1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .shrink = ubifs_shrinker, 53 .seeks = DEFAULT_SEEKS, 54 }; 55 56 /** 57 * validate_inode - validate inode. 58 * @c: UBIFS file-system description object 59 * @inode: the inode to validate 60 * 61 * This is a helper function for 'ubifs_iget()' which validates various fields 62 * of a newly built inode to make sure they contain sane values and prevent 63 * possible vulnerabilities. Returns zero if the inode is all right and 64 * a non-zero error code if not. 65 */ 66 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 67 { 68 int err; 69 const struct ubifs_inode *ui = ubifs_inode(inode); 70 71 if (inode->i_size > c->max_inode_sz) { 72 ubifs_err("inode is too large (%lld)", 73 (long long)inode->i_size); 74 return 1; 75 } 76 77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 78 ubifs_err("unknown compression type %d", ui->compr_type); 79 return 2; 80 } 81 82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 83 return 3; 84 85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 86 return 4; 87 88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 89 return 5; 90 91 if (!ubifs_compr_present(ui->compr_type)) { 92 ubifs_warn("inode %lu uses '%s' compression, but it was not " 93 "compiled in", inode->i_ino, 94 ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir_size(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 inode->i_nlink = le32_to_cpu(ino->nlink); 133 inode->i_uid = le32_to_cpu(ino->uid); 134 inode->i_gid = le32_to_cpu(ino->gid); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 /* Disable read-ahead */ 160 inode->i_mapping->backing_dev_info = &c->bdi; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 249 dbg_dump_node(c, ino); 250 dbg_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_destroy_inode(struct inode *inode) 276 { 277 struct ubifs_inode *ui = ubifs_inode(inode); 278 279 kfree(ui->data); 280 kmem_cache_free(ubifs_inode_slab, inode); 281 } 282 283 /* 284 * Note, Linux write-back code calls this without 'i_mutex'. 285 */ 286 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 287 { 288 int err = 0; 289 struct ubifs_info *c = inode->i_sb->s_fs_info; 290 struct ubifs_inode *ui = ubifs_inode(inode); 291 292 ubifs_assert(!ui->xattr); 293 if (is_bad_inode(inode)) 294 return 0; 295 296 mutex_lock(&ui->ui_mutex); 297 /* 298 * Due to races between write-back forced by budgeting 299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 300 * have already been synchronized, do not do this again. This might 301 * also happen if it was synchronized in an VFS operation, e.g. 302 * 'ubifs_link()'. 303 */ 304 if (!ui->dirty) { 305 mutex_unlock(&ui->ui_mutex); 306 return 0; 307 } 308 309 /* 310 * As an optimization, do not write orphan inodes to the media just 311 * because this is not needed. 312 */ 313 dbg_gen("inode %lu, mode %#x, nlink %u", 314 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 315 if (inode->i_nlink) { 316 err = ubifs_jnl_write_inode(c, inode); 317 if (err) 318 ubifs_err("can't write inode %lu, error %d", 319 inode->i_ino, err); 320 else 321 err = dbg_check_inode_size(c, inode, ui->ui_size); 322 } 323 324 ui->dirty = 0; 325 mutex_unlock(&ui->ui_mutex); 326 ubifs_release_dirty_inode_budget(c, ui); 327 return err; 328 } 329 330 static void ubifs_evict_inode(struct inode *inode) 331 { 332 int err; 333 struct ubifs_info *c = inode->i_sb->s_fs_info; 334 struct ubifs_inode *ui = ubifs_inode(inode); 335 336 if (ui->xattr) 337 /* 338 * Extended attribute inode deletions are fully handled in 339 * 'ubifs_removexattr()'. These inodes are special and have 340 * limited usage, so there is nothing to do here. 341 */ 342 goto out; 343 344 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 345 ubifs_assert(!atomic_read(&inode->i_count)); 346 347 truncate_inode_pages(&inode->i_data, 0); 348 349 if (inode->i_nlink) 350 goto done; 351 352 if (is_bad_inode(inode)) 353 goto out; 354 355 ui->ui_size = inode->i_size = 0; 356 err = ubifs_jnl_delete_inode(c, inode); 357 if (err) 358 /* 359 * Worst case we have a lost orphan inode wasting space, so a 360 * simple error message is OK here. 361 */ 362 ubifs_err("can't delete inode %lu, error %d", 363 inode->i_ino, err); 364 365 out: 366 if (ui->dirty) 367 ubifs_release_dirty_inode_budget(c, ui); 368 else { 369 /* We've deleted something - clean the "no space" flags */ 370 c->nospace = c->nospace_rp = 0; 371 smp_wmb(); 372 } 373 done: 374 end_writeback(inode); 375 } 376 377 static void ubifs_dirty_inode(struct inode *inode) 378 { 379 struct ubifs_inode *ui = ubifs_inode(inode); 380 381 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 382 if (!ui->dirty) { 383 ui->dirty = 1; 384 dbg_gen("inode %lu", inode->i_ino); 385 } 386 } 387 388 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 389 { 390 struct ubifs_info *c = dentry->d_sb->s_fs_info; 391 unsigned long long free; 392 __le32 *uuid = (__le32 *)c->uuid; 393 394 free = ubifs_get_free_space(c); 395 dbg_gen("free space %lld bytes (%lld blocks)", 396 free, free >> UBIFS_BLOCK_SHIFT); 397 398 buf->f_type = UBIFS_SUPER_MAGIC; 399 buf->f_bsize = UBIFS_BLOCK_SIZE; 400 buf->f_blocks = c->block_cnt; 401 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 402 if (free > c->report_rp_size) 403 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 404 else 405 buf->f_bavail = 0; 406 buf->f_files = 0; 407 buf->f_ffree = 0; 408 buf->f_namelen = UBIFS_MAX_NLEN; 409 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 410 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 411 ubifs_assert(buf->f_bfree <= c->block_cnt); 412 return 0; 413 } 414 415 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 416 { 417 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 418 419 if (c->mount_opts.unmount_mode == 2) 420 seq_printf(s, ",fast_unmount"); 421 else if (c->mount_opts.unmount_mode == 1) 422 seq_printf(s, ",norm_unmount"); 423 424 if (c->mount_opts.bulk_read == 2) 425 seq_printf(s, ",bulk_read"); 426 else if (c->mount_opts.bulk_read == 1) 427 seq_printf(s, ",no_bulk_read"); 428 429 if (c->mount_opts.chk_data_crc == 2) 430 seq_printf(s, ",chk_data_crc"); 431 else if (c->mount_opts.chk_data_crc == 1) 432 seq_printf(s, ",no_chk_data_crc"); 433 434 if (c->mount_opts.override_compr) { 435 seq_printf(s, ",compr=%s", 436 ubifs_compr_name(c->mount_opts.compr_type)); 437 } 438 439 return 0; 440 } 441 442 static int ubifs_sync_fs(struct super_block *sb, int wait) 443 { 444 int i, err; 445 struct ubifs_info *c = sb->s_fs_info; 446 447 /* 448 * Zero @wait is just an advisory thing to help the file system shove 449 * lots of data into the queues, and there will be the second 450 * '->sync_fs()' call, with non-zero @wait. 451 */ 452 if (!wait) 453 return 0; 454 455 /* 456 * Synchronize write buffers, because 'ubifs_run_commit()' does not 457 * do this if it waits for an already running commit. 458 */ 459 for (i = 0; i < c->jhead_cnt; i++) { 460 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 461 if (err) 462 return err; 463 } 464 465 /* 466 * Strictly speaking, it is not necessary to commit the journal here, 467 * synchronizing write-buffers would be enough. But committing makes 468 * UBIFS free space predictions much more accurate, so we want to let 469 * the user be able to get more accurate results of 'statfs()' after 470 * they synchronize the file system. 471 */ 472 err = ubifs_run_commit(c); 473 if (err) 474 return err; 475 476 return ubi_sync(c->vi.ubi_num); 477 } 478 479 /** 480 * init_constants_early - initialize UBIFS constants. 481 * @c: UBIFS file-system description object 482 * 483 * This function initialize UBIFS constants which do not need the superblock to 484 * be read. It also checks that the UBI volume satisfies basic UBIFS 485 * requirements. Returns zero in case of success and a negative error code in 486 * case of failure. 487 */ 488 static int init_constants_early(struct ubifs_info *c) 489 { 490 if (c->vi.corrupted) { 491 ubifs_warn("UBI volume is corrupted - read-only mode"); 492 c->ro_media = 1; 493 } 494 495 if (c->di.ro_mode) { 496 ubifs_msg("read-only UBI device"); 497 c->ro_media = 1; 498 } 499 500 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 501 ubifs_msg("static UBI volume - read-only mode"); 502 c->ro_media = 1; 503 } 504 505 c->leb_cnt = c->vi.size; 506 c->leb_size = c->vi.usable_leb_size; 507 c->half_leb_size = c->leb_size / 2; 508 c->min_io_size = c->di.min_io_size; 509 c->min_io_shift = fls(c->min_io_size) - 1; 510 511 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 512 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 513 c->leb_size, UBIFS_MIN_LEB_SZ); 514 return -EINVAL; 515 } 516 517 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 518 ubifs_err("too few LEBs (%d), min. is %d", 519 c->leb_cnt, UBIFS_MIN_LEB_CNT); 520 return -EINVAL; 521 } 522 523 if (!is_power_of_2(c->min_io_size)) { 524 ubifs_err("bad min. I/O size %d", c->min_io_size); 525 return -EINVAL; 526 } 527 528 /* 529 * UBIFS aligns all node to 8-byte boundary, so to make function in 530 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 531 * less than 8. 532 */ 533 if (c->min_io_size < 8) { 534 c->min_io_size = 8; 535 c->min_io_shift = 3; 536 } 537 538 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 539 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 540 541 /* 542 * Initialize node length ranges which are mostly needed for node 543 * length validation. 544 */ 545 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 546 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 547 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 548 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 549 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 550 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 551 552 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 553 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 554 c->ranges[UBIFS_ORPH_NODE].min_len = 555 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 556 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 557 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 558 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 559 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 560 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 561 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 562 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 563 /* 564 * Minimum indexing node size is amended later when superblock is 565 * read and the key length is known. 566 */ 567 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 568 /* 569 * Maximum indexing node size is amended later when superblock is 570 * read and the fanout is known. 571 */ 572 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 573 574 /* 575 * Initialize dead and dark LEB space watermarks. See gc.c for comments 576 * about these values. 577 */ 578 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 579 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 580 581 /* 582 * Calculate how many bytes would be wasted at the end of LEB if it was 583 * fully filled with data nodes of maximum size. This is used in 584 * calculations when reporting free space. 585 */ 586 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 587 588 /* Buffer size for bulk-reads */ 589 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 590 if (c->max_bu_buf_len > c->leb_size) 591 c->max_bu_buf_len = c->leb_size; 592 return 0; 593 } 594 595 /** 596 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 597 * @c: UBIFS file-system description object 598 * @lnum: LEB the write-buffer was synchronized to 599 * @free: how many free bytes left in this LEB 600 * @pad: how many bytes were padded 601 * 602 * This is a callback function which is called by the I/O unit when the 603 * write-buffer is synchronized. We need this to correctly maintain space 604 * accounting in bud logical eraseblocks. This function returns zero in case of 605 * success and a negative error code in case of failure. 606 * 607 * This function actually belongs to the journal, but we keep it here because 608 * we want to keep it static. 609 */ 610 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 611 { 612 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 613 } 614 615 /* 616 * init_constants_sb - initialize UBIFS constants. 617 * @c: UBIFS file-system description object 618 * 619 * This is a helper function which initializes various UBIFS constants after 620 * the superblock has been read. It also checks various UBIFS parameters and 621 * makes sure they are all right. Returns zero in case of success and a 622 * negative error code in case of failure. 623 */ 624 static int init_constants_sb(struct ubifs_info *c) 625 { 626 int tmp, err; 627 long long tmp64; 628 629 c->main_bytes = (long long)c->main_lebs * c->leb_size; 630 c->max_znode_sz = sizeof(struct ubifs_znode) + 631 c->fanout * sizeof(struct ubifs_zbranch); 632 633 tmp = ubifs_idx_node_sz(c, 1); 634 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 635 c->min_idx_node_sz = ALIGN(tmp, 8); 636 637 tmp = ubifs_idx_node_sz(c, c->fanout); 638 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 639 c->max_idx_node_sz = ALIGN(tmp, 8); 640 641 /* Make sure LEB size is large enough to fit full commit */ 642 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 643 tmp = ALIGN(tmp, c->min_io_size); 644 if (tmp > c->leb_size) { 645 dbg_err("too small LEB size %d, at least %d needed", 646 c->leb_size, tmp); 647 return -EINVAL; 648 } 649 650 /* 651 * Make sure that the log is large enough to fit reference nodes for 652 * all buds plus one reserved LEB. 653 */ 654 tmp64 = c->max_bud_bytes + c->leb_size - 1; 655 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 656 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 657 tmp /= c->leb_size; 658 tmp += 1; 659 if (c->log_lebs < tmp) { 660 dbg_err("too small log %d LEBs, required min. %d LEBs", 661 c->log_lebs, tmp); 662 return -EINVAL; 663 } 664 665 /* 666 * When budgeting we assume worst-case scenarios when the pages are not 667 * be compressed and direntries are of the maximum size. 668 * 669 * Note, data, which may be stored in inodes is budgeted separately, so 670 * it is not included into 'c->inode_budget'. 671 */ 672 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 673 c->inode_budget = UBIFS_INO_NODE_SZ; 674 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 675 676 /* 677 * When the amount of flash space used by buds becomes 678 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 679 * The writers are unblocked when the commit is finished. To avoid 680 * writers to be blocked UBIFS initiates background commit in advance, 681 * when number of bud bytes becomes above the limit defined below. 682 */ 683 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 684 685 /* 686 * Ensure minimum journal size. All the bytes in the journal heads are 687 * considered to be used, when calculating the current journal usage. 688 * Consequently, if the journal is too small, UBIFS will treat it as 689 * always full. 690 */ 691 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 692 if (c->bg_bud_bytes < tmp64) 693 c->bg_bud_bytes = tmp64; 694 if (c->max_bud_bytes < tmp64 + c->leb_size) 695 c->max_bud_bytes = tmp64 + c->leb_size; 696 697 err = ubifs_calc_lpt_geom(c); 698 if (err) 699 return err; 700 701 /* Initialize effective LEB size used in budgeting calculations */ 702 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 703 return 0; 704 } 705 706 /* 707 * init_constants_master - initialize UBIFS constants. 708 * @c: UBIFS file-system description object 709 * 710 * This is a helper function which initializes various UBIFS constants after 711 * the master node has been read. It also checks various UBIFS parameters and 712 * makes sure they are all right. 713 */ 714 static void init_constants_master(struct ubifs_info *c) 715 { 716 long long tmp64; 717 718 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 719 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 720 721 /* 722 * Calculate total amount of FS blocks. This number is not used 723 * internally because it does not make much sense for UBIFS, but it is 724 * necessary to report something for the 'statfs()' call. 725 * 726 * Subtract the LEB reserved for GC, the LEB which is reserved for 727 * deletions, minimum LEBs for the index, and assume only one journal 728 * head is available. 729 */ 730 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 731 tmp64 *= (long long)c->leb_size - c->leb_overhead; 732 tmp64 = ubifs_reported_space(c, tmp64); 733 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 734 } 735 736 /** 737 * take_gc_lnum - reserve GC LEB. 738 * @c: UBIFS file-system description object 739 * 740 * This function ensures that the LEB reserved for garbage collection is marked 741 * as "taken" in lprops. We also have to set free space to LEB size and dirty 742 * space to zero, because lprops may contain out-of-date information if the 743 * file-system was un-mounted before it has been committed. This function 744 * returns zero in case of success and a negative error code in case of 745 * failure. 746 */ 747 static int take_gc_lnum(struct ubifs_info *c) 748 { 749 int err; 750 751 if (c->gc_lnum == -1) { 752 ubifs_err("no LEB for GC"); 753 return -EINVAL; 754 } 755 756 /* And we have to tell lprops that this LEB is taken */ 757 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 758 LPROPS_TAKEN, 0, 0); 759 return err; 760 } 761 762 /** 763 * alloc_wbufs - allocate write-buffers. 764 * @c: UBIFS file-system description object 765 * 766 * This helper function allocates and initializes UBIFS write-buffers. Returns 767 * zero in case of success and %-ENOMEM in case of failure. 768 */ 769 static int alloc_wbufs(struct ubifs_info *c) 770 { 771 int i, err; 772 773 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 774 GFP_KERNEL); 775 if (!c->jheads) 776 return -ENOMEM; 777 778 /* Initialize journal heads */ 779 for (i = 0; i < c->jhead_cnt; i++) { 780 INIT_LIST_HEAD(&c->jheads[i].buds_list); 781 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 782 if (err) 783 return err; 784 785 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 786 c->jheads[i].wbuf.jhead = i; 787 } 788 789 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 790 /* 791 * Garbage Collector head likely contains long-term data and 792 * does not need to be synchronized by timer. 793 */ 794 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 795 c->jheads[GCHD].wbuf.no_timer = 1; 796 797 return 0; 798 } 799 800 /** 801 * free_wbufs - free write-buffers. 802 * @c: UBIFS file-system description object 803 */ 804 static void free_wbufs(struct ubifs_info *c) 805 { 806 int i; 807 808 if (c->jheads) { 809 for (i = 0; i < c->jhead_cnt; i++) { 810 kfree(c->jheads[i].wbuf.buf); 811 kfree(c->jheads[i].wbuf.inodes); 812 } 813 kfree(c->jheads); 814 c->jheads = NULL; 815 } 816 } 817 818 /** 819 * free_orphans - free orphans. 820 * @c: UBIFS file-system description object 821 */ 822 static void free_orphans(struct ubifs_info *c) 823 { 824 struct ubifs_orphan *orph; 825 826 while (c->orph_dnext) { 827 orph = c->orph_dnext; 828 c->orph_dnext = orph->dnext; 829 list_del(&orph->list); 830 kfree(orph); 831 } 832 833 while (!list_empty(&c->orph_list)) { 834 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 835 list_del(&orph->list); 836 kfree(orph); 837 dbg_err("orphan list not empty at unmount"); 838 } 839 840 vfree(c->orph_buf); 841 c->orph_buf = NULL; 842 } 843 844 /** 845 * free_buds - free per-bud objects. 846 * @c: UBIFS file-system description object 847 */ 848 static void free_buds(struct ubifs_info *c) 849 { 850 struct rb_node *this = c->buds.rb_node; 851 struct ubifs_bud *bud; 852 853 while (this) { 854 if (this->rb_left) 855 this = this->rb_left; 856 else if (this->rb_right) 857 this = this->rb_right; 858 else { 859 bud = rb_entry(this, struct ubifs_bud, rb); 860 this = rb_parent(this); 861 if (this) { 862 if (this->rb_left == &bud->rb) 863 this->rb_left = NULL; 864 else 865 this->rb_right = NULL; 866 } 867 kfree(bud); 868 } 869 } 870 } 871 872 /** 873 * check_volume_empty - check if the UBI volume is empty. 874 * @c: UBIFS file-system description object 875 * 876 * This function checks if the UBIFS volume is empty by looking if its LEBs are 877 * mapped or not. The result of checking is stored in the @c->empty variable. 878 * Returns zero in case of success and a negative error code in case of 879 * failure. 880 */ 881 static int check_volume_empty(struct ubifs_info *c) 882 { 883 int lnum, err; 884 885 c->empty = 1; 886 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 887 err = ubi_is_mapped(c->ubi, lnum); 888 if (unlikely(err < 0)) 889 return err; 890 if (err == 1) { 891 c->empty = 0; 892 break; 893 } 894 895 cond_resched(); 896 } 897 898 return 0; 899 } 900 901 /* 902 * UBIFS mount options. 903 * 904 * Opt_fast_unmount: do not run a journal commit before un-mounting 905 * Opt_norm_unmount: run a journal commit before un-mounting 906 * Opt_bulk_read: enable bulk-reads 907 * Opt_no_bulk_read: disable bulk-reads 908 * Opt_chk_data_crc: check CRCs when reading data nodes 909 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 910 * Opt_override_compr: override default compressor 911 * Opt_err: just end of array marker 912 */ 913 enum { 914 Opt_fast_unmount, 915 Opt_norm_unmount, 916 Opt_bulk_read, 917 Opt_no_bulk_read, 918 Opt_chk_data_crc, 919 Opt_no_chk_data_crc, 920 Opt_override_compr, 921 Opt_err, 922 }; 923 924 static const match_table_t tokens = { 925 {Opt_fast_unmount, "fast_unmount"}, 926 {Opt_norm_unmount, "norm_unmount"}, 927 {Opt_bulk_read, "bulk_read"}, 928 {Opt_no_bulk_read, "no_bulk_read"}, 929 {Opt_chk_data_crc, "chk_data_crc"}, 930 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 931 {Opt_override_compr, "compr=%s"}, 932 {Opt_err, NULL}, 933 }; 934 935 /** 936 * parse_standard_option - parse a standard mount option. 937 * @option: the option to parse 938 * 939 * Normally, standard mount options like "sync" are passed to file-systems as 940 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 941 * be present in the options string. This function tries to deal with this 942 * situation and parse standard options. Returns 0 if the option was not 943 * recognized, and the corresponding integer flag if it was. 944 * 945 * UBIFS is only interested in the "sync" option, so do not check for anything 946 * else. 947 */ 948 static int parse_standard_option(const char *option) 949 { 950 ubifs_msg("parse %s", option); 951 if (!strcmp(option, "sync")) 952 return MS_SYNCHRONOUS; 953 return 0; 954 } 955 956 /** 957 * ubifs_parse_options - parse mount parameters. 958 * @c: UBIFS file-system description object 959 * @options: parameters to parse 960 * @is_remount: non-zero if this is FS re-mount 961 * 962 * This function parses UBIFS mount options and returns zero in case success 963 * and a negative error code in case of failure. 964 */ 965 static int ubifs_parse_options(struct ubifs_info *c, char *options, 966 int is_remount) 967 { 968 char *p; 969 substring_t args[MAX_OPT_ARGS]; 970 971 if (!options) 972 return 0; 973 974 while ((p = strsep(&options, ","))) { 975 int token; 976 977 if (!*p) 978 continue; 979 980 token = match_token(p, tokens, args); 981 switch (token) { 982 /* 983 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 984 * We accept them in order to be backward-compatible. But this 985 * should be removed at some point. 986 */ 987 case Opt_fast_unmount: 988 c->mount_opts.unmount_mode = 2; 989 break; 990 case Opt_norm_unmount: 991 c->mount_opts.unmount_mode = 1; 992 break; 993 case Opt_bulk_read: 994 c->mount_opts.bulk_read = 2; 995 c->bulk_read = 1; 996 break; 997 case Opt_no_bulk_read: 998 c->mount_opts.bulk_read = 1; 999 c->bulk_read = 0; 1000 break; 1001 case Opt_chk_data_crc: 1002 c->mount_opts.chk_data_crc = 2; 1003 c->no_chk_data_crc = 0; 1004 break; 1005 case Opt_no_chk_data_crc: 1006 c->mount_opts.chk_data_crc = 1; 1007 c->no_chk_data_crc = 1; 1008 break; 1009 case Opt_override_compr: 1010 { 1011 char *name = match_strdup(&args[0]); 1012 1013 if (!name) 1014 return -ENOMEM; 1015 if (!strcmp(name, "none")) 1016 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1017 else if (!strcmp(name, "lzo")) 1018 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1019 else if (!strcmp(name, "zlib")) 1020 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1021 else { 1022 ubifs_err("unknown compressor \"%s\"", name); 1023 kfree(name); 1024 return -EINVAL; 1025 } 1026 kfree(name); 1027 c->mount_opts.override_compr = 1; 1028 c->default_compr = c->mount_opts.compr_type; 1029 break; 1030 } 1031 default: 1032 { 1033 unsigned long flag; 1034 struct super_block *sb = c->vfs_sb; 1035 1036 flag = parse_standard_option(p); 1037 if (!flag) { 1038 ubifs_err("unrecognized mount option \"%s\" " 1039 "or missing value", p); 1040 return -EINVAL; 1041 } 1042 sb->s_flags |= flag; 1043 break; 1044 } 1045 } 1046 } 1047 1048 return 0; 1049 } 1050 1051 /** 1052 * destroy_journal - destroy journal data structures. 1053 * @c: UBIFS file-system description object 1054 * 1055 * This function destroys journal data structures including those that may have 1056 * been created by recovery functions. 1057 */ 1058 static void destroy_journal(struct ubifs_info *c) 1059 { 1060 while (!list_empty(&c->unclean_leb_list)) { 1061 struct ubifs_unclean_leb *ucleb; 1062 1063 ucleb = list_entry(c->unclean_leb_list.next, 1064 struct ubifs_unclean_leb, list); 1065 list_del(&ucleb->list); 1066 kfree(ucleb); 1067 } 1068 while (!list_empty(&c->old_buds)) { 1069 struct ubifs_bud *bud; 1070 1071 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1072 list_del(&bud->list); 1073 kfree(bud); 1074 } 1075 ubifs_destroy_idx_gc(c); 1076 ubifs_destroy_size_tree(c); 1077 ubifs_tnc_close(c); 1078 free_buds(c); 1079 } 1080 1081 /** 1082 * bu_init - initialize bulk-read information. 1083 * @c: UBIFS file-system description object 1084 */ 1085 static void bu_init(struct ubifs_info *c) 1086 { 1087 ubifs_assert(c->bulk_read == 1); 1088 1089 if (c->bu.buf) 1090 return; /* Already initialized */ 1091 1092 again: 1093 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1094 if (!c->bu.buf) { 1095 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1096 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1097 goto again; 1098 } 1099 1100 /* Just disable bulk-read */ 1101 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " 1102 "disabling it", c->max_bu_buf_len); 1103 c->mount_opts.bulk_read = 1; 1104 c->bulk_read = 0; 1105 return; 1106 } 1107 } 1108 1109 /** 1110 * check_free_space - check if there is enough free space to mount. 1111 * @c: UBIFS file-system description object 1112 * 1113 * This function makes sure UBIFS has enough free space to be mounted in 1114 * read/write mode. UBIFS must always have some free space to allow deletions. 1115 */ 1116 static int check_free_space(struct ubifs_info *c) 1117 { 1118 ubifs_assert(c->dark_wm > 0); 1119 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1120 ubifs_err("insufficient free space to mount in read/write mode"); 1121 dbg_dump_budg(c); 1122 dbg_dump_lprops(c); 1123 return -ENOSPC; 1124 } 1125 return 0; 1126 } 1127 1128 /** 1129 * mount_ubifs - mount UBIFS file-system. 1130 * @c: UBIFS file-system description object 1131 * 1132 * This function mounts UBIFS file system. Returns zero in case of success and 1133 * a negative error code in case of failure. 1134 * 1135 * Note, the function does not de-allocate resources it it fails half way 1136 * through, and the caller has to do this instead. 1137 */ 1138 static int mount_ubifs(struct ubifs_info *c) 1139 { 1140 struct super_block *sb = c->vfs_sb; 1141 int err, mounted_read_only = (sb->s_flags & MS_RDONLY); 1142 long long x; 1143 size_t sz; 1144 1145 err = init_constants_early(c); 1146 if (err) 1147 return err; 1148 1149 err = ubifs_debugging_init(c); 1150 if (err) 1151 return err; 1152 1153 err = check_volume_empty(c); 1154 if (err) 1155 goto out_free; 1156 1157 if (c->empty && (mounted_read_only || c->ro_media)) { 1158 /* 1159 * This UBI volume is empty, and read-only, or the file system 1160 * is mounted read-only - we cannot format it. 1161 */ 1162 ubifs_err("can't format empty UBI volume: read-only %s", 1163 c->ro_media ? "UBI volume" : "mount"); 1164 err = -EROFS; 1165 goto out_free; 1166 } 1167 1168 if (c->ro_media && !mounted_read_only) { 1169 ubifs_err("cannot mount read-write - read-only media"); 1170 err = -EROFS; 1171 goto out_free; 1172 } 1173 1174 /* 1175 * The requirement for the buffer is that it should fit indexing B-tree 1176 * height amount of integers. We assume the height if the TNC tree will 1177 * never exceed 64. 1178 */ 1179 err = -ENOMEM; 1180 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1181 if (!c->bottom_up_buf) 1182 goto out_free; 1183 1184 c->sbuf = vmalloc(c->leb_size); 1185 if (!c->sbuf) 1186 goto out_free; 1187 1188 if (!mounted_read_only) { 1189 c->ileb_buf = vmalloc(c->leb_size); 1190 if (!c->ileb_buf) 1191 goto out_free; 1192 } 1193 1194 if (c->bulk_read == 1) 1195 bu_init(c); 1196 1197 /* 1198 * We have to check all CRCs, even for data nodes, when we mount the FS 1199 * (specifically, when we are replaying). 1200 */ 1201 c->always_chk_crc = 1; 1202 1203 err = ubifs_read_superblock(c); 1204 if (err) 1205 goto out_free; 1206 1207 /* 1208 * Make sure the compressor which is set as default in the superblock 1209 * or overridden by mount options is actually compiled in. 1210 */ 1211 if (!ubifs_compr_present(c->default_compr)) { 1212 ubifs_err("'compressor \"%s\" is not compiled in", 1213 ubifs_compr_name(c->default_compr)); 1214 err = -ENOTSUPP; 1215 goto out_free; 1216 } 1217 1218 err = init_constants_sb(c); 1219 if (err) 1220 goto out_free; 1221 1222 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1223 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1224 c->cbuf = kmalloc(sz, GFP_NOFS); 1225 if (!c->cbuf) { 1226 err = -ENOMEM; 1227 goto out_free; 1228 } 1229 1230 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1231 if (!mounted_read_only) { 1232 err = alloc_wbufs(c); 1233 if (err) 1234 goto out_cbuf; 1235 1236 /* Create background thread */ 1237 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1238 if (IS_ERR(c->bgt)) { 1239 err = PTR_ERR(c->bgt); 1240 c->bgt = NULL; 1241 ubifs_err("cannot spawn \"%s\", error %d", 1242 c->bgt_name, err); 1243 goto out_wbufs; 1244 } 1245 wake_up_process(c->bgt); 1246 } 1247 1248 err = ubifs_read_master(c); 1249 if (err) 1250 goto out_master; 1251 1252 init_constants_master(c); 1253 1254 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1255 ubifs_msg("recovery needed"); 1256 c->need_recovery = 1; 1257 if (!mounted_read_only) { 1258 err = ubifs_recover_inl_heads(c, c->sbuf); 1259 if (err) 1260 goto out_master; 1261 } 1262 } else if (!mounted_read_only) { 1263 /* 1264 * Set the "dirty" flag so that if we reboot uncleanly we 1265 * will notice this immediately on the next mount. 1266 */ 1267 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1268 err = ubifs_write_master(c); 1269 if (err) 1270 goto out_master; 1271 } 1272 1273 err = ubifs_lpt_init(c, 1, !mounted_read_only); 1274 if (err) 1275 goto out_lpt; 1276 1277 err = dbg_check_idx_size(c, c->old_idx_sz); 1278 if (err) 1279 goto out_lpt; 1280 1281 err = ubifs_replay_journal(c); 1282 if (err) 1283 goto out_journal; 1284 1285 /* Calculate 'min_idx_lebs' after journal replay */ 1286 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1287 1288 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); 1289 if (err) 1290 goto out_orphans; 1291 1292 if (!mounted_read_only) { 1293 int lnum; 1294 1295 err = check_free_space(c); 1296 if (err) 1297 goto out_orphans; 1298 1299 /* Check for enough log space */ 1300 lnum = c->lhead_lnum + 1; 1301 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1302 lnum = UBIFS_LOG_LNUM; 1303 if (lnum == c->ltail_lnum) { 1304 err = ubifs_consolidate_log(c); 1305 if (err) 1306 goto out_orphans; 1307 } 1308 1309 if (c->need_recovery) { 1310 err = ubifs_recover_size(c); 1311 if (err) 1312 goto out_orphans; 1313 err = ubifs_rcvry_gc_commit(c); 1314 if (err) 1315 goto out_orphans; 1316 } else { 1317 err = take_gc_lnum(c); 1318 if (err) 1319 goto out_orphans; 1320 1321 /* 1322 * GC LEB may contain garbage if there was an unclean 1323 * reboot, and it should be un-mapped. 1324 */ 1325 err = ubifs_leb_unmap(c, c->gc_lnum); 1326 if (err) 1327 goto out_orphans; 1328 } 1329 1330 err = dbg_check_lprops(c); 1331 if (err) 1332 goto out_orphans; 1333 } else if (c->need_recovery) { 1334 err = ubifs_recover_size(c); 1335 if (err) 1336 goto out_orphans; 1337 } else { 1338 /* 1339 * Even if we mount read-only, we have to set space in GC LEB 1340 * to proper value because this affects UBIFS free space 1341 * reporting. We do not want to have a situation when 1342 * re-mounting from R/O to R/W changes amount of free space. 1343 */ 1344 err = take_gc_lnum(c); 1345 if (err) 1346 goto out_orphans; 1347 } 1348 1349 spin_lock(&ubifs_infos_lock); 1350 list_add_tail(&c->infos_list, &ubifs_infos); 1351 spin_unlock(&ubifs_infos_lock); 1352 1353 if (c->need_recovery) { 1354 if (mounted_read_only) 1355 ubifs_msg("recovery deferred"); 1356 else { 1357 c->need_recovery = 0; 1358 ubifs_msg("recovery completed"); 1359 /* 1360 * GC LEB has to be empty and taken at this point. But 1361 * the journal head LEBs may also be accounted as 1362 * "empty taken" if they are empty. 1363 */ 1364 ubifs_assert(c->lst.taken_empty_lebs > 0); 1365 } 1366 } else 1367 ubifs_assert(c->lst.taken_empty_lebs > 0); 1368 1369 err = dbg_check_filesystem(c); 1370 if (err) 1371 goto out_infos; 1372 1373 err = dbg_debugfs_init_fs(c); 1374 if (err) 1375 goto out_infos; 1376 1377 c->always_chk_crc = 0; 1378 1379 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1380 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1381 if (mounted_read_only) 1382 ubifs_msg("mounted read-only"); 1383 x = (long long)c->main_lebs * c->leb_size; 1384 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1385 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1386 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1387 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1388 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1389 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", 1390 c->fmt_version, c->ro_compat_version, 1391 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1392 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1393 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1394 c->report_rp_size, c->report_rp_size >> 10); 1395 1396 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1397 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1398 dbg_msg("LEB size: %d bytes (%d KiB)", 1399 c->leb_size, c->leb_size >> 10); 1400 dbg_msg("data journal heads: %d", 1401 c->jhead_cnt - NONDATA_JHEADS_CNT); 1402 dbg_msg("UUID: %pUB", c->uuid); 1403 dbg_msg("big_lpt %d", c->big_lpt); 1404 dbg_msg("log LEBs: %d (%d - %d)", 1405 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1406 dbg_msg("LPT area LEBs: %d (%d - %d)", 1407 c->lpt_lebs, c->lpt_first, c->lpt_last); 1408 dbg_msg("orphan area LEBs: %d (%d - %d)", 1409 c->orph_lebs, c->orph_first, c->orph_last); 1410 dbg_msg("main area LEBs: %d (%d - %d)", 1411 c->main_lebs, c->main_first, c->leb_cnt - 1); 1412 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1413 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1414 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1415 dbg_msg("key hash type: %d", c->key_hash_type); 1416 dbg_msg("tree fanout: %d", c->fanout); 1417 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1418 dbg_msg("first main LEB: %d", c->main_first); 1419 dbg_msg("max. znode size %d", c->max_znode_sz); 1420 dbg_msg("max. index node size %d", c->max_idx_node_sz); 1421 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", 1422 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1423 dbg_msg("node sizes: trun %zu, sb %zu, master %zu", 1424 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1425 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", 1426 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1427 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu", 1428 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1429 UBIFS_MAX_DENT_NODE_SZ); 1430 dbg_msg("dead watermark: %d", c->dead_wm); 1431 dbg_msg("dark watermark: %d", c->dark_wm); 1432 dbg_msg("LEB overhead: %d", c->leb_overhead); 1433 x = (long long)c->main_lebs * c->dark_wm; 1434 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1435 x, x >> 10, x >> 20); 1436 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1437 c->max_bud_bytes, c->max_bud_bytes >> 10, 1438 c->max_bud_bytes >> 20); 1439 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1440 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1441 c->bg_bud_bytes >> 20); 1442 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1443 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1444 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1445 dbg_msg("commit number: %llu", c->cmt_no); 1446 1447 return 0; 1448 1449 out_infos: 1450 spin_lock(&ubifs_infos_lock); 1451 list_del(&c->infos_list); 1452 spin_unlock(&ubifs_infos_lock); 1453 out_orphans: 1454 free_orphans(c); 1455 out_journal: 1456 destroy_journal(c); 1457 out_lpt: 1458 ubifs_lpt_free(c, 0); 1459 out_master: 1460 kfree(c->mst_node); 1461 kfree(c->rcvrd_mst_node); 1462 if (c->bgt) 1463 kthread_stop(c->bgt); 1464 out_wbufs: 1465 free_wbufs(c); 1466 out_cbuf: 1467 kfree(c->cbuf); 1468 out_free: 1469 kfree(c->bu.buf); 1470 vfree(c->ileb_buf); 1471 vfree(c->sbuf); 1472 kfree(c->bottom_up_buf); 1473 ubifs_debugging_exit(c); 1474 return err; 1475 } 1476 1477 /** 1478 * ubifs_umount - un-mount UBIFS file-system. 1479 * @c: UBIFS file-system description object 1480 * 1481 * Note, this function is called to free allocated resourced when un-mounting, 1482 * as well as free resources when an error occurred while we were half way 1483 * through mounting (error path cleanup function). So it has to make sure the 1484 * resource was actually allocated before freeing it. 1485 */ 1486 static void ubifs_umount(struct ubifs_info *c) 1487 { 1488 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1489 c->vi.vol_id); 1490 1491 dbg_debugfs_exit_fs(c); 1492 spin_lock(&ubifs_infos_lock); 1493 list_del(&c->infos_list); 1494 spin_unlock(&ubifs_infos_lock); 1495 1496 if (c->bgt) 1497 kthread_stop(c->bgt); 1498 1499 destroy_journal(c); 1500 free_wbufs(c); 1501 free_orphans(c); 1502 ubifs_lpt_free(c, 0); 1503 1504 kfree(c->cbuf); 1505 kfree(c->rcvrd_mst_node); 1506 kfree(c->mst_node); 1507 kfree(c->bu.buf); 1508 vfree(c->ileb_buf); 1509 vfree(c->sbuf); 1510 kfree(c->bottom_up_buf); 1511 ubifs_debugging_exit(c); 1512 } 1513 1514 /** 1515 * ubifs_remount_rw - re-mount in read-write mode. 1516 * @c: UBIFS file-system description object 1517 * 1518 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1519 * mode. This function allocates the needed resources and re-mounts UBIFS in 1520 * read-write mode. 1521 */ 1522 static int ubifs_remount_rw(struct ubifs_info *c) 1523 { 1524 int err, lnum; 1525 1526 if (c->rw_incompat) { 1527 ubifs_err("the file-system is not R/W-compatible"); 1528 ubifs_msg("on-flash format version is w%d/r%d, but software " 1529 "only supports up to version w%d/r%d", c->fmt_version, 1530 c->ro_compat_version, UBIFS_FORMAT_VERSION, 1531 UBIFS_RO_COMPAT_VERSION); 1532 return -EROFS; 1533 } 1534 1535 mutex_lock(&c->umount_mutex); 1536 dbg_save_space_info(c); 1537 c->remounting_rw = 1; 1538 c->always_chk_crc = 1; 1539 1540 err = check_free_space(c); 1541 if (err) 1542 goto out; 1543 1544 if (c->old_leb_cnt != c->leb_cnt) { 1545 struct ubifs_sb_node *sup; 1546 1547 sup = ubifs_read_sb_node(c); 1548 if (IS_ERR(sup)) { 1549 err = PTR_ERR(sup); 1550 goto out; 1551 } 1552 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1553 err = ubifs_write_sb_node(c, sup); 1554 if (err) 1555 goto out; 1556 } 1557 1558 if (c->need_recovery) { 1559 ubifs_msg("completing deferred recovery"); 1560 err = ubifs_write_rcvrd_mst_node(c); 1561 if (err) 1562 goto out; 1563 err = ubifs_recover_size(c); 1564 if (err) 1565 goto out; 1566 err = ubifs_clean_lebs(c, c->sbuf); 1567 if (err) 1568 goto out; 1569 err = ubifs_recover_inl_heads(c, c->sbuf); 1570 if (err) 1571 goto out; 1572 } else { 1573 /* A readonly mount is not allowed to have orphans */ 1574 ubifs_assert(c->tot_orphans == 0); 1575 err = ubifs_clear_orphans(c); 1576 if (err) 1577 goto out; 1578 } 1579 1580 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1581 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1582 err = ubifs_write_master(c); 1583 if (err) 1584 goto out; 1585 } 1586 1587 c->ileb_buf = vmalloc(c->leb_size); 1588 if (!c->ileb_buf) { 1589 err = -ENOMEM; 1590 goto out; 1591 } 1592 1593 err = ubifs_lpt_init(c, 0, 1); 1594 if (err) 1595 goto out; 1596 1597 err = alloc_wbufs(c); 1598 if (err) 1599 goto out; 1600 1601 ubifs_create_buds_lists(c); 1602 1603 /* Create background thread */ 1604 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1605 if (IS_ERR(c->bgt)) { 1606 err = PTR_ERR(c->bgt); 1607 c->bgt = NULL; 1608 ubifs_err("cannot spawn \"%s\", error %d", 1609 c->bgt_name, err); 1610 goto out; 1611 } 1612 wake_up_process(c->bgt); 1613 1614 c->orph_buf = vmalloc(c->leb_size); 1615 if (!c->orph_buf) { 1616 err = -ENOMEM; 1617 goto out; 1618 } 1619 1620 /* Check for enough log space */ 1621 lnum = c->lhead_lnum + 1; 1622 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1623 lnum = UBIFS_LOG_LNUM; 1624 if (lnum == c->ltail_lnum) { 1625 err = ubifs_consolidate_log(c); 1626 if (err) 1627 goto out; 1628 } 1629 1630 if (c->need_recovery) 1631 err = ubifs_rcvry_gc_commit(c); 1632 else 1633 err = ubifs_leb_unmap(c, c->gc_lnum); 1634 if (err) 1635 goto out; 1636 1637 if (c->need_recovery) { 1638 c->need_recovery = 0; 1639 ubifs_msg("deferred recovery completed"); 1640 } 1641 1642 dbg_gen("re-mounted read-write"); 1643 c->vfs_sb->s_flags &= ~MS_RDONLY; 1644 c->remounting_rw = 0; 1645 c->always_chk_crc = 0; 1646 err = dbg_check_space_info(c); 1647 mutex_unlock(&c->umount_mutex); 1648 return err; 1649 1650 out: 1651 vfree(c->orph_buf); 1652 c->orph_buf = NULL; 1653 if (c->bgt) { 1654 kthread_stop(c->bgt); 1655 c->bgt = NULL; 1656 } 1657 free_wbufs(c); 1658 vfree(c->ileb_buf); 1659 c->ileb_buf = NULL; 1660 ubifs_lpt_free(c, 1); 1661 c->remounting_rw = 0; 1662 c->always_chk_crc = 0; 1663 mutex_unlock(&c->umount_mutex); 1664 return err; 1665 } 1666 1667 /** 1668 * ubifs_remount_ro - re-mount in read-only mode. 1669 * @c: UBIFS file-system description object 1670 * 1671 * We assume VFS has stopped writing. Possibly the background thread could be 1672 * running a commit, however kthread_stop will wait in that case. 1673 */ 1674 static void ubifs_remount_ro(struct ubifs_info *c) 1675 { 1676 int i, err; 1677 1678 ubifs_assert(!c->need_recovery); 1679 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 1680 1681 mutex_lock(&c->umount_mutex); 1682 if (c->bgt) { 1683 kthread_stop(c->bgt); 1684 c->bgt = NULL; 1685 } 1686 1687 dbg_save_space_info(c); 1688 1689 for (i = 0; i < c->jhead_cnt; i++) { 1690 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1691 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1692 } 1693 1694 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1695 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1696 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1697 err = ubifs_write_master(c); 1698 if (err) 1699 ubifs_ro_mode(c, err); 1700 1701 free_wbufs(c); 1702 vfree(c->orph_buf); 1703 c->orph_buf = NULL; 1704 vfree(c->ileb_buf); 1705 c->ileb_buf = NULL; 1706 ubifs_lpt_free(c, 1); 1707 err = dbg_check_space_info(c); 1708 if (err) 1709 ubifs_ro_mode(c, err); 1710 mutex_unlock(&c->umount_mutex); 1711 } 1712 1713 static void ubifs_put_super(struct super_block *sb) 1714 { 1715 int i; 1716 struct ubifs_info *c = sb->s_fs_info; 1717 1718 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1719 c->vi.vol_id); 1720 1721 /* 1722 * The following asserts are only valid if there has not been a failure 1723 * of the media. For example, there will be dirty inodes if we failed 1724 * to write them back because of I/O errors. 1725 */ 1726 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1727 ubifs_assert(c->budg_idx_growth == 0); 1728 ubifs_assert(c->budg_dd_growth == 0); 1729 ubifs_assert(c->budg_data_growth == 0); 1730 1731 /* 1732 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1733 * and file system un-mount. Namely, it prevents the shrinker from 1734 * picking this superblock for shrinking - it will be just skipped if 1735 * the mutex is locked. 1736 */ 1737 mutex_lock(&c->umount_mutex); 1738 if (!(c->vfs_sb->s_flags & MS_RDONLY)) { 1739 /* 1740 * First of all kill the background thread to make sure it does 1741 * not interfere with un-mounting and freeing resources. 1742 */ 1743 if (c->bgt) { 1744 kthread_stop(c->bgt); 1745 c->bgt = NULL; 1746 } 1747 1748 /* Synchronize write-buffers */ 1749 if (c->jheads) 1750 for (i = 0; i < c->jhead_cnt; i++) 1751 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1752 1753 /* 1754 * On fatal errors c->ro_media is set to 1, in which case we do 1755 * not write the master node. 1756 */ 1757 if (!c->ro_media) { 1758 /* 1759 * We are being cleanly unmounted which means the 1760 * orphans were killed - indicate this in the master 1761 * node. Also save the reserved GC LEB number. 1762 */ 1763 int err; 1764 1765 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1766 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1767 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1768 err = ubifs_write_master(c); 1769 if (err) 1770 /* 1771 * Recovery will attempt to fix the master area 1772 * next mount, so we just print a message and 1773 * continue to unmount normally. 1774 */ 1775 ubifs_err("failed to write master node, " 1776 "error %d", err); 1777 } 1778 } 1779 1780 ubifs_umount(c); 1781 bdi_destroy(&c->bdi); 1782 ubi_close_volume(c->ubi); 1783 mutex_unlock(&c->umount_mutex); 1784 kfree(c); 1785 } 1786 1787 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1788 { 1789 int err; 1790 struct ubifs_info *c = sb->s_fs_info; 1791 1792 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1793 1794 err = ubifs_parse_options(c, data, 1); 1795 if (err) { 1796 ubifs_err("invalid or unknown remount parameter"); 1797 return err; 1798 } 1799 1800 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1801 if (c->ro_media) { 1802 ubifs_msg("cannot re-mount due to prior errors"); 1803 return -EROFS; 1804 } 1805 err = ubifs_remount_rw(c); 1806 if (err) 1807 return err; 1808 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 1809 if (c->ro_media) { 1810 ubifs_msg("cannot re-mount due to prior errors"); 1811 return -EROFS; 1812 } 1813 ubifs_remount_ro(c); 1814 } 1815 1816 if (c->bulk_read == 1) 1817 bu_init(c); 1818 else { 1819 dbg_gen("disable bulk-read"); 1820 kfree(c->bu.buf); 1821 c->bu.buf = NULL; 1822 } 1823 1824 ubifs_assert(c->lst.taken_empty_lebs > 0); 1825 return 0; 1826 } 1827 1828 const struct super_operations ubifs_super_operations = { 1829 .alloc_inode = ubifs_alloc_inode, 1830 .destroy_inode = ubifs_destroy_inode, 1831 .put_super = ubifs_put_super, 1832 .write_inode = ubifs_write_inode, 1833 .evict_inode = ubifs_evict_inode, 1834 .statfs = ubifs_statfs, 1835 .dirty_inode = ubifs_dirty_inode, 1836 .remount_fs = ubifs_remount_fs, 1837 .show_options = ubifs_show_options, 1838 .sync_fs = ubifs_sync_fs, 1839 }; 1840 1841 /** 1842 * open_ubi - parse UBI device name string and open the UBI device. 1843 * @name: UBI volume name 1844 * @mode: UBI volume open mode 1845 * 1846 * The primary method of mounting UBIFS is by specifying the UBI volume 1847 * character device node path. However, UBIFS may also be mounted withoug any 1848 * character device node using one of the following methods: 1849 * 1850 * o ubiX_Y - mount UBI device number X, volume Y; 1851 * o ubiY - mount UBI device number 0, volume Y; 1852 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1853 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1854 * 1855 * Alternative '!' separator may be used instead of ':' (because some shells 1856 * like busybox may interpret ':' as an NFS host name separator). This function 1857 * returns UBI volume description object in case of success and a negative 1858 * error code in case of failure. 1859 */ 1860 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1861 { 1862 struct ubi_volume_desc *ubi; 1863 int dev, vol; 1864 char *endptr; 1865 1866 /* First, try to open using the device node path method */ 1867 ubi = ubi_open_volume_path(name, mode); 1868 if (!IS_ERR(ubi)) 1869 return ubi; 1870 1871 /* Try the "nodev" method */ 1872 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1873 return ERR_PTR(-EINVAL); 1874 1875 /* ubi:NAME method */ 1876 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1877 return ubi_open_volume_nm(0, name + 4, mode); 1878 1879 if (!isdigit(name[3])) 1880 return ERR_PTR(-EINVAL); 1881 1882 dev = simple_strtoul(name + 3, &endptr, 0); 1883 1884 /* ubiY method */ 1885 if (*endptr == '\0') 1886 return ubi_open_volume(0, dev, mode); 1887 1888 /* ubiX_Y method */ 1889 if (*endptr == '_' && isdigit(endptr[1])) { 1890 vol = simple_strtoul(endptr + 1, &endptr, 0); 1891 if (*endptr != '\0') 1892 return ERR_PTR(-EINVAL); 1893 return ubi_open_volume(dev, vol, mode); 1894 } 1895 1896 /* ubiX:NAME method */ 1897 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1898 return ubi_open_volume_nm(dev, ++endptr, mode); 1899 1900 return ERR_PTR(-EINVAL); 1901 } 1902 1903 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1904 { 1905 struct ubi_volume_desc *ubi = sb->s_fs_info; 1906 struct ubifs_info *c; 1907 struct inode *root; 1908 int err; 1909 1910 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1911 if (!c) 1912 return -ENOMEM; 1913 1914 spin_lock_init(&c->cnt_lock); 1915 spin_lock_init(&c->cs_lock); 1916 spin_lock_init(&c->buds_lock); 1917 spin_lock_init(&c->space_lock); 1918 spin_lock_init(&c->orphan_lock); 1919 init_rwsem(&c->commit_sem); 1920 mutex_init(&c->lp_mutex); 1921 mutex_init(&c->tnc_mutex); 1922 mutex_init(&c->log_mutex); 1923 mutex_init(&c->mst_mutex); 1924 mutex_init(&c->umount_mutex); 1925 mutex_init(&c->bu_mutex); 1926 init_waitqueue_head(&c->cmt_wq); 1927 c->buds = RB_ROOT; 1928 c->old_idx = RB_ROOT; 1929 c->size_tree = RB_ROOT; 1930 c->orph_tree = RB_ROOT; 1931 INIT_LIST_HEAD(&c->infos_list); 1932 INIT_LIST_HEAD(&c->idx_gc); 1933 INIT_LIST_HEAD(&c->replay_list); 1934 INIT_LIST_HEAD(&c->replay_buds); 1935 INIT_LIST_HEAD(&c->uncat_list); 1936 INIT_LIST_HEAD(&c->empty_list); 1937 INIT_LIST_HEAD(&c->freeable_list); 1938 INIT_LIST_HEAD(&c->frdi_idx_list); 1939 INIT_LIST_HEAD(&c->unclean_leb_list); 1940 INIT_LIST_HEAD(&c->old_buds); 1941 INIT_LIST_HEAD(&c->orph_list); 1942 INIT_LIST_HEAD(&c->orph_new); 1943 1944 c->vfs_sb = sb; 1945 c->highest_inum = UBIFS_FIRST_INO; 1946 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1947 1948 ubi_get_volume_info(ubi, &c->vi); 1949 ubi_get_device_info(c->vi.ubi_num, &c->di); 1950 1951 /* Re-open the UBI device in read-write mode */ 1952 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1953 if (IS_ERR(c->ubi)) { 1954 err = PTR_ERR(c->ubi); 1955 goto out_free; 1956 } 1957 1958 /* 1959 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 1960 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1961 * which means the user would have to wait not just for their own I/O 1962 * but the read-ahead I/O as well i.e. completely pointless. 1963 * 1964 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1965 */ 1966 c->bdi.name = "ubifs", 1967 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1968 c->bdi.unplug_io_fn = default_unplug_io_fn; 1969 err = bdi_init(&c->bdi); 1970 if (err) 1971 goto out_close; 1972 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 1973 c->vi.ubi_num, c->vi.vol_id); 1974 if (err) 1975 goto out_bdi; 1976 1977 err = ubifs_parse_options(c, data, 0); 1978 if (err) 1979 goto out_bdi; 1980 1981 sb->s_bdi = &c->bdi; 1982 sb->s_fs_info = c; 1983 sb->s_magic = UBIFS_SUPER_MAGIC; 1984 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1985 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 1986 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 1987 if (c->max_inode_sz > MAX_LFS_FILESIZE) 1988 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 1989 sb->s_op = &ubifs_super_operations; 1990 1991 mutex_lock(&c->umount_mutex); 1992 err = mount_ubifs(c); 1993 if (err) { 1994 ubifs_assert(err < 0); 1995 goto out_unlock; 1996 } 1997 1998 /* Read the root inode */ 1999 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2000 if (IS_ERR(root)) { 2001 err = PTR_ERR(root); 2002 goto out_umount; 2003 } 2004 2005 sb->s_root = d_alloc_root(root); 2006 if (!sb->s_root) 2007 goto out_iput; 2008 2009 mutex_unlock(&c->umount_mutex); 2010 return 0; 2011 2012 out_iput: 2013 iput(root); 2014 out_umount: 2015 ubifs_umount(c); 2016 out_unlock: 2017 mutex_unlock(&c->umount_mutex); 2018 out_bdi: 2019 bdi_destroy(&c->bdi); 2020 out_close: 2021 ubi_close_volume(c->ubi); 2022 out_free: 2023 kfree(c); 2024 return err; 2025 } 2026 2027 static int sb_test(struct super_block *sb, void *data) 2028 { 2029 dev_t *dev = data; 2030 struct ubifs_info *c = sb->s_fs_info; 2031 2032 return c->vi.cdev == *dev; 2033 } 2034 2035 static int ubifs_get_sb(struct file_system_type *fs_type, int flags, 2036 const char *name, void *data, struct vfsmount *mnt) 2037 { 2038 struct ubi_volume_desc *ubi; 2039 struct ubi_volume_info vi; 2040 struct super_block *sb; 2041 int err; 2042 2043 dbg_gen("name %s, flags %#x", name, flags); 2044 2045 /* 2046 * Get UBI device number and volume ID. Mount it read-only so far 2047 * because this might be a new mount point, and UBI allows only one 2048 * read-write user at a time. 2049 */ 2050 ubi = open_ubi(name, UBI_READONLY); 2051 if (IS_ERR(ubi)) { 2052 ubifs_err("cannot open \"%s\", error %d", 2053 name, (int)PTR_ERR(ubi)); 2054 return PTR_ERR(ubi); 2055 } 2056 ubi_get_volume_info(ubi, &vi); 2057 2058 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 2059 2060 sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev); 2061 if (IS_ERR(sb)) { 2062 err = PTR_ERR(sb); 2063 goto out_close; 2064 } 2065 2066 if (sb->s_root) { 2067 /* A new mount point for already mounted UBIFS */ 2068 dbg_gen("this ubi volume is already mounted"); 2069 if ((flags ^ sb->s_flags) & MS_RDONLY) { 2070 err = -EBUSY; 2071 goto out_deact; 2072 } 2073 } else { 2074 sb->s_flags = flags; 2075 /* 2076 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 2077 * replaced by 'c'. 2078 */ 2079 sb->s_fs_info = ubi; 2080 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2081 if (err) 2082 goto out_deact; 2083 /* We do not support atime */ 2084 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2085 } 2086 2087 /* 'fill_super()' opens ubi again so we must close it here */ 2088 ubi_close_volume(ubi); 2089 2090 simple_set_mnt(mnt, sb); 2091 return 0; 2092 2093 out_deact: 2094 deactivate_locked_super(sb); 2095 out_close: 2096 ubi_close_volume(ubi); 2097 return err; 2098 } 2099 2100 static struct file_system_type ubifs_fs_type = { 2101 .name = "ubifs", 2102 .owner = THIS_MODULE, 2103 .get_sb = ubifs_get_sb, 2104 .kill_sb = kill_anon_super, 2105 }; 2106 2107 /* 2108 * Inode slab cache constructor. 2109 */ 2110 static void inode_slab_ctor(void *obj) 2111 { 2112 struct ubifs_inode *ui = obj; 2113 inode_init_once(&ui->vfs_inode); 2114 } 2115 2116 static int __init ubifs_init(void) 2117 { 2118 int err; 2119 2120 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2121 2122 /* Make sure node sizes are 8-byte aligned */ 2123 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2124 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2125 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2126 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2127 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2128 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2129 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2130 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2131 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2132 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2133 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2134 2135 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2136 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2137 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2138 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2139 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2140 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2141 2142 /* Check min. node size */ 2143 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2144 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2145 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2146 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2147 2148 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2149 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2150 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2151 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2152 2153 /* Defined node sizes */ 2154 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2155 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2156 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2157 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2158 2159 /* 2160 * We use 2 bit wide bit-fields to store compression type, which should 2161 * be amended if more compressors are added. The bit-fields are: 2162 * @compr_type in 'struct ubifs_inode', @default_compr in 2163 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2164 */ 2165 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2166 2167 /* 2168 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2169 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2170 */ 2171 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2172 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 2173 " at least 4096 bytes", 2174 (unsigned int)PAGE_CACHE_SIZE); 2175 return -EINVAL; 2176 } 2177 2178 err = register_filesystem(&ubifs_fs_type); 2179 if (err) { 2180 ubifs_err("cannot register file system, error %d", err); 2181 return err; 2182 } 2183 2184 err = -ENOMEM; 2185 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2186 sizeof(struct ubifs_inode), 0, 2187 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2188 &inode_slab_ctor); 2189 if (!ubifs_inode_slab) 2190 goto out_reg; 2191 2192 register_shrinker(&ubifs_shrinker_info); 2193 2194 err = ubifs_compressors_init(); 2195 if (err) 2196 goto out_shrinker; 2197 2198 err = dbg_debugfs_init(); 2199 if (err) 2200 goto out_compr; 2201 2202 return 0; 2203 2204 out_compr: 2205 ubifs_compressors_exit(); 2206 out_shrinker: 2207 unregister_shrinker(&ubifs_shrinker_info); 2208 kmem_cache_destroy(ubifs_inode_slab); 2209 out_reg: 2210 unregister_filesystem(&ubifs_fs_type); 2211 return err; 2212 } 2213 /* late_initcall to let compressors initialize first */ 2214 late_initcall(ubifs_init); 2215 2216 static void __exit ubifs_exit(void) 2217 { 2218 ubifs_assert(list_empty(&ubifs_infos)); 2219 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2220 2221 dbg_debugfs_exit(); 2222 ubifs_compressors_exit(); 2223 unregister_shrinker(&ubifs_shrinker_info); 2224 kmem_cache_destroy(ubifs_inode_slab); 2225 unregister_filesystem(&ubifs_fs_type); 2226 } 2227 module_exit(ubifs_exit); 2228 2229 MODULE_LICENSE("GPL"); 2230 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2231 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2232 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2233