xref: /linux/fs/ubifs/super.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.shrink = ubifs_shrinker,
53 	.seeks = DEFAULT_SEEKS,
54 };
55 
56 /**
57  * validate_inode - validate inode.
58  * @c: UBIFS file-system description object
59  * @inode: the inode to validate
60  *
61  * This is a helper function for 'ubifs_iget()' which validates various fields
62  * of a newly built inode to make sure they contain sane values and prevent
63  * possible vulnerabilities. Returns zero if the inode is all right and
64  * a non-zero error code if not.
65  */
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68 	int err;
69 	const struct ubifs_inode *ui = ubifs_inode(inode);
70 
71 	if (inode->i_size > c->max_inode_sz) {
72 		ubifs_err("inode is too large (%lld)",
73 			  (long long)inode->i_size);
74 		return 1;
75 	}
76 
77 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 		ubifs_err("unknown compression type %d", ui->compr_type);
79 		return 2;
80 	}
81 
82 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 		return 3;
84 
85 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 		return 4;
87 
88 	if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
89 		return 5;
90 
91 	if (!ubifs_compr_present(ui->compr_type)) {
92 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 			   "compiled in", inode->i_ino,
94 			   ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir_size(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	inode->i_nlink = le32_to_cpu(ino->nlink);
133 	inode->i_uid   = le32_to_cpu(ino->uid);
134 	inode->i_gid   = le32_to_cpu(ino->gid);
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	/* Disable read-ahead */
160 	inode->i_mapping->backing_dev_info = &c->bdi;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 	dbg_dump_node(c, ino);
250 	dbg_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_destroy_inode(struct inode *inode)
276 {
277 	struct ubifs_inode *ui = ubifs_inode(inode);
278 
279 	kfree(ui->data);
280 	kmem_cache_free(ubifs_inode_slab, inode);
281 }
282 
283 /*
284  * Note, Linux write-back code calls this without 'i_mutex'.
285  */
286 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
287 {
288 	int err = 0;
289 	struct ubifs_info *c = inode->i_sb->s_fs_info;
290 	struct ubifs_inode *ui = ubifs_inode(inode);
291 
292 	ubifs_assert(!ui->xattr);
293 	if (is_bad_inode(inode))
294 		return 0;
295 
296 	mutex_lock(&ui->ui_mutex);
297 	/*
298 	 * Due to races between write-back forced by budgeting
299 	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300 	 * have already been synchronized, do not do this again. This might
301 	 * also happen if it was synchronized in an VFS operation, e.g.
302 	 * 'ubifs_link()'.
303 	 */
304 	if (!ui->dirty) {
305 		mutex_unlock(&ui->ui_mutex);
306 		return 0;
307 	}
308 
309 	/*
310 	 * As an optimization, do not write orphan inodes to the media just
311 	 * because this is not needed.
312 	 */
313 	dbg_gen("inode %lu, mode %#x, nlink %u",
314 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
315 	if (inode->i_nlink) {
316 		err = ubifs_jnl_write_inode(c, inode);
317 		if (err)
318 			ubifs_err("can't write inode %lu, error %d",
319 				  inode->i_ino, err);
320 		else
321 			err = dbg_check_inode_size(c, inode, ui->ui_size);
322 	}
323 
324 	ui->dirty = 0;
325 	mutex_unlock(&ui->ui_mutex);
326 	ubifs_release_dirty_inode_budget(c, ui);
327 	return err;
328 }
329 
330 static void ubifs_evict_inode(struct inode *inode)
331 {
332 	int err;
333 	struct ubifs_info *c = inode->i_sb->s_fs_info;
334 	struct ubifs_inode *ui = ubifs_inode(inode);
335 
336 	if (ui->xattr)
337 		/*
338 		 * Extended attribute inode deletions are fully handled in
339 		 * 'ubifs_removexattr()'. These inodes are special and have
340 		 * limited usage, so there is nothing to do here.
341 		 */
342 		goto out;
343 
344 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
345 	ubifs_assert(!atomic_read(&inode->i_count));
346 
347 	truncate_inode_pages(&inode->i_data, 0);
348 
349 	if (inode->i_nlink)
350 		goto done;
351 
352 	if (is_bad_inode(inode))
353 		goto out;
354 
355 	ui->ui_size = inode->i_size = 0;
356 	err = ubifs_jnl_delete_inode(c, inode);
357 	if (err)
358 		/*
359 		 * Worst case we have a lost orphan inode wasting space, so a
360 		 * simple error message is OK here.
361 		 */
362 		ubifs_err("can't delete inode %lu, error %d",
363 			  inode->i_ino, err);
364 
365 out:
366 	if (ui->dirty)
367 		ubifs_release_dirty_inode_budget(c, ui);
368 	else {
369 		/* We've deleted something - clean the "no space" flags */
370 		c->nospace = c->nospace_rp = 0;
371 		smp_wmb();
372 	}
373 done:
374 	end_writeback(inode);
375 }
376 
377 static void ubifs_dirty_inode(struct inode *inode)
378 {
379 	struct ubifs_inode *ui = ubifs_inode(inode);
380 
381 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
382 	if (!ui->dirty) {
383 		ui->dirty = 1;
384 		dbg_gen("inode %lu",  inode->i_ino);
385 	}
386 }
387 
388 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
389 {
390 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
391 	unsigned long long free;
392 	__le32 *uuid = (__le32 *)c->uuid;
393 
394 	free = ubifs_get_free_space(c);
395 	dbg_gen("free space %lld bytes (%lld blocks)",
396 		free, free >> UBIFS_BLOCK_SHIFT);
397 
398 	buf->f_type = UBIFS_SUPER_MAGIC;
399 	buf->f_bsize = UBIFS_BLOCK_SIZE;
400 	buf->f_blocks = c->block_cnt;
401 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
402 	if (free > c->report_rp_size)
403 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
404 	else
405 		buf->f_bavail = 0;
406 	buf->f_files = 0;
407 	buf->f_ffree = 0;
408 	buf->f_namelen = UBIFS_MAX_NLEN;
409 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
410 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
411 	ubifs_assert(buf->f_bfree <= c->block_cnt);
412 	return 0;
413 }
414 
415 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
416 {
417 	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
418 
419 	if (c->mount_opts.unmount_mode == 2)
420 		seq_printf(s, ",fast_unmount");
421 	else if (c->mount_opts.unmount_mode == 1)
422 		seq_printf(s, ",norm_unmount");
423 
424 	if (c->mount_opts.bulk_read == 2)
425 		seq_printf(s, ",bulk_read");
426 	else if (c->mount_opts.bulk_read == 1)
427 		seq_printf(s, ",no_bulk_read");
428 
429 	if (c->mount_opts.chk_data_crc == 2)
430 		seq_printf(s, ",chk_data_crc");
431 	else if (c->mount_opts.chk_data_crc == 1)
432 		seq_printf(s, ",no_chk_data_crc");
433 
434 	if (c->mount_opts.override_compr) {
435 		seq_printf(s, ",compr=%s",
436 			   ubifs_compr_name(c->mount_opts.compr_type));
437 	}
438 
439 	return 0;
440 }
441 
442 static int ubifs_sync_fs(struct super_block *sb, int wait)
443 {
444 	int i, err;
445 	struct ubifs_info *c = sb->s_fs_info;
446 
447 	/*
448 	 * Zero @wait is just an advisory thing to help the file system shove
449 	 * lots of data into the queues, and there will be the second
450 	 * '->sync_fs()' call, with non-zero @wait.
451 	 */
452 	if (!wait)
453 		return 0;
454 
455 	/*
456 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
457 	 * do this if it waits for an already running commit.
458 	 */
459 	for (i = 0; i < c->jhead_cnt; i++) {
460 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
461 		if (err)
462 			return err;
463 	}
464 
465 	/*
466 	 * Strictly speaking, it is not necessary to commit the journal here,
467 	 * synchronizing write-buffers would be enough. But committing makes
468 	 * UBIFS free space predictions much more accurate, so we want to let
469 	 * the user be able to get more accurate results of 'statfs()' after
470 	 * they synchronize the file system.
471 	 */
472 	err = ubifs_run_commit(c);
473 	if (err)
474 		return err;
475 
476 	return ubi_sync(c->vi.ubi_num);
477 }
478 
479 /**
480  * init_constants_early - initialize UBIFS constants.
481  * @c: UBIFS file-system description object
482  *
483  * This function initialize UBIFS constants which do not need the superblock to
484  * be read. It also checks that the UBI volume satisfies basic UBIFS
485  * requirements. Returns zero in case of success and a negative error code in
486  * case of failure.
487  */
488 static int init_constants_early(struct ubifs_info *c)
489 {
490 	if (c->vi.corrupted) {
491 		ubifs_warn("UBI volume is corrupted - read-only mode");
492 		c->ro_media = 1;
493 	}
494 
495 	if (c->di.ro_mode) {
496 		ubifs_msg("read-only UBI device");
497 		c->ro_media = 1;
498 	}
499 
500 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
501 		ubifs_msg("static UBI volume - read-only mode");
502 		c->ro_media = 1;
503 	}
504 
505 	c->leb_cnt = c->vi.size;
506 	c->leb_size = c->vi.usable_leb_size;
507 	c->half_leb_size = c->leb_size / 2;
508 	c->min_io_size = c->di.min_io_size;
509 	c->min_io_shift = fls(c->min_io_size) - 1;
510 
511 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
512 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
513 			  c->leb_size, UBIFS_MIN_LEB_SZ);
514 		return -EINVAL;
515 	}
516 
517 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
518 		ubifs_err("too few LEBs (%d), min. is %d",
519 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
520 		return -EINVAL;
521 	}
522 
523 	if (!is_power_of_2(c->min_io_size)) {
524 		ubifs_err("bad min. I/O size %d", c->min_io_size);
525 		return -EINVAL;
526 	}
527 
528 	/*
529 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
530 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
531 	 * less than 8.
532 	 */
533 	if (c->min_io_size < 8) {
534 		c->min_io_size = 8;
535 		c->min_io_shift = 3;
536 	}
537 
538 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
539 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
540 
541 	/*
542 	 * Initialize node length ranges which are mostly needed for node
543 	 * length validation.
544 	 */
545 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
546 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
547 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
548 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
549 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
550 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
551 
552 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
553 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
554 	c->ranges[UBIFS_ORPH_NODE].min_len =
555 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
556 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
557 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
558 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
559 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
560 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
561 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
562 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
563 	/*
564 	 * Minimum indexing node size is amended later when superblock is
565 	 * read and the key length is known.
566 	 */
567 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
568 	/*
569 	 * Maximum indexing node size is amended later when superblock is
570 	 * read and the fanout is known.
571 	 */
572 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
573 
574 	/*
575 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
576 	 * about these values.
577 	 */
578 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
579 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
580 
581 	/*
582 	 * Calculate how many bytes would be wasted at the end of LEB if it was
583 	 * fully filled with data nodes of maximum size. This is used in
584 	 * calculations when reporting free space.
585 	 */
586 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
587 
588 	/* Buffer size for bulk-reads */
589 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
590 	if (c->max_bu_buf_len > c->leb_size)
591 		c->max_bu_buf_len = c->leb_size;
592 	return 0;
593 }
594 
595 /**
596  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
597  * @c: UBIFS file-system description object
598  * @lnum: LEB the write-buffer was synchronized to
599  * @free: how many free bytes left in this LEB
600  * @pad: how many bytes were padded
601  *
602  * This is a callback function which is called by the I/O unit when the
603  * write-buffer is synchronized. We need this to correctly maintain space
604  * accounting in bud logical eraseblocks. This function returns zero in case of
605  * success and a negative error code in case of failure.
606  *
607  * This function actually belongs to the journal, but we keep it here because
608  * we want to keep it static.
609  */
610 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
611 {
612 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
613 }
614 
615 /*
616  * init_constants_sb - initialize UBIFS constants.
617  * @c: UBIFS file-system description object
618  *
619  * This is a helper function which initializes various UBIFS constants after
620  * the superblock has been read. It also checks various UBIFS parameters and
621  * makes sure they are all right. Returns zero in case of success and a
622  * negative error code in case of failure.
623  */
624 static int init_constants_sb(struct ubifs_info *c)
625 {
626 	int tmp, err;
627 	long long tmp64;
628 
629 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
630 	c->max_znode_sz = sizeof(struct ubifs_znode) +
631 				c->fanout * sizeof(struct ubifs_zbranch);
632 
633 	tmp = ubifs_idx_node_sz(c, 1);
634 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
635 	c->min_idx_node_sz = ALIGN(tmp, 8);
636 
637 	tmp = ubifs_idx_node_sz(c, c->fanout);
638 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
639 	c->max_idx_node_sz = ALIGN(tmp, 8);
640 
641 	/* Make sure LEB size is large enough to fit full commit */
642 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
643 	tmp = ALIGN(tmp, c->min_io_size);
644 	if (tmp > c->leb_size) {
645 		dbg_err("too small LEB size %d, at least %d needed",
646 			c->leb_size, tmp);
647 		return -EINVAL;
648 	}
649 
650 	/*
651 	 * Make sure that the log is large enough to fit reference nodes for
652 	 * all buds plus one reserved LEB.
653 	 */
654 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
655 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
656 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
657 	tmp /= c->leb_size;
658 	tmp += 1;
659 	if (c->log_lebs < tmp) {
660 		dbg_err("too small log %d LEBs, required min. %d LEBs",
661 			c->log_lebs, tmp);
662 		return -EINVAL;
663 	}
664 
665 	/*
666 	 * When budgeting we assume worst-case scenarios when the pages are not
667 	 * be compressed and direntries are of the maximum size.
668 	 *
669 	 * Note, data, which may be stored in inodes is budgeted separately, so
670 	 * it is not included into 'c->inode_budget'.
671 	 */
672 	c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
673 	c->inode_budget = UBIFS_INO_NODE_SZ;
674 	c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
675 
676 	/*
677 	 * When the amount of flash space used by buds becomes
678 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
679 	 * The writers are unblocked when the commit is finished. To avoid
680 	 * writers to be blocked UBIFS initiates background commit in advance,
681 	 * when number of bud bytes becomes above the limit defined below.
682 	 */
683 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
684 
685 	/*
686 	 * Ensure minimum journal size. All the bytes in the journal heads are
687 	 * considered to be used, when calculating the current journal usage.
688 	 * Consequently, if the journal is too small, UBIFS will treat it as
689 	 * always full.
690 	 */
691 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
692 	if (c->bg_bud_bytes < tmp64)
693 		c->bg_bud_bytes = tmp64;
694 	if (c->max_bud_bytes < tmp64 + c->leb_size)
695 		c->max_bud_bytes = tmp64 + c->leb_size;
696 
697 	err = ubifs_calc_lpt_geom(c);
698 	if (err)
699 		return err;
700 
701 	/* Initialize effective LEB size used in budgeting calculations */
702 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
703 	return 0;
704 }
705 
706 /*
707  * init_constants_master - initialize UBIFS constants.
708  * @c: UBIFS file-system description object
709  *
710  * This is a helper function which initializes various UBIFS constants after
711  * the master node has been read. It also checks various UBIFS parameters and
712  * makes sure they are all right.
713  */
714 static void init_constants_master(struct ubifs_info *c)
715 {
716 	long long tmp64;
717 
718 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
719 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
720 
721 	/*
722 	 * Calculate total amount of FS blocks. This number is not used
723 	 * internally because it does not make much sense for UBIFS, but it is
724 	 * necessary to report something for the 'statfs()' call.
725 	 *
726 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
727 	 * deletions, minimum LEBs for the index, and assume only one journal
728 	 * head is available.
729 	 */
730 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
731 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
732 	tmp64 = ubifs_reported_space(c, tmp64);
733 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
734 }
735 
736 /**
737  * take_gc_lnum - reserve GC LEB.
738  * @c: UBIFS file-system description object
739  *
740  * This function ensures that the LEB reserved for garbage collection is marked
741  * as "taken" in lprops. We also have to set free space to LEB size and dirty
742  * space to zero, because lprops may contain out-of-date information if the
743  * file-system was un-mounted before it has been committed. This function
744  * returns zero in case of success and a negative error code in case of
745  * failure.
746  */
747 static int take_gc_lnum(struct ubifs_info *c)
748 {
749 	int err;
750 
751 	if (c->gc_lnum == -1) {
752 		ubifs_err("no LEB for GC");
753 		return -EINVAL;
754 	}
755 
756 	/* And we have to tell lprops that this LEB is taken */
757 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
758 				  LPROPS_TAKEN, 0, 0);
759 	return err;
760 }
761 
762 /**
763  * alloc_wbufs - allocate write-buffers.
764  * @c: UBIFS file-system description object
765  *
766  * This helper function allocates and initializes UBIFS write-buffers. Returns
767  * zero in case of success and %-ENOMEM in case of failure.
768  */
769 static int alloc_wbufs(struct ubifs_info *c)
770 {
771 	int i, err;
772 
773 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
774 			   GFP_KERNEL);
775 	if (!c->jheads)
776 		return -ENOMEM;
777 
778 	/* Initialize journal heads */
779 	for (i = 0; i < c->jhead_cnt; i++) {
780 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
781 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
782 		if (err)
783 			return err;
784 
785 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
786 		c->jheads[i].wbuf.jhead = i;
787 	}
788 
789 	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
790 	/*
791 	 * Garbage Collector head likely contains long-term data and
792 	 * does not need to be synchronized by timer.
793 	 */
794 	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
795 	c->jheads[GCHD].wbuf.no_timer = 1;
796 
797 	return 0;
798 }
799 
800 /**
801  * free_wbufs - free write-buffers.
802  * @c: UBIFS file-system description object
803  */
804 static void free_wbufs(struct ubifs_info *c)
805 {
806 	int i;
807 
808 	if (c->jheads) {
809 		for (i = 0; i < c->jhead_cnt; i++) {
810 			kfree(c->jheads[i].wbuf.buf);
811 			kfree(c->jheads[i].wbuf.inodes);
812 		}
813 		kfree(c->jheads);
814 		c->jheads = NULL;
815 	}
816 }
817 
818 /**
819  * free_orphans - free orphans.
820  * @c: UBIFS file-system description object
821  */
822 static void free_orphans(struct ubifs_info *c)
823 {
824 	struct ubifs_orphan *orph;
825 
826 	while (c->orph_dnext) {
827 		orph = c->orph_dnext;
828 		c->orph_dnext = orph->dnext;
829 		list_del(&orph->list);
830 		kfree(orph);
831 	}
832 
833 	while (!list_empty(&c->orph_list)) {
834 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
835 		list_del(&orph->list);
836 		kfree(orph);
837 		dbg_err("orphan list not empty at unmount");
838 	}
839 
840 	vfree(c->orph_buf);
841 	c->orph_buf = NULL;
842 }
843 
844 /**
845  * free_buds - free per-bud objects.
846  * @c: UBIFS file-system description object
847  */
848 static void free_buds(struct ubifs_info *c)
849 {
850 	struct rb_node *this = c->buds.rb_node;
851 	struct ubifs_bud *bud;
852 
853 	while (this) {
854 		if (this->rb_left)
855 			this = this->rb_left;
856 		else if (this->rb_right)
857 			this = this->rb_right;
858 		else {
859 			bud = rb_entry(this, struct ubifs_bud, rb);
860 			this = rb_parent(this);
861 			if (this) {
862 				if (this->rb_left == &bud->rb)
863 					this->rb_left = NULL;
864 				else
865 					this->rb_right = NULL;
866 			}
867 			kfree(bud);
868 		}
869 	}
870 }
871 
872 /**
873  * check_volume_empty - check if the UBI volume is empty.
874  * @c: UBIFS file-system description object
875  *
876  * This function checks if the UBIFS volume is empty by looking if its LEBs are
877  * mapped or not. The result of checking is stored in the @c->empty variable.
878  * Returns zero in case of success and a negative error code in case of
879  * failure.
880  */
881 static int check_volume_empty(struct ubifs_info *c)
882 {
883 	int lnum, err;
884 
885 	c->empty = 1;
886 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
887 		err = ubi_is_mapped(c->ubi, lnum);
888 		if (unlikely(err < 0))
889 			return err;
890 		if (err == 1) {
891 			c->empty = 0;
892 			break;
893 		}
894 
895 		cond_resched();
896 	}
897 
898 	return 0;
899 }
900 
901 /*
902  * UBIFS mount options.
903  *
904  * Opt_fast_unmount: do not run a journal commit before un-mounting
905  * Opt_norm_unmount: run a journal commit before un-mounting
906  * Opt_bulk_read: enable bulk-reads
907  * Opt_no_bulk_read: disable bulk-reads
908  * Opt_chk_data_crc: check CRCs when reading data nodes
909  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
910  * Opt_override_compr: override default compressor
911  * Opt_err: just end of array marker
912  */
913 enum {
914 	Opt_fast_unmount,
915 	Opt_norm_unmount,
916 	Opt_bulk_read,
917 	Opt_no_bulk_read,
918 	Opt_chk_data_crc,
919 	Opt_no_chk_data_crc,
920 	Opt_override_compr,
921 	Opt_err,
922 };
923 
924 static const match_table_t tokens = {
925 	{Opt_fast_unmount, "fast_unmount"},
926 	{Opt_norm_unmount, "norm_unmount"},
927 	{Opt_bulk_read, "bulk_read"},
928 	{Opt_no_bulk_read, "no_bulk_read"},
929 	{Opt_chk_data_crc, "chk_data_crc"},
930 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
931 	{Opt_override_compr, "compr=%s"},
932 	{Opt_err, NULL},
933 };
934 
935 /**
936  * parse_standard_option - parse a standard mount option.
937  * @option: the option to parse
938  *
939  * Normally, standard mount options like "sync" are passed to file-systems as
940  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
941  * be present in the options string. This function tries to deal with this
942  * situation and parse standard options. Returns 0 if the option was not
943  * recognized, and the corresponding integer flag if it was.
944  *
945  * UBIFS is only interested in the "sync" option, so do not check for anything
946  * else.
947  */
948 static int parse_standard_option(const char *option)
949 {
950 	ubifs_msg("parse %s", option);
951 	if (!strcmp(option, "sync"))
952 		return MS_SYNCHRONOUS;
953 	return 0;
954 }
955 
956 /**
957  * ubifs_parse_options - parse mount parameters.
958  * @c: UBIFS file-system description object
959  * @options: parameters to parse
960  * @is_remount: non-zero if this is FS re-mount
961  *
962  * This function parses UBIFS mount options and returns zero in case success
963  * and a negative error code in case of failure.
964  */
965 static int ubifs_parse_options(struct ubifs_info *c, char *options,
966 			       int is_remount)
967 {
968 	char *p;
969 	substring_t args[MAX_OPT_ARGS];
970 
971 	if (!options)
972 		return 0;
973 
974 	while ((p = strsep(&options, ","))) {
975 		int token;
976 
977 		if (!*p)
978 			continue;
979 
980 		token = match_token(p, tokens, args);
981 		switch (token) {
982 		/*
983 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
984 		 * We accept them in order to be backward-compatible. But this
985 		 * should be removed at some point.
986 		 */
987 		case Opt_fast_unmount:
988 			c->mount_opts.unmount_mode = 2;
989 			break;
990 		case Opt_norm_unmount:
991 			c->mount_opts.unmount_mode = 1;
992 			break;
993 		case Opt_bulk_read:
994 			c->mount_opts.bulk_read = 2;
995 			c->bulk_read = 1;
996 			break;
997 		case Opt_no_bulk_read:
998 			c->mount_opts.bulk_read = 1;
999 			c->bulk_read = 0;
1000 			break;
1001 		case Opt_chk_data_crc:
1002 			c->mount_opts.chk_data_crc = 2;
1003 			c->no_chk_data_crc = 0;
1004 			break;
1005 		case Opt_no_chk_data_crc:
1006 			c->mount_opts.chk_data_crc = 1;
1007 			c->no_chk_data_crc = 1;
1008 			break;
1009 		case Opt_override_compr:
1010 		{
1011 			char *name = match_strdup(&args[0]);
1012 
1013 			if (!name)
1014 				return -ENOMEM;
1015 			if (!strcmp(name, "none"))
1016 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1017 			else if (!strcmp(name, "lzo"))
1018 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1019 			else if (!strcmp(name, "zlib"))
1020 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1021 			else {
1022 				ubifs_err("unknown compressor \"%s\"", name);
1023 				kfree(name);
1024 				return -EINVAL;
1025 			}
1026 			kfree(name);
1027 			c->mount_opts.override_compr = 1;
1028 			c->default_compr = c->mount_opts.compr_type;
1029 			break;
1030 		}
1031 		default:
1032 		{
1033 			unsigned long flag;
1034 			struct super_block *sb = c->vfs_sb;
1035 
1036 			flag = parse_standard_option(p);
1037 			if (!flag) {
1038 				ubifs_err("unrecognized mount option \"%s\" "
1039 					  "or missing value", p);
1040 				return -EINVAL;
1041 			}
1042 			sb->s_flags |= flag;
1043 			break;
1044 		}
1045 		}
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 /**
1052  * destroy_journal - destroy journal data structures.
1053  * @c: UBIFS file-system description object
1054  *
1055  * This function destroys journal data structures including those that may have
1056  * been created by recovery functions.
1057  */
1058 static void destroy_journal(struct ubifs_info *c)
1059 {
1060 	while (!list_empty(&c->unclean_leb_list)) {
1061 		struct ubifs_unclean_leb *ucleb;
1062 
1063 		ucleb = list_entry(c->unclean_leb_list.next,
1064 				   struct ubifs_unclean_leb, list);
1065 		list_del(&ucleb->list);
1066 		kfree(ucleb);
1067 	}
1068 	while (!list_empty(&c->old_buds)) {
1069 		struct ubifs_bud *bud;
1070 
1071 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1072 		list_del(&bud->list);
1073 		kfree(bud);
1074 	}
1075 	ubifs_destroy_idx_gc(c);
1076 	ubifs_destroy_size_tree(c);
1077 	ubifs_tnc_close(c);
1078 	free_buds(c);
1079 }
1080 
1081 /**
1082  * bu_init - initialize bulk-read information.
1083  * @c: UBIFS file-system description object
1084  */
1085 static void bu_init(struct ubifs_info *c)
1086 {
1087 	ubifs_assert(c->bulk_read == 1);
1088 
1089 	if (c->bu.buf)
1090 		return; /* Already initialized */
1091 
1092 again:
1093 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1094 	if (!c->bu.buf) {
1095 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1096 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1097 			goto again;
1098 		}
1099 
1100 		/* Just disable bulk-read */
1101 		ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1102 			   "disabling it", c->max_bu_buf_len);
1103 		c->mount_opts.bulk_read = 1;
1104 		c->bulk_read = 0;
1105 		return;
1106 	}
1107 }
1108 
1109 /**
1110  * check_free_space - check if there is enough free space to mount.
1111  * @c: UBIFS file-system description object
1112  *
1113  * This function makes sure UBIFS has enough free space to be mounted in
1114  * read/write mode. UBIFS must always have some free space to allow deletions.
1115  */
1116 static int check_free_space(struct ubifs_info *c)
1117 {
1118 	ubifs_assert(c->dark_wm > 0);
1119 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1120 		ubifs_err("insufficient free space to mount in read/write mode");
1121 		dbg_dump_budg(c);
1122 		dbg_dump_lprops(c);
1123 		return -ENOSPC;
1124 	}
1125 	return 0;
1126 }
1127 
1128 /**
1129  * mount_ubifs - mount UBIFS file-system.
1130  * @c: UBIFS file-system description object
1131  *
1132  * This function mounts UBIFS file system. Returns zero in case of success and
1133  * a negative error code in case of failure.
1134  *
1135  * Note, the function does not de-allocate resources it it fails half way
1136  * through, and the caller has to do this instead.
1137  */
1138 static int mount_ubifs(struct ubifs_info *c)
1139 {
1140 	struct super_block *sb = c->vfs_sb;
1141 	int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1142 	long long x;
1143 	size_t sz;
1144 
1145 	err = init_constants_early(c);
1146 	if (err)
1147 		return err;
1148 
1149 	err = ubifs_debugging_init(c);
1150 	if (err)
1151 		return err;
1152 
1153 	err = check_volume_empty(c);
1154 	if (err)
1155 		goto out_free;
1156 
1157 	if (c->empty && (mounted_read_only || c->ro_media)) {
1158 		/*
1159 		 * This UBI volume is empty, and read-only, or the file system
1160 		 * is mounted read-only - we cannot format it.
1161 		 */
1162 		ubifs_err("can't format empty UBI volume: read-only %s",
1163 			  c->ro_media ? "UBI volume" : "mount");
1164 		err = -EROFS;
1165 		goto out_free;
1166 	}
1167 
1168 	if (c->ro_media && !mounted_read_only) {
1169 		ubifs_err("cannot mount read-write - read-only media");
1170 		err = -EROFS;
1171 		goto out_free;
1172 	}
1173 
1174 	/*
1175 	 * The requirement for the buffer is that it should fit indexing B-tree
1176 	 * height amount of integers. We assume the height if the TNC tree will
1177 	 * never exceed 64.
1178 	 */
1179 	err = -ENOMEM;
1180 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1181 	if (!c->bottom_up_buf)
1182 		goto out_free;
1183 
1184 	c->sbuf = vmalloc(c->leb_size);
1185 	if (!c->sbuf)
1186 		goto out_free;
1187 
1188 	if (!mounted_read_only) {
1189 		c->ileb_buf = vmalloc(c->leb_size);
1190 		if (!c->ileb_buf)
1191 			goto out_free;
1192 	}
1193 
1194 	if (c->bulk_read == 1)
1195 		bu_init(c);
1196 
1197 	/*
1198 	 * We have to check all CRCs, even for data nodes, when we mount the FS
1199 	 * (specifically, when we are replaying).
1200 	 */
1201 	c->always_chk_crc = 1;
1202 
1203 	err = ubifs_read_superblock(c);
1204 	if (err)
1205 		goto out_free;
1206 
1207 	/*
1208 	 * Make sure the compressor which is set as default in the superblock
1209 	 * or overridden by mount options is actually compiled in.
1210 	 */
1211 	if (!ubifs_compr_present(c->default_compr)) {
1212 		ubifs_err("'compressor \"%s\" is not compiled in",
1213 			  ubifs_compr_name(c->default_compr));
1214 		err = -ENOTSUPP;
1215 		goto out_free;
1216 	}
1217 
1218 	err = init_constants_sb(c);
1219 	if (err)
1220 		goto out_free;
1221 
1222 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1223 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1224 	c->cbuf = kmalloc(sz, GFP_NOFS);
1225 	if (!c->cbuf) {
1226 		err = -ENOMEM;
1227 		goto out_free;
1228 	}
1229 
1230 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1231 	if (!mounted_read_only) {
1232 		err = alloc_wbufs(c);
1233 		if (err)
1234 			goto out_cbuf;
1235 
1236 		/* Create background thread */
1237 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1238 		if (IS_ERR(c->bgt)) {
1239 			err = PTR_ERR(c->bgt);
1240 			c->bgt = NULL;
1241 			ubifs_err("cannot spawn \"%s\", error %d",
1242 				  c->bgt_name, err);
1243 			goto out_wbufs;
1244 		}
1245 		wake_up_process(c->bgt);
1246 	}
1247 
1248 	err = ubifs_read_master(c);
1249 	if (err)
1250 		goto out_master;
1251 
1252 	init_constants_master(c);
1253 
1254 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1255 		ubifs_msg("recovery needed");
1256 		c->need_recovery = 1;
1257 		if (!mounted_read_only) {
1258 			err = ubifs_recover_inl_heads(c, c->sbuf);
1259 			if (err)
1260 				goto out_master;
1261 		}
1262 	} else if (!mounted_read_only) {
1263 		/*
1264 		 * Set the "dirty" flag so that if we reboot uncleanly we
1265 		 * will notice this immediately on the next mount.
1266 		 */
1267 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1268 		err = ubifs_write_master(c);
1269 		if (err)
1270 			goto out_master;
1271 	}
1272 
1273 	err = ubifs_lpt_init(c, 1, !mounted_read_only);
1274 	if (err)
1275 		goto out_lpt;
1276 
1277 	err = dbg_check_idx_size(c, c->old_idx_sz);
1278 	if (err)
1279 		goto out_lpt;
1280 
1281 	err = ubifs_replay_journal(c);
1282 	if (err)
1283 		goto out_journal;
1284 
1285 	/* Calculate 'min_idx_lebs' after journal replay */
1286 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1287 
1288 	err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1289 	if (err)
1290 		goto out_orphans;
1291 
1292 	if (!mounted_read_only) {
1293 		int lnum;
1294 
1295 		err = check_free_space(c);
1296 		if (err)
1297 			goto out_orphans;
1298 
1299 		/* Check for enough log space */
1300 		lnum = c->lhead_lnum + 1;
1301 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1302 			lnum = UBIFS_LOG_LNUM;
1303 		if (lnum == c->ltail_lnum) {
1304 			err = ubifs_consolidate_log(c);
1305 			if (err)
1306 				goto out_orphans;
1307 		}
1308 
1309 		if (c->need_recovery) {
1310 			err = ubifs_recover_size(c);
1311 			if (err)
1312 				goto out_orphans;
1313 			err = ubifs_rcvry_gc_commit(c);
1314 			if (err)
1315 				goto out_orphans;
1316 		} else {
1317 			err = take_gc_lnum(c);
1318 			if (err)
1319 				goto out_orphans;
1320 
1321 			/*
1322 			 * GC LEB may contain garbage if there was an unclean
1323 			 * reboot, and it should be un-mapped.
1324 			 */
1325 			err = ubifs_leb_unmap(c, c->gc_lnum);
1326 			if (err)
1327 				goto out_orphans;
1328 		}
1329 
1330 		err = dbg_check_lprops(c);
1331 		if (err)
1332 			goto out_orphans;
1333 	} else if (c->need_recovery) {
1334 		err = ubifs_recover_size(c);
1335 		if (err)
1336 			goto out_orphans;
1337 	} else {
1338 		/*
1339 		 * Even if we mount read-only, we have to set space in GC LEB
1340 		 * to proper value because this affects UBIFS free space
1341 		 * reporting. We do not want to have a situation when
1342 		 * re-mounting from R/O to R/W changes amount of free space.
1343 		 */
1344 		err = take_gc_lnum(c);
1345 		if (err)
1346 			goto out_orphans;
1347 	}
1348 
1349 	spin_lock(&ubifs_infos_lock);
1350 	list_add_tail(&c->infos_list, &ubifs_infos);
1351 	spin_unlock(&ubifs_infos_lock);
1352 
1353 	if (c->need_recovery) {
1354 		if (mounted_read_only)
1355 			ubifs_msg("recovery deferred");
1356 		else {
1357 			c->need_recovery = 0;
1358 			ubifs_msg("recovery completed");
1359 			/*
1360 			 * GC LEB has to be empty and taken at this point. But
1361 			 * the journal head LEBs may also be accounted as
1362 			 * "empty taken" if they are empty.
1363 			 */
1364 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1365 		}
1366 	} else
1367 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1368 
1369 	err = dbg_check_filesystem(c);
1370 	if (err)
1371 		goto out_infos;
1372 
1373 	err = dbg_debugfs_init_fs(c);
1374 	if (err)
1375 		goto out_infos;
1376 
1377 	c->always_chk_crc = 0;
1378 
1379 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1380 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1381 	if (mounted_read_only)
1382 		ubifs_msg("mounted read-only");
1383 	x = (long long)c->main_lebs * c->leb_size;
1384 	ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1385 		  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1386 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1387 	ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1388 		  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1389 	ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1390 		  c->fmt_version, c->ro_compat_version,
1391 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1392 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1393 	ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1394 		c->report_rp_size, c->report_rp_size >> 10);
1395 
1396 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1397 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1398 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1399 		c->leb_size, c->leb_size >> 10);
1400 	dbg_msg("data journal heads:  %d",
1401 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1402 	dbg_msg("UUID:                %pUB", c->uuid);
1403 	dbg_msg("big_lpt              %d", c->big_lpt);
1404 	dbg_msg("log LEBs:            %d (%d - %d)",
1405 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1406 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1407 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1408 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1409 		c->orph_lebs, c->orph_first, c->orph_last);
1410 	dbg_msg("main area LEBs:      %d (%d - %d)",
1411 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1412 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1413 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1414 		c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1415 	dbg_msg("key hash type:       %d", c->key_hash_type);
1416 	dbg_msg("tree fanout:         %d", c->fanout);
1417 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1418 	dbg_msg("first main LEB:      %d", c->main_first);
1419 	dbg_msg("max. znode size      %d", c->max_znode_sz);
1420 	dbg_msg("max. index node size %d", c->max_idx_node_sz);
1421 	dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1422 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1423 	dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1424 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1425 	dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1426 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1427 	dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu",
1428 	        UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1429 		UBIFS_MAX_DENT_NODE_SZ);
1430 	dbg_msg("dead watermark:      %d", c->dead_wm);
1431 	dbg_msg("dark watermark:      %d", c->dark_wm);
1432 	dbg_msg("LEB overhead:        %d", c->leb_overhead);
1433 	x = (long long)c->main_lebs * c->dark_wm;
1434 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1435 		x, x >> 10, x >> 20);
1436 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1437 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1438 		c->max_bud_bytes >> 20);
1439 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1440 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1441 		c->bg_bud_bytes >> 20);
1442 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1443 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1444 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1445 	dbg_msg("commit number:       %llu", c->cmt_no);
1446 
1447 	return 0;
1448 
1449 out_infos:
1450 	spin_lock(&ubifs_infos_lock);
1451 	list_del(&c->infos_list);
1452 	spin_unlock(&ubifs_infos_lock);
1453 out_orphans:
1454 	free_orphans(c);
1455 out_journal:
1456 	destroy_journal(c);
1457 out_lpt:
1458 	ubifs_lpt_free(c, 0);
1459 out_master:
1460 	kfree(c->mst_node);
1461 	kfree(c->rcvrd_mst_node);
1462 	if (c->bgt)
1463 		kthread_stop(c->bgt);
1464 out_wbufs:
1465 	free_wbufs(c);
1466 out_cbuf:
1467 	kfree(c->cbuf);
1468 out_free:
1469 	kfree(c->bu.buf);
1470 	vfree(c->ileb_buf);
1471 	vfree(c->sbuf);
1472 	kfree(c->bottom_up_buf);
1473 	ubifs_debugging_exit(c);
1474 	return err;
1475 }
1476 
1477 /**
1478  * ubifs_umount - un-mount UBIFS file-system.
1479  * @c: UBIFS file-system description object
1480  *
1481  * Note, this function is called to free allocated resourced when un-mounting,
1482  * as well as free resources when an error occurred while we were half way
1483  * through mounting (error path cleanup function). So it has to make sure the
1484  * resource was actually allocated before freeing it.
1485  */
1486 static void ubifs_umount(struct ubifs_info *c)
1487 {
1488 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1489 		c->vi.vol_id);
1490 
1491 	dbg_debugfs_exit_fs(c);
1492 	spin_lock(&ubifs_infos_lock);
1493 	list_del(&c->infos_list);
1494 	spin_unlock(&ubifs_infos_lock);
1495 
1496 	if (c->bgt)
1497 		kthread_stop(c->bgt);
1498 
1499 	destroy_journal(c);
1500 	free_wbufs(c);
1501 	free_orphans(c);
1502 	ubifs_lpt_free(c, 0);
1503 
1504 	kfree(c->cbuf);
1505 	kfree(c->rcvrd_mst_node);
1506 	kfree(c->mst_node);
1507 	kfree(c->bu.buf);
1508 	vfree(c->ileb_buf);
1509 	vfree(c->sbuf);
1510 	kfree(c->bottom_up_buf);
1511 	ubifs_debugging_exit(c);
1512 }
1513 
1514 /**
1515  * ubifs_remount_rw - re-mount in read-write mode.
1516  * @c: UBIFS file-system description object
1517  *
1518  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1519  * mode. This function allocates the needed resources and re-mounts UBIFS in
1520  * read-write mode.
1521  */
1522 static int ubifs_remount_rw(struct ubifs_info *c)
1523 {
1524 	int err, lnum;
1525 
1526 	if (c->rw_incompat) {
1527 		ubifs_err("the file-system is not R/W-compatible");
1528 		ubifs_msg("on-flash format version is w%d/r%d, but software "
1529 			  "only supports up to version w%d/r%d", c->fmt_version,
1530 			  c->ro_compat_version, UBIFS_FORMAT_VERSION,
1531 			  UBIFS_RO_COMPAT_VERSION);
1532 		return -EROFS;
1533 	}
1534 
1535 	mutex_lock(&c->umount_mutex);
1536 	dbg_save_space_info(c);
1537 	c->remounting_rw = 1;
1538 	c->always_chk_crc = 1;
1539 
1540 	err = check_free_space(c);
1541 	if (err)
1542 		goto out;
1543 
1544 	if (c->old_leb_cnt != c->leb_cnt) {
1545 		struct ubifs_sb_node *sup;
1546 
1547 		sup = ubifs_read_sb_node(c);
1548 		if (IS_ERR(sup)) {
1549 			err = PTR_ERR(sup);
1550 			goto out;
1551 		}
1552 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1553 		err = ubifs_write_sb_node(c, sup);
1554 		if (err)
1555 			goto out;
1556 	}
1557 
1558 	if (c->need_recovery) {
1559 		ubifs_msg("completing deferred recovery");
1560 		err = ubifs_write_rcvrd_mst_node(c);
1561 		if (err)
1562 			goto out;
1563 		err = ubifs_recover_size(c);
1564 		if (err)
1565 			goto out;
1566 		err = ubifs_clean_lebs(c, c->sbuf);
1567 		if (err)
1568 			goto out;
1569 		err = ubifs_recover_inl_heads(c, c->sbuf);
1570 		if (err)
1571 			goto out;
1572 	} else {
1573 		/* A readonly mount is not allowed to have orphans */
1574 		ubifs_assert(c->tot_orphans == 0);
1575 		err = ubifs_clear_orphans(c);
1576 		if (err)
1577 			goto out;
1578 	}
1579 
1580 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1581 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1582 		err = ubifs_write_master(c);
1583 		if (err)
1584 			goto out;
1585 	}
1586 
1587 	c->ileb_buf = vmalloc(c->leb_size);
1588 	if (!c->ileb_buf) {
1589 		err = -ENOMEM;
1590 		goto out;
1591 	}
1592 
1593 	err = ubifs_lpt_init(c, 0, 1);
1594 	if (err)
1595 		goto out;
1596 
1597 	err = alloc_wbufs(c);
1598 	if (err)
1599 		goto out;
1600 
1601 	ubifs_create_buds_lists(c);
1602 
1603 	/* Create background thread */
1604 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1605 	if (IS_ERR(c->bgt)) {
1606 		err = PTR_ERR(c->bgt);
1607 		c->bgt = NULL;
1608 		ubifs_err("cannot spawn \"%s\", error %d",
1609 			  c->bgt_name, err);
1610 		goto out;
1611 	}
1612 	wake_up_process(c->bgt);
1613 
1614 	c->orph_buf = vmalloc(c->leb_size);
1615 	if (!c->orph_buf) {
1616 		err = -ENOMEM;
1617 		goto out;
1618 	}
1619 
1620 	/* Check for enough log space */
1621 	lnum = c->lhead_lnum + 1;
1622 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1623 		lnum = UBIFS_LOG_LNUM;
1624 	if (lnum == c->ltail_lnum) {
1625 		err = ubifs_consolidate_log(c);
1626 		if (err)
1627 			goto out;
1628 	}
1629 
1630 	if (c->need_recovery)
1631 		err = ubifs_rcvry_gc_commit(c);
1632 	else
1633 		err = ubifs_leb_unmap(c, c->gc_lnum);
1634 	if (err)
1635 		goto out;
1636 
1637 	if (c->need_recovery) {
1638 		c->need_recovery = 0;
1639 		ubifs_msg("deferred recovery completed");
1640 	}
1641 
1642 	dbg_gen("re-mounted read-write");
1643 	c->vfs_sb->s_flags &= ~MS_RDONLY;
1644 	c->remounting_rw = 0;
1645 	c->always_chk_crc = 0;
1646 	err = dbg_check_space_info(c);
1647 	mutex_unlock(&c->umount_mutex);
1648 	return err;
1649 
1650 out:
1651 	vfree(c->orph_buf);
1652 	c->orph_buf = NULL;
1653 	if (c->bgt) {
1654 		kthread_stop(c->bgt);
1655 		c->bgt = NULL;
1656 	}
1657 	free_wbufs(c);
1658 	vfree(c->ileb_buf);
1659 	c->ileb_buf = NULL;
1660 	ubifs_lpt_free(c, 1);
1661 	c->remounting_rw = 0;
1662 	c->always_chk_crc = 0;
1663 	mutex_unlock(&c->umount_mutex);
1664 	return err;
1665 }
1666 
1667 /**
1668  * ubifs_remount_ro - re-mount in read-only mode.
1669  * @c: UBIFS file-system description object
1670  *
1671  * We assume VFS has stopped writing. Possibly the background thread could be
1672  * running a commit, however kthread_stop will wait in that case.
1673  */
1674 static void ubifs_remount_ro(struct ubifs_info *c)
1675 {
1676 	int i, err;
1677 
1678 	ubifs_assert(!c->need_recovery);
1679 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
1680 
1681 	mutex_lock(&c->umount_mutex);
1682 	if (c->bgt) {
1683 		kthread_stop(c->bgt);
1684 		c->bgt = NULL;
1685 	}
1686 
1687 	dbg_save_space_info(c);
1688 
1689 	for (i = 0; i < c->jhead_cnt; i++) {
1690 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1691 		hrtimer_cancel(&c->jheads[i].wbuf.timer);
1692 	}
1693 
1694 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1695 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1696 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1697 	err = ubifs_write_master(c);
1698 	if (err)
1699 		ubifs_ro_mode(c, err);
1700 
1701 	free_wbufs(c);
1702 	vfree(c->orph_buf);
1703 	c->orph_buf = NULL;
1704 	vfree(c->ileb_buf);
1705 	c->ileb_buf = NULL;
1706 	ubifs_lpt_free(c, 1);
1707 	err = dbg_check_space_info(c);
1708 	if (err)
1709 		ubifs_ro_mode(c, err);
1710 	mutex_unlock(&c->umount_mutex);
1711 }
1712 
1713 static void ubifs_put_super(struct super_block *sb)
1714 {
1715 	int i;
1716 	struct ubifs_info *c = sb->s_fs_info;
1717 
1718 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1719 		  c->vi.vol_id);
1720 
1721 	/*
1722 	 * The following asserts are only valid if there has not been a failure
1723 	 * of the media. For example, there will be dirty inodes if we failed
1724 	 * to write them back because of I/O errors.
1725 	 */
1726 	ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1727 	ubifs_assert(c->budg_idx_growth == 0);
1728 	ubifs_assert(c->budg_dd_growth == 0);
1729 	ubifs_assert(c->budg_data_growth == 0);
1730 
1731 	/*
1732 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1733 	 * and file system un-mount. Namely, it prevents the shrinker from
1734 	 * picking this superblock for shrinking - it will be just skipped if
1735 	 * the mutex is locked.
1736 	 */
1737 	mutex_lock(&c->umount_mutex);
1738 	if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1739 		/*
1740 		 * First of all kill the background thread to make sure it does
1741 		 * not interfere with un-mounting and freeing resources.
1742 		 */
1743 		if (c->bgt) {
1744 			kthread_stop(c->bgt);
1745 			c->bgt = NULL;
1746 		}
1747 
1748 		/* Synchronize write-buffers */
1749 		if (c->jheads)
1750 			for (i = 0; i < c->jhead_cnt; i++)
1751 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1752 
1753 		/*
1754 		 * On fatal errors c->ro_media is set to 1, in which case we do
1755 		 * not write the master node.
1756 		 */
1757 		if (!c->ro_media) {
1758 			/*
1759 			 * We are being cleanly unmounted which means the
1760 			 * orphans were killed - indicate this in the master
1761 			 * node. Also save the reserved GC LEB number.
1762 			 */
1763 			int err;
1764 
1765 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1766 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1767 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1768 			err = ubifs_write_master(c);
1769 			if (err)
1770 				/*
1771 				 * Recovery will attempt to fix the master area
1772 				 * next mount, so we just print a message and
1773 				 * continue to unmount normally.
1774 				 */
1775 				ubifs_err("failed to write master node, "
1776 					  "error %d", err);
1777 		}
1778 	}
1779 
1780 	ubifs_umount(c);
1781 	bdi_destroy(&c->bdi);
1782 	ubi_close_volume(c->ubi);
1783 	mutex_unlock(&c->umount_mutex);
1784 	kfree(c);
1785 }
1786 
1787 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1788 {
1789 	int err;
1790 	struct ubifs_info *c = sb->s_fs_info;
1791 
1792 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1793 
1794 	err = ubifs_parse_options(c, data, 1);
1795 	if (err) {
1796 		ubifs_err("invalid or unknown remount parameter");
1797 		return err;
1798 	}
1799 
1800 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1801 		if (c->ro_media) {
1802 			ubifs_msg("cannot re-mount due to prior errors");
1803 			return -EROFS;
1804 		}
1805 		err = ubifs_remount_rw(c);
1806 		if (err)
1807 			return err;
1808 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
1809 		if (c->ro_media) {
1810 			ubifs_msg("cannot re-mount due to prior errors");
1811 			return -EROFS;
1812 		}
1813 		ubifs_remount_ro(c);
1814 	}
1815 
1816 	if (c->bulk_read == 1)
1817 		bu_init(c);
1818 	else {
1819 		dbg_gen("disable bulk-read");
1820 		kfree(c->bu.buf);
1821 		c->bu.buf = NULL;
1822 	}
1823 
1824 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1825 	return 0;
1826 }
1827 
1828 const struct super_operations ubifs_super_operations = {
1829 	.alloc_inode   = ubifs_alloc_inode,
1830 	.destroy_inode = ubifs_destroy_inode,
1831 	.put_super     = ubifs_put_super,
1832 	.write_inode   = ubifs_write_inode,
1833 	.evict_inode   = ubifs_evict_inode,
1834 	.statfs        = ubifs_statfs,
1835 	.dirty_inode   = ubifs_dirty_inode,
1836 	.remount_fs    = ubifs_remount_fs,
1837 	.show_options  = ubifs_show_options,
1838 	.sync_fs       = ubifs_sync_fs,
1839 };
1840 
1841 /**
1842  * open_ubi - parse UBI device name string and open the UBI device.
1843  * @name: UBI volume name
1844  * @mode: UBI volume open mode
1845  *
1846  * The primary method of mounting UBIFS is by specifying the UBI volume
1847  * character device node path. However, UBIFS may also be mounted withoug any
1848  * character device node using one of the following methods:
1849  *
1850  * o ubiX_Y    - mount UBI device number X, volume Y;
1851  * o ubiY      - mount UBI device number 0, volume Y;
1852  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1853  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1854  *
1855  * Alternative '!' separator may be used instead of ':' (because some shells
1856  * like busybox may interpret ':' as an NFS host name separator). This function
1857  * returns UBI volume description object in case of success and a negative
1858  * error code in case of failure.
1859  */
1860 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1861 {
1862 	struct ubi_volume_desc *ubi;
1863 	int dev, vol;
1864 	char *endptr;
1865 
1866 	/* First, try to open using the device node path method */
1867 	ubi = ubi_open_volume_path(name, mode);
1868 	if (!IS_ERR(ubi))
1869 		return ubi;
1870 
1871 	/* Try the "nodev" method */
1872 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1873 		return ERR_PTR(-EINVAL);
1874 
1875 	/* ubi:NAME method */
1876 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1877 		return ubi_open_volume_nm(0, name + 4, mode);
1878 
1879 	if (!isdigit(name[3]))
1880 		return ERR_PTR(-EINVAL);
1881 
1882 	dev = simple_strtoul(name + 3, &endptr, 0);
1883 
1884 	/* ubiY method */
1885 	if (*endptr == '\0')
1886 		return ubi_open_volume(0, dev, mode);
1887 
1888 	/* ubiX_Y method */
1889 	if (*endptr == '_' && isdigit(endptr[1])) {
1890 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1891 		if (*endptr != '\0')
1892 			return ERR_PTR(-EINVAL);
1893 		return ubi_open_volume(dev, vol, mode);
1894 	}
1895 
1896 	/* ubiX:NAME method */
1897 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1898 		return ubi_open_volume_nm(dev, ++endptr, mode);
1899 
1900 	return ERR_PTR(-EINVAL);
1901 }
1902 
1903 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1904 {
1905 	struct ubi_volume_desc *ubi = sb->s_fs_info;
1906 	struct ubifs_info *c;
1907 	struct inode *root;
1908 	int err;
1909 
1910 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1911 	if (!c)
1912 		return -ENOMEM;
1913 
1914 	spin_lock_init(&c->cnt_lock);
1915 	spin_lock_init(&c->cs_lock);
1916 	spin_lock_init(&c->buds_lock);
1917 	spin_lock_init(&c->space_lock);
1918 	spin_lock_init(&c->orphan_lock);
1919 	init_rwsem(&c->commit_sem);
1920 	mutex_init(&c->lp_mutex);
1921 	mutex_init(&c->tnc_mutex);
1922 	mutex_init(&c->log_mutex);
1923 	mutex_init(&c->mst_mutex);
1924 	mutex_init(&c->umount_mutex);
1925 	mutex_init(&c->bu_mutex);
1926 	init_waitqueue_head(&c->cmt_wq);
1927 	c->buds = RB_ROOT;
1928 	c->old_idx = RB_ROOT;
1929 	c->size_tree = RB_ROOT;
1930 	c->orph_tree = RB_ROOT;
1931 	INIT_LIST_HEAD(&c->infos_list);
1932 	INIT_LIST_HEAD(&c->idx_gc);
1933 	INIT_LIST_HEAD(&c->replay_list);
1934 	INIT_LIST_HEAD(&c->replay_buds);
1935 	INIT_LIST_HEAD(&c->uncat_list);
1936 	INIT_LIST_HEAD(&c->empty_list);
1937 	INIT_LIST_HEAD(&c->freeable_list);
1938 	INIT_LIST_HEAD(&c->frdi_idx_list);
1939 	INIT_LIST_HEAD(&c->unclean_leb_list);
1940 	INIT_LIST_HEAD(&c->old_buds);
1941 	INIT_LIST_HEAD(&c->orph_list);
1942 	INIT_LIST_HEAD(&c->orph_new);
1943 
1944 	c->vfs_sb = sb;
1945 	c->highest_inum = UBIFS_FIRST_INO;
1946 	c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1947 
1948 	ubi_get_volume_info(ubi, &c->vi);
1949 	ubi_get_device_info(c->vi.ubi_num, &c->di);
1950 
1951 	/* Re-open the UBI device in read-write mode */
1952 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1953 	if (IS_ERR(c->ubi)) {
1954 		err = PTR_ERR(c->ubi);
1955 		goto out_free;
1956 	}
1957 
1958 	/*
1959 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1960 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1961 	 * which means the user would have to wait not just for their own I/O
1962 	 * but the read-ahead I/O as well i.e. completely pointless.
1963 	 *
1964 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1965 	 */
1966 	c->bdi.name = "ubifs",
1967 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
1968 	c->bdi.unplug_io_fn = default_unplug_io_fn;
1969 	err  = bdi_init(&c->bdi);
1970 	if (err)
1971 		goto out_close;
1972 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
1973 			   c->vi.ubi_num, c->vi.vol_id);
1974 	if (err)
1975 		goto out_bdi;
1976 
1977 	err = ubifs_parse_options(c, data, 0);
1978 	if (err)
1979 		goto out_bdi;
1980 
1981 	sb->s_bdi = &c->bdi;
1982 	sb->s_fs_info = c;
1983 	sb->s_magic = UBIFS_SUPER_MAGIC;
1984 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
1985 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1986 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1987 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
1988 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1989 	sb->s_op = &ubifs_super_operations;
1990 
1991 	mutex_lock(&c->umount_mutex);
1992 	err = mount_ubifs(c);
1993 	if (err) {
1994 		ubifs_assert(err < 0);
1995 		goto out_unlock;
1996 	}
1997 
1998 	/* Read the root inode */
1999 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2000 	if (IS_ERR(root)) {
2001 		err = PTR_ERR(root);
2002 		goto out_umount;
2003 	}
2004 
2005 	sb->s_root = d_alloc_root(root);
2006 	if (!sb->s_root)
2007 		goto out_iput;
2008 
2009 	mutex_unlock(&c->umount_mutex);
2010 	return 0;
2011 
2012 out_iput:
2013 	iput(root);
2014 out_umount:
2015 	ubifs_umount(c);
2016 out_unlock:
2017 	mutex_unlock(&c->umount_mutex);
2018 out_bdi:
2019 	bdi_destroy(&c->bdi);
2020 out_close:
2021 	ubi_close_volume(c->ubi);
2022 out_free:
2023 	kfree(c);
2024 	return err;
2025 }
2026 
2027 static int sb_test(struct super_block *sb, void *data)
2028 {
2029 	dev_t *dev = data;
2030 	struct ubifs_info *c = sb->s_fs_info;
2031 
2032 	return c->vi.cdev == *dev;
2033 }
2034 
2035 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
2036 			const char *name, void *data, struct vfsmount *mnt)
2037 {
2038 	struct ubi_volume_desc *ubi;
2039 	struct ubi_volume_info vi;
2040 	struct super_block *sb;
2041 	int err;
2042 
2043 	dbg_gen("name %s, flags %#x", name, flags);
2044 
2045 	/*
2046 	 * Get UBI device number and volume ID. Mount it read-only so far
2047 	 * because this might be a new mount point, and UBI allows only one
2048 	 * read-write user at a time.
2049 	 */
2050 	ubi = open_ubi(name, UBI_READONLY);
2051 	if (IS_ERR(ubi)) {
2052 		ubifs_err("cannot open \"%s\", error %d",
2053 			  name, (int)PTR_ERR(ubi));
2054 		return PTR_ERR(ubi);
2055 	}
2056 	ubi_get_volume_info(ubi, &vi);
2057 
2058 	dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2059 
2060 	sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev);
2061 	if (IS_ERR(sb)) {
2062 		err = PTR_ERR(sb);
2063 		goto out_close;
2064 	}
2065 
2066 	if (sb->s_root) {
2067 		/* A new mount point for already mounted UBIFS */
2068 		dbg_gen("this ubi volume is already mounted");
2069 		if ((flags ^ sb->s_flags) & MS_RDONLY) {
2070 			err = -EBUSY;
2071 			goto out_deact;
2072 		}
2073 	} else {
2074 		sb->s_flags = flags;
2075 		/*
2076 		 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2077 		 * replaced by 'c'.
2078 		 */
2079 		sb->s_fs_info = ubi;
2080 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2081 		if (err)
2082 			goto out_deact;
2083 		/* We do not support atime */
2084 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2085 	}
2086 
2087 	/* 'fill_super()' opens ubi again so we must close it here */
2088 	ubi_close_volume(ubi);
2089 
2090 	simple_set_mnt(mnt, sb);
2091 	return 0;
2092 
2093 out_deact:
2094 	deactivate_locked_super(sb);
2095 out_close:
2096 	ubi_close_volume(ubi);
2097 	return err;
2098 }
2099 
2100 static struct file_system_type ubifs_fs_type = {
2101 	.name    = "ubifs",
2102 	.owner   = THIS_MODULE,
2103 	.get_sb  = ubifs_get_sb,
2104 	.kill_sb = kill_anon_super,
2105 };
2106 
2107 /*
2108  * Inode slab cache constructor.
2109  */
2110 static void inode_slab_ctor(void *obj)
2111 {
2112 	struct ubifs_inode *ui = obj;
2113 	inode_init_once(&ui->vfs_inode);
2114 }
2115 
2116 static int __init ubifs_init(void)
2117 {
2118 	int err;
2119 
2120 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2121 
2122 	/* Make sure node sizes are 8-byte aligned */
2123 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2124 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2125 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2126 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2127 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2128 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2129 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2130 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2131 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2132 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2133 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2134 
2135 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2136 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2137 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2138 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2139 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2140 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2141 
2142 	/* Check min. node size */
2143 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2144 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2145 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2146 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2147 
2148 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2149 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2150 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2151 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2152 
2153 	/* Defined node sizes */
2154 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2155 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2156 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2157 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2158 
2159 	/*
2160 	 * We use 2 bit wide bit-fields to store compression type, which should
2161 	 * be amended if more compressors are added. The bit-fields are:
2162 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2163 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2164 	 */
2165 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2166 
2167 	/*
2168 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2169 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2170 	 */
2171 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2172 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2173 			  " at least 4096 bytes",
2174 			  (unsigned int)PAGE_CACHE_SIZE);
2175 		return -EINVAL;
2176 	}
2177 
2178 	err = register_filesystem(&ubifs_fs_type);
2179 	if (err) {
2180 		ubifs_err("cannot register file system, error %d", err);
2181 		return err;
2182 	}
2183 
2184 	err = -ENOMEM;
2185 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2186 				sizeof(struct ubifs_inode), 0,
2187 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2188 				&inode_slab_ctor);
2189 	if (!ubifs_inode_slab)
2190 		goto out_reg;
2191 
2192 	register_shrinker(&ubifs_shrinker_info);
2193 
2194 	err = ubifs_compressors_init();
2195 	if (err)
2196 		goto out_shrinker;
2197 
2198 	err = dbg_debugfs_init();
2199 	if (err)
2200 		goto out_compr;
2201 
2202 	return 0;
2203 
2204 out_compr:
2205 	ubifs_compressors_exit();
2206 out_shrinker:
2207 	unregister_shrinker(&ubifs_shrinker_info);
2208 	kmem_cache_destroy(ubifs_inode_slab);
2209 out_reg:
2210 	unregister_filesystem(&ubifs_fs_type);
2211 	return err;
2212 }
2213 /* late_initcall to let compressors initialize first */
2214 late_initcall(ubifs_init);
2215 
2216 static void __exit ubifs_exit(void)
2217 {
2218 	ubifs_assert(list_empty(&ubifs_infos));
2219 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2220 
2221 	dbg_debugfs_exit();
2222 	ubifs_compressors_exit();
2223 	unregister_shrinker(&ubifs_shrinker_info);
2224 	kmem_cache_destroy(ubifs_inode_slab);
2225 	unregister_filesystem(&ubifs_fs_type);
2226 }
2227 module_exit(ubifs_exit);
2228 
2229 MODULE_LICENSE("GPL");
2230 MODULE_VERSION(__stringify(UBIFS_VERSION));
2231 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2232 MODULE_DESCRIPTION("UBIFS - UBI File System");
2233