write_master(c); 1274 if (err) 1275 goto out_master; 1276 } 1277 1278 err = ubifs_lpt_init(c, 1, !mounted_read_only); 1279 if (err) 1280 goto out_lpt; 1281 1282 err = dbg_check_idx_size(c, c->old_idx_sz); 1283 if (err) 1284 goto out_lpt; 1285 1286 err = ubifs_replay_journal(c); 1287 if (err) 1288 goto out_journal; 1289 1290 /* Calculate 'min_idx_lebs' after journal replay */ 1291 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1292 1293 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); 1294 if (err) 1295 goto out_orphans; 1296 1297 if (!mounted_read_only) { 1298 int lnum; 1299 1300 err = check_free_space(c); 1301 if (err) 1302 goto out_orphans; 1303 1304 /* Check for enough log space */ 1305 lnum = c->lhead_lnum + 1; 1306 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1307 lnum = UBIFS_LOG_LNUM; 1308 if (lnum == c->ltail_lnum) { 1309 err = ubifs_consolidate_log(c); 1310 if (err) 1311 goto out_orphans; 1312 } 1313 1314 if (c->need_recovery) { 1315 err = ubifs_recover_size(c); 1316 if (err) 1317 goto out_orphans; 1318 err = ubifs_rcvry_gc_commit(c); 1319 } else { 1320 err = take_gc_lnum(c); 1321 if (err) 1322 goto out_orphans; 1323 1324 /* 1325 * GC LEB may contain garbage if there was an unclean 1326 * reboot, and it should be un-mapped. 1327 */ 1328 err = ubifs_leb_unmap(c, c->gc_lnum); 1329 if (err) 1330 return err; 1331 } 1332 1333 err = dbg_check_lprops(c); 1334 if (err) 1335 goto out_orphans; 1336 } else if (c->need_recovery) { 1337 err = ubifs_recover_size(c); 1338 if (err) 1339 goto out_orphans; 1340 } else { 1341 /* 1342 * Even if we mount read-only, we have to set space in GC LEB 1343 * to proper value because this affects UBIFS free space 1344 * reporting. We do not want to have a situation when 1345 * re-mounting from R/O to R/W changes amount of free space. 1346 */ 1347 err = take_gc_lnum(c); 1348 if (err) 1349 goto out_orphans; 1350 } 1351 1352 spin_lock(&ubifs_infos_lock); 1353 list_add_tail(&c->infos_list, &ubifs_infos); 1354 spin_unlock(&ubifs_infos_lock); 1355 1356 if (c->need_recovery) { 1357 if (mounted_read_only) 1358 ubifs_msg("recovery deferred"); 1359 else { 1360 c->need_recovery = 0; 1361 ubifs_msg("recovery completed"); 1362 /* 1363 * GC LEB has to be empty and taken at this point. But 1364 * the journal head LEBs may also be accounted as 1365 * "empty taken" if they are empty. 1366 */ 1367 ubifs_assert(c->lst.taken_empty_lebs > 0); 1368 } 1369 } else 1370 ubifs_assert(c->lst.taken_empty_lebs > 0); 1371 1372 err = dbg_check_filesystem(c); 1373 if (err) 1374 goto out_infos; 1375 1376 err = dbg_debugfs_init_fs(c); 1377 if (err) 1378 goto out_infos; 1379 1380 c->always_chk_crc = 0; 1381 1382 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1383 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1384 if (mounted_read_only) 1385 ubifs_msg("mounted read-only"); 1386 x = (long long)c->main_lebs * c->leb_size; 1387 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1388 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1389 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1390 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1391 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1392 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", 1393 c->fmt_version, c->ro_compat_version, 1394 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1395 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1396 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1397 c->report_rp_size, c->report_rp_size >> 10); 1398 1399 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1400 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1401 dbg_msg("LEB size: %d bytes (%d KiB)", 1402 c->leb_size, c->leb_size >> 10); 1403 dbg_msg("data journal heads: %d", 1404 c->jhead_cnt - NONDATA_JHEADS_CNT); 1405 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X" 1406 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 1407 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3], 1408 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], 1409 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], 1410 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); 1411 dbg_msg("big_lpt %d", c->big_lpt); 1412 dbg_msg("log LEBs: %d (%d - %d)", 1413 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1414 dbg_msg("LPT area LEBs: %d (%d - %d)", 1415 c->lpt_lebs, c->lpt_first, c->lpt_last); 1416 dbg_msg("orphan area LEBs: %d (%d - %d)", 1417 c->orph_lebs, c->orph_first, c->orph_last); 1418 dbg_msg("main area LEBs: %d (%d - %d)", 1419 c->main_lebs, c->main_first, c->leb_cnt - 1); 1420 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1421 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1422 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1423 dbg_msg("key hash type: %d", c->key_hash_type); 1424 dbg_msg("tree fanout: %d", c->fanout); 1425 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1426 dbg_msg("first main LEB: %d", c->main_first); 1427 dbg_msg("max. znode size %d", c->max_znode_sz); 1428 dbg_msg("max. index node size %d", c->max_idx_node_sz); 1429 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", 1430 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1431 dbg_msg("node sizes: trun %zu, sb %zu, master %zu", 1432 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1433 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", 1434 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1435 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu", 1436 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1437 UBIFS_MAX_DENT_NODE_SZ); 1438 dbg_msg("dead watermark: %d", c->dead_wm); 1439 dbg_msg("dark watermark: %d", c->dark_wm); 1440 dbg_msg("LEB overhead: %d", c->leb_overhead); 1441 x = (long long)c->main_lebs * c->dark_wm; 1442 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1443 x, x >> 10, x >> 20); 1444 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1445 c->max_bud_bytes, c->max_bud_bytes >> 10, 1446 c->max_bud_bytes >> 20); 1447 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1448 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1449 c->bg_bud_bytes >> 20); 1450 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1451 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1452 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1453 dbg_msg("commit number: %llu", c->cmt_no); 1454 1455 return 0; 1456 1457 out_infos: 1458 spin_lock(&ubifs_infos_lock); 1459 list_del(&c->infos_list); 1460 spin_unlock(&ubifs_infos_lock); 1461 out_orphans: 1462 free_orphans(c); 1463 out_journal: 1464 destroy_journal(c); 1465 out_lpt: 1466 ubifs_lpt_free(c, 0); 1467 out_master: 1468 kfree(c->mst_node); 1469 kfree(c->rcvrd_mst_node); 1470 if (c->bgt) 1471 kthread_stop(c->bgt); 1472 out_wbufs: 1473 free_wbufs(c); 1474 out_cbuf: 1475 kfree(c->cbuf); 1476 out_free: 1477 kfree(c->bu.buf); 1478 vfree(c->ileb_buf); 1479 vfree(c->sbuf); 1480 kfree(c->bottom_up_buf); 1481 ubifs_debugging_exit(c); 1482 return err; 1483 } 1484 1485 /** 1486 * ubifs_umount - un-mount UBIFS file-system. 1487 * @c: UBIFS file-system description object 1488 * 1489 * Note, this function is called to free allocated resourced when un-mounting, 1490 * as well as free resources when an error occurred while we were half way 1491 * through mounting (error path cleanup function). So it has to make sure the 1492 * resource was actually allocated before freeing it. 1493 */ 1494 static void ubifs_umount(struct ubifs_info *c) 1495 { 1496 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1497 c->vi.vol_id); 1498 1499 dbg_debugfs_exit_fs(c); 1500 spin_lock(&ubifs_infos_lock); 1501 list_del(&c->infos_list); 1502 spin_unlock(&ubifs_infos_lock); 1503 1504 if (c->bgt) 1505 kthread_stop(c->bgt); 1506 1507 destroy_journal(c); 1508 free_wbufs(c); 1509 free_orphans(c); 1510 ubifs_lpt_free(c, 0); 1511 1512 kfree(c->cbuf); 1513 kfree(c->rcvrd_mst_node); 1514 kfree(c->mst_node); 1515 kfree(c->bu.buf); 1516 vfree(c->ileb_buf); 1517 vfree(c->sbuf); 1518 kfree(c->bottom_up_buf); 1519 ubifs_debugging_exit(c); 1520 } 1521 1522 /** 1523 * ubifs_remount_rw - re-mount in read-write mode. 1524 * @c: UBIFS file-system description object 1525 * 1526 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1527 * mode. This function allocates the needed resources and re-mounts UBIFS in 1528 * read-write mode. 1529 */ 1530 static int ubifs_remount_rw(struct ubifs_info *c) 1531 { 1532 int err, lnum; 1533 1534 if (c->rw_incompat) { 1535 ubifs_err("the file-system is not R/W-compatible"); 1536 ubifs_msg("on-flash format version is w%d/r%d, but software " 1537 "only supports up to version w%d/r%d", c->fmt_version, 1538 c->ro_compat_version, UBIFS_FORMAT_VERSION, 1539 UBIFS_RO_COMPAT_VERSION); 1540 return -EROFS; 1541 } 1542 1543 mutex_lock(&c->umount_mutex); 1544 dbg_save_space_info(c); 1545 c->remounting_rw = 1; 1546 c->always_chk_crc = 1; 1547 1548 err = check_free_space(c); 1549 if (err) 1550 goto out; 1551 1552 if (c->old_leb_cnt != c->leb_cnt) { 1553 struct ubifs_sb_node *sup; 1554 1555 sup = ubifs_read_sb_node(c); 1556 if (IS_ERR(sup)) { 1557 err = PTR_ERR(sup); 1558 goto out; 1559 } 1560 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1561 err = ubifs_write_sb_node(c, sup); 1562 if (err) 1563 goto out; 1564 } 1565 1566 if (c->need_recovery) { 1567 ubifs_msg("completing deferred recovery"); 1568 err = ubifs_write_rcvrd_mst_node(c); 1569 if (err) 1570 goto out; 1571 err = ubifs_recover_size(c); 1572 if (err) 1573 goto out; 1574 err = ubifs_clean_lebs(c, c->sbuf); 1575 if (err) 1576 goto out; 1577 err = ubifs_recover_inl_heads(c, c->sbuf); 1578 if (err) 1579 goto out; 1580 } else { 1581 /* A readonly mount is not allowed to have orphans */ 1582 ubifs_assert(c->tot_orphans == 0); 1583 err = ubifs_clear_orphans(c); 1584 if (err) 1585 goto out; 1586 } 1587 1588 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1589 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1590 err = ubifs_write_master(c); 1591 if (err) 1592 goto out; 1593 } 1594 1595 c->ileb_buf = vmalloc(c->leb_size); 1596 if (!c->ileb_buf) { 1597 err = -ENOMEM; 1598 goto out; 1599 } 1600 1601 err = ubifs_lpt_init(c, 0, 1); 1602 if (err) 1603 goto out; 1604 1605 err = alloc_wbufs(c); 1606 if (err) 1607 goto out; 1608 1609 ubifs_create_buds_lists(c); 1610 1611 /* Create background thread */ 1612 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1613 if (IS_ERR(c->bgt)) { 1614 err = PTR_ERR(c->bgt); 1615 c->bgt = NULL; 1616 ubifs_err("cannot spawn \"%s\", error %d", 1617 c->bgt_name, err); 1618 goto out; 1619 } 1620 wake_up_process(c->bgt); 1621 1622 c->orph_buf = vmalloc(c->leb_size); 1623 if (!c->orph_buf) { 1624 err = -ENOMEM; 1625 goto out; 1626 } 1627 1628 /* Check for enough log space */ 1629 lnum = c->lhead_lnum + 1; 1630 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1631 lnum = UBIFS_LOG_LNUM; 1632 if (lnum == c->ltail_lnum) { 1633 err = ubifs_consolidate_log(c); 1634 if (err) 1635 goto out; 1636 } 1637 1638 if (c->need_recovery) 1639 err = ubifs_rcvry_gc_commit(c); 1640 else 1641 err = ubifs_leb_unmap(c, c->gc_lnum); 1642 if (err) 1643 goto out; 1644 1645 if (c->need_recovery) { 1646 c->need_recovery = 0; 1647 ubifs_msg("deferred recovery completed"); 1648 } 1649 1650 dbg_gen("re-mounted read-write"); 1651 c->vfs_sb->s_flags &= ~MS_RDONLY; 1652 c->remounting_rw = 0; 1653 c->always_chk_crc = 0; 1654 err = dbg_check_space_info(c); 1655 mutex_unlock(&c->umount_mutex); 1656 return err; 1657 1658 out: 1659 vfree(c->orph_buf); 1660 c->orph_buf = NULL; 1661 if (c->bgt) { 1662 kthread_stop(c->bgt); 1663 c->bgt = NULL; 1664 } 1665 free_wbufs(c); 1666 vfree(c->ileb_buf); 1667 c->ileb_buf = NULL; 1668 ubifs_lpt_free(c, 1); 1669 c->remounting_rw = 0; 1670 c->always_chk_crc = 0; 1671 mutex_unlock(&c->umount_mutex); 1672 return err; 1673 } 1674 1675 /** 1676 * ubifs_remount_ro - re-mount in read-only mode. 1677 * @c: UBIFS file-system description object 1678 * 1679 * We assume VFS has stopped writing. Possibly the background thread could be 1680 * running a commit, however kthread_stop will wait in that case. 1681 */ 1682 static void ubifs_remount_ro(struct ubifs_info *c) 1683 { 1684 int i, err; 1685 1686 ubifs_assert(!c->need_recovery); 1687 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 1688 1689 mutex_lock(&c->umount_mutex); 1690 if (c->bgt) { 1691 kthread_stop(c->bgt); 1692 c->bgt = NULL; 1693 } 1694 1695 dbg_save_space_info(c); 1696 1697 for (i = 0; i < c->jhead_cnt; i++) { 1698 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1699 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1700 } 1701 1702 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1703 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1704 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1705 err = ubifs_write_master(c); 1706 if (err) 1707 ubifs_ro_mode(c, err); 1708 1709 free_wbufs(c); 1710 vfree(c->orph_buf); 1711 c->orph_buf = NULL; 1712 vfree(c->ileb_buf); 1713 c->ileb_buf = NULL; 1714 ubifs_lpt_free(c, 1); 1715 err = dbg_check_space_info(c); 1716 if (err) 1717 ubifs_ro_mode(c, err); 1718 mutex_unlock(&c->umount_mutex); 1719 } 1720 1721 static void ubifs_put_super(struct super_block *sb) 1722 { 1723 int i; 1724 struct ubifs_info *c = sb->s_fs_info; 1725 1726 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1727 c->vi.vol_id); 1728 1729 lock_kernel(); 1730 1731 /* 1732 * The following asserts are only valid if there has not been a failure 1733 * of the media. For example, there will be dirty inodes if we failed 1734 * to write them back because of I/O errors. 1735 */ 1736 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1737 ubifs_assert(c->budg_idx_growth == 0); 1738 ubifs_assert(c->budg_dd_growth == 0); 1739 ubifs_assert(c->budg_data_growth == 0); 1740 1741 /* 1742 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1743 * and file system un-mount. Namely, it prevents the shrinker from 1744 * picking this superblock for shrinking - it will be just skipped if 1745 * the mutex is locked. 1746 */ 1747 mutex_lock(&c->umount_mutex); 1748 if (!(c->vfs_sb->s_flags & MS_RDONLY)) { 1749 /* 1750 * First of all kill the background thread to make sure it does 1751 * not interfere with un-mounting and freeing resources. 1752 */ 1753 if (c->bgt) { 1754 kthread_stop(c->bgt); 1755 c->bgt = NULL; 1756 } 1757 1758 /* Synchronize write-buffers */ 1759 if (c->jheads) 1760 for (i = 0; i < c->jhead_cnt; i++) 1761 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1762 1763 /* 1764 * On fatal errors c->ro_media is set to 1, in which case we do 1765 * not write the master node. 1766 */ 1767 if (!c->ro_media) { 1768 /* 1769 * We are being cleanly unmounted which means the 1770 * orphans were killed - indicate this in the master 1771 * node. Also save the reserved GC LEB number. 1772 */ 1773 int err; 1774 1775 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1776 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1777 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1778 err = ubifs_write_master(c); 1779 if (err) 1780 /* 1781 * Recovery will attempt to fix the master area 1782 * next mount, so we just print a message and 1783 * continue to unmount normally. 1784 */ 1785 ubifs_err("failed to write master node, " 1786 "error %d", err); 1787 } 1788 } 1789 1790 ubifs_umount(c); 1791 bdi_destroy(&c->bdi); 1792 ubi_close_volume(c->ubi); 1793 mutex_unlock(&c->umount_mutex); 1794 kfree(c); 1795 1796 unlock_kernel(); 1797 } 1798 1799 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1800 { 1801 int err; 1802 struct ubifs_info *c = sb->s_fs_info; 1803 1804 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1805 1806 err = ubifs_parse_options(c, data, 1); 1807 if (err) { 1808 ubifs_err("invalid or unknown remount parameter"); 1809 return err; 1810 } 1811 1812 lock_kernel(); 1813 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1814 if (c->ro_media) { 1815 ubifs_msg("cannot re-mount due to prior errors"); 1816 unlock_kernel(); 1817 return -EROFS; 1818 } 1819 err = ubifs_remount_rw(c); 1820 if (err) { 1821 unlock_kernel(); 1822 return err; 1823 } 1824 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 1825 if (c->ro_media) { 1826 ubifs_msg("cannot re-mount due to prior errors"); 1827 unlock_kernel(); 1828 return -EROFS; 1829 } 1830 ubifs_remount_ro(c); 1831 } 1832 1833 if (c->bulk_read == 1) 1834 bu_init(c); 1835 else { 1836 dbg_gen("disable bulk-read"); 1837 kfree(c->bu.buf); 1838 c->bu.buf = NULL; 1839 } 1840 1841 ubifs_assert(c->lst.taken_empty_lebs > 0); 1842 unlock_kernel(); 1843 return 0; 1844 } 1845 1846 const struct super_operations ubifs_super_operations = { 1847 .alloc_inode = ubifs_alloc_inode, 1848 .destroy_inode = ubifs_destroy_inode, 1849 .put_super = ubifs_put_super, 1850 .write_inode = ubifs_write_inode, 1851 .delete_inode = ubifs_delete_inode, 1852 .statfs = ubifs_statfs, 1853 .dirty_inode = ubifs_dirty_inode, 1854 .remount_fs = ubifs_remount_fs, 1855 .show_options = ubifs_show_options, 1856 .sync_fs = ubifs_sync_fs, 1857 }; 1858 1859 /** 1860 * open_ubi - parse UBI device name string and open the UBI device. 1861 * @name: UBI volume name 1862 * @mode: UBI volume open mode 1863 * 1864 * There are several ways to specify UBI volumes when mounting UBIFS: 1865 * o ubiX_Y - UBI device number X, volume Y; 1866 * o ubiY - UBI device number 0, volume Y; 1867 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1868 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1869 * 1870 * Alternative '!' separator may be used instead of ':' (because some shells 1871 * like busybox may interpret ':' as an NFS host name separator). This function 1872 * returns ubi volume object in case of success and a negative error code in 1873 * case of failure. 1874 */ 1875 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1876 { 1877 int dev, vol; 1878 char *endptr; 1879 1880 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1881 return ERR_PTR(-EINVAL); 1882 1883 /* ubi:NAME method */ 1884 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1885 return ubi_open_volume_nm(0, name + 4, mode); 1886 1887 if (!isdigit(name[3])) 1888 return ERR_PTR(-EINVAL); 1889 1890 dev = simple_strtoul(name + 3, &endptr, 0); 1891 1892 /* ubiY method */ 1893 if (*endptr == '\0') 1894 return ubi_open_volume(0, dev, mode); 1895 1896 /* ubiX_Y method */ 1897 if (*endptr == '_' && isdigit(endptr[1])) { 1898 vol = simple_strtoul(endptr + 1, &endptr, 0); 1899 if (*endptr != '\0') 1900 return ERR_PTR(-EINVAL); 1901 return ubi_open_volume(dev, vol, mode); 1902 } 1903 1904 /* ubiX:NAME method */ 1905 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1906 return ubi_open_volume_nm(dev, ++endptr, mode); 1907 1908 return ERR_PTR(-EINVAL); 1909 } 1910 1911 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1912 { 1913 struct ubi_volume_desc *ubi = sb->s_fs_info; 1914 struct ubifs_info *c; 1915 struct inode *root; 1916 int err; 1917 1918 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1919 if (!c) 1920 return -ENOMEM; 1921 1922 spin_lock_init(&c->cnt_lock); 1923 spin_lock_init(&c->cs_lock); 1924 spin_lock_init(&c->buds_lock); 1925 spin_lock_init(&c->space_lock); 1926 spin_lock_init(&c->orphan_lock); 1927 init_rwsem(&c->commit_sem); 1928 mutex_init(&c->lp_mutex); 1929 mutex_init(&c->tnc_mutex); 1930 mutex_init(&c->log_mutex); 1931 mutex_init(&c->mst_mutex); 1932 mutex_init(&c->umount_mutex); 1933 mutex_init(&c->bu_mutex); 1934 init_waitqueue_head(&c->cmt_wq); 1935 c->buds = RB_ROOT; 1936 c->old_idx = RB_ROOT; 1937 c->size_tree = RB_ROOT; 1938 c->orph_tree = RB_ROOT; 1939 INIT_LIST_HEAD(&c->infos_list); 1940 INIT_LIST_HEAD(&c->idx_gc); 1941 INIT_LIST_HEAD(&c->replay_list); 1942 INIT_LIST_HEAD(&c->replay_buds); 1943 INIT_LIST_HEAD(&c->uncat_list); 1944 INIT_LIST_HEAD(&c->empty_list); 1945 INIT_LIST_HEAD(&c->freeable_list); 1946 INIT_LIST_HEAD(&c->frdi_idx_list); 1947 INIT_LIST_HEAD(&c->unclean_leb_list); 1948 INIT_LIST_HEAD(&c->old_buds); 1949 INIT_LIST_HEAD(&c->orph_list); 1950 INIT_LIST_HEAD(&c->orph_new); 1951 1952 c->vfs_sb = sb; 1953 c->highest_inum = UBIFS_FIRST_INO; 1954 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1955 1956 ubi_get_volume_info(ubi, &c->vi); 1957 ubi_get_device_info(c->vi.ubi_num, &c->di); 1958 1959 /* Re-open the UBI device in read-write mode */ 1960 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1961 if (IS_ERR(c->ubi)) { 1962 err = PTR_ERR(c->ubi); 1963 goto out_free; 1964 } 1965 1966 /* 1967 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 1968 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1969 * which means the user would have to wait not just for their own I/O 1970 * but the read-ahead I/O as well i.e. completely pointless. 1971 * 1972 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1973 */ 1974 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1975 c->bdi.unplug_io_fn = default_unplug_io_fn; 1976 err = bdi_init(&c->bdi); 1977 if (err) 1978 goto out_close; 1979 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 1980 c->vi.ubi_num, c->vi.vol_id); 1981 if (err) 1982 goto out_bdi; 1983 1984 err = ubifs_parse_options(c, data, 0); 1985 if (err) 1986 goto out_bdi; 1987 1988 sb->s_fs_info = c; 1989 sb->s_magic = UBIFS_SUPER_MAGIC; 1990 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1991 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 1992 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 1993 if (c->max_inode_sz > MAX_LFS_FILESIZE) 1994 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 1995 sb->s_op = &ubifs_super_operations; 1996 1997 mutex_lock(&c->umount_mutex); 1998 err = mount_ubifs(c); 1999 if (err) { 2000 ubifs_assert(err < 0); 2001 goto out_unlock; 2002 } 2003 2004 /* Read the root inode */ 2005 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2006 if (IS_ERR(root)) { 2007 err = PTR_ERR(root); 2008 goto out_umount; 2009 } 2010 2011 sb->s_root = d_alloc_root(root); 2012 if (!sb->s_root) 2013 goto out_iput; 2014 2015 mutex_unlock(&c->umount_mutex); 2016 return 0; 2017 2018 out_iput: 2019 iput(root); 2020 out_umount: 2021 ubifs_umount(c); 2022 out_unlock: 2023 mutex_unlock(&c->umount_mutex); 2024 out_bdi: 2025 bdi_destroy(&c->bdi); 2026 out_close: 2027 ubi_close_volume(c->ubi); 2028 out_free: 2029 kfree(c); 2030 return err; 2031 } 2032 2033 static int sb_test(struct super_block *sb, void *data) 2034 { 2035 dev_t *dev = data; 2036 struct ubifs_info *c = sb->s_fs_info; 2037 2038 return c->vi.cdev == *dev; 2039 } 2040 2041 static int ubifs_get_sb(struct file_system_type *fs_type, int flags, 2042 const char *name, void *data, struct vfsmount *mnt) 2043 { 2044 struct ubi_volume_desc *ubi; 2045 struct ubi_volume_info vi; 2046 struct super_block *sb; 2047 int err; 2048 2049 dbg_gen("name %s, flags %#x", name, flags); 2050 2051 /* 2052 * Get UBI device number and volume ID. Mount it read-only so far 2053 * because this might be a new mount point, and UBI allows only one 2054 * read-write user at a time. 2055 */ 2056 ubi = open_ubi(name, UBI_READONLY); 2057 if (IS_ERR(ubi)) { 2058 ubifs_err("cannot open \"%s\", error %d", 2059 name, (int)PTR_ERR(ubi)); 2060 return PTR_ERR(ubi); 2061 } 2062 ubi_get_volume_info(ubi, &vi); 2063 2064 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 2065 2066 sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev); 2067 if (IS_ERR(sb)) { 2068 err = PTR_ERR(sb); 2069 goto out_close; 2070 } 2071 2072 if (sb->s_root) { 2073 /* A new mount point for already mounted UBIFS */ 2074 dbg_gen("this ubi volume is already mounted"); 2075 if ((flags ^ sb->s_flags) & MS_RDONLY) { 2076 err = -EBUSY; 2077 goto out_deact; 2078 } 2079 } else { 2080 sb->s_flags = flags; 2081 /* 2082 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 2083 * replaced by 'c'. 2084 */ 2085 sb->s_fs_info = ubi; 2086 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2087 if (err) 2088 goto out_deact; 2089 /* We do not support atime */ 2090 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2091 } 2092 2093 /* 'fill_super()' opens ubi again so we must close it here */ 2094 ubi_close_volume(ubi); 2095 2096 simple_set_mnt(mnt, sb); 2097 return 0; 2098 2099 out_deact: 2100 deactivate_locked_super(sb); 2101 out_close: 2102 ubi_close_volume(ubi); 2103 return err; 2104 } 2105 2106 static struct file_system_type ubifs_fs_type = { 2107 .name = "ubifs", 2108 .owner = THIS_MODULE, 2109 .get_sb = ubifs_get_sb, 2110 .kill_sb = kill_anon_super, 2111 }; 2112 2113 /* 2114 * Inode slab cache constructor. 2115 */ 2116 static void inode_slab_ctor(void *obj) 2117 { 2118 struct ubifs_inode *ui = obj; 2119 inode_init_once(&ui->vfs_inode); 2120 } 2121 2122 static int __init ubifs_init(void) 2123 { 2124 int err; 2125 2126 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2127 2128 /* Make sure node sizes are 8-byte aligned */ 2129 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2130 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2131 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2132 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2133 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2134 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2135 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2136 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2137 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2138 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2139 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2140 2141 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2142 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2143 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2144 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2145 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2146 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2147 2148 /* Check min. node size */ 2149 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2150 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2151 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2152 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2153 2154 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2155 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2156 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2157 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2158 2159 /* Defined node sizes */ 2160 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2161 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2162 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2163 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2164 2165 /* 2166 * We use 2 bit wide bit-fields to store compression type, which should 2167 * be amended if more compressors are added. The bit-fields are: 2168 * @compr_type in 'struct ubifs_inode', @default_compr in 2169 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2170 */ 2171 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2172 2173 /* 2174 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2175 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2176 */ 2177 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2178 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 2179 " at least 4096 bytes", 2180 (unsigned int)PAGE_CACHE_SIZE); 2181 return -EINVAL; 2182 } 2183 2184 err = register_filesystem(&ubifs_fs_type); 2185 if (err) { 2186 ubifs_err("cannot register file system, error %d", err); 2187 return err; 2188 } 2189 2190 err = -ENOMEM; 2191 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2192 sizeof(struct ubifs_inode), 0, 2193 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2194 &inode_slab_ctor); 2195 if (!ubifs_inode_slab) 2196 goto out_reg; 2197 2198 register_shrinker(&ubifs_shrinker_info); 2199 2200 err = ubifs_compressors_init(); 2201 if (err) 2202 goto out_shrinker; 2203 2204 err = dbg_debugfs_init(); 2205 if (err) 2206 goto out_compr; 2207 2208 return 0; 2209 2210 out_compr: 2211 ubifs_compressors_exit(); 2212 out_shrinker: 2213 unregister_shrinker(&ubifs_shrinker_info); 2214 kmem_cache_destroy(ubifs_inode_slab); 2215 out_reg: 2216 unregister_filesystem(&ubifs_fs_type); 2217 return err; 2218 } 2219 /* late_initcall to let compressors initialize first */ 2220 late_initcall(ubifs_init); 2221 2222 static void __exit ubifs_exit(void) 2223 { 2224 ubifs_assert(list_empty(&ubifs_infos)); 2225 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2226 2227 dbg_debugfs_exit(); 2228 ubifs_compressors_exit(); 2229 unregister_shrinker(&ubifs_shrinker_info); 2230 kmem_cache_destroy(ubifs_inode_slab); 2231 unregister_filesystem(&ubifs_fs_type); 2232 } 2233 module_exit(ubifs_exit); 2234 2235 MODULE_LICENSE("GPL"); 2236 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2237 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2238 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2239