xref: /linux/fs/ubifs/super.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.shrink = ubifs_shrinker,
53 	.seeks = DEFAULT_SEEKS,
54 };
55 
56 /**
57  * validate_inode - validate inode.
58  * @c: UBIFS file-system description object
59  * @inode: the inode to validate
60  *
61  * This is a helper function for 'ubifs_iget()' which validates various fields
62  * of a newly built inode to make sure they contain sane values and prevent
63  * possible vulnerabilities. Returns zero if the inode is all right and
64  * a non-zero error code if not.
65  */
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68 	int err;
69 	const struct ubifs_inode *ui = ubifs_inode(inode);
70 
71 	if (inode->i_size > c->max_inode_sz) {
72 		ubifs_err("inode is too large (%lld)",
73 			  (long long)inode->i_size);
74 		return 1;
75 	}
76 
77 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 		ubifs_err("unknown compression type %d", ui->compr_type);
79 		return 2;
80 	}
81 
82 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 		return 3;
84 
85 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 		return 4;
87 
88 	if (ui->xattr && !S_ISREG(inode->i_mode))
89 		return 5;
90 
91 	if (!ubifs_compr_present(ui->compr_type)) {
92 		ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
93 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
94 	}
95 
96 	err = dbg_check_dir(c, inode);
97 	return err;
98 }
99 
100 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
101 {
102 	int err;
103 	union ubifs_key key;
104 	struct ubifs_ino_node *ino;
105 	struct ubifs_info *c = sb->s_fs_info;
106 	struct inode *inode;
107 	struct ubifs_inode *ui;
108 
109 	dbg_gen("inode %lu", inum);
110 
111 	inode = iget_locked(sb, inum);
112 	if (!inode)
113 		return ERR_PTR(-ENOMEM);
114 	if (!(inode->i_state & I_NEW))
115 		return inode;
116 	ui = ubifs_inode(inode);
117 
118 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
119 	if (!ino) {
120 		err = -ENOMEM;
121 		goto out;
122 	}
123 
124 	ino_key_init(c, &key, inode->i_ino);
125 
126 	err = ubifs_tnc_lookup(c, &key, ino);
127 	if (err)
128 		goto out_ino;
129 
130 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
131 	set_nlink(inode, le32_to_cpu(ino->nlink));
132 	i_uid_write(inode, le32_to_cpu(ino->uid));
133 	i_gid_write(inode, le32_to_cpu(ino->gid));
134 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
135 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
136 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
137 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
138 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
139 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
140 	inode->i_mode = le32_to_cpu(ino->mode);
141 	inode->i_size = le64_to_cpu(ino->size);
142 
143 	ui->data_len    = le32_to_cpu(ino->data_len);
144 	ui->flags       = le32_to_cpu(ino->flags);
145 	ui->compr_type  = le16_to_cpu(ino->compr_type);
146 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
147 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
148 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
149 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
150 	ui->synced_i_size = ui->ui_size = inode->i_size;
151 
152 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
153 
154 	err = validate_inode(c, inode);
155 	if (err)
156 		goto out_invalid;
157 
158 	/* Disable read-ahead */
159 	inode->i_mapping->backing_dev_info = &c->bdi;
160 
161 	switch (inode->i_mode & S_IFMT) {
162 	case S_IFREG:
163 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
164 		inode->i_op = &ubifs_file_inode_operations;
165 		inode->i_fop = &ubifs_file_operations;
166 		if (ui->xattr) {
167 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
168 			if (!ui->data) {
169 				err = -ENOMEM;
170 				goto out_ino;
171 			}
172 			memcpy(ui->data, ino->data, ui->data_len);
173 			((char *)ui->data)[ui->data_len] = '\0';
174 		} else if (ui->data_len != 0) {
175 			err = 10;
176 			goto out_invalid;
177 		}
178 		break;
179 	case S_IFDIR:
180 		inode->i_op  = &ubifs_dir_inode_operations;
181 		inode->i_fop = &ubifs_dir_operations;
182 		if (ui->data_len != 0) {
183 			err = 11;
184 			goto out_invalid;
185 		}
186 		break;
187 	case S_IFLNK:
188 		inode->i_op = &ubifs_symlink_inode_operations;
189 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
190 			err = 12;
191 			goto out_invalid;
192 		}
193 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
194 		if (!ui->data) {
195 			err = -ENOMEM;
196 			goto out_ino;
197 		}
198 		memcpy(ui->data, ino->data, ui->data_len);
199 		((char *)ui->data)[ui->data_len] = '\0';
200 		break;
201 	case S_IFBLK:
202 	case S_IFCHR:
203 	{
204 		dev_t rdev;
205 		union ubifs_dev_desc *dev;
206 
207 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
208 		if (!ui->data) {
209 			err = -ENOMEM;
210 			goto out_ino;
211 		}
212 
213 		dev = (union ubifs_dev_desc *)ino->data;
214 		if (ui->data_len == sizeof(dev->new))
215 			rdev = new_decode_dev(le32_to_cpu(dev->new));
216 		else if (ui->data_len == sizeof(dev->huge))
217 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
218 		else {
219 			err = 13;
220 			goto out_invalid;
221 		}
222 		memcpy(ui->data, ino->data, ui->data_len);
223 		inode->i_op = &ubifs_file_inode_operations;
224 		init_special_inode(inode, inode->i_mode, rdev);
225 		break;
226 	}
227 	case S_IFSOCK:
228 	case S_IFIFO:
229 		inode->i_op = &ubifs_file_inode_operations;
230 		init_special_inode(inode, inode->i_mode, 0);
231 		if (ui->data_len != 0) {
232 			err = 14;
233 			goto out_invalid;
234 		}
235 		break;
236 	default:
237 		err = 15;
238 		goto out_invalid;
239 	}
240 
241 	kfree(ino);
242 	ubifs_set_inode_flags(inode);
243 	unlock_new_inode(inode);
244 	return inode;
245 
246 out_invalid:
247 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
248 	ubifs_dump_node(c, ino);
249 	ubifs_dump_inode(c, inode);
250 	err = -EINVAL;
251 out_ino:
252 	kfree(ino);
253 out:
254 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
255 	iget_failed(inode);
256 	return ERR_PTR(err);
257 }
258 
259 static struct inode *ubifs_alloc_inode(struct super_block *sb)
260 {
261 	struct ubifs_inode *ui;
262 
263 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
264 	if (!ui)
265 		return NULL;
266 
267 	memset((void *)ui + sizeof(struct inode), 0,
268 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
269 	mutex_init(&ui->ui_mutex);
270 	spin_lock_init(&ui->ui_lock);
271 	return &ui->vfs_inode;
272 };
273 
274 static void ubifs_i_callback(struct rcu_head *head)
275 {
276 	struct inode *inode = container_of(head, struct inode, i_rcu);
277 	struct ubifs_inode *ui = ubifs_inode(inode);
278 	kmem_cache_free(ubifs_inode_slab, ui);
279 }
280 
281 static void ubifs_destroy_inode(struct inode *inode)
282 {
283 	struct ubifs_inode *ui = ubifs_inode(inode);
284 
285 	kfree(ui->data);
286 	call_rcu(&inode->i_rcu, ubifs_i_callback);
287 }
288 
289 /*
290  * Note, Linux write-back code calls this without 'i_mutex'.
291  */
292 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293 {
294 	int err = 0;
295 	struct ubifs_info *c = inode->i_sb->s_fs_info;
296 	struct ubifs_inode *ui = ubifs_inode(inode);
297 
298 	ubifs_assert(!ui->xattr);
299 	if (is_bad_inode(inode))
300 		return 0;
301 
302 	mutex_lock(&ui->ui_mutex);
303 	/*
304 	 * Due to races between write-back forced by budgeting
305 	 * (see 'sync_some_inodes()') and background write-back, the inode may
306 	 * have already been synchronized, do not do this again. This might
307 	 * also happen if it was synchronized in an VFS operation, e.g.
308 	 * 'ubifs_link()'.
309 	 */
310 	if (!ui->dirty) {
311 		mutex_unlock(&ui->ui_mutex);
312 		return 0;
313 	}
314 
315 	/*
316 	 * As an optimization, do not write orphan inodes to the media just
317 	 * because this is not needed.
318 	 */
319 	dbg_gen("inode %lu, mode %#x, nlink %u",
320 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321 	if (inode->i_nlink) {
322 		err = ubifs_jnl_write_inode(c, inode);
323 		if (err)
324 			ubifs_err("can't write inode %lu, error %d",
325 				  inode->i_ino, err);
326 		else
327 			err = dbg_check_inode_size(c, inode, ui->ui_size);
328 	}
329 
330 	ui->dirty = 0;
331 	mutex_unlock(&ui->ui_mutex);
332 	ubifs_release_dirty_inode_budget(c, ui);
333 	return err;
334 }
335 
336 static void ubifs_evict_inode(struct inode *inode)
337 {
338 	int err;
339 	struct ubifs_info *c = inode->i_sb->s_fs_info;
340 	struct ubifs_inode *ui = ubifs_inode(inode);
341 
342 	if (ui->xattr)
343 		/*
344 		 * Extended attribute inode deletions are fully handled in
345 		 * 'ubifs_removexattr()'. These inodes are special and have
346 		 * limited usage, so there is nothing to do here.
347 		 */
348 		goto out;
349 
350 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
351 	ubifs_assert(!atomic_read(&inode->i_count));
352 
353 	truncate_inode_pages(&inode->i_data, 0);
354 
355 	if (inode->i_nlink)
356 		goto done;
357 
358 	if (is_bad_inode(inode))
359 		goto out;
360 
361 	ui->ui_size = inode->i_size = 0;
362 	err = ubifs_jnl_delete_inode(c, inode);
363 	if (err)
364 		/*
365 		 * Worst case we have a lost orphan inode wasting space, so a
366 		 * simple error message is OK here.
367 		 */
368 		ubifs_err("can't delete inode %lu, error %d",
369 			  inode->i_ino, err);
370 
371 out:
372 	if (ui->dirty)
373 		ubifs_release_dirty_inode_budget(c, ui);
374 	else {
375 		/* We've deleted something - clean the "no space" flags */
376 		c->bi.nospace = c->bi.nospace_rp = 0;
377 		smp_wmb();
378 	}
379 done:
380 	clear_inode(inode);
381 }
382 
383 static void ubifs_dirty_inode(struct inode *inode, int flags)
384 {
385 	struct ubifs_inode *ui = ubifs_inode(inode);
386 
387 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
388 	if (!ui->dirty) {
389 		ui->dirty = 1;
390 		dbg_gen("inode %lu",  inode->i_ino);
391 	}
392 }
393 
394 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
395 {
396 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
397 	unsigned long long free;
398 	__le32 *uuid = (__le32 *)c->uuid;
399 
400 	free = ubifs_get_free_space(c);
401 	dbg_gen("free space %lld bytes (%lld blocks)",
402 		free, free >> UBIFS_BLOCK_SHIFT);
403 
404 	buf->f_type = UBIFS_SUPER_MAGIC;
405 	buf->f_bsize = UBIFS_BLOCK_SIZE;
406 	buf->f_blocks = c->block_cnt;
407 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
408 	if (free > c->report_rp_size)
409 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
410 	else
411 		buf->f_bavail = 0;
412 	buf->f_files = 0;
413 	buf->f_ffree = 0;
414 	buf->f_namelen = UBIFS_MAX_NLEN;
415 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
416 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
417 	ubifs_assert(buf->f_bfree <= c->block_cnt);
418 	return 0;
419 }
420 
421 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
422 {
423 	struct ubifs_info *c = root->d_sb->s_fs_info;
424 
425 	if (c->mount_opts.unmount_mode == 2)
426 		seq_printf(s, ",fast_unmount");
427 	else if (c->mount_opts.unmount_mode == 1)
428 		seq_printf(s, ",norm_unmount");
429 
430 	if (c->mount_opts.bulk_read == 2)
431 		seq_printf(s, ",bulk_read");
432 	else if (c->mount_opts.bulk_read == 1)
433 		seq_printf(s, ",no_bulk_read");
434 
435 	if (c->mount_opts.chk_data_crc == 2)
436 		seq_printf(s, ",chk_data_crc");
437 	else if (c->mount_opts.chk_data_crc == 1)
438 		seq_printf(s, ",no_chk_data_crc");
439 
440 	if (c->mount_opts.override_compr) {
441 		seq_printf(s, ",compr=%s",
442 			   ubifs_compr_name(c->mount_opts.compr_type));
443 	}
444 
445 	return 0;
446 }
447 
448 static int ubifs_sync_fs(struct super_block *sb, int wait)
449 {
450 	int i, err;
451 	struct ubifs_info *c = sb->s_fs_info;
452 
453 	/*
454 	 * Zero @wait is just an advisory thing to help the file system shove
455 	 * lots of data into the queues, and there will be the second
456 	 * '->sync_fs()' call, with non-zero @wait.
457 	 */
458 	if (!wait)
459 		return 0;
460 
461 	/*
462 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
463 	 * do this if it waits for an already running commit.
464 	 */
465 	for (i = 0; i < c->jhead_cnt; i++) {
466 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
467 		if (err)
468 			return err;
469 	}
470 
471 	/*
472 	 * Strictly speaking, it is not necessary to commit the journal here,
473 	 * synchronizing write-buffers would be enough. But committing makes
474 	 * UBIFS free space predictions much more accurate, so we want to let
475 	 * the user be able to get more accurate results of 'statfs()' after
476 	 * they synchronize the file system.
477 	 */
478 	err = ubifs_run_commit(c);
479 	if (err)
480 		return err;
481 
482 	return ubi_sync(c->vi.ubi_num);
483 }
484 
485 /**
486  * init_constants_early - initialize UBIFS constants.
487  * @c: UBIFS file-system description object
488  *
489  * This function initialize UBIFS constants which do not need the superblock to
490  * be read. It also checks that the UBI volume satisfies basic UBIFS
491  * requirements. Returns zero in case of success and a negative error code in
492  * case of failure.
493  */
494 static int init_constants_early(struct ubifs_info *c)
495 {
496 	if (c->vi.corrupted) {
497 		ubifs_warn("UBI volume is corrupted - read-only mode");
498 		c->ro_media = 1;
499 	}
500 
501 	if (c->di.ro_mode) {
502 		ubifs_msg("read-only UBI device");
503 		c->ro_media = 1;
504 	}
505 
506 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
507 		ubifs_msg("static UBI volume - read-only mode");
508 		c->ro_media = 1;
509 	}
510 
511 	c->leb_cnt = c->vi.size;
512 	c->leb_size = c->vi.usable_leb_size;
513 	c->leb_start = c->di.leb_start;
514 	c->half_leb_size = c->leb_size / 2;
515 	c->min_io_size = c->di.min_io_size;
516 	c->min_io_shift = fls(c->min_io_size) - 1;
517 	c->max_write_size = c->di.max_write_size;
518 	c->max_write_shift = fls(c->max_write_size) - 1;
519 
520 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
521 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
522 			  c->leb_size, UBIFS_MIN_LEB_SZ);
523 		return -EINVAL;
524 	}
525 
526 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
527 		ubifs_err("too few LEBs (%d), min. is %d",
528 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
529 		return -EINVAL;
530 	}
531 
532 	if (!is_power_of_2(c->min_io_size)) {
533 		ubifs_err("bad min. I/O size %d", c->min_io_size);
534 		return -EINVAL;
535 	}
536 
537 	/*
538 	 * Maximum write size has to be greater or equivalent to min. I/O
539 	 * size, and be multiple of min. I/O size.
540 	 */
541 	if (c->max_write_size < c->min_io_size ||
542 	    c->max_write_size % c->min_io_size ||
543 	    !is_power_of_2(c->max_write_size)) {
544 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
545 			  c->max_write_size, c->min_io_size);
546 		return -EINVAL;
547 	}
548 
549 	/*
550 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
551 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
552 	 * less than 8.
553 	 */
554 	if (c->min_io_size < 8) {
555 		c->min_io_size = 8;
556 		c->min_io_shift = 3;
557 		if (c->max_write_size < c->min_io_size) {
558 			c->max_write_size = c->min_io_size;
559 			c->max_write_shift = c->min_io_shift;
560 		}
561 	}
562 
563 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
564 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
565 
566 	/*
567 	 * Initialize node length ranges which are mostly needed for node
568 	 * length validation.
569 	 */
570 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
571 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
572 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
573 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
574 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
575 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
576 
577 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
578 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
579 	c->ranges[UBIFS_ORPH_NODE].min_len =
580 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
581 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
582 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
583 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
584 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
585 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
586 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
587 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
588 	/*
589 	 * Minimum indexing node size is amended later when superblock is
590 	 * read and the key length is known.
591 	 */
592 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
593 	/*
594 	 * Maximum indexing node size is amended later when superblock is
595 	 * read and the fanout is known.
596 	 */
597 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
598 
599 	/*
600 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
601 	 * about these values.
602 	 */
603 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
604 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
605 
606 	/*
607 	 * Calculate how many bytes would be wasted at the end of LEB if it was
608 	 * fully filled with data nodes of maximum size. This is used in
609 	 * calculations when reporting free space.
610 	 */
611 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
612 
613 	/* Buffer size for bulk-reads */
614 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
615 	if (c->max_bu_buf_len > c->leb_size)
616 		c->max_bu_buf_len = c->leb_size;
617 	return 0;
618 }
619 
620 /**
621  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
622  * @c: UBIFS file-system description object
623  * @lnum: LEB the write-buffer was synchronized to
624  * @free: how many free bytes left in this LEB
625  * @pad: how many bytes were padded
626  *
627  * This is a callback function which is called by the I/O unit when the
628  * write-buffer is synchronized. We need this to correctly maintain space
629  * accounting in bud logical eraseblocks. This function returns zero in case of
630  * success and a negative error code in case of failure.
631  *
632  * This function actually belongs to the journal, but we keep it here because
633  * we want to keep it static.
634  */
635 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
636 {
637 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
638 }
639 
640 /*
641  * init_constants_sb - initialize UBIFS constants.
642  * @c: UBIFS file-system description object
643  *
644  * This is a helper function which initializes various UBIFS constants after
645  * the superblock has been read. It also checks various UBIFS parameters and
646  * makes sure they are all right. Returns zero in case of success and a
647  * negative error code in case of failure.
648  */
649 static int init_constants_sb(struct ubifs_info *c)
650 {
651 	int tmp, err;
652 	long long tmp64;
653 
654 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
655 	c->max_znode_sz = sizeof(struct ubifs_znode) +
656 				c->fanout * sizeof(struct ubifs_zbranch);
657 
658 	tmp = ubifs_idx_node_sz(c, 1);
659 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
660 	c->min_idx_node_sz = ALIGN(tmp, 8);
661 
662 	tmp = ubifs_idx_node_sz(c, c->fanout);
663 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
664 	c->max_idx_node_sz = ALIGN(tmp, 8);
665 
666 	/* Make sure LEB size is large enough to fit full commit */
667 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
668 	tmp = ALIGN(tmp, c->min_io_size);
669 	if (tmp > c->leb_size) {
670 		ubifs_err("too small LEB size %d, at least %d needed",
671 			  c->leb_size, tmp);
672 		return -EINVAL;
673 	}
674 
675 	/*
676 	 * Make sure that the log is large enough to fit reference nodes for
677 	 * all buds plus one reserved LEB.
678 	 */
679 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
680 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
681 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
682 	tmp /= c->leb_size;
683 	tmp += 1;
684 	if (c->log_lebs < tmp) {
685 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
686 			  c->log_lebs, tmp);
687 		return -EINVAL;
688 	}
689 
690 	/*
691 	 * When budgeting we assume worst-case scenarios when the pages are not
692 	 * be compressed and direntries are of the maximum size.
693 	 *
694 	 * Note, data, which may be stored in inodes is budgeted separately, so
695 	 * it is not included into 'c->bi.inode_budget'.
696 	 */
697 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
698 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
699 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
700 
701 	/*
702 	 * When the amount of flash space used by buds becomes
703 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
704 	 * The writers are unblocked when the commit is finished. To avoid
705 	 * writers to be blocked UBIFS initiates background commit in advance,
706 	 * when number of bud bytes becomes above the limit defined below.
707 	 */
708 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
709 
710 	/*
711 	 * Ensure minimum journal size. All the bytes in the journal heads are
712 	 * considered to be used, when calculating the current journal usage.
713 	 * Consequently, if the journal is too small, UBIFS will treat it as
714 	 * always full.
715 	 */
716 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
717 	if (c->bg_bud_bytes < tmp64)
718 		c->bg_bud_bytes = tmp64;
719 	if (c->max_bud_bytes < tmp64 + c->leb_size)
720 		c->max_bud_bytes = tmp64 + c->leb_size;
721 
722 	err = ubifs_calc_lpt_geom(c);
723 	if (err)
724 		return err;
725 
726 	/* Initialize effective LEB size used in budgeting calculations */
727 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
728 	return 0;
729 }
730 
731 /*
732  * init_constants_master - initialize UBIFS constants.
733  * @c: UBIFS file-system description object
734  *
735  * This is a helper function which initializes various UBIFS constants after
736  * the master node has been read. It also checks various UBIFS parameters and
737  * makes sure they are all right.
738  */
739 static void init_constants_master(struct ubifs_info *c)
740 {
741 	long long tmp64;
742 
743 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
744 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
745 
746 	/*
747 	 * Calculate total amount of FS blocks. This number is not used
748 	 * internally because it does not make much sense for UBIFS, but it is
749 	 * necessary to report something for the 'statfs()' call.
750 	 *
751 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
752 	 * deletions, minimum LEBs for the index, and assume only one journal
753 	 * head is available.
754 	 */
755 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
756 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
757 	tmp64 = ubifs_reported_space(c, tmp64);
758 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
759 }
760 
761 /**
762  * take_gc_lnum - reserve GC LEB.
763  * @c: UBIFS file-system description object
764  *
765  * This function ensures that the LEB reserved for garbage collection is marked
766  * as "taken" in lprops. We also have to set free space to LEB size and dirty
767  * space to zero, because lprops may contain out-of-date information if the
768  * file-system was un-mounted before it has been committed. This function
769  * returns zero in case of success and a negative error code in case of
770  * failure.
771  */
772 static int take_gc_lnum(struct ubifs_info *c)
773 {
774 	int err;
775 
776 	if (c->gc_lnum == -1) {
777 		ubifs_err("no LEB for GC");
778 		return -EINVAL;
779 	}
780 
781 	/* And we have to tell lprops that this LEB is taken */
782 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
783 				  LPROPS_TAKEN, 0, 0);
784 	return err;
785 }
786 
787 /**
788  * alloc_wbufs - allocate write-buffers.
789  * @c: UBIFS file-system description object
790  *
791  * This helper function allocates and initializes UBIFS write-buffers. Returns
792  * zero in case of success and %-ENOMEM in case of failure.
793  */
794 static int alloc_wbufs(struct ubifs_info *c)
795 {
796 	int i, err;
797 
798 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
799 			   GFP_KERNEL);
800 	if (!c->jheads)
801 		return -ENOMEM;
802 
803 	/* Initialize journal heads */
804 	for (i = 0; i < c->jhead_cnt; i++) {
805 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
806 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
807 		if (err)
808 			return err;
809 
810 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
811 		c->jheads[i].wbuf.jhead = i;
812 		c->jheads[i].grouped = 1;
813 	}
814 
815 	/*
816 	 * Garbage Collector head does not need to be synchronized by timer.
817 	 * Also GC head nodes are not grouped.
818 	 */
819 	c->jheads[GCHD].wbuf.no_timer = 1;
820 	c->jheads[GCHD].grouped = 0;
821 
822 	return 0;
823 }
824 
825 /**
826  * free_wbufs - free write-buffers.
827  * @c: UBIFS file-system description object
828  */
829 static void free_wbufs(struct ubifs_info *c)
830 {
831 	int i;
832 
833 	if (c->jheads) {
834 		for (i = 0; i < c->jhead_cnt; i++) {
835 			kfree(c->jheads[i].wbuf.buf);
836 			kfree(c->jheads[i].wbuf.inodes);
837 		}
838 		kfree(c->jheads);
839 		c->jheads = NULL;
840 	}
841 }
842 
843 /**
844  * free_orphans - free orphans.
845  * @c: UBIFS file-system description object
846  */
847 static void free_orphans(struct ubifs_info *c)
848 {
849 	struct ubifs_orphan *orph;
850 
851 	while (c->orph_dnext) {
852 		orph = c->orph_dnext;
853 		c->orph_dnext = orph->dnext;
854 		list_del(&orph->list);
855 		kfree(orph);
856 	}
857 
858 	while (!list_empty(&c->orph_list)) {
859 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
860 		list_del(&orph->list);
861 		kfree(orph);
862 		ubifs_err("orphan list not empty at unmount");
863 	}
864 
865 	vfree(c->orph_buf);
866 	c->orph_buf = NULL;
867 }
868 
869 /**
870  * free_buds - free per-bud objects.
871  * @c: UBIFS file-system description object
872  */
873 static void free_buds(struct ubifs_info *c)
874 {
875 	struct rb_node *this = c->buds.rb_node;
876 	struct ubifs_bud *bud;
877 
878 	while (this) {
879 		if (this->rb_left)
880 			this = this->rb_left;
881 		else if (this->rb_right)
882 			this = this->rb_right;
883 		else {
884 			bud = rb_entry(this, struct ubifs_bud, rb);
885 			this = rb_parent(this);
886 			if (this) {
887 				if (this->rb_left == &bud->rb)
888 					this->rb_left = NULL;
889 				else
890 					this->rb_right = NULL;
891 			}
892 			kfree(bud);
893 		}
894 	}
895 }
896 
897 /**
898  * check_volume_empty - check if the UBI volume is empty.
899  * @c: UBIFS file-system description object
900  *
901  * This function checks if the UBIFS volume is empty by looking if its LEBs are
902  * mapped or not. The result of checking is stored in the @c->empty variable.
903  * Returns zero in case of success and a negative error code in case of
904  * failure.
905  */
906 static int check_volume_empty(struct ubifs_info *c)
907 {
908 	int lnum, err;
909 
910 	c->empty = 1;
911 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
912 		err = ubifs_is_mapped(c, lnum);
913 		if (unlikely(err < 0))
914 			return err;
915 		if (err == 1) {
916 			c->empty = 0;
917 			break;
918 		}
919 
920 		cond_resched();
921 	}
922 
923 	return 0;
924 }
925 
926 /*
927  * UBIFS mount options.
928  *
929  * Opt_fast_unmount: do not run a journal commit before un-mounting
930  * Opt_norm_unmount: run a journal commit before un-mounting
931  * Opt_bulk_read: enable bulk-reads
932  * Opt_no_bulk_read: disable bulk-reads
933  * Opt_chk_data_crc: check CRCs when reading data nodes
934  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
935  * Opt_override_compr: override default compressor
936  * Opt_err: just end of array marker
937  */
938 enum {
939 	Opt_fast_unmount,
940 	Opt_norm_unmount,
941 	Opt_bulk_read,
942 	Opt_no_bulk_read,
943 	Opt_chk_data_crc,
944 	Opt_no_chk_data_crc,
945 	Opt_override_compr,
946 	Opt_err,
947 };
948 
949 static const match_table_t tokens = {
950 	{Opt_fast_unmount, "fast_unmount"},
951 	{Opt_norm_unmount, "norm_unmount"},
952 	{Opt_bulk_read, "bulk_read"},
953 	{Opt_no_bulk_read, "no_bulk_read"},
954 	{Opt_chk_data_crc, "chk_data_crc"},
955 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
956 	{Opt_override_compr, "compr=%s"},
957 	{Opt_err, NULL},
958 };
959 
960 /**
961  * parse_standard_option - parse a standard mount option.
962  * @option: the option to parse
963  *
964  * Normally, standard mount options like "sync" are passed to file-systems as
965  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
966  * be present in the options string. This function tries to deal with this
967  * situation and parse standard options. Returns 0 if the option was not
968  * recognized, and the corresponding integer flag if it was.
969  *
970  * UBIFS is only interested in the "sync" option, so do not check for anything
971  * else.
972  */
973 static int parse_standard_option(const char *option)
974 {
975 	ubifs_msg("parse %s", option);
976 	if (!strcmp(option, "sync"))
977 		return MS_SYNCHRONOUS;
978 	return 0;
979 }
980 
981 /**
982  * ubifs_parse_options - parse mount parameters.
983  * @c: UBIFS file-system description object
984  * @options: parameters to parse
985  * @is_remount: non-zero if this is FS re-mount
986  *
987  * This function parses UBIFS mount options and returns zero in case success
988  * and a negative error code in case of failure.
989  */
990 static int ubifs_parse_options(struct ubifs_info *c, char *options,
991 			       int is_remount)
992 {
993 	char *p;
994 	substring_t args[MAX_OPT_ARGS];
995 
996 	if (!options)
997 		return 0;
998 
999 	while ((p = strsep(&options, ","))) {
1000 		int token;
1001 
1002 		if (!*p)
1003 			continue;
1004 
1005 		token = match_token(p, tokens, args);
1006 		switch (token) {
1007 		/*
1008 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1009 		 * We accept them in order to be backward-compatible. But this
1010 		 * should be removed at some point.
1011 		 */
1012 		case Opt_fast_unmount:
1013 			c->mount_opts.unmount_mode = 2;
1014 			break;
1015 		case Opt_norm_unmount:
1016 			c->mount_opts.unmount_mode = 1;
1017 			break;
1018 		case Opt_bulk_read:
1019 			c->mount_opts.bulk_read = 2;
1020 			c->bulk_read = 1;
1021 			break;
1022 		case Opt_no_bulk_read:
1023 			c->mount_opts.bulk_read = 1;
1024 			c->bulk_read = 0;
1025 			break;
1026 		case Opt_chk_data_crc:
1027 			c->mount_opts.chk_data_crc = 2;
1028 			c->no_chk_data_crc = 0;
1029 			break;
1030 		case Opt_no_chk_data_crc:
1031 			c->mount_opts.chk_data_crc = 1;
1032 			c->no_chk_data_crc = 1;
1033 			break;
1034 		case Opt_override_compr:
1035 		{
1036 			char *name = match_strdup(&args[0]);
1037 
1038 			if (!name)
1039 				return -ENOMEM;
1040 			if (!strcmp(name, "none"))
1041 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1042 			else if (!strcmp(name, "lzo"))
1043 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1044 			else if (!strcmp(name, "zlib"))
1045 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1046 			else {
1047 				ubifs_err("unknown compressor \"%s\"", name);
1048 				kfree(name);
1049 				return -EINVAL;
1050 			}
1051 			kfree(name);
1052 			c->mount_opts.override_compr = 1;
1053 			c->default_compr = c->mount_opts.compr_type;
1054 			break;
1055 		}
1056 		default:
1057 		{
1058 			unsigned long flag;
1059 			struct super_block *sb = c->vfs_sb;
1060 
1061 			flag = parse_standard_option(p);
1062 			if (!flag) {
1063 				ubifs_err("unrecognized mount option \"%s\" or missing value",
1064 					  p);
1065 				return -EINVAL;
1066 			}
1067 			sb->s_flags |= flag;
1068 			break;
1069 		}
1070 		}
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  * destroy_journal - destroy journal data structures.
1078  * @c: UBIFS file-system description object
1079  *
1080  * This function destroys journal data structures including those that may have
1081  * been created by recovery functions.
1082  */
1083 static void destroy_journal(struct ubifs_info *c)
1084 {
1085 	while (!list_empty(&c->unclean_leb_list)) {
1086 		struct ubifs_unclean_leb *ucleb;
1087 
1088 		ucleb = list_entry(c->unclean_leb_list.next,
1089 				   struct ubifs_unclean_leb, list);
1090 		list_del(&ucleb->list);
1091 		kfree(ucleb);
1092 	}
1093 	while (!list_empty(&c->old_buds)) {
1094 		struct ubifs_bud *bud;
1095 
1096 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1097 		list_del(&bud->list);
1098 		kfree(bud);
1099 	}
1100 	ubifs_destroy_idx_gc(c);
1101 	ubifs_destroy_size_tree(c);
1102 	ubifs_tnc_close(c);
1103 	free_buds(c);
1104 }
1105 
1106 /**
1107  * bu_init - initialize bulk-read information.
1108  * @c: UBIFS file-system description object
1109  */
1110 static void bu_init(struct ubifs_info *c)
1111 {
1112 	ubifs_assert(c->bulk_read == 1);
1113 
1114 	if (c->bu.buf)
1115 		return; /* Already initialized */
1116 
1117 again:
1118 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1119 	if (!c->bu.buf) {
1120 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1121 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1122 			goto again;
1123 		}
1124 
1125 		/* Just disable bulk-read */
1126 		ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1127 			   c->max_bu_buf_len);
1128 		c->mount_opts.bulk_read = 1;
1129 		c->bulk_read = 0;
1130 		return;
1131 	}
1132 }
1133 
1134 /**
1135  * check_free_space - check if there is enough free space to mount.
1136  * @c: UBIFS file-system description object
1137  *
1138  * This function makes sure UBIFS has enough free space to be mounted in
1139  * read/write mode. UBIFS must always have some free space to allow deletions.
1140  */
1141 static int check_free_space(struct ubifs_info *c)
1142 {
1143 	ubifs_assert(c->dark_wm > 0);
1144 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1145 		ubifs_err("insufficient free space to mount in R/W mode");
1146 		ubifs_dump_budg(c, &c->bi);
1147 		ubifs_dump_lprops(c);
1148 		return -ENOSPC;
1149 	}
1150 	return 0;
1151 }
1152 
1153 /**
1154  * mount_ubifs - mount UBIFS file-system.
1155  * @c: UBIFS file-system description object
1156  *
1157  * This function mounts UBIFS file system. Returns zero in case of success and
1158  * a negative error code in case of failure.
1159  */
1160 static int mount_ubifs(struct ubifs_info *c)
1161 {
1162 	int err;
1163 	long long x, y;
1164 	size_t sz;
1165 
1166 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1167 	err = init_constants_early(c);
1168 	if (err)
1169 		return err;
1170 
1171 	err = ubifs_debugging_init(c);
1172 	if (err)
1173 		return err;
1174 
1175 	err = check_volume_empty(c);
1176 	if (err)
1177 		goto out_free;
1178 
1179 	if (c->empty && (c->ro_mount || c->ro_media)) {
1180 		/*
1181 		 * This UBI volume is empty, and read-only, or the file system
1182 		 * is mounted read-only - we cannot format it.
1183 		 */
1184 		ubifs_err("can't format empty UBI volume: read-only %s",
1185 			  c->ro_media ? "UBI volume" : "mount");
1186 		err = -EROFS;
1187 		goto out_free;
1188 	}
1189 
1190 	if (c->ro_media && !c->ro_mount) {
1191 		ubifs_err("cannot mount read-write - read-only media");
1192 		err = -EROFS;
1193 		goto out_free;
1194 	}
1195 
1196 	/*
1197 	 * The requirement for the buffer is that it should fit indexing B-tree
1198 	 * height amount of integers. We assume the height if the TNC tree will
1199 	 * never exceed 64.
1200 	 */
1201 	err = -ENOMEM;
1202 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1203 	if (!c->bottom_up_buf)
1204 		goto out_free;
1205 
1206 	c->sbuf = vmalloc(c->leb_size);
1207 	if (!c->sbuf)
1208 		goto out_free;
1209 
1210 	if (!c->ro_mount) {
1211 		c->ileb_buf = vmalloc(c->leb_size);
1212 		if (!c->ileb_buf)
1213 			goto out_free;
1214 	}
1215 
1216 	if (c->bulk_read == 1)
1217 		bu_init(c);
1218 
1219 	if (!c->ro_mount) {
1220 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1221 					       GFP_KERNEL);
1222 		if (!c->write_reserve_buf)
1223 			goto out_free;
1224 	}
1225 
1226 	c->mounting = 1;
1227 
1228 	err = ubifs_read_superblock(c);
1229 	if (err)
1230 		goto out_free;
1231 
1232 	/*
1233 	 * Make sure the compressor which is set as default in the superblock
1234 	 * or overridden by mount options is actually compiled in.
1235 	 */
1236 	if (!ubifs_compr_present(c->default_compr)) {
1237 		ubifs_err("'compressor \"%s\" is not compiled in",
1238 			  ubifs_compr_name(c->default_compr));
1239 		err = -ENOTSUPP;
1240 		goto out_free;
1241 	}
1242 
1243 	err = init_constants_sb(c);
1244 	if (err)
1245 		goto out_free;
1246 
1247 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1248 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1249 	c->cbuf = kmalloc(sz, GFP_NOFS);
1250 	if (!c->cbuf) {
1251 		err = -ENOMEM;
1252 		goto out_free;
1253 	}
1254 
1255 	err = alloc_wbufs(c);
1256 	if (err)
1257 		goto out_cbuf;
1258 
1259 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1260 	if (!c->ro_mount) {
1261 		/* Create background thread */
1262 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1263 		if (IS_ERR(c->bgt)) {
1264 			err = PTR_ERR(c->bgt);
1265 			c->bgt = NULL;
1266 			ubifs_err("cannot spawn \"%s\", error %d",
1267 				  c->bgt_name, err);
1268 			goto out_wbufs;
1269 		}
1270 		wake_up_process(c->bgt);
1271 	}
1272 
1273 	err = ubifs_read_master(c);
1274 	if (err)
1275 		goto out_master;
1276 
1277 	init_constants_master(c);
1278 
1279 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1280 		ubifs_msg("recovery needed");
1281 		c->need_recovery = 1;
1282 	}
1283 
1284 	if (c->need_recovery && !c->ro_mount) {
1285 		err = ubifs_recover_inl_heads(c, c->sbuf);
1286 		if (err)
1287 			goto out_master;
1288 	}
1289 
1290 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1291 	if (err)
1292 		goto out_master;
1293 
1294 	if (!c->ro_mount && c->space_fixup) {
1295 		err = ubifs_fixup_free_space(c);
1296 		if (err)
1297 			goto out_lpt;
1298 	}
1299 
1300 	if (!c->ro_mount) {
1301 		/*
1302 		 * Set the "dirty" flag so that if we reboot uncleanly we
1303 		 * will notice this immediately on the next mount.
1304 		 */
1305 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1306 		err = ubifs_write_master(c);
1307 		if (err)
1308 			goto out_lpt;
1309 	}
1310 
1311 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1312 	if (err)
1313 		goto out_lpt;
1314 
1315 	err = ubifs_replay_journal(c);
1316 	if (err)
1317 		goto out_journal;
1318 
1319 	/* Calculate 'min_idx_lebs' after journal replay */
1320 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1321 
1322 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1323 	if (err)
1324 		goto out_orphans;
1325 
1326 	if (!c->ro_mount) {
1327 		int lnum;
1328 
1329 		err = check_free_space(c);
1330 		if (err)
1331 			goto out_orphans;
1332 
1333 		/* Check for enough log space */
1334 		lnum = c->lhead_lnum + 1;
1335 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1336 			lnum = UBIFS_LOG_LNUM;
1337 		if (lnum == c->ltail_lnum) {
1338 			err = ubifs_consolidate_log(c);
1339 			if (err)
1340 				goto out_orphans;
1341 		}
1342 
1343 		if (c->need_recovery) {
1344 			err = ubifs_recover_size(c);
1345 			if (err)
1346 				goto out_orphans;
1347 			err = ubifs_rcvry_gc_commit(c);
1348 			if (err)
1349 				goto out_orphans;
1350 		} else {
1351 			err = take_gc_lnum(c);
1352 			if (err)
1353 				goto out_orphans;
1354 
1355 			/*
1356 			 * GC LEB may contain garbage if there was an unclean
1357 			 * reboot, and it should be un-mapped.
1358 			 */
1359 			err = ubifs_leb_unmap(c, c->gc_lnum);
1360 			if (err)
1361 				goto out_orphans;
1362 		}
1363 
1364 		err = dbg_check_lprops(c);
1365 		if (err)
1366 			goto out_orphans;
1367 	} else if (c->need_recovery) {
1368 		err = ubifs_recover_size(c);
1369 		if (err)
1370 			goto out_orphans;
1371 	} else {
1372 		/*
1373 		 * Even if we mount read-only, we have to set space in GC LEB
1374 		 * to proper value because this affects UBIFS free space
1375 		 * reporting. We do not want to have a situation when
1376 		 * re-mounting from R/O to R/W changes amount of free space.
1377 		 */
1378 		err = take_gc_lnum(c);
1379 		if (err)
1380 			goto out_orphans;
1381 	}
1382 
1383 	spin_lock(&ubifs_infos_lock);
1384 	list_add_tail(&c->infos_list, &ubifs_infos);
1385 	spin_unlock(&ubifs_infos_lock);
1386 
1387 	if (c->need_recovery) {
1388 		if (c->ro_mount)
1389 			ubifs_msg("recovery deferred");
1390 		else {
1391 			c->need_recovery = 0;
1392 			ubifs_msg("recovery completed");
1393 			/*
1394 			 * GC LEB has to be empty and taken at this point. But
1395 			 * the journal head LEBs may also be accounted as
1396 			 * "empty taken" if they are empty.
1397 			 */
1398 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1399 		}
1400 	} else
1401 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1402 
1403 	err = dbg_check_filesystem(c);
1404 	if (err)
1405 		goto out_infos;
1406 
1407 	err = dbg_debugfs_init_fs(c);
1408 	if (err)
1409 		goto out_infos;
1410 
1411 	c->mounting = 0;
1412 
1413 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1414 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1415 		  c->ro_mount ? ", R/O mode" : "");
1416 	x = (long long)c->main_lebs * c->leb_size;
1417 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1418 	ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1419 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1420 		  c->max_write_size);
1421 	ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1422 		  x, x >> 20, c->main_lebs,
1423 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1424 	ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1425 		  c->report_rp_size, c->report_rp_size >> 10);
1426 	ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1427 		  c->fmt_version, c->ro_compat_version,
1428 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1429 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1430 
1431 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1432 	dbg_gen("data journal heads:  %d",
1433 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1434 	dbg_gen("log LEBs:            %d (%d - %d)",
1435 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1436 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1437 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1438 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1439 		c->orph_lebs, c->orph_first, c->orph_last);
1440 	dbg_gen("main area LEBs:      %d (%d - %d)",
1441 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1442 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1443 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1444 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1445 		c->bi.old_idx_sz >> 20);
1446 	dbg_gen("key hash type:       %d", c->key_hash_type);
1447 	dbg_gen("tree fanout:         %d", c->fanout);
1448 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1449 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1450 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1451 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1452 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1453 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1454 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1455 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1456 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1457 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1458 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1459 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1460 	dbg_gen("dead watermark:      %d", c->dead_wm);
1461 	dbg_gen("dark watermark:      %d", c->dark_wm);
1462 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1463 	x = (long long)c->main_lebs * c->dark_wm;
1464 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1465 		x, x >> 10, x >> 20);
1466 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1467 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1468 		c->max_bud_bytes >> 20);
1469 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1470 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1471 		c->bg_bud_bytes >> 20);
1472 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1473 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1474 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1475 	dbg_gen("commit number:       %llu", c->cmt_no);
1476 
1477 	return 0;
1478 
1479 out_infos:
1480 	spin_lock(&ubifs_infos_lock);
1481 	list_del(&c->infos_list);
1482 	spin_unlock(&ubifs_infos_lock);
1483 out_orphans:
1484 	free_orphans(c);
1485 out_journal:
1486 	destroy_journal(c);
1487 out_lpt:
1488 	ubifs_lpt_free(c, 0);
1489 out_master:
1490 	kfree(c->mst_node);
1491 	kfree(c->rcvrd_mst_node);
1492 	if (c->bgt)
1493 		kthread_stop(c->bgt);
1494 out_wbufs:
1495 	free_wbufs(c);
1496 out_cbuf:
1497 	kfree(c->cbuf);
1498 out_free:
1499 	kfree(c->write_reserve_buf);
1500 	kfree(c->bu.buf);
1501 	vfree(c->ileb_buf);
1502 	vfree(c->sbuf);
1503 	kfree(c->bottom_up_buf);
1504 	ubifs_debugging_exit(c);
1505 	return err;
1506 }
1507 
1508 /**
1509  * ubifs_umount - un-mount UBIFS file-system.
1510  * @c: UBIFS file-system description object
1511  *
1512  * Note, this function is called to free allocated resourced when un-mounting,
1513  * as well as free resources when an error occurred while we were half way
1514  * through mounting (error path cleanup function). So it has to make sure the
1515  * resource was actually allocated before freeing it.
1516  */
1517 static void ubifs_umount(struct ubifs_info *c)
1518 {
1519 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1520 		c->vi.vol_id);
1521 
1522 	dbg_debugfs_exit_fs(c);
1523 	spin_lock(&ubifs_infos_lock);
1524 	list_del(&c->infos_list);
1525 	spin_unlock(&ubifs_infos_lock);
1526 
1527 	if (c->bgt)
1528 		kthread_stop(c->bgt);
1529 
1530 	destroy_journal(c);
1531 	free_wbufs(c);
1532 	free_orphans(c);
1533 	ubifs_lpt_free(c, 0);
1534 
1535 	kfree(c->cbuf);
1536 	kfree(c->rcvrd_mst_node);
1537 	kfree(c->mst_node);
1538 	kfree(c->write_reserve_buf);
1539 	kfree(c->bu.buf);
1540 	vfree(c->ileb_buf);
1541 	vfree(c->sbuf);
1542 	kfree(c->bottom_up_buf);
1543 	ubifs_debugging_exit(c);
1544 }
1545 
1546 /**
1547  * ubifs_remount_rw - re-mount in read-write mode.
1548  * @c: UBIFS file-system description object
1549  *
1550  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1551  * mode. This function allocates the needed resources and re-mounts UBIFS in
1552  * read-write mode.
1553  */
1554 static int ubifs_remount_rw(struct ubifs_info *c)
1555 {
1556 	int err, lnum;
1557 
1558 	if (c->rw_incompat) {
1559 		ubifs_err("the file-system is not R/W-compatible");
1560 		ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1561 			  c->fmt_version, c->ro_compat_version,
1562 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1563 		return -EROFS;
1564 	}
1565 
1566 	mutex_lock(&c->umount_mutex);
1567 	dbg_save_space_info(c);
1568 	c->remounting_rw = 1;
1569 	c->ro_mount = 0;
1570 
1571 	if (c->space_fixup) {
1572 		err = ubifs_fixup_free_space(c);
1573 		if (err)
1574 			return err;
1575 	}
1576 
1577 	err = check_free_space(c);
1578 	if (err)
1579 		goto out;
1580 
1581 	if (c->old_leb_cnt != c->leb_cnt) {
1582 		struct ubifs_sb_node *sup;
1583 
1584 		sup = ubifs_read_sb_node(c);
1585 		if (IS_ERR(sup)) {
1586 			err = PTR_ERR(sup);
1587 			goto out;
1588 		}
1589 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1590 		err = ubifs_write_sb_node(c, sup);
1591 		kfree(sup);
1592 		if (err)
1593 			goto out;
1594 	}
1595 
1596 	if (c->need_recovery) {
1597 		ubifs_msg("completing deferred recovery");
1598 		err = ubifs_write_rcvrd_mst_node(c);
1599 		if (err)
1600 			goto out;
1601 		err = ubifs_recover_size(c);
1602 		if (err)
1603 			goto out;
1604 		err = ubifs_clean_lebs(c, c->sbuf);
1605 		if (err)
1606 			goto out;
1607 		err = ubifs_recover_inl_heads(c, c->sbuf);
1608 		if (err)
1609 			goto out;
1610 	} else {
1611 		/* A readonly mount is not allowed to have orphans */
1612 		ubifs_assert(c->tot_orphans == 0);
1613 		err = ubifs_clear_orphans(c);
1614 		if (err)
1615 			goto out;
1616 	}
1617 
1618 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1619 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1620 		err = ubifs_write_master(c);
1621 		if (err)
1622 			goto out;
1623 	}
1624 
1625 	c->ileb_buf = vmalloc(c->leb_size);
1626 	if (!c->ileb_buf) {
1627 		err = -ENOMEM;
1628 		goto out;
1629 	}
1630 
1631 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1632 	if (!c->write_reserve_buf)
1633 		goto out;
1634 
1635 	err = ubifs_lpt_init(c, 0, 1);
1636 	if (err)
1637 		goto out;
1638 
1639 	/* Create background thread */
1640 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1641 	if (IS_ERR(c->bgt)) {
1642 		err = PTR_ERR(c->bgt);
1643 		c->bgt = NULL;
1644 		ubifs_err("cannot spawn \"%s\", error %d",
1645 			  c->bgt_name, err);
1646 		goto out;
1647 	}
1648 	wake_up_process(c->bgt);
1649 
1650 	c->orph_buf = vmalloc(c->leb_size);
1651 	if (!c->orph_buf) {
1652 		err = -ENOMEM;
1653 		goto out;
1654 	}
1655 
1656 	/* Check for enough log space */
1657 	lnum = c->lhead_lnum + 1;
1658 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1659 		lnum = UBIFS_LOG_LNUM;
1660 	if (lnum == c->ltail_lnum) {
1661 		err = ubifs_consolidate_log(c);
1662 		if (err)
1663 			goto out;
1664 	}
1665 
1666 	if (c->need_recovery)
1667 		err = ubifs_rcvry_gc_commit(c);
1668 	else
1669 		err = ubifs_leb_unmap(c, c->gc_lnum);
1670 	if (err)
1671 		goto out;
1672 
1673 	dbg_gen("re-mounted read-write");
1674 	c->remounting_rw = 0;
1675 
1676 	if (c->need_recovery) {
1677 		c->need_recovery = 0;
1678 		ubifs_msg("deferred recovery completed");
1679 	} else {
1680 		/*
1681 		 * Do not run the debugging space check if the were doing
1682 		 * recovery, because when we saved the information we had the
1683 		 * file-system in a state where the TNC and lprops has been
1684 		 * modified in memory, but all the I/O operations (including a
1685 		 * commit) were deferred. So the file-system was in
1686 		 * "non-committed" state. Now the file-system is in committed
1687 		 * state, and of course the amount of free space will change
1688 		 * because, for example, the old index size was imprecise.
1689 		 */
1690 		err = dbg_check_space_info(c);
1691 	}
1692 
1693 	mutex_unlock(&c->umount_mutex);
1694 	return err;
1695 
1696 out:
1697 	c->ro_mount = 1;
1698 	vfree(c->orph_buf);
1699 	c->orph_buf = NULL;
1700 	if (c->bgt) {
1701 		kthread_stop(c->bgt);
1702 		c->bgt = NULL;
1703 	}
1704 	free_wbufs(c);
1705 	kfree(c->write_reserve_buf);
1706 	c->write_reserve_buf = NULL;
1707 	vfree(c->ileb_buf);
1708 	c->ileb_buf = NULL;
1709 	ubifs_lpt_free(c, 1);
1710 	c->remounting_rw = 0;
1711 	mutex_unlock(&c->umount_mutex);
1712 	return err;
1713 }
1714 
1715 /**
1716  * ubifs_remount_ro - re-mount in read-only mode.
1717  * @c: UBIFS file-system description object
1718  *
1719  * We assume VFS has stopped writing. Possibly the background thread could be
1720  * running a commit, however kthread_stop will wait in that case.
1721  */
1722 static void ubifs_remount_ro(struct ubifs_info *c)
1723 {
1724 	int i, err;
1725 
1726 	ubifs_assert(!c->need_recovery);
1727 	ubifs_assert(!c->ro_mount);
1728 
1729 	mutex_lock(&c->umount_mutex);
1730 	if (c->bgt) {
1731 		kthread_stop(c->bgt);
1732 		c->bgt = NULL;
1733 	}
1734 
1735 	dbg_save_space_info(c);
1736 
1737 	for (i = 0; i < c->jhead_cnt; i++)
1738 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1739 
1740 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1741 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1742 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1743 	err = ubifs_write_master(c);
1744 	if (err)
1745 		ubifs_ro_mode(c, err);
1746 
1747 	vfree(c->orph_buf);
1748 	c->orph_buf = NULL;
1749 	kfree(c->write_reserve_buf);
1750 	c->write_reserve_buf = NULL;
1751 	vfree(c->ileb_buf);
1752 	c->ileb_buf = NULL;
1753 	ubifs_lpt_free(c, 1);
1754 	c->ro_mount = 1;
1755 	err = dbg_check_space_info(c);
1756 	if (err)
1757 		ubifs_ro_mode(c, err);
1758 	mutex_unlock(&c->umount_mutex);
1759 }
1760 
1761 static void ubifs_put_super(struct super_block *sb)
1762 {
1763 	int i;
1764 	struct ubifs_info *c = sb->s_fs_info;
1765 
1766 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1767 		  c->vi.vol_id);
1768 
1769 	/*
1770 	 * The following asserts are only valid if there has not been a failure
1771 	 * of the media. For example, there will be dirty inodes if we failed
1772 	 * to write them back because of I/O errors.
1773 	 */
1774 	if (!c->ro_error) {
1775 		ubifs_assert(c->bi.idx_growth == 0);
1776 		ubifs_assert(c->bi.dd_growth == 0);
1777 		ubifs_assert(c->bi.data_growth == 0);
1778 	}
1779 
1780 	/*
1781 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1782 	 * and file system un-mount. Namely, it prevents the shrinker from
1783 	 * picking this superblock for shrinking - it will be just skipped if
1784 	 * the mutex is locked.
1785 	 */
1786 	mutex_lock(&c->umount_mutex);
1787 	if (!c->ro_mount) {
1788 		/*
1789 		 * First of all kill the background thread to make sure it does
1790 		 * not interfere with un-mounting and freeing resources.
1791 		 */
1792 		if (c->bgt) {
1793 			kthread_stop(c->bgt);
1794 			c->bgt = NULL;
1795 		}
1796 
1797 		/*
1798 		 * On fatal errors c->ro_error is set to 1, in which case we do
1799 		 * not write the master node.
1800 		 */
1801 		if (!c->ro_error) {
1802 			int err;
1803 
1804 			/* Synchronize write-buffers */
1805 			for (i = 0; i < c->jhead_cnt; i++)
1806 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1807 
1808 			/*
1809 			 * We are being cleanly unmounted which means the
1810 			 * orphans were killed - indicate this in the master
1811 			 * node. Also save the reserved GC LEB number.
1812 			 */
1813 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1814 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1815 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1816 			err = ubifs_write_master(c);
1817 			if (err)
1818 				/*
1819 				 * Recovery will attempt to fix the master area
1820 				 * next mount, so we just print a message and
1821 				 * continue to unmount normally.
1822 				 */
1823 				ubifs_err("failed to write master node, error %d",
1824 					  err);
1825 		} else {
1826 			for (i = 0; i < c->jhead_cnt; i++)
1827 				/* Make sure write-buffer timers are canceled */
1828 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1829 		}
1830 	}
1831 
1832 	ubifs_umount(c);
1833 	bdi_destroy(&c->bdi);
1834 	ubi_close_volume(c->ubi);
1835 	mutex_unlock(&c->umount_mutex);
1836 }
1837 
1838 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1839 {
1840 	int err;
1841 	struct ubifs_info *c = sb->s_fs_info;
1842 
1843 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1844 
1845 	err = ubifs_parse_options(c, data, 1);
1846 	if (err) {
1847 		ubifs_err("invalid or unknown remount parameter");
1848 		return err;
1849 	}
1850 
1851 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1852 		if (c->ro_error) {
1853 			ubifs_msg("cannot re-mount R/W due to prior errors");
1854 			return -EROFS;
1855 		}
1856 		if (c->ro_media) {
1857 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1858 			return -EROFS;
1859 		}
1860 		err = ubifs_remount_rw(c);
1861 		if (err)
1862 			return err;
1863 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1864 		if (c->ro_error) {
1865 			ubifs_msg("cannot re-mount R/O due to prior errors");
1866 			return -EROFS;
1867 		}
1868 		ubifs_remount_ro(c);
1869 	}
1870 
1871 	if (c->bulk_read == 1)
1872 		bu_init(c);
1873 	else {
1874 		dbg_gen("disable bulk-read");
1875 		kfree(c->bu.buf);
1876 		c->bu.buf = NULL;
1877 	}
1878 
1879 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1880 	return 0;
1881 }
1882 
1883 const struct super_operations ubifs_super_operations = {
1884 	.alloc_inode   = ubifs_alloc_inode,
1885 	.destroy_inode = ubifs_destroy_inode,
1886 	.put_super     = ubifs_put_super,
1887 	.write_inode   = ubifs_write_inode,
1888 	.evict_inode   = ubifs_evict_inode,
1889 	.statfs        = ubifs_statfs,
1890 	.dirty_inode   = ubifs_dirty_inode,
1891 	.remount_fs    = ubifs_remount_fs,
1892 	.show_options  = ubifs_show_options,
1893 	.sync_fs       = ubifs_sync_fs,
1894 };
1895 
1896 /**
1897  * open_ubi - parse UBI device name string and open the UBI device.
1898  * @name: UBI volume name
1899  * @mode: UBI volume open mode
1900  *
1901  * The primary method of mounting UBIFS is by specifying the UBI volume
1902  * character device node path. However, UBIFS may also be mounted withoug any
1903  * character device node using one of the following methods:
1904  *
1905  * o ubiX_Y    - mount UBI device number X, volume Y;
1906  * o ubiY      - mount UBI device number 0, volume Y;
1907  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1908  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1909  *
1910  * Alternative '!' separator may be used instead of ':' (because some shells
1911  * like busybox may interpret ':' as an NFS host name separator). This function
1912  * returns UBI volume description object in case of success and a negative
1913  * error code in case of failure.
1914  */
1915 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1916 {
1917 	struct ubi_volume_desc *ubi;
1918 	int dev, vol;
1919 	char *endptr;
1920 
1921 	/* First, try to open using the device node path method */
1922 	ubi = ubi_open_volume_path(name, mode);
1923 	if (!IS_ERR(ubi))
1924 		return ubi;
1925 
1926 	/* Try the "nodev" method */
1927 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1928 		return ERR_PTR(-EINVAL);
1929 
1930 	/* ubi:NAME method */
1931 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1932 		return ubi_open_volume_nm(0, name + 4, mode);
1933 
1934 	if (!isdigit(name[3]))
1935 		return ERR_PTR(-EINVAL);
1936 
1937 	dev = simple_strtoul(name + 3, &endptr, 0);
1938 
1939 	/* ubiY method */
1940 	if (*endptr == '\0')
1941 		return ubi_open_volume(0, dev, mode);
1942 
1943 	/* ubiX_Y method */
1944 	if (*endptr == '_' && isdigit(endptr[1])) {
1945 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1946 		if (*endptr != '\0')
1947 			return ERR_PTR(-EINVAL);
1948 		return ubi_open_volume(dev, vol, mode);
1949 	}
1950 
1951 	/* ubiX:NAME method */
1952 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1953 		return ubi_open_volume_nm(dev, ++endptr, mode);
1954 
1955 	return ERR_PTR(-EINVAL);
1956 }
1957 
1958 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1959 {
1960 	struct ubifs_info *c;
1961 
1962 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1963 	if (c) {
1964 		spin_lock_init(&c->cnt_lock);
1965 		spin_lock_init(&c->cs_lock);
1966 		spin_lock_init(&c->buds_lock);
1967 		spin_lock_init(&c->space_lock);
1968 		spin_lock_init(&c->orphan_lock);
1969 		init_rwsem(&c->commit_sem);
1970 		mutex_init(&c->lp_mutex);
1971 		mutex_init(&c->tnc_mutex);
1972 		mutex_init(&c->log_mutex);
1973 		mutex_init(&c->mst_mutex);
1974 		mutex_init(&c->umount_mutex);
1975 		mutex_init(&c->bu_mutex);
1976 		mutex_init(&c->write_reserve_mutex);
1977 		init_waitqueue_head(&c->cmt_wq);
1978 		c->buds = RB_ROOT;
1979 		c->old_idx = RB_ROOT;
1980 		c->size_tree = RB_ROOT;
1981 		c->orph_tree = RB_ROOT;
1982 		INIT_LIST_HEAD(&c->infos_list);
1983 		INIT_LIST_HEAD(&c->idx_gc);
1984 		INIT_LIST_HEAD(&c->replay_list);
1985 		INIT_LIST_HEAD(&c->replay_buds);
1986 		INIT_LIST_HEAD(&c->uncat_list);
1987 		INIT_LIST_HEAD(&c->empty_list);
1988 		INIT_LIST_HEAD(&c->freeable_list);
1989 		INIT_LIST_HEAD(&c->frdi_idx_list);
1990 		INIT_LIST_HEAD(&c->unclean_leb_list);
1991 		INIT_LIST_HEAD(&c->old_buds);
1992 		INIT_LIST_HEAD(&c->orph_list);
1993 		INIT_LIST_HEAD(&c->orph_new);
1994 		c->no_chk_data_crc = 1;
1995 
1996 		c->highest_inum = UBIFS_FIRST_INO;
1997 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1998 
1999 		ubi_get_volume_info(ubi, &c->vi);
2000 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2001 	}
2002 	return c;
2003 }
2004 
2005 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2006 {
2007 	struct ubifs_info *c = sb->s_fs_info;
2008 	struct inode *root;
2009 	int err;
2010 
2011 	c->vfs_sb = sb;
2012 	/* Re-open the UBI device in read-write mode */
2013 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2014 	if (IS_ERR(c->ubi)) {
2015 		err = PTR_ERR(c->ubi);
2016 		goto out;
2017 	}
2018 
2019 	/*
2020 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2021 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2022 	 * which means the user would have to wait not just for their own I/O
2023 	 * but the read-ahead I/O as well i.e. completely pointless.
2024 	 *
2025 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2026 	 */
2027 	c->bdi.name = "ubifs",
2028 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2029 	err  = bdi_init(&c->bdi);
2030 	if (err)
2031 		goto out_close;
2032 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2033 			   c->vi.ubi_num, c->vi.vol_id);
2034 	if (err)
2035 		goto out_bdi;
2036 
2037 	err = ubifs_parse_options(c, data, 0);
2038 	if (err)
2039 		goto out_bdi;
2040 
2041 	sb->s_bdi = &c->bdi;
2042 	sb->s_fs_info = c;
2043 	sb->s_magic = UBIFS_SUPER_MAGIC;
2044 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2045 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2046 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2047 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2048 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2049 	sb->s_op = &ubifs_super_operations;
2050 
2051 	mutex_lock(&c->umount_mutex);
2052 	err = mount_ubifs(c);
2053 	if (err) {
2054 		ubifs_assert(err < 0);
2055 		goto out_unlock;
2056 	}
2057 
2058 	/* Read the root inode */
2059 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2060 	if (IS_ERR(root)) {
2061 		err = PTR_ERR(root);
2062 		goto out_umount;
2063 	}
2064 
2065 	sb->s_root = d_make_root(root);
2066 	if (!sb->s_root)
2067 		goto out_umount;
2068 
2069 	mutex_unlock(&c->umount_mutex);
2070 	return 0;
2071 
2072 out_umount:
2073 	ubifs_umount(c);
2074 out_unlock:
2075 	mutex_unlock(&c->umount_mutex);
2076 out_bdi:
2077 	bdi_destroy(&c->bdi);
2078 out_close:
2079 	ubi_close_volume(c->ubi);
2080 out:
2081 	return err;
2082 }
2083 
2084 static int sb_test(struct super_block *sb, void *data)
2085 {
2086 	struct ubifs_info *c1 = data;
2087 	struct ubifs_info *c = sb->s_fs_info;
2088 
2089 	return c->vi.cdev == c1->vi.cdev;
2090 }
2091 
2092 static int sb_set(struct super_block *sb, void *data)
2093 {
2094 	sb->s_fs_info = data;
2095 	return set_anon_super(sb, NULL);
2096 }
2097 
2098 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2099 			const char *name, void *data)
2100 {
2101 	struct ubi_volume_desc *ubi;
2102 	struct ubifs_info *c;
2103 	struct super_block *sb;
2104 	int err;
2105 
2106 	dbg_gen("name %s, flags %#x", name, flags);
2107 
2108 	/*
2109 	 * Get UBI device number and volume ID. Mount it read-only so far
2110 	 * because this might be a new mount point, and UBI allows only one
2111 	 * read-write user at a time.
2112 	 */
2113 	ubi = open_ubi(name, UBI_READONLY);
2114 	if (IS_ERR(ubi)) {
2115 		ubifs_err("cannot open \"%s\", error %d",
2116 			  name, (int)PTR_ERR(ubi));
2117 		return ERR_CAST(ubi);
2118 	}
2119 
2120 	c = alloc_ubifs_info(ubi);
2121 	if (!c) {
2122 		err = -ENOMEM;
2123 		goto out_close;
2124 	}
2125 
2126 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2127 
2128 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2129 	if (IS_ERR(sb)) {
2130 		err = PTR_ERR(sb);
2131 		kfree(c);
2132 		goto out_close;
2133 	}
2134 
2135 	if (sb->s_root) {
2136 		struct ubifs_info *c1 = sb->s_fs_info;
2137 		kfree(c);
2138 		/* A new mount point for already mounted UBIFS */
2139 		dbg_gen("this ubi volume is already mounted");
2140 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2141 			err = -EBUSY;
2142 			goto out_deact;
2143 		}
2144 	} else {
2145 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2146 		if (err)
2147 			goto out_deact;
2148 		/* We do not support atime */
2149 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2150 	}
2151 
2152 	/* 'fill_super()' opens ubi again so we must close it here */
2153 	ubi_close_volume(ubi);
2154 
2155 	return dget(sb->s_root);
2156 
2157 out_deact:
2158 	deactivate_locked_super(sb);
2159 out_close:
2160 	ubi_close_volume(ubi);
2161 	return ERR_PTR(err);
2162 }
2163 
2164 static void kill_ubifs_super(struct super_block *s)
2165 {
2166 	struct ubifs_info *c = s->s_fs_info;
2167 	kill_anon_super(s);
2168 	kfree(c);
2169 }
2170 
2171 static struct file_system_type ubifs_fs_type = {
2172 	.name    = "ubifs",
2173 	.owner   = THIS_MODULE,
2174 	.mount   = ubifs_mount,
2175 	.kill_sb = kill_ubifs_super,
2176 };
2177 MODULE_ALIAS_FS("ubifs");
2178 
2179 /*
2180  * Inode slab cache constructor.
2181  */
2182 static void inode_slab_ctor(void *obj)
2183 {
2184 	struct ubifs_inode *ui = obj;
2185 	inode_init_once(&ui->vfs_inode);
2186 }
2187 
2188 static int __init ubifs_init(void)
2189 {
2190 	int err;
2191 
2192 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2193 
2194 	/* Make sure node sizes are 8-byte aligned */
2195 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2196 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2197 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2198 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2199 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2200 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2201 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2202 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2203 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2204 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2205 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2206 
2207 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2208 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2209 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2210 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2211 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2212 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2213 
2214 	/* Check min. node size */
2215 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2216 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2217 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2218 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2219 
2220 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2221 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2222 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2223 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2224 
2225 	/* Defined node sizes */
2226 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2227 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2228 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2229 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2230 
2231 	/*
2232 	 * We use 2 bit wide bit-fields to store compression type, which should
2233 	 * be amended if more compressors are added. The bit-fields are:
2234 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2235 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2236 	 */
2237 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2238 
2239 	/*
2240 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2241 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2242 	 */
2243 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2244 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2245 			  (unsigned int)PAGE_CACHE_SIZE);
2246 		return -EINVAL;
2247 	}
2248 
2249 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2250 				sizeof(struct ubifs_inode), 0,
2251 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2252 				&inode_slab_ctor);
2253 	if (!ubifs_inode_slab)
2254 		return -ENOMEM;
2255 
2256 	register_shrinker(&ubifs_shrinker_info);
2257 
2258 	err = ubifs_compressors_init();
2259 	if (err)
2260 		goto out_shrinker;
2261 
2262 	err = dbg_debugfs_init();
2263 	if (err)
2264 		goto out_compr;
2265 
2266 	err = register_filesystem(&ubifs_fs_type);
2267 	if (err) {
2268 		ubifs_err("cannot register file system, error %d", err);
2269 		goto out_dbg;
2270 	}
2271 	return 0;
2272 
2273 out_dbg:
2274 	dbg_debugfs_exit();
2275 out_compr:
2276 	ubifs_compressors_exit();
2277 out_shrinker:
2278 	unregister_shrinker(&ubifs_shrinker_info);
2279 	kmem_cache_destroy(ubifs_inode_slab);
2280 	return err;
2281 }
2282 /* late_initcall to let compressors initialize first */
2283 late_initcall(ubifs_init);
2284 
2285 static void __exit ubifs_exit(void)
2286 {
2287 	ubifs_assert(list_empty(&ubifs_infos));
2288 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2289 
2290 	dbg_debugfs_exit();
2291 	ubifs_compressors_exit();
2292 	unregister_shrinker(&ubifs_shrinker_info);
2293 
2294 	/*
2295 	 * Make sure all delayed rcu free inodes are flushed before we
2296 	 * destroy cache.
2297 	 */
2298 	rcu_barrier();
2299 	kmem_cache_destroy(ubifs_inode_slab);
2300 	unregister_filesystem(&ubifs_fs_type);
2301 }
2302 module_exit(ubifs_exit);
2303 
2304 MODULE_LICENSE("GPL");
2305 MODULE_VERSION(__stringify(UBIFS_VERSION));
2306 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2307 MODULE_DESCRIPTION("UBIFS - UBI File System");
2308