xref: /linux/fs/ubifs/super.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include <linux/smp_lock.h>
40 #include "ubifs.h"
41 
42 /*
43  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
44  * allocating too much.
45  */
46 #define UBIFS_KMALLOC_OK (128*1024)
47 
48 /* Slab cache for UBIFS inodes */
49 struct kmem_cache *ubifs_inode_slab;
50 
51 /* UBIFS TNC shrinker description */
52 static struct shrinker ubifs_shrinker_info = {
53 	.shrink = ubifs_shrinker,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err("inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err("unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
90 		return 5;
91 
92 	if (!ubifs_compr_present(ui->compr_type)) {
93 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
94 			   "compiled in", inode->i_ino,
95 			   ubifs_compr_name(ui->compr_type));
96 	}
97 
98 	err = dbg_check_dir_size(c, inode);
99 	return err;
100 }
101 
102 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
103 {
104 	int err;
105 	union ubifs_key key;
106 	struct ubifs_ino_node *ino;
107 	struct ubifs_info *c = sb->s_fs_info;
108 	struct inode *inode;
109 	struct ubifs_inode *ui;
110 
111 	dbg_gen("inode %lu", inum);
112 
113 	inode = iget_locked(sb, inum);
114 	if (!inode)
115 		return ERR_PTR(-ENOMEM);
116 	if (!(inode->i_state & I_NEW))
117 		return inode;
118 	ui = ubifs_inode(inode);
119 
120 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
121 	if (!ino) {
122 		err = -ENOMEM;
123 		goto out;
124 	}
125 
126 	ino_key_init(c, &key, inode->i_ino);
127 
128 	err = ubifs_tnc_lookup(c, &key, ino);
129 	if (err)
130 		goto out_ino;
131 
132 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
133 	inode->i_nlink = le32_to_cpu(ino->nlink);
134 	inode->i_uid   = le32_to_cpu(ino->uid);
135 	inode->i_gid   = le32_to_cpu(ino->gid);
136 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
137 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
138 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
139 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
140 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
141 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
142 	inode->i_mode = le32_to_cpu(ino->mode);
143 	inode->i_size = le64_to_cpu(ino->size);
144 
145 	ui->data_len    = le32_to_cpu(ino->data_len);
146 	ui->flags       = le32_to_cpu(ino->flags);
147 	ui->compr_type  = le16_to_cpu(ino->compr_type);
148 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
149 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
150 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
151 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
152 	ui->synced_i_size = ui->ui_size = inode->i_size;
153 
154 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
155 
156 	err = validate_inode(c, inode);
157 	if (err)
158 		goto out_invalid;
159 
160 	/* Disable read-ahead */
161 	inode->i_mapping->backing_dev_info = &c->bdi;
162 
163 	switch (inode->i_mode & S_IFMT) {
164 	case S_IFREG:
165 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
166 		inode->i_op = &ubifs_file_inode_operations;
167 		inode->i_fop = &ubifs_file_operations;
168 		if (ui->xattr) {
169 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
170 			if (!ui->data) {
171 				err = -ENOMEM;
172 				goto out_ino;
173 			}
174 			memcpy(ui->data, ino->data, ui->data_len);
175 			((char *)ui->data)[ui->data_len] = '\0';
176 		} else if (ui->data_len != 0) {
177 			err = 10;
178 			goto out_invalid;
179 		}
180 		break;
181 	case S_IFDIR:
182 		inode->i_op  = &ubifs_dir_inode_operations;
183 		inode->i_fop = &ubifs_dir_operations;
184 		if (ui->data_len != 0) {
185 			err = 11;
186 			goto out_invalid;
187 		}
188 		break;
189 	case S_IFLNK:
190 		inode->i_op = &ubifs_symlink_inode_operations;
191 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
192 			err = 12;
193 			goto out_invalid;
194 		}
195 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
196 		if (!ui->data) {
197 			err = -ENOMEM;
198 			goto out_ino;
199 		}
200 		memcpy(ui->data, ino->data, ui->data_len);
201 		((char *)ui->data)[ui->data_len] = '\0';
202 		break;
203 	case S_IFBLK:
204 	case S_IFCHR:
205 	{
206 		dev_t rdev;
207 		union ubifs_dev_desc *dev;
208 
209 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
210 		if (!ui->data) {
211 			err = -ENOMEM;
212 			goto out_ino;
213 		}
214 
215 		dev = (union ubifs_dev_desc *)ino->data;
216 		if (ui->data_len == sizeof(dev->new))
217 			rdev = new_decode_dev(le32_to_cpu(dev->new));
218 		else if (ui->data_len == sizeof(dev->huge))
219 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
220 		else {
221 			err = 13;
222 			goto out_invalid;
223 		}
224 		memcpy(ui->data, ino->data, ui->data_len);
225 		inode->i_op = &ubifs_file_inode_operations;
226 		init_special_inode(inode, inode->i_mode, rdev);
227 		break;
228 	}
229 	case S_IFSOCK:
230 	case S_IFIFO:
231 		inode->i_op = &ubifs_file_inode_operations;
232 		init_special_inode(inode, inode->i_mode, 0);
233 		if (ui->data_len != 0) {
234 			err = 14;
235 			goto out_invalid;
236 		}
237 		break;
238 	default:
239 		err = 15;
240 		goto out_invalid;
241 	}
242 
243 	kfree(ino);
244 	ubifs_set_inode_flags(inode);
245 	unlock_new_inode(inode);
246 	return inode;
247 
248 out_invalid:
249 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
250 	dbg_dump_node(c, ino);
251 	dbg_dump_inode(c, inode);
252 	err = -EINVAL;
253 out_ino:
254 	kfree(ino);
255 out:
256 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
257 	iget_failed(inode);
258 	return ERR_PTR(err);
259 }
260 
261 static struct inode *ubifs_alloc_inode(struct super_block *sb)
262 {
263 	struct ubifs_inode *ui;
264 
265 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
266 	if (!ui)
267 		return NULL;
268 
269 	memset((void *)ui + sizeof(struct inode), 0,
270 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
271 	mutex_init(&ui->ui_mutex);
272 	spin_lock_init(&ui->ui_lock);
273 	return &ui->vfs_inode;
274 };
275 
276 static void ubifs_destroy_inode(struct inode *inode)
277 {
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 
280 	kfree(ui->data);
281 	kmem_cache_free(ubifs_inode_slab, inode);
282 }
283 
284 /*
285  * Note, Linux write-back code calls this without 'i_mutex'.
286  */
287 static int ubifs_write_inode(struct inode *inode, int wait)
288 {
289 	int err = 0;
290 	struct ubifs_info *c = inode->i_sb->s_fs_info;
291 	struct ubifs_inode *ui = ubifs_inode(inode);
292 
293 	ubifs_assert(!ui->xattr);
294 	if (is_bad_inode(inode))
295 		return 0;
296 
297 	mutex_lock(&ui->ui_mutex);
298 	/*
299 	 * Due to races between write-back forced by budgeting
300 	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
301 	 * have already been synchronized, do not do this again. This might
302 	 * also happen if it was synchronized in an VFS operation, e.g.
303 	 * 'ubifs_link()'.
304 	 */
305 	if (!ui->dirty) {
306 		mutex_unlock(&ui->ui_mutex);
307 		return 0;
308 	}
309 
310 	/*
311 	 * As an optimization, do not write orphan inodes to the media just
312 	 * because this is not needed.
313 	 */
314 	dbg_gen("inode %lu, mode %#x, nlink %u",
315 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
316 	if (inode->i_nlink) {
317 		err = ubifs_jnl_write_inode(c, inode);
318 		if (err)
319 			ubifs_err("can't write inode %lu, error %d",
320 				  inode->i_ino, err);
321 	}
322 
323 	ui->dirty = 0;
324 	mutex_unlock(&ui->ui_mutex);
325 	ubifs_release_dirty_inode_budget(c, ui);
326 	return err;
327 }
328 
329 static void ubifs_delete_inode(struct inode *inode)
330 {
331 	int err;
332 	struct ubifs_info *c = inode->i_sb->s_fs_info;
333 	struct ubifs_inode *ui = ubifs_inode(inode);
334 
335 	if (ui->xattr)
336 		/*
337 		 * Extended attribute inode deletions are fully handled in
338 		 * 'ubifs_removexattr()'. These inodes are special and have
339 		 * limited usage, so there is nothing to do here.
340 		 */
341 		goto out;
342 
343 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
344 	ubifs_assert(!atomic_read(&inode->i_count));
345 	ubifs_assert(inode->i_nlink == 0);
346 
347 	truncate_inode_pages(&inode->i_data, 0);
348 	if (is_bad_inode(inode))
349 		goto out;
350 
351 	ui->ui_size = inode->i_size = 0;
352 	err = ubifs_jnl_delete_inode(c, inode);
353 	if (err)
354 		/*
355 		 * Worst case we have a lost orphan inode wasting space, so a
356 		 * simple error message is OK here.
357 		 */
358 		ubifs_err("can't delete inode %lu, error %d",
359 			  inode->i_ino, err);
360 
361 out:
362 	if (ui->dirty)
363 		ubifs_release_dirty_inode_budget(c, ui);
364 	else {
365 		/* We've deleted something - clean the "no space" flags */
366 		c->nospace = c->nospace_rp = 0;
367 		smp_wmb();
368 	}
369 	clear_inode(inode);
370 }
371 
372 static void ubifs_dirty_inode(struct inode *inode)
373 {
374 	struct ubifs_inode *ui = ubifs_inode(inode);
375 
376 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
377 	if (!ui->dirty) {
378 		ui->dirty = 1;
379 		dbg_gen("inode %lu",  inode->i_ino);
380 	}
381 }
382 
383 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
384 {
385 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
386 	unsigned long long free;
387 	__le32 *uuid = (__le32 *)c->uuid;
388 
389 	free = ubifs_get_free_space(c);
390 	dbg_gen("free space %lld bytes (%lld blocks)",
391 		free, free >> UBIFS_BLOCK_SHIFT);
392 
393 	buf->f_type = UBIFS_SUPER_MAGIC;
394 	buf->f_bsize = UBIFS_BLOCK_SIZE;
395 	buf->f_blocks = c->block_cnt;
396 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
397 	if (free > c->report_rp_size)
398 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
399 	else
400 		buf->f_bavail = 0;
401 	buf->f_files = 0;
402 	buf->f_ffree = 0;
403 	buf->f_namelen = UBIFS_MAX_NLEN;
404 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
405 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
406 	ubifs_assert(buf->f_bfree <= c->block_cnt);
407 	return 0;
408 }
409 
410 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
411 {
412 	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
413 
414 	if (c->mount_opts.unmount_mode == 2)
415 		seq_printf(s, ",fast_unmount");
416 	else if (c->mount_opts.unmount_mode == 1)
417 		seq_printf(s, ",norm_unmount");
418 
419 	if (c->mount_opts.bulk_read == 2)
420 		seq_printf(s, ",bulk_read");
421 	else if (c->mount_opts.bulk_read == 1)
422 		seq_printf(s, ",no_bulk_read");
423 
424 	if (c->mount_opts.chk_data_crc == 2)
425 		seq_printf(s, ",chk_data_crc");
426 	else if (c->mount_opts.chk_data_crc == 1)
427 		seq_printf(s, ",no_chk_data_crc");
428 
429 	if (c->mount_opts.override_compr) {
430 		seq_printf(s, ",compr=%s",
431 			   ubifs_compr_name(c->mount_opts.compr_type));
432 	}
433 
434 	return 0;
435 }
436 
437 static int ubifs_sync_fs(struct super_block *sb, int wait)
438 {
439 	int i, err;
440 	struct ubifs_info *c = sb->s_fs_info;
441 	struct writeback_control wbc = {
442 		.sync_mode   = WB_SYNC_ALL,
443 		.range_start = 0,
444 		.range_end   = LLONG_MAX,
445 		.nr_to_write = LONG_MAX,
446 	};
447 
448 	/*
449 	 * Zero @wait is just an advisory thing to help the file system shove
450 	 * lots of data into the queues, and there will be the second
451 	 * '->sync_fs()' call, with non-zero @wait.
452 	 */
453 	if (!wait)
454 		return 0;
455 
456 	/*
457 	 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
458 	 * pages, so synchronize them first, then commit the journal. Strictly
459 	 * speaking, it is not necessary to commit the journal here,
460 	 * synchronizing write-buffers would be enough. But committing makes
461 	 * UBIFS free space predictions much more accurate, so we want to let
462 	 * the user be able to get more accurate results of 'statfs()' after
463 	 * they synchronize the file system.
464 	 */
465 	generic_sync_sb_inodes(sb, &wbc);
466 
467 	/*
468 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 	 * do this if it waits for an already running commit.
470 	 */
471 	for (i = 0; i < c->jhead_cnt; i++) {
472 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
473 		if (err)
474 			return err;
475 	}
476 
477 	err = ubifs_run_commit(c);
478 	if (err)
479 		return err;
480 
481 	return ubi_sync(c->vi.ubi_num);
482 }
483 
484 /**
485  * init_constants_early - initialize UBIFS constants.
486  * @c: UBIFS file-system description object
487  *
488  * This function initialize UBIFS constants which do not need the superblock to
489  * be read. It also checks that the UBI volume satisfies basic UBIFS
490  * requirements. Returns zero in case of success and a negative error code in
491  * case of failure.
492  */
493 static int init_constants_early(struct ubifs_info *c)
494 {
495 	if (c->vi.corrupted) {
496 		ubifs_warn("UBI volume is corrupted - read-only mode");
497 		c->ro_media = 1;
498 	}
499 
500 	if (c->di.ro_mode) {
501 		ubifs_msg("read-only UBI device");
502 		c->ro_media = 1;
503 	}
504 
505 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
506 		ubifs_msg("static UBI volume - read-only mode");
507 		c->ro_media = 1;
508 	}
509 
510 	c->leb_cnt = c->vi.size;
511 	c->leb_size = c->vi.usable_leb_size;
512 	c->half_leb_size = c->leb_size / 2;
513 	c->min_io_size = c->di.min_io_size;
514 	c->min_io_shift = fls(c->min_io_size) - 1;
515 
516 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
517 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
518 			  c->leb_size, UBIFS_MIN_LEB_SZ);
519 		return -EINVAL;
520 	}
521 
522 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
523 		ubifs_err("too few LEBs (%d), min. is %d",
524 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
525 		return -EINVAL;
526 	}
527 
528 	if (!is_power_of_2(c->min_io_size)) {
529 		ubifs_err("bad min. I/O size %d", c->min_io_size);
530 		return -EINVAL;
531 	}
532 
533 	/*
534 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
535 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
536 	 * less than 8.
537 	 */
538 	if (c->min_io_size < 8) {
539 		c->min_io_size = 8;
540 		c->min_io_shift = 3;
541 	}
542 
543 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
544 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
545 
546 	/*
547 	 * Initialize node length ranges which are mostly needed for node
548 	 * length validation.
549 	 */
550 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
551 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
552 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
553 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
554 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
555 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
556 
557 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
558 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
559 	c->ranges[UBIFS_ORPH_NODE].min_len =
560 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
561 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
562 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
563 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
564 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
565 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
566 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
567 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
568 	/*
569 	 * Minimum indexing node size is amended later when superblock is
570 	 * read and the key length is known.
571 	 */
572 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
573 	/*
574 	 * Maximum indexing node size is amended later when superblock is
575 	 * read and the fanout is known.
576 	 */
577 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
578 
579 	/*
580 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
581 	 * about these values.
582 	 */
583 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
584 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
585 
586 	/*
587 	 * Calculate how many bytes would be wasted at the end of LEB if it was
588 	 * fully filled with data nodes of maximum size. This is used in
589 	 * calculations when reporting free space.
590 	 */
591 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
592 
593 	/* Buffer size for bulk-reads */
594 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
595 	if (c->max_bu_buf_len > c->leb_size)
596 		c->max_bu_buf_len = c->leb_size;
597 	return 0;
598 }
599 
600 /**
601  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
602  * @c: UBIFS file-system description object
603  * @lnum: LEB the write-buffer was synchronized to
604  * @free: how many free bytes left in this LEB
605  * @pad: how many bytes were padded
606  *
607  * This is a callback function which is called by the I/O unit when the
608  * write-buffer is synchronized. We need this to correctly maintain space
609  * accounting in bud logical eraseblocks. This function returns zero in case of
610  * success and a negative error code in case of failure.
611  *
612  * This function actually belongs to the journal, but we keep it here because
613  * we want to keep it static.
614  */
615 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
616 {
617 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
618 }
619 
620 /*
621  * init_constants_sb - initialize UBIFS constants.
622  * @c: UBIFS file-system description object
623  *
624  * This is a helper function which initializes various UBIFS constants after
625  * the superblock has been read. It also checks various UBIFS parameters and
626  * makes sure they are all right. Returns zero in case of success and a
627  * negative error code in case of failure.
628  */
629 static int init_constants_sb(struct ubifs_info *c)
630 {
631 	int tmp, err;
632 	long long tmp64;
633 
634 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
635 	c->max_znode_sz = sizeof(struct ubifs_znode) +
636 				c->fanout * sizeof(struct ubifs_zbranch);
637 
638 	tmp = ubifs_idx_node_sz(c, 1);
639 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
640 	c->min_idx_node_sz = ALIGN(tmp, 8);
641 
642 	tmp = ubifs_idx_node_sz(c, c->fanout);
643 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
644 	c->max_idx_node_sz = ALIGN(tmp, 8);
645 
646 	/* Make sure LEB size is large enough to fit full commit */
647 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
648 	tmp = ALIGN(tmp, c->min_io_size);
649 	if (tmp > c->leb_size) {
650 		dbg_err("too small LEB size %d, at least %d needed",
651 			c->leb_size, tmp);
652 		return -EINVAL;
653 	}
654 
655 	/*
656 	 * Make sure that the log is large enough to fit reference nodes for
657 	 * all buds plus one reserved LEB.
658 	 */
659 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
660 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
661 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
662 	tmp /= c->leb_size;
663 	tmp += 1;
664 	if (c->log_lebs < tmp) {
665 		dbg_err("too small log %d LEBs, required min. %d LEBs",
666 			c->log_lebs, tmp);
667 		return -EINVAL;
668 	}
669 
670 	/*
671 	 * When budgeting we assume worst-case scenarios when the pages are not
672 	 * be compressed and direntries are of the maximum size.
673 	 *
674 	 * Note, data, which may be stored in inodes is budgeted separately, so
675 	 * it is not included into 'c->inode_budget'.
676 	 */
677 	c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
678 	c->inode_budget = UBIFS_INO_NODE_SZ;
679 	c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
680 
681 	/*
682 	 * When the amount of flash space used by buds becomes
683 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
684 	 * The writers are unblocked when the commit is finished. To avoid
685 	 * writers to be blocked UBIFS initiates background commit in advance,
686 	 * when number of bud bytes becomes above the limit defined below.
687 	 */
688 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
689 
690 	/*
691 	 * Ensure minimum journal size. All the bytes in the journal heads are
692 	 * considered to be used, when calculating the current journal usage.
693 	 * Consequently, if the journal is too small, UBIFS will treat it as
694 	 * always full.
695 	 */
696 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
697 	if (c->bg_bud_bytes < tmp64)
698 		c->bg_bud_bytes = tmp64;
699 	if (c->max_bud_bytes < tmp64 + c->leb_size)
700 		c->max_bud_bytes = tmp64 + c->leb_size;
701 
702 	err = ubifs_calc_lpt_geom(c);
703 	if (err)
704 		return err;
705 
706 	/* Initialize effective LEB size used in budgeting calculations */
707 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
708 	return 0;
709 }
710 
711 /*
712  * init_constants_master - initialize UBIFS constants.
713  * @c: UBIFS file-system description object
714  *
715  * This is a helper function which initializes various UBIFS constants after
716  * the master node has been read. It also checks various UBIFS parameters and
717  * makes sure they are all right.
718  */
719 static void init_constants_master(struct ubifs_info *c)
720 {
721 	long long tmp64;
722 
723 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
724 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
725 
726 	/*
727 	 * Calculate total amount of FS blocks. This number is not used
728 	 * internally because it does not make much sense for UBIFS, but it is
729 	 * necessary to report something for the 'statfs()' call.
730 	 *
731 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
732 	 * deletions, minimum LEBs for the index, and assume only one journal
733 	 * head is available.
734 	 */
735 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
736 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
737 	tmp64 = ubifs_reported_space(c, tmp64);
738 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
739 }
740 
741 /**
742  * take_gc_lnum - reserve GC LEB.
743  * @c: UBIFS file-system description object
744  *
745  * This function ensures that the LEB reserved for garbage collection is marked
746  * as "taken" in lprops. We also have to set free space to LEB size and dirty
747  * space to zero, because lprops may contain out-of-date information if the
748  * file-system was un-mounted before it has been committed. This function
749  * returns zero in case of success and a negative error code in case of
750  * failure.
751  */
752 static int take_gc_lnum(struct ubifs_info *c)
753 {
754 	int err;
755 
756 	if (c->gc_lnum == -1) {
757 		ubifs_err("no LEB for GC");
758 		return -EINVAL;
759 	}
760 
761 	/* And we have to tell lprops that this LEB is taken */
762 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
763 				  LPROPS_TAKEN, 0, 0);
764 	return err;
765 }
766 
767 /**
768  * alloc_wbufs - allocate write-buffers.
769  * @c: UBIFS file-system description object
770  *
771  * This helper function allocates and initializes UBIFS write-buffers. Returns
772  * zero in case of success and %-ENOMEM in case of failure.
773  */
774 static int alloc_wbufs(struct ubifs_info *c)
775 {
776 	int i, err;
777 
778 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
779 			   GFP_KERNEL);
780 	if (!c->jheads)
781 		return -ENOMEM;
782 
783 	/* Initialize journal heads */
784 	for (i = 0; i < c->jhead_cnt; i++) {
785 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
786 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
787 		if (err)
788 			return err;
789 
790 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
791 		c->jheads[i].wbuf.jhead = i;
792 	}
793 
794 	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
795 	/*
796 	 * Garbage Collector head likely contains long-term data and
797 	 * does not need to be synchronized by timer.
798 	 */
799 	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
800 	c->jheads[GCHD].wbuf.no_timer = 1;
801 
802 	return 0;
803 }
804 
805 /**
806  * free_wbufs - free write-buffers.
807  * @c: UBIFS file-system description object
808  */
809 static void free_wbufs(struct ubifs_info *c)
810 {
811 	int i;
812 
813 	if (c->jheads) {
814 		for (i = 0; i < c->jhead_cnt; i++) {
815 			kfree(c->jheads[i].wbuf.buf);
816 			kfree(c->jheads[i].wbuf.inodes);
817 		}
818 		kfree(c->jheads);
819 		c->jheads = NULL;
820 	}
821 }
822 
823 /**
824  * free_orphans - free orphans.
825  * @c: UBIFS file-system description object
826  */
827 static void free_orphans(struct ubifs_info *c)
828 {
829 	struct ubifs_orphan *orph;
830 
831 	while (c->orph_dnext) {
832 		orph = c->orph_dnext;
833 		c->orph_dnext = orph->dnext;
834 		list_del(&orph->list);
835 		kfree(orph);
836 	}
837 
838 	while (!list_empty(&c->orph_list)) {
839 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
840 		list_del(&orph->list);
841 		kfree(orph);
842 		dbg_err("orphan list not empty at unmount");
843 	}
844 
845 	vfree(c->orph_buf);
846 	c->orph_buf = NULL;
847 }
848 
849 /**
850  * free_buds - free per-bud objects.
851  * @c: UBIFS file-system description object
852  */
853 static void free_buds(struct ubifs_info *c)
854 {
855 	struct rb_node *this = c->buds.rb_node;
856 	struct ubifs_bud *bud;
857 
858 	while (this) {
859 		if (this->rb_left)
860 			this = this->rb_left;
861 		else if (this->rb_right)
862 			this = this->rb_right;
863 		else {
864 			bud = rb_entry(this, struct ubifs_bud, rb);
865 			this = rb_parent(this);
866 			if (this) {
867 				if (this->rb_left == &bud->rb)
868 					this->rb_left = NULL;
869 				else
870 					this->rb_right = NULL;
871 			}
872 			kfree(bud);
873 		}
874 	}
875 }
876 
877 /**
878  * check_volume_empty - check if the UBI volume is empty.
879  * @c: UBIFS file-system description object
880  *
881  * This function checks if the UBIFS volume is empty by looking if its LEBs are
882  * mapped or not. The result of checking is stored in the @c->empty variable.
883  * Returns zero in case of success and a negative error code in case of
884  * failure.
885  */
886 static int check_volume_empty(struct ubifs_info *c)
887 {
888 	int lnum, err;
889 
890 	c->empty = 1;
891 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
892 		err = ubi_is_mapped(c->ubi, lnum);
893 		if (unlikely(err < 0))
894 			return err;
895 		if (err == 1) {
896 			c->empty = 0;
897 			break;
898 		}
899 
900 		cond_resched();
901 	}
902 
903 	return 0;
904 }
905 
906 /*
907  * UBIFS mount options.
908  *
909  * Opt_fast_unmount: do not run a journal commit before un-mounting
910  * Opt_norm_unmount: run a journal commit before un-mounting
911  * Opt_bulk_read: enable bulk-reads
912  * Opt_no_bulk_read: disable bulk-reads
913  * Opt_chk_data_crc: check CRCs when reading data nodes
914  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
915  * Opt_override_compr: override default compressor
916  * Opt_err: just end of array marker
917  */
918 enum {
919 	Opt_fast_unmount,
920 	Opt_norm_unmount,
921 	Opt_bulk_read,
922 	Opt_no_bulk_read,
923 	Opt_chk_data_crc,
924 	Opt_no_chk_data_crc,
925 	Opt_override_compr,
926 	Opt_err,
927 };
928 
929 static const match_table_t tokens = {
930 	{Opt_fast_unmount, "fast_unmount"},
931 	{Opt_norm_unmount, "norm_unmount"},
932 	{Opt_bulk_read, "bulk_read"},
933 	{Opt_no_bulk_read, "no_bulk_read"},
934 	{Opt_chk_data_crc, "chk_data_crc"},
935 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
936 	{Opt_override_compr, "compr=%s"},
937 	{Opt_err, NULL},
938 };
939 
940 /**
941  * parse_standard_option - parse a standard mount option.
942  * @option: the option to parse
943  *
944  * Normally, standard mount options like "sync" are passed to file-systems as
945  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
946  * be present in the options string. This function tries to deal with this
947  * situation and parse standard options. Returns 0 if the option was not
948  * recognized, and the corresponding integer flag if it was.
949  *
950  * UBIFS is only interested in the "sync" option, so do not check for anything
951  * else.
952  */
953 static int parse_standard_option(const char *option)
954 {
955 	ubifs_msg("parse %s", option);
956 	if (!strcmp(option, "sync"))
957 		return MS_SYNCHRONOUS;
958 	return 0;
959 }
960 
961 /**
962  * ubifs_parse_options - parse mount parameters.
963  * @c: UBIFS file-system description object
964  * @options: parameters to parse
965  * @is_remount: non-zero if this is FS re-mount
966  *
967  * This function parses UBIFS mount options and returns zero in case success
968  * and a negative error code in case of failure.
969  */
970 static int ubifs_parse_options(struct ubifs_info *c, char *options,
971 			       int is_remount)
972 {
973 	char *p;
974 	substring_t args[MAX_OPT_ARGS];
975 
976 	if (!options)
977 		return 0;
978 
979 	while ((p = strsep(&options, ","))) {
980 		int token;
981 
982 		if (!*p)
983 			continue;
984 
985 		token = match_token(p, tokens, args);
986 		switch (token) {
987 		/*
988 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
989 		 * We accept them in order to be backward-compatible. But this
990 		 * should be removed at some point.
991 		 */
992 		case Opt_fast_unmount:
993 			c->mount_opts.unmount_mode = 2;
994 			break;
995 		case Opt_norm_unmount:
996 			c->mount_opts.unmount_mode = 1;
997 			break;
998 		case Opt_bulk_read:
999 			c->mount_opts.bulk_read = 2;
1000 			c->bulk_read = 1;
1001 			break;
1002 		case Opt_no_bulk_read:
1003 			c->mount_opts.bulk_read = 1;
1004 			c->bulk_read = 0;
1005 			break;
1006 		case Opt_chk_data_crc:
1007 			c->mount_opts.chk_data_crc = 2;
1008 			c->no_chk_data_crc = 0;
1009 			break;
1010 		case Opt_no_chk_data_crc:
1011 			c->mount_opts.chk_data_crc = 1;
1012 			c->no_chk_data_crc = 1;
1013 			break;
1014 		case Opt_override_compr:
1015 		{
1016 			char *name = match_strdup(&args[0]);
1017 
1018 			if (!name)
1019 				return -ENOMEM;
1020 			if (!strcmp(name, "none"))
1021 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1022 			else if (!strcmp(name, "lzo"))
1023 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1024 			else if (!strcmp(name, "zlib"))
1025 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1026 			else {
1027 				ubifs_err("unknown compressor \"%s\"", name);
1028 				kfree(name);
1029 				return -EINVAL;
1030 			}
1031 			kfree(name);
1032 			c->mount_opts.override_compr = 1;
1033 			c->default_compr = c->mount_opts.compr_type;
1034 			break;
1035 		}
1036 		default:
1037 		{
1038 			unsigned long flag;
1039 			struct super_block *sb = c->vfs_sb;
1040 
1041 			flag = parse_standard_option(p);
1042 			if (!flag) {
1043 				ubifs_err("unrecognized mount option \"%s\" "
1044 					  "or missing value", p);
1045 				return -EINVAL;
1046 			}
1047 			sb->s_flags |= flag;
1048 			break;
1049 		}
1050 		}
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 /**
1057  * destroy_journal - destroy journal data structures.
1058  * @c: UBIFS file-system description object
1059  *
1060  * This function destroys journal data structures including those that may have
1061  * been created by recovery functions.
1062  */
1063 static void destroy_journal(struct ubifs_info *c)
1064 {
1065 	while (!list_empty(&c->unclean_leb_list)) {
1066 		struct ubifs_unclean_leb *ucleb;
1067 
1068 		ucleb = list_entry(c->unclean_leb_list.next,
1069 				   struct ubifs_unclean_leb, list);
1070 		list_del(&ucleb->list);
1071 		kfree(ucleb);
1072 	}
1073 	while (!list_empty(&c->old_buds)) {
1074 		struct ubifs_bud *bud;
1075 
1076 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1077 		list_del(&bud->list);
1078 		kfree(bud);
1079 	}
1080 	ubifs_destroy_idx_gc(c);
1081 	ubifs_destroy_size_tree(c);
1082 	ubifs_tnc_close(c);
1083 	free_buds(c);
1084 }
1085 
1086 /**
1087  * bu_init - initialize bulk-read information.
1088  * @c: UBIFS file-system description object
1089  */
1090 static void bu_init(struct ubifs_info *c)
1091 {
1092 	ubifs_assert(c->bulk_read == 1);
1093 
1094 	if (c->bu.buf)
1095 		return; /* Already initialized */
1096 
1097 again:
1098 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1099 	if (!c->bu.buf) {
1100 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1101 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1102 			goto again;
1103 		}
1104 
1105 		/* Just disable bulk-read */
1106 		ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1107 			   "disabling it", c->max_bu_buf_len);
1108 		c->mount_opts.bulk_read = 1;
1109 		c->bulk_read = 0;
1110 		return;
1111 	}
1112 }
1113 
1114 /**
1115  * check_free_space - check if there is enough free space to mount.
1116  * @c: UBIFS file-system description object
1117  *
1118  * This function makes sure UBIFS has enough free space to be mounted in
1119  * read/write mode. UBIFS must always have some free space to allow deletions.
1120  */
1121 static int check_free_space(struct ubifs_info *c)
1122 {
1123 	ubifs_assert(c->dark_wm > 0);
1124 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1125 		ubifs_err("insufficient free space to mount in read/write mode");
1126 		dbg_dump_budg(c);
1127 		dbg_dump_lprops(c);
1128 		return -ENOSPC;
1129 	}
1130 	return 0;
1131 }
1132 
1133 /**
1134  * mount_ubifs - mount UBIFS file-system.
1135  * @c: UBIFS file-system description object
1136  *
1137  * This function mounts UBIFS file system. Returns zero in case of success and
1138  * a negative error code in case of failure.
1139  *
1140  * Note, the function does not de-allocate resources it it fails half way
1141  * through, and the caller has to do this instead.
1142  */
1143 static int mount_ubifs(struct ubifs_info *c)
1144 {
1145 	struct super_block *sb = c->vfs_sb;
1146 	int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1147 	long long x;
1148 	size_t sz;
1149 
1150 	err = init_constants_early(c);
1151 	if (err)
1152 		return err;
1153 
1154 	err = ubifs_debugging_init(c);
1155 	if (err)
1156 		return err;
1157 
1158 	err = check_volume_empty(c);
1159 	if (err)
1160 		goto out_free;
1161 
1162 	if (c->empty && (mounted_read_only || c->ro_media)) {
1163 		/*
1164 		 * This UBI volume is empty, and read-only, or the file system
1165 		 * is mounted read-only - we cannot format it.
1166 		 */
1167 		ubifs_err("can't format empty UBI volume: read-only %s",
1168 			  c->ro_media ? "UBI volume" : "mount");
1169 		err = -EROFS;
1170 		goto out_free;
1171 	}
1172 
1173 	if (c->ro_media && !mounted_read_only) {
1174 		ubifs_err("cannot mount read-write - read-only media");
1175 		err = -EROFS;
1176 		goto out_free;
1177 	}
1178 
1179 	/*
1180 	 * The requirement for the buffer is that it should fit indexing B-tree
1181 	 * height amount of integers. We assume the height if the TNC tree will
1182 	 * never exceed 64.
1183 	 */
1184 	err = -ENOMEM;
1185 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1186 	if (!c->bottom_up_buf)
1187 		goto out_free;
1188 
1189 	c->sbuf = vmalloc(c->leb_size);
1190 	if (!c->sbuf)
1191 		goto out_free;
1192 
1193 	if (!mounted_read_only) {
1194 		c->ileb_buf = vmalloc(c->leb_size);
1195 		if (!c->ileb_buf)
1196 			goto out_free;
1197 	}
1198 
1199 	if (c->bulk_read == 1)
1200 		bu_init(c);
1201 
1202 	/*
1203 	 * We have to check all CRCs, even for data nodes, when we mount the FS
1204 	 * (specifically, when we are replaying).
1205 	 */
1206 	c->always_chk_crc = 1;
1207 
1208 	err = ubifs_read_superblock(c);
1209 	if (err)
1210 		goto out_free;
1211 
1212 	/*
1213 	 * Make sure the compressor which is set as default in the superblock
1214 	 * or overridden by mount options is actually compiled in.
1215 	 */
1216 	if (!ubifs_compr_present(c->default_compr)) {
1217 		ubifs_err("'compressor \"%s\" is not compiled in",
1218 			  ubifs_compr_name(c->default_compr));
1219 		err = -ENOTSUPP;
1220 		goto out_free;
1221 	}
1222 
1223 	err = init_constants_sb(c);
1224 	if (err)
1225 		goto out_free;
1226 
1227 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1228 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1229 	c->cbuf = kmalloc(sz, GFP_NOFS);
1230 	if (!c->cbuf) {
1231 		err = -ENOMEM;
1232 		goto out_free;
1233 	}
1234 
1235 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1236 	if (!mounted_read_only) {
1237 		err = alloc_wbufs(c);
1238 		if (err)
1239 			goto out_cbuf;
1240 
1241 		/* Create background thread */
1242 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1243 		if (IS_ERR(c->bgt)) {
1244 			err = PTR_ERR(c->bgt);
1245 			c->bgt = NULL;
1246 			ubifs_err("cannot spawn \"%s\", error %d",
1247 				  c->bgt_name, err);
1248 			goto out_wbufs;
1249 		}
1250 		wake_up_process(c->bgt);
1251 	}
1252 
1253 	err = ubifs_read_master(c);
1254 	if (err)
1255 		goto out_master;
1256 
1257 	init_constants_master(c);
1258 
1259 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1260 		ubifs_msg("recovery needed");
1261 		c->need_recovery = 1;
1262 		if (!mounted_read_only) {
1263 			err = ubifs_recover_inl_heads(c, c->sbuf);
1264 			if (err)
1265 				goto out_master;
1266 		}
1267 	} else if (!mounted_read_only) {
1268 		/*
1269 		 * Set the "dirty" flag so that if we reboot uncleanly we
1270 		 * will notice this immediately on the next mount.
1271 		 */
1272 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1273 		err = ubifs_write_master(c);
1274 		if (err)
1275 			goto out_master;
1276 	}
1277 
1278 	err = ubifs_lpt_init(c, 1, !mounted_read_only);
1279 	if (err)
1280 		goto out_lpt;
1281 
1282 	err = dbg_check_idx_size(c, c->old_idx_sz);
1283 	if (err)
1284 		goto out_lpt;
1285 
1286 	err = ubifs_replay_journal(c);
1287 	if (err)
1288 		goto out_journal;
1289 
1290 	/* Calculate 'min_idx_lebs' after journal replay */
1291 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1292 
1293 	err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1294 	if (err)
1295 		goto out_orphans;
1296 
1297 	if (!mounted_read_only) {
1298 		int lnum;
1299 
1300 		err = check_free_space(c);
1301 		if (err)
1302 			goto out_orphans;
1303 
1304 		/* Check for enough log space */
1305 		lnum = c->lhead_lnum + 1;
1306 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1307 			lnum = UBIFS_LOG_LNUM;
1308 		if (lnum == c->ltail_lnum) {
1309 			err = ubifs_consolidate_log(c);
1310 			if (err)
1311 				goto out_orphans;
1312 		}
1313 
1314 		if (c->need_recovery) {
1315 			err = ubifs_recover_size(c);
1316 			if (err)
1317 				goto out_orphans;
1318 			err = ubifs_rcvry_gc_commit(c);
1319 		} else {
1320 			err = take_gc_lnum(c);
1321 			if (err)
1322 				goto out_orphans;
1323 
1324 			/*
1325 			 * GC LEB may contain garbage if there was an unclean
1326 			 * reboot, and it should be un-mapped.
1327 			 */
1328 			err = ubifs_leb_unmap(c, c->gc_lnum);
1329 			if (err)
1330 				return err;
1331 		}
1332 
1333 		err = dbg_check_lprops(c);
1334 		if (err)
1335 			goto out_orphans;
1336 	} else if (c->need_recovery) {
1337 		err = ubifs_recover_size(c);
1338 		if (err)
1339 			goto out_orphans;
1340 	} else {
1341 		/*
1342 		 * Even if we mount read-only, we have to set space in GC LEB
1343 		 * to proper value because this affects UBIFS free space
1344 		 * reporting. We do not want to have a situation when
1345 		 * re-mounting from R/O to R/W changes amount of free space.
1346 		 */
1347 		err = take_gc_lnum(c);
1348 		if (err)
1349 			goto out_orphans;
1350 	}
1351 
1352 	spin_lock(&ubifs_infos_lock);
1353 	list_add_tail(&c->infos_list, &ubifs_infos);
1354 	spin_unlock(&ubifs_infos_lock);
1355 
1356 	if (c->need_recovery) {
1357 		if (mounted_read_only)
1358 			ubifs_msg("recovery deferred");
1359 		else {
1360 			c->need_recovery = 0;
1361 			ubifs_msg("recovery completed");
1362 			/*
1363 			 * GC LEB has to be empty and taken at this point. But
1364 			 * the journal head LEBs may also be accounted as
1365 			 * "empty taken" if they are empty.
1366 			 */
1367 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1368 		}
1369 	} else
1370 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1371 
1372 	err = dbg_check_filesystem(c);
1373 	if (err)
1374 		goto out_infos;
1375 
1376 	err = dbg_debugfs_init_fs(c);
1377 	if (err)
1378 		goto out_infos;
1379 
1380 	c->always_chk_crc = 0;
1381 
1382 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1383 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1384 	if (mounted_read_only)
1385 		ubifs_msg("mounted read-only");
1386 	x = (long long)c->main_lebs * c->leb_size;
1387 	ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1388 		  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1389 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1390 	ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1391 		  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1392 	ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1393 		  c->fmt_version, c->ro_compat_version,
1394 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1395 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1396 	ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1397 		c->report_rp_size, c->report_rp_size >> 10);
1398 
1399 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1400 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1401 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1402 		c->leb_size, c->leb_size >> 10);
1403 	dbg_msg("data journal heads:  %d",
1404 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1405 	dbg_msg("UUID:                %02X%02X%02X%02X-%02X%02X"
1406 	       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1407 	       c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1408 	       c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1409 	       c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1410 	       c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1411 	dbg_msg("big_lpt              %d", c->big_lpt);
1412 	dbg_msg("log LEBs:            %d (%d - %d)",
1413 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1414 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1415 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1416 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1417 		c->orph_lebs, c->orph_first, c->orph_last);
1418 	dbg_msg("main area LEBs:      %d (%d - %d)",
1419 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1420 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1421 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1422 		c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1423 	dbg_msg("key hash type:       %d", c->key_hash_type);
1424 	dbg_msg("tree fanout:         %d", c->fanout);
1425 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1426 	dbg_msg("first main LEB:      %d", c->main_first);
1427 	dbg_msg("max. znode size      %d", c->max_znode_sz);
1428 	dbg_msg("max. index node size %d", c->max_idx_node_sz);
1429 	dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1430 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1431 	dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1432 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1433 	dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1434 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1435 	dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu",
1436 	        UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1437 		UBIFS_MAX_DENT_NODE_SZ);
1438 	dbg_msg("dead watermark:      %d", c->dead_wm);
1439 	dbg_msg("dark watermark:      %d", c->dark_wm);
1440 	dbg_msg("LEB overhead:        %d", c->leb_overhead);
1441 	x = (long long)c->main_lebs * c->dark_wm;
1442 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1443 		x, x >> 10, x >> 20);
1444 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1445 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1446 		c->max_bud_bytes >> 20);
1447 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1448 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1449 		c->bg_bud_bytes >> 20);
1450 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1451 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1452 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1453 	dbg_msg("commit number:       %llu", c->cmt_no);
1454 
1455 	return 0;
1456 
1457 out_infos:
1458 	spin_lock(&ubifs_infos_lock);
1459 	list_del(&c->infos_list);
1460 	spin_unlock(&ubifs_infos_lock);
1461 out_orphans:
1462 	free_orphans(c);
1463 out_journal:
1464 	destroy_journal(c);
1465 out_lpt:
1466 	ubifs_lpt_free(c, 0);
1467 out_master:
1468 	kfree(c->mst_node);
1469 	kfree(c->rcvrd_mst_node);
1470 	if (c->bgt)
1471 		kthread_stop(c->bgt);
1472 out_wbufs:
1473 	free_wbufs(c);
1474 out_cbuf:
1475 	kfree(c->cbuf);
1476 out_free:
1477 	kfree(c->bu.buf);
1478 	vfree(c->ileb_buf);
1479 	vfree(c->sbuf);
1480 	kfree(c->bottom_up_buf);
1481 	ubifs_debugging_exit(c);
1482 	return err;
1483 }
1484 
1485 /**
1486  * ubifs_umount - un-mount UBIFS file-system.
1487  * @c: UBIFS file-system description object
1488  *
1489  * Note, this function is called to free allocated resourced when un-mounting,
1490  * as well as free resources when an error occurred while we were half way
1491  * through mounting (error path cleanup function). So it has to make sure the
1492  * resource was actually allocated before freeing it.
1493  */
1494 static void ubifs_umount(struct ubifs_info *c)
1495 {
1496 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1497 		c->vi.vol_id);
1498 
1499 	dbg_debugfs_exit_fs(c);
1500 	spin_lock(&ubifs_infos_lock);
1501 	list_del(&c->infos_list);
1502 	spin_unlock(&ubifs_infos_lock);
1503 
1504 	if (c->bgt)
1505 		kthread_stop(c->bgt);
1506 
1507 	destroy_journal(c);
1508 	free_wbufs(c);
1509 	free_orphans(c);
1510 	ubifs_lpt_free(c, 0);
1511 
1512 	kfree(c->cbuf);
1513 	kfree(c->rcvrd_mst_node);
1514 	kfree(c->mst_node);
1515 	kfree(c->bu.buf);
1516 	vfree(c->ileb_buf);
1517 	vfree(c->sbuf);
1518 	kfree(c->bottom_up_buf);
1519 	ubifs_debugging_exit(c);
1520 }
1521 
1522 /**
1523  * ubifs_remount_rw - re-mount in read-write mode.
1524  * @c: UBIFS file-system description object
1525  *
1526  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1527  * mode. This function allocates the needed resources and re-mounts UBIFS in
1528  * read-write mode.
1529  */
1530 static int ubifs_remount_rw(struct ubifs_info *c)
1531 {
1532 	int err, lnum;
1533 
1534 	if (c->rw_incompat) {
1535 		ubifs_err("the file-system is not R/W-compatible");
1536 		ubifs_msg("on-flash format version is w%d/r%d, but software "
1537 			  "only supports up to version w%d/r%d", c->fmt_version,
1538 			  c->ro_compat_version, UBIFS_FORMAT_VERSION,
1539 			  UBIFS_RO_COMPAT_VERSION);
1540 		return -EROFS;
1541 	}
1542 
1543 	mutex_lock(&c->umount_mutex);
1544 	dbg_save_space_info(c);
1545 	c->remounting_rw = 1;
1546 	c->always_chk_crc = 1;
1547 
1548 	err = check_free_space(c);
1549 	if (err)
1550 		goto out;
1551 
1552 	if (c->old_leb_cnt != c->leb_cnt) {
1553 		struct ubifs_sb_node *sup;
1554 
1555 		sup = ubifs_read_sb_node(c);
1556 		if (IS_ERR(sup)) {
1557 			err = PTR_ERR(sup);
1558 			goto out;
1559 		}
1560 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1561 		err = ubifs_write_sb_node(c, sup);
1562 		if (err)
1563 			goto out;
1564 	}
1565 
1566 	if (c->need_recovery) {
1567 		ubifs_msg("completing deferred recovery");
1568 		err = ubifs_write_rcvrd_mst_node(c);
1569 		if (err)
1570 			goto out;
1571 		err = ubifs_recover_size(c);
1572 		if (err)
1573 			goto out;
1574 		err = ubifs_clean_lebs(c, c->sbuf);
1575 		if (err)
1576 			goto out;
1577 		err = ubifs_recover_inl_heads(c, c->sbuf);
1578 		if (err)
1579 			goto out;
1580 	} else {
1581 		/* A readonly mount is not allowed to have orphans */
1582 		ubifs_assert(c->tot_orphans == 0);
1583 		err = ubifs_clear_orphans(c);
1584 		if (err)
1585 			goto out;
1586 	}
1587 
1588 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1589 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1590 		err = ubifs_write_master(c);
1591 		if (err)
1592 			goto out;
1593 	}
1594 
1595 	c->ileb_buf = vmalloc(c->leb_size);
1596 	if (!c->ileb_buf) {
1597 		err = -ENOMEM;
1598 		goto out;
1599 	}
1600 
1601 	err = ubifs_lpt_init(c, 0, 1);
1602 	if (err)
1603 		goto out;
1604 
1605 	err = alloc_wbufs(c);
1606 	if (err)
1607 		goto out;
1608 
1609 	ubifs_create_buds_lists(c);
1610 
1611 	/* Create background thread */
1612 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1613 	if (IS_ERR(c->bgt)) {
1614 		err = PTR_ERR(c->bgt);
1615 		c->bgt = NULL;
1616 		ubifs_err("cannot spawn \"%s\", error %d",
1617 			  c->bgt_name, err);
1618 		goto out;
1619 	}
1620 	wake_up_process(c->bgt);
1621 
1622 	c->orph_buf = vmalloc(c->leb_size);
1623 	if (!c->orph_buf) {
1624 		err = -ENOMEM;
1625 		goto out;
1626 	}
1627 
1628 	/* Check for enough log space */
1629 	lnum = c->lhead_lnum + 1;
1630 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1631 		lnum = UBIFS_LOG_LNUM;
1632 	if (lnum == c->ltail_lnum) {
1633 		err = ubifs_consolidate_log(c);
1634 		if (err)
1635 			goto out;
1636 	}
1637 
1638 	if (c->need_recovery)
1639 		err = ubifs_rcvry_gc_commit(c);
1640 	else
1641 		err = ubifs_leb_unmap(c, c->gc_lnum);
1642 	if (err)
1643 		goto out;
1644 
1645 	if (c->need_recovery) {
1646 		c->need_recovery = 0;
1647 		ubifs_msg("deferred recovery completed");
1648 	}
1649 
1650 	dbg_gen("re-mounted read-write");
1651 	c->vfs_sb->s_flags &= ~MS_RDONLY;
1652 	c->remounting_rw = 0;
1653 	c->always_chk_crc = 0;
1654 	err = dbg_check_space_info(c);
1655 	mutex_unlock(&c->umount_mutex);
1656 	return err;
1657 
1658 out:
1659 	vfree(c->orph_buf);
1660 	c->orph_buf = NULL;
1661 	if (c->bgt) {
1662 		kthread_stop(c->bgt);
1663 		c->bgt = NULL;
1664 	}
1665 	free_wbufs(c);
1666 	vfree(c->ileb_buf);
1667 	c->ileb_buf = NULL;
1668 	ubifs_lpt_free(c, 1);
1669 	c->remounting_rw = 0;
1670 	c->always_chk_crc = 0;
1671 	mutex_unlock(&c->umount_mutex);
1672 	return err;
1673 }
1674 
1675 /**
1676  * ubifs_remount_ro - re-mount in read-only mode.
1677  * @c: UBIFS file-system description object
1678  *
1679  * We assume VFS has stopped writing. Possibly the background thread could be
1680  * running a commit, however kthread_stop will wait in that case.
1681  */
1682 static void ubifs_remount_ro(struct ubifs_info *c)
1683 {
1684 	int i, err;
1685 
1686 	ubifs_assert(!c->need_recovery);
1687 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
1688 
1689 	mutex_lock(&c->umount_mutex);
1690 	if (c->bgt) {
1691 		kthread_stop(c->bgt);
1692 		c->bgt = NULL;
1693 	}
1694 
1695 	dbg_save_space_info(c);
1696 
1697 	for (i = 0; i < c->jhead_cnt; i++) {
1698 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1699 		hrtimer_cancel(&c->jheads[i].wbuf.timer);
1700 	}
1701 
1702 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1703 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1704 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1705 	err = ubifs_write_master(c);
1706 	if (err)
1707 		ubifs_ro_mode(c, err);
1708 
1709 	free_wbufs(c);
1710 	vfree(c->orph_buf);
1711 	c->orph_buf = NULL;
1712 	vfree(c->ileb_buf);
1713 	c->ileb_buf = NULL;
1714 	ubifs_lpt_free(c, 1);
1715 	err = dbg_check_space_info(c);
1716 	if (err)
1717 		ubifs_ro_mode(c, err);
1718 	mutex_unlock(&c->umount_mutex);
1719 }
1720 
1721 static void ubifs_put_super(struct super_block *sb)
1722 {
1723 	int i;
1724 	struct ubifs_info *c = sb->s_fs_info;
1725 
1726 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1727 		  c->vi.vol_id);
1728 
1729 	lock_kernel();
1730 
1731 	/*
1732 	 * The following asserts are only valid if there has not been a failure
1733 	 * of the media. For example, there will be dirty inodes if we failed
1734 	 * to write them back because of I/O errors.
1735 	 */
1736 	ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1737 	ubifs_assert(c->budg_idx_growth == 0);
1738 	ubifs_assert(c->budg_dd_growth == 0);
1739 	ubifs_assert(c->budg_data_growth == 0);
1740 
1741 	/*
1742 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1743 	 * and file system un-mount. Namely, it prevents the shrinker from
1744 	 * picking this superblock for shrinking - it will be just skipped if
1745 	 * the mutex is locked.
1746 	 */
1747 	mutex_lock(&c->umount_mutex);
1748 	if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1749 		/*
1750 		 * First of all kill the background thread to make sure it does
1751 		 * not interfere with un-mounting and freeing resources.
1752 		 */
1753 		if (c->bgt) {
1754 			kthread_stop(c->bgt);
1755 			c->bgt = NULL;
1756 		}
1757 
1758 		/* Synchronize write-buffers */
1759 		if (c->jheads)
1760 			for (i = 0; i < c->jhead_cnt; i++)
1761 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1762 
1763 		/*
1764 		 * On fatal errors c->ro_media is set to 1, in which case we do
1765 		 * not write the master node.
1766 		 */
1767 		if (!c->ro_media) {
1768 			/*
1769 			 * We are being cleanly unmounted which means the
1770 			 * orphans were killed - indicate this in the master
1771 			 * node. Also save the reserved GC LEB number.
1772 			 */
1773 			int err;
1774 
1775 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1776 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1777 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1778 			err = ubifs_write_master(c);
1779 			if (err)
1780 				/*
1781 				 * Recovery will attempt to fix the master area
1782 				 * next mount, so we just print a message and
1783 				 * continue to unmount normally.
1784 				 */
1785 				ubifs_err("failed to write master node, "
1786 					  "error %d", err);
1787 		}
1788 	}
1789 
1790 	ubifs_umount(c);
1791 	bdi_destroy(&c->bdi);
1792 	ubi_close_volume(c->ubi);
1793 	mutex_unlock(&c->umount_mutex);
1794 	kfree(c);
1795 
1796 	unlock_kernel();
1797 }
1798 
1799 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1800 {
1801 	int err;
1802 	struct ubifs_info *c = sb->s_fs_info;
1803 
1804 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1805 
1806 	err = ubifs_parse_options(c, data, 1);
1807 	if (err) {
1808 		ubifs_err("invalid or unknown remount parameter");
1809 		return err;
1810 	}
1811 
1812 	lock_kernel();
1813 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1814 		if (c->ro_media) {
1815 			ubifs_msg("cannot re-mount due to prior errors");
1816 			unlock_kernel();
1817 			return -EROFS;
1818 		}
1819 		err = ubifs_remount_rw(c);
1820 		if (err) {
1821 			unlock_kernel();
1822 			return err;
1823 		}
1824 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
1825 		if (c->ro_media) {
1826 			ubifs_msg("cannot re-mount due to prior errors");
1827 			unlock_kernel();
1828 			return -EROFS;
1829 		}
1830 		ubifs_remount_ro(c);
1831 	}
1832 
1833 	if (c->bulk_read == 1)
1834 		bu_init(c);
1835 	else {
1836 		dbg_gen("disable bulk-read");
1837 		kfree(c->bu.buf);
1838 		c->bu.buf = NULL;
1839 	}
1840 
1841 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1842 	unlock_kernel();
1843 	return 0;
1844 }
1845 
1846 const struct super_operations ubifs_super_operations = {
1847 	.alloc_inode   = ubifs_alloc_inode,
1848 	.destroy_inode = ubifs_destroy_inode,
1849 	.put_super     = ubifs_put_super,
1850 	.write_inode   = ubifs_write_inode,
1851 	.delete_inode  = ubifs_delete_inode,
1852 	.statfs        = ubifs_statfs,
1853 	.dirty_inode   = ubifs_dirty_inode,
1854 	.remount_fs    = ubifs_remount_fs,
1855 	.show_options  = ubifs_show_options,
1856 	.sync_fs       = ubifs_sync_fs,
1857 };
1858 
1859 /**
1860  * open_ubi - parse UBI device name string and open the UBI device.
1861  * @name: UBI volume name
1862  * @mode: UBI volume open mode
1863  *
1864  * There are several ways to specify UBI volumes when mounting UBIFS:
1865  * o ubiX_Y    - UBI device number X, volume Y;
1866  * o ubiY      - UBI device number 0, volume Y;
1867  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1868  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1869  *
1870  * Alternative '!' separator may be used instead of ':' (because some shells
1871  * like busybox may interpret ':' as an NFS host name separator). This function
1872  * returns ubi volume object in case of success and a negative error code in
1873  * case of failure.
1874  */
1875 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1876 {
1877 	int dev, vol;
1878 	char *endptr;
1879 
1880 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1881 		return ERR_PTR(-EINVAL);
1882 
1883 	/* ubi:NAME method */
1884 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1885 		return ubi_open_volume_nm(0, name + 4, mode);
1886 
1887 	if (!isdigit(name[3]))
1888 		return ERR_PTR(-EINVAL);
1889 
1890 	dev = simple_strtoul(name + 3, &endptr, 0);
1891 
1892 	/* ubiY method */
1893 	if (*endptr == '\0')
1894 		return ubi_open_volume(0, dev, mode);
1895 
1896 	/* ubiX_Y method */
1897 	if (*endptr == '_' && isdigit(endptr[1])) {
1898 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1899 		if (*endptr != '\0')
1900 			return ERR_PTR(-EINVAL);
1901 		return ubi_open_volume(dev, vol, mode);
1902 	}
1903 
1904 	/* ubiX:NAME method */
1905 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1906 		return ubi_open_volume_nm(dev, ++endptr, mode);
1907 
1908 	return ERR_PTR(-EINVAL);
1909 }
1910 
1911 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1912 {
1913 	struct ubi_volume_desc *ubi = sb->s_fs_info;
1914 	struct ubifs_info *c;
1915 	struct inode *root;
1916 	int err;
1917 
1918 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1919 	if (!c)
1920 		return -ENOMEM;
1921 
1922 	spin_lock_init(&c->cnt_lock);
1923 	spin_lock_init(&c->cs_lock);
1924 	spin_lock_init(&c->buds_lock);
1925 	spin_lock_init(&c->space_lock);
1926 	spin_lock_init(&c->orphan_lock);
1927 	init_rwsem(&c->commit_sem);
1928 	mutex_init(&c->lp_mutex);
1929 	mutex_init(&c->tnc_mutex);
1930 	mutex_init(&c->log_mutex);
1931 	mutex_init(&c->mst_mutex);
1932 	mutex_init(&c->umount_mutex);
1933 	mutex_init(&c->bu_mutex);
1934 	init_waitqueue_head(&c->cmt_wq);
1935 	c->buds = RB_ROOT;
1936 	c->old_idx = RB_ROOT;
1937 	c->size_tree = RB_ROOT;
1938 	c->orph_tree = RB_ROOT;
1939 	INIT_LIST_HEAD(&c->infos_list);
1940 	INIT_LIST_HEAD(&c->idx_gc);
1941 	INIT_LIST_HEAD(&c->replay_list);
1942 	INIT_LIST_HEAD(&c->replay_buds);
1943 	INIT_LIST_HEAD(&c->uncat_list);
1944 	INIT_LIST_HEAD(&c->empty_list);
1945 	INIT_LIST_HEAD(&c->freeable_list);
1946 	INIT_LIST_HEAD(&c->frdi_idx_list);
1947 	INIT_LIST_HEAD(&c->unclean_leb_list);
1948 	INIT_LIST_HEAD(&c->old_buds);
1949 	INIT_LIST_HEAD(&c->orph_list);
1950 	INIT_LIST_HEAD(&c->orph_new);
1951 
1952 	c->vfs_sb = sb;
1953 	c->highest_inum = UBIFS_FIRST_INO;
1954 	c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1955 
1956 	ubi_get_volume_info(ubi, &c->vi);
1957 	ubi_get_device_info(c->vi.ubi_num, &c->di);
1958 
1959 	/* Re-open the UBI device in read-write mode */
1960 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1961 	if (IS_ERR(c->ubi)) {
1962 		err = PTR_ERR(c->ubi);
1963 		goto out_free;
1964 	}
1965 
1966 	/*
1967 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1968 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1969 	 * which means the user would have to wait not just for their own I/O
1970 	 * but the read-ahead I/O as well i.e. completely pointless.
1971 	 *
1972 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1973 	 */
1974 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
1975 	c->bdi.unplug_io_fn = default_unplug_io_fn;
1976 	err  = bdi_init(&c->bdi);
1977 	if (err)
1978 		goto out_close;
1979 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
1980 			   c->vi.ubi_num, c->vi.vol_id);
1981 	if (err)
1982 		goto out_bdi;
1983 
1984 	err = ubifs_parse_options(c, data, 0);
1985 	if (err)
1986 		goto out_bdi;
1987 
1988 	sb->s_fs_info = c;
1989 	sb->s_magic = UBIFS_SUPER_MAGIC;
1990 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
1991 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1992 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1993 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
1994 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1995 	sb->s_op = &ubifs_super_operations;
1996 
1997 	mutex_lock(&c->umount_mutex);
1998 	err = mount_ubifs(c);
1999 	if (err) {
2000 		ubifs_assert(err < 0);
2001 		goto out_unlock;
2002 	}
2003 
2004 	/* Read the root inode */
2005 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2006 	if (IS_ERR(root)) {
2007 		err = PTR_ERR(root);
2008 		goto out_umount;
2009 	}
2010 
2011 	sb->s_root = d_alloc_root(root);
2012 	if (!sb->s_root)
2013 		goto out_iput;
2014 
2015 	mutex_unlock(&c->umount_mutex);
2016 	return 0;
2017 
2018 out_iput:
2019 	iput(root);
2020 out_umount:
2021 	ubifs_umount(c);
2022 out_unlock:
2023 	mutex_unlock(&c->umount_mutex);
2024 out_bdi:
2025 	bdi_destroy(&c->bdi);
2026 out_close:
2027 	ubi_close_volume(c->ubi);
2028 out_free:
2029 	kfree(c);
2030 	return err;
2031 }
2032 
2033 static int sb_test(struct super_block *sb, void *data)
2034 {
2035 	dev_t *dev = data;
2036 	struct ubifs_info *c = sb->s_fs_info;
2037 
2038 	return c->vi.cdev == *dev;
2039 }
2040 
2041 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
2042 			const char *name, void *data, struct vfsmount *mnt)
2043 {
2044 	struct ubi_volume_desc *ubi;
2045 	struct ubi_volume_info vi;
2046 	struct super_block *sb;
2047 	int err;
2048 
2049 	dbg_gen("name %s, flags %#x", name, flags);
2050 
2051 	/*
2052 	 * Get UBI device number and volume ID. Mount it read-only so far
2053 	 * because this might be a new mount point, and UBI allows only one
2054 	 * read-write user at a time.
2055 	 */
2056 	ubi = open_ubi(name, UBI_READONLY);
2057 	if (IS_ERR(ubi)) {
2058 		ubifs_err("cannot open \"%s\", error %d",
2059 			  name, (int)PTR_ERR(ubi));
2060 		return PTR_ERR(ubi);
2061 	}
2062 	ubi_get_volume_info(ubi, &vi);
2063 
2064 	dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2065 
2066 	sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev);
2067 	if (IS_ERR(sb)) {
2068 		err = PTR_ERR(sb);
2069 		goto out_close;
2070 	}
2071 
2072 	if (sb->s_root) {
2073 		/* A new mount point for already mounted UBIFS */
2074 		dbg_gen("this ubi volume is already mounted");
2075 		if ((flags ^ sb->s_flags) & MS_RDONLY) {
2076 			err = -EBUSY;
2077 			goto out_deact;
2078 		}
2079 	} else {
2080 		sb->s_flags = flags;
2081 		/*
2082 		 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2083 		 * replaced by 'c'.
2084 		 */
2085 		sb->s_fs_info = ubi;
2086 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2087 		if (err)
2088 			goto out_deact;
2089 		/* We do not support atime */
2090 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2091 	}
2092 
2093 	/* 'fill_super()' opens ubi again so we must close it here */
2094 	ubi_close_volume(ubi);
2095 
2096 	simple_set_mnt(mnt, sb);
2097 	return 0;
2098 
2099 out_deact:
2100 	deactivate_locked_super(sb);
2101 out_close:
2102 	ubi_close_volume(ubi);
2103 	return err;
2104 }
2105 
2106 static struct file_system_type ubifs_fs_type = {
2107 	.name    = "ubifs",
2108 	.owner   = THIS_MODULE,
2109 	.get_sb  = ubifs_get_sb,
2110 	.kill_sb = kill_anon_super,
2111 };
2112 
2113 /*
2114  * Inode slab cache constructor.
2115  */
2116 static void inode_slab_ctor(void *obj)
2117 {
2118 	struct ubifs_inode *ui = obj;
2119 	inode_init_once(&ui->vfs_inode);
2120 }
2121 
2122 static int __init ubifs_init(void)
2123 {
2124 	int err;
2125 
2126 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2127 
2128 	/* Make sure node sizes are 8-byte aligned */
2129 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2130 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2131 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2132 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2133 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2134 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2135 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2136 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2137 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2138 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2139 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2140 
2141 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2142 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2143 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2144 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2145 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2146 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2147 
2148 	/* Check min. node size */
2149 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2150 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2151 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2152 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2153 
2154 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2155 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2156 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2157 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2158 
2159 	/* Defined node sizes */
2160 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2161 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2162 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2163 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2164 
2165 	/*
2166 	 * We use 2 bit wide bit-fields to store compression type, which should
2167 	 * be amended if more compressors are added. The bit-fields are:
2168 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2169 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2170 	 */
2171 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2172 
2173 	/*
2174 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2175 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2176 	 */
2177 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2178 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2179 			  " at least 4096 bytes",
2180 			  (unsigned int)PAGE_CACHE_SIZE);
2181 		return -EINVAL;
2182 	}
2183 
2184 	err = register_filesystem(&ubifs_fs_type);
2185 	if (err) {
2186 		ubifs_err("cannot register file system, error %d", err);
2187 		return err;
2188 	}
2189 
2190 	err = -ENOMEM;
2191 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2192 				sizeof(struct ubifs_inode), 0,
2193 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2194 				&inode_slab_ctor);
2195 	if (!ubifs_inode_slab)
2196 		goto out_reg;
2197 
2198 	register_shrinker(&ubifs_shrinker_info);
2199 
2200 	err = ubifs_compressors_init();
2201 	if (err)
2202 		goto out_shrinker;
2203 
2204 	err = dbg_debugfs_init();
2205 	if (err)
2206 		goto out_compr;
2207 
2208 	return 0;
2209 
2210 out_compr:
2211 	ubifs_compressors_exit();
2212 out_shrinker:
2213 	unregister_shrinker(&ubifs_shrinker_info);
2214 	kmem_cache_destroy(ubifs_inode_slab);
2215 out_reg:
2216 	unregister_filesystem(&ubifs_fs_type);
2217 	return err;
2218 }
2219 /* late_initcall to let compressors initialize first */
2220 late_initcall(ubifs_init);
2221 
2222 static void __exit ubifs_exit(void)
2223 {
2224 	ubifs_assert(list_empty(&ubifs_infos));
2225 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2226 
2227 	dbg_debugfs_exit();
2228 	ubifs_compressors_exit();
2229 	unregister_shrinker(&ubifs_shrinker_info);
2230 	kmem_cache_destroy(ubifs_inode_slab);
2231 	unregister_filesystem(&ubifs_fs_type);
2232 }
2233 module_exit(ubifs_exit);
2234 
2235 MODULE_LICENSE("GPL");
2236 MODULE_VERSION(__stringify(UBIFS_VERSION));
2237 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2238 MODULE_DESCRIPTION("UBIFS - UBI File System");
2239