xref: /linux/fs/ubifs/super.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30 {
31 	int n = 0, ret;
32 
33 	ret = kstrtoint(val, 10, &n);
34 	if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 		return -EINVAL;
36 	return param_set_int(val, kp);
37 }
38 
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 	.set = ubifs_default_version_set,
41 	.get = param_get_int,
42 };
43 
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46 
47 /*
48  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49  * allocating too much.
50  */
51 #define UBIFS_KMALLOC_OK (128*1024)
52 
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
55 
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info = {
58 	.scan_objects = ubifs_shrink_scan,
59 	.count_objects = ubifs_shrink_count,
60 	.seeks = DEFAULT_SEEKS,
61 };
62 
63 /**
64  * validate_inode - validate inode.
65  * @c: UBIFS file-system description object
66  * @inode: the inode to validate
67  *
68  * This is a helper function for 'ubifs_iget()' which validates various fields
69  * of a newly built inode to make sure they contain sane values and prevent
70  * possible vulnerabilities. Returns zero if the inode is all right and
71  * a non-zero error code if not.
72  */
73 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
74 {
75 	int err;
76 	const struct ubifs_inode *ui = ubifs_inode(inode);
77 
78 	if (inode->i_size > c->max_inode_sz) {
79 		ubifs_err(c, "inode is too large (%lld)",
80 			  (long long)inode->i_size);
81 		return 1;
82 	}
83 
84 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 		return 2;
87 	}
88 
89 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 		return 3;
91 
92 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 		return 4;
94 
95 	if (ui->xattr && !S_ISREG(inode->i_mode))
96 		return 5;
97 
98 	if (!ubifs_compr_present(c, ui->compr_type)) {
99 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
101 	}
102 
103 	err = dbg_check_dir(c, inode);
104 	return err;
105 }
106 
107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
108 {
109 	int err;
110 	union ubifs_key key;
111 	struct ubifs_ino_node *ino;
112 	struct ubifs_info *c = sb->s_fs_info;
113 	struct inode *inode;
114 	struct ubifs_inode *ui;
115 
116 	dbg_gen("inode %lu", inum);
117 
118 	inode = iget_locked(sb, inum);
119 	if (!inode)
120 		return ERR_PTR(-ENOMEM);
121 	if (!(inode->i_state & I_NEW))
122 		return inode;
123 	ui = ubifs_inode(inode);
124 
125 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 	if (!ino) {
127 		err = -ENOMEM;
128 		goto out;
129 	}
130 
131 	ino_key_init(c, &key, inode->i_ino);
132 
133 	err = ubifs_tnc_lookup(c, &key, ino);
134 	if (err)
135 		goto out_ino;
136 
137 	inode->i_flags |= S_NOCMTIME;
138 
139 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 		inode->i_flags |= S_NOATIME;
141 
142 	set_nlink(inode, le32_to_cpu(ino->nlink));
143 	i_uid_write(inode, le32_to_cpu(ino->uid));
144 	i_gid_write(inode, le32_to_cpu(ino->gid));
145 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
146 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
148 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
150 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
151 	inode->i_mode = le32_to_cpu(ino->mode);
152 	inode->i_size = le64_to_cpu(ino->size);
153 
154 	ui->data_len    = le32_to_cpu(ino->data_len);
155 	ui->flags       = le32_to_cpu(ino->flags);
156 	ui->compr_type  = le16_to_cpu(ino->compr_type);
157 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
159 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
160 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 	ui->synced_i_size = ui->ui_size = inode->i_size;
162 
163 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
164 
165 	err = validate_inode(c, inode);
166 	if (err)
167 		goto out_invalid;
168 
169 	switch (inode->i_mode & S_IFMT) {
170 	case S_IFREG:
171 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 		inode->i_op = &ubifs_file_inode_operations;
173 		inode->i_fop = &ubifs_file_operations;
174 		if (ui->xattr) {
175 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 			if (!ui->data) {
177 				err = -ENOMEM;
178 				goto out_ino;
179 			}
180 			memcpy(ui->data, ino->data, ui->data_len);
181 			((char *)ui->data)[ui->data_len] = '\0';
182 		} else if (ui->data_len != 0) {
183 			err = 10;
184 			goto out_invalid;
185 		}
186 		break;
187 	case S_IFDIR:
188 		inode->i_op  = &ubifs_dir_inode_operations;
189 		inode->i_fop = &ubifs_dir_operations;
190 		if (ui->data_len != 0) {
191 			err = 11;
192 			goto out_invalid;
193 		}
194 		break;
195 	case S_IFLNK:
196 		inode->i_op = &ubifs_symlink_inode_operations;
197 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 			err = 12;
199 			goto out_invalid;
200 		}
201 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 		if (!ui->data) {
203 			err = -ENOMEM;
204 			goto out_ino;
205 		}
206 		memcpy(ui->data, ino->data, ui->data_len);
207 		((char *)ui->data)[ui->data_len] = '\0';
208 		break;
209 	case S_IFBLK:
210 	case S_IFCHR:
211 	{
212 		dev_t rdev;
213 		union ubifs_dev_desc *dev;
214 
215 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 		if (!ui->data) {
217 			err = -ENOMEM;
218 			goto out_ino;
219 		}
220 
221 		dev = (union ubifs_dev_desc *)ino->data;
222 		if (ui->data_len == sizeof(dev->new))
223 			rdev = new_decode_dev(le32_to_cpu(dev->new));
224 		else if (ui->data_len == sizeof(dev->huge))
225 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 		else {
227 			err = 13;
228 			goto out_invalid;
229 		}
230 		memcpy(ui->data, ino->data, ui->data_len);
231 		inode->i_op = &ubifs_file_inode_operations;
232 		init_special_inode(inode, inode->i_mode, rdev);
233 		break;
234 	}
235 	case S_IFSOCK:
236 	case S_IFIFO:
237 		inode->i_op = &ubifs_file_inode_operations;
238 		init_special_inode(inode, inode->i_mode, 0);
239 		if (ui->data_len != 0) {
240 			err = 14;
241 			goto out_invalid;
242 		}
243 		break;
244 	default:
245 		err = 15;
246 		goto out_invalid;
247 	}
248 
249 	kfree(ino);
250 	ubifs_set_inode_flags(inode);
251 	unlock_new_inode(inode);
252 	return inode;
253 
254 out_invalid:
255 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 	ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
257 	ubifs_dump_inode(c, inode);
258 	err = -EINVAL;
259 out_ino:
260 	kfree(ino);
261 out:
262 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 	iget_failed(inode);
264 	return ERR_PTR(err);
265 }
266 
267 static struct inode *ubifs_alloc_inode(struct super_block *sb)
268 {
269 	struct ubifs_inode *ui;
270 
271 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
272 	if (!ui)
273 		return NULL;
274 
275 	memset((void *)ui + sizeof(struct inode), 0,
276 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
277 	mutex_init(&ui->ui_mutex);
278 	spin_lock_init(&ui->ui_lock);
279 	return &ui->vfs_inode;
280 };
281 
282 static void ubifs_free_inode(struct inode *inode)
283 {
284 	struct ubifs_inode *ui = ubifs_inode(inode);
285 
286 	kfree(ui->data);
287 	fscrypt_free_inode(inode);
288 
289 	kmem_cache_free(ubifs_inode_slab, ui);
290 }
291 
292 /*
293  * Note, Linux write-back code calls this without 'i_mutex'.
294  */
295 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
296 {
297 	int err = 0;
298 	struct ubifs_info *c = inode->i_sb->s_fs_info;
299 	struct ubifs_inode *ui = ubifs_inode(inode);
300 
301 	ubifs_assert(c, !ui->xattr);
302 	if (is_bad_inode(inode))
303 		return 0;
304 
305 	mutex_lock(&ui->ui_mutex);
306 	/*
307 	 * Due to races between write-back forced by budgeting
308 	 * (see 'sync_some_inodes()') and background write-back, the inode may
309 	 * have already been synchronized, do not do this again. This might
310 	 * also happen if it was synchronized in an VFS operation, e.g.
311 	 * 'ubifs_link()'.
312 	 */
313 	if (!ui->dirty) {
314 		mutex_unlock(&ui->ui_mutex);
315 		return 0;
316 	}
317 
318 	/*
319 	 * As an optimization, do not write orphan inodes to the media just
320 	 * because this is not needed.
321 	 */
322 	dbg_gen("inode %lu, mode %#x, nlink %u",
323 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
324 	if (inode->i_nlink) {
325 		err = ubifs_jnl_write_inode(c, inode);
326 		if (err)
327 			ubifs_err(c, "can't write inode %lu, error %d",
328 				  inode->i_ino, err);
329 		else
330 			err = dbg_check_inode_size(c, inode, ui->ui_size);
331 	}
332 
333 	ui->dirty = 0;
334 	mutex_unlock(&ui->ui_mutex);
335 	ubifs_release_dirty_inode_budget(c, ui);
336 	return err;
337 }
338 
339 static int ubifs_drop_inode(struct inode *inode)
340 {
341 	int drop = generic_drop_inode(inode);
342 
343 	if (!drop)
344 		drop = fscrypt_drop_inode(inode);
345 
346 	return drop;
347 }
348 
349 static void ubifs_evict_inode(struct inode *inode)
350 {
351 	int err;
352 	struct ubifs_info *c = inode->i_sb->s_fs_info;
353 	struct ubifs_inode *ui = ubifs_inode(inode);
354 
355 	if (ui->xattr)
356 		/*
357 		 * Extended attribute inode deletions are fully handled in
358 		 * 'ubifs_removexattr()'. These inodes are special and have
359 		 * limited usage, so there is nothing to do here.
360 		 */
361 		goto out;
362 
363 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
364 	ubifs_assert(c, !atomic_read(&inode->i_count));
365 
366 	truncate_inode_pages_final(&inode->i_data);
367 
368 	if (inode->i_nlink)
369 		goto done;
370 
371 	if (is_bad_inode(inode))
372 		goto out;
373 
374 	ui->ui_size = inode->i_size = 0;
375 	err = ubifs_jnl_delete_inode(c, inode);
376 	if (err)
377 		/*
378 		 * Worst case we have a lost orphan inode wasting space, so a
379 		 * simple error message is OK here.
380 		 */
381 		ubifs_err(c, "can't delete inode %lu, error %d",
382 			  inode->i_ino, err);
383 
384 out:
385 	if (ui->dirty)
386 		ubifs_release_dirty_inode_budget(c, ui);
387 	else {
388 		/* We've deleted something - clean the "no space" flags */
389 		c->bi.nospace = c->bi.nospace_rp = 0;
390 		smp_wmb();
391 	}
392 done:
393 	clear_inode(inode);
394 	fscrypt_put_encryption_info(inode);
395 }
396 
397 static void ubifs_dirty_inode(struct inode *inode, int flags)
398 {
399 	struct ubifs_info *c = inode->i_sb->s_fs_info;
400 	struct ubifs_inode *ui = ubifs_inode(inode);
401 
402 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
403 	if (!ui->dirty) {
404 		ui->dirty = 1;
405 		dbg_gen("inode %lu",  inode->i_ino);
406 	}
407 }
408 
409 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
410 {
411 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
412 	unsigned long long free;
413 	__le32 *uuid = (__le32 *)c->uuid;
414 
415 	free = ubifs_get_free_space(c);
416 	dbg_gen("free space %lld bytes (%lld blocks)",
417 		free, free >> UBIFS_BLOCK_SHIFT);
418 
419 	buf->f_type = UBIFS_SUPER_MAGIC;
420 	buf->f_bsize = UBIFS_BLOCK_SIZE;
421 	buf->f_blocks = c->block_cnt;
422 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
423 	if (free > c->report_rp_size)
424 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
425 	else
426 		buf->f_bavail = 0;
427 	buf->f_files = 0;
428 	buf->f_ffree = 0;
429 	buf->f_namelen = UBIFS_MAX_NLEN;
430 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
431 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
432 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
433 	return 0;
434 }
435 
436 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
437 {
438 	struct ubifs_info *c = root->d_sb->s_fs_info;
439 
440 	if (c->mount_opts.unmount_mode == 2)
441 		seq_puts(s, ",fast_unmount");
442 	else if (c->mount_opts.unmount_mode == 1)
443 		seq_puts(s, ",norm_unmount");
444 
445 	if (c->mount_opts.bulk_read == 2)
446 		seq_puts(s, ",bulk_read");
447 	else if (c->mount_opts.bulk_read == 1)
448 		seq_puts(s, ",no_bulk_read");
449 
450 	if (c->mount_opts.chk_data_crc == 2)
451 		seq_puts(s, ",chk_data_crc");
452 	else if (c->mount_opts.chk_data_crc == 1)
453 		seq_puts(s, ",no_chk_data_crc");
454 
455 	if (c->mount_opts.override_compr) {
456 		seq_printf(s, ",compr=%s",
457 			   ubifs_compr_name(c, c->mount_opts.compr_type));
458 	}
459 
460 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
461 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
462 
463 	return 0;
464 }
465 
466 static int ubifs_sync_fs(struct super_block *sb, int wait)
467 {
468 	int i, err;
469 	struct ubifs_info *c = sb->s_fs_info;
470 
471 	/*
472 	 * Zero @wait is just an advisory thing to help the file system shove
473 	 * lots of data into the queues, and there will be the second
474 	 * '->sync_fs()' call, with non-zero @wait.
475 	 */
476 	if (!wait)
477 		return 0;
478 
479 	/*
480 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
481 	 * do this if it waits for an already running commit.
482 	 */
483 	for (i = 0; i < c->jhead_cnt; i++) {
484 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
485 		if (err)
486 			return err;
487 	}
488 
489 	/*
490 	 * Strictly speaking, it is not necessary to commit the journal here,
491 	 * synchronizing write-buffers would be enough. But committing makes
492 	 * UBIFS free space predictions much more accurate, so we want to let
493 	 * the user be able to get more accurate results of 'statfs()' after
494 	 * they synchronize the file system.
495 	 */
496 	err = ubifs_run_commit(c);
497 	if (err)
498 		return err;
499 
500 	return ubi_sync(c->vi.ubi_num);
501 }
502 
503 /**
504  * init_constants_early - initialize UBIFS constants.
505  * @c: UBIFS file-system description object
506  *
507  * This function initialize UBIFS constants which do not need the superblock to
508  * be read. It also checks that the UBI volume satisfies basic UBIFS
509  * requirements. Returns zero in case of success and a negative error code in
510  * case of failure.
511  */
512 static int init_constants_early(struct ubifs_info *c)
513 {
514 	if (c->vi.corrupted) {
515 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
516 		c->ro_media = 1;
517 	}
518 
519 	if (c->di.ro_mode) {
520 		ubifs_msg(c, "read-only UBI device");
521 		c->ro_media = 1;
522 	}
523 
524 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
525 		ubifs_msg(c, "static UBI volume - read-only mode");
526 		c->ro_media = 1;
527 	}
528 
529 	c->leb_cnt = c->vi.size;
530 	c->leb_size = c->vi.usable_leb_size;
531 	c->leb_start = c->di.leb_start;
532 	c->half_leb_size = c->leb_size / 2;
533 	c->min_io_size = c->di.min_io_size;
534 	c->min_io_shift = fls(c->min_io_size) - 1;
535 	c->max_write_size = c->di.max_write_size;
536 	c->max_write_shift = fls(c->max_write_size) - 1;
537 
538 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
539 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
540 			   c->leb_size, UBIFS_MIN_LEB_SZ);
541 		return -EINVAL;
542 	}
543 
544 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
545 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
546 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
547 		return -EINVAL;
548 	}
549 
550 	if (!is_power_of_2(c->min_io_size)) {
551 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
552 		return -EINVAL;
553 	}
554 
555 	/*
556 	 * Maximum write size has to be greater or equivalent to min. I/O
557 	 * size, and be multiple of min. I/O size.
558 	 */
559 	if (c->max_write_size < c->min_io_size ||
560 	    c->max_write_size % c->min_io_size ||
561 	    !is_power_of_2(c->max_write_size)) {
562 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
563 			   c->max_write_size, c->min_io_size);
564 		return -EINVAL;
565 	}
566 
567 	/*
568 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
569 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
570 	 * less than 8.
571 	 */
572 	if (c->min_io_size < 8) {
573 		c->min_io_size = 8;
574 		c->min_io_shift = 3;
575 		if (c->max_write_size < c->min_io_size) {
576 			c->max_write_size = c->min_io_size;
577 			c->max_write_shift = c->min_io_shift;
578 		}
579 	}
580 
581 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
582 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
583 
584 	/*
585 	 * Initialize node length ranges which are mostly needed for node
586 	 * length validation.
587 	 */
588 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
589 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
590 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
591 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
592 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
593 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
594 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
595 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
596 				UBIFS_MAX_HMAC_LEN;
597 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
598 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
599 
600 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
601 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
602 	c->ranges[UBIFS_ORPH_NODE].min_len =
603 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
604 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
605 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
606 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
607 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
608 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
609 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
610 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
611 	/*
612 	 * Minimum indexing node size is amended later when superblock is
613 	 * read and the key length is known.
614 	 */
615 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
616 	/*
617 	 * Maximum indexing node size is amended later when superblock is
618 	 * read and the fanout is known.
619 	 */
620 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
621 
622 	/*
623 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
624 	 * about these values.
625 	 */
626 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
627 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
628 
629 	/*
630 	 * Calculate how many bytes would be wasted at the end of LEB if it was
631 	 * fully filled with data nodes of maximum size. This is used in
632 	 * calculations when reporting free space.
633 	 */
634 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
635 
636 	/* Buffer size for bulk-reads */
637 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
638 	if (c->max_bu_buf_len > c->leb_size)
639 		c->max_bu_buf_len = c->leb_size;
640 
641 	/* Log is ready, preserve one LEB for commits. */
642 	c->min_log_bytes = c->leb_size;
643 
644 	return 0;
645 }
646 
647 /**
648  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
649  * @c: UBIFS file-system description object
650  * @lnum: LEB the write-buffer was synchronized to
651  * @free: how many free bytes left in this LEB
652  * @pad: how many bytes were padded
653  *
654  * This is a callback function which is called by the I/O unit when the
655  * write-buffer is synchronized. We need this to correctly maintain space
656  * accounting in bud logical eraseblocks. This function returns zero in case of
657  * success and a negative error code in case of failure.
658  *
659  * This function actually belongs to the journal, but we keep it here because
660  * we want to keep it static.
661  */
662 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
663 {
664 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
665 }
666 
667 /*
668  * init_constants_sb - initialize UBIFS constants.
669  * @c: UBIFS file-system description object
670  *
671  * This is a helper function which initializes various UBIFS constants after
672  * the superblock has been read. It also checks various UBIFS parameters and
673  * makes sure they are all right. Returns zero in case of success and a
674  * negative error code in case of failure.
675  */
676 static int init_constants_sb(struct ubifs_info *c)
677 {
678 	int tmp, err;
679 	long long tmp64;
680 
681 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
682 	c->max_znode_sz = sizeof(struct ubifs_znode) +
683 				c->fanout * sizeof(struct ubifs_zbranch);
684 
685 	tmp = ubifs_idx_node_sz(c, 1);
686 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
687 	c->min_idx_node_sz = ALIGN(tmp, 8);
688 
689 	tmp = ubifs_idx_node_sz(c, c->fanout);
690 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
691 	c->max_idx_node_sz = ALIGN(tmp, 8);
692 
693 	/* Make sure LEB size is large enough to fit full commit */
694 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
695 	tmp = ALIGN(tmp, c->min_io_size);
696 	if (tmp > c->leb_size) {
697 		ubifs_err(c, "too small LEB size %d, at least %d needed",
698 			  c->leb_size, tmp);
699 		return -EINVAL;
700 	}
701 
702 	/*
703 	 * Make sure that the log is large enough to fit reference nodes for
704 	 * all buds plus one reserved LEB.
705 	 */
706 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
707 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
708 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
709 	tmp /= c->leb_size;
710 	tmp += 1;
711 	if (c->log_lebs < tmp) {
712 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
713 			  c->log_lebs, tmp);
714 		return -EINVAL;
715 	}
716 
717 	/*
718 	 * When budgeting we assume worst-case scenarios when the pages are not
719 	 * be compressed and direntries are of the maximum size.
720 	 *
721 	 * Note, data, which may be stored in inodes is budgeted separately, so
722 	 * it is not included into 'c->bi.inode_budget'.
723 	 */
724 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
725 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
726 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
727 
728 	/*
729 	 * When the amount of flash space used by buds becomes
730 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
731 	 * The writers are unblocked when the commit is finished. To avoid
732 	 * writers to be blocked UBIFS initiates background commit in advance,
733 	 * when number of bud bytes becomes above the limit defined below.
734 	 */
735 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
736 
737 	/*
738 	 * Ensure minimum journal size. All the bytes in the journal heads are
739 	 * considered to be used, when calculating the current journal usage.
740 	 * Consequently, if the journal is too small, UBIFS will treat it as
741 	 * always full.
742 	 */
743 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
744 	if (c->bg_bud_bytes < tmp64)
745 		c->bg_bud_bytes = tmp64;
746 	if (c->max_bud_bytes < tmp64 + c->leb_size)
747 		c->max_bud_bytes = tmp64 + c->leb_size;
748 
749 	err = ubifs_calc_lpt_geom(c);
750 	if (err)
751 		return err;
752 
753 	/* Initialize effective LEB size used in budgeting calculations */
754 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
755 	return 0;
756 }
757 
758 /*
759  * init_constants_master - initialize UBIFS constants.
760  * @c: UBIFS file-system description object
761  *
762  * This is a helper function which initializes various UBIFS constants after
763  * the master node has been read. It also checks various UBIFS parameters and
764  * makes sure they are all right.
765  */
766 static void init_constants_master(struct ubifs_info *c)
767 {
768 	long long tmp64;
769 
770 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
771 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
772 
773 	/*
774 	 * Calculate total amount of FS blocks. This number is not used
775 	 * internally because it does not make much sense for UBIFS, but it is
776 	 * necessary to report something for the 'statfs()' call.
777 	 *
778 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
779 	 * deletions, minimum LEBs for the index, and assume only one journal
780 	 * head is available.
781 	 */
782 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
783 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
784 	tmp64 = ubifs_reported_space(c, tmp64);
785 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
786 }
787 
788 /**
789  * take_gc_lnum - reserve GC LEB.
790  * @c: UBIFS file-system description object
791  *
792  * This function ensures that the LEB reserved for garbage collection is marked
793  * as "taken" in lprops. We also have to set free space to LEB size and dirty
794  * space to zero, because lprops may contain out-of-date information if the
795  * file-system was un-mounted before it has been committed. This function
796  * returns zero in case of success and a negative error code in case of
797  * failure.
798  */
799 static int take_gc_lnum(struct ubifs_info *c)
800 {
801 	int err;
802 
803 	if (c->gc_lnum == -1) {
804 		ubifs_err(c, "no LEB for GC");
805 		return -EINVAL;
806 	}
807 
808 	/* And we have to tell lprops that this LEB is taken */
809 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
810 				  LPROPS_TAKEN, 0, 0);
811 	return err;
812 }
813 
814 /**
815  * alloc_wbufs - allocate write-buffers.
816  * @c: UBIFS file-system description object
817  *
818  * This helper function allocates and initializes UBIFS write-buffers. Returns
819  * zero in case of success and %-ENOMEM in case of failure.
820  */
821 static int alloc_wbufs(struct ubifs_info *c)
822 {
823 	int i, err;
824 
825 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
826 			    GFP_KERNEL);
827 	if (!c->jheads)
828 		return -ENOMEM;
829 
830 	/* Initialize journal heads */
831 	for (i = 0; i < c->jhead_cnt; i++) {
832 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
833 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
834 		if (err)
835 			return err;
836 
837 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
838 		c->jheads[i].wbuf.jhead = i;
839 		c->jheads[i].grouped = 1;
840 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
841 		if (IS_ERR(c->jheads[i].log_hash))
842 			goto out;
843 	}
844 
845 	/*
846 	 * Garbage Collector head does not need to be synchronized by timer.
847 	 * Also GC head nodes are not grouped.
848 	 */
849 	c->jheads[GCHD].wbuf.no_timer = 1;
850 	c->jheads[GCHD].grouped = 0;
851 
852 	return 0;
853 
854 out:
855 	while (i--)
856 		kfree(c->jheads[i].log_hash);
857 
858 	return err;
859 }
860 
861 /**
862  * free_wbufs - free write-buffers.
863  * @c: UBIFS file-system description object
864  */
865 static void free_wbufs(struct ubifs_info *c)
866 {
867 	int i;
868 
869 	if (c->jheads) {
870 		for (i = 0; i < c->jhead_cnt; i++) {
871 			kfree(c->jheads[i].wbuf.buf);
872 			kfree(c->jheads[i].wbuf.inodes);
873 			kfree(c->jheads[i].log_hash);
874 		}
875 		kfree(c->jheads);
876 		c->jheads = NULL;
877 	}
878 }
879 
880 /**
881  * free_orphans - free orphans.
882  * @c: UBIFS file-system description object
883  */
884 static void free_orphans(struct ubifs_info *c)
885 {
886 	struct ubifs_orphan *orph;
887 
888 	while (c->orph_dnext) {
889 		orph = c->orph_dnext;
890 		c->orph_dnext = orph->dnext;
891 		list_del(&orph->list);
892 		kfree(orph);
893 	}
894 
895 	while (!list_empty(&c->orph_list)) {
896 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
897 		list_del(&orph->list);
898 		kfree(orph);
899 		ubifs_err(c, "orphan list not empty at unmount");
900 	}
901 
902 	vfree(c->orph_buf);
903 	c->orph_buf = NULL;
904 }
905 
906 /**
907  * free_buds - free per-bud objects.
908  * @c: UBIFS file-system description object
909  */
910 static void free_buds(struct ubifs_info *c)
911 {
912 	struct ubifs_bud *bud, *n;
913 
914 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
915 		kfree(bud);
916 }
917 
918 /**
919  * check_volume_empty - check if the UBI volume is empty.
920  * @c: UBIFS file-system description object
921  *
922  * This function checks if the UBIFS volume is empty by looking if its LEBs are
923  * mapped or not. The result of checking is stored in the @c->empty variable.
924  * Returns zero in case of success and a negative error code in case of
925  * failure.
926  */
927 static int check_volume_empty(struct ubifs_info *c)
928 {
929 	int lnum, err;
930 
931 	c->empty = 1;
932 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
933 		err = ubifs_is_mapped(c, lnum);
934 		if (unlikely(err < 0))
935 			return err;
936 		if (err == 1) {
937 			c->empty = 0;
938 			break;
939 		}
940 
941 		cond_resched();
942 	}
943 
944 	return 0;
945 }
946 
947 /*
948  * UBIFS mount options.
949  *
950  * Opt_fast_unmount: do not run a journal commit before un-mounting
951  * Opt_norm_unmount: run a journal commit before un-mounting
952  * Opt_bulk_read: enable bulk-reads
953  * Opt_no_bulk_read: disable bulk-reads
954  * Opt_chk_data_crc: check CRCs when reading data nodes
955  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
956  * Opt_override_compr: override default compressor
957  * Opt_assert: set ubifs_assert() action
958  * Opt_auth_key: The key name used for authentication
959  * Opt_auth_hash_name: The hash type used for authentication
960  * Opt_err: just end of array marker
961  */
962 enum {
963 	Opt_fast_unmount,
964 	Opt_norm_unmount,
965 	Opt_bulk_read,
966 	Opt_no_bulk_read,
967 	Opt_chk_data_crc,
968 	Opt_no_chk_data_crc,
969 	Opt_override_compr,
970 	Opt_assert,
971 	Opt_auth_key,
972 	Opt_auth_hash_name,
973 	Opt_ignore,
974 	Opt_err,
975 };
976 
977 static const match_table_t tokens = {
978 	{Opt_fast_unmount, "fast_unmount"},
979 	{Opt_norm_unmount, "norm_unmount"},
980 	{Opt_bulk_read, "bulk_read"},
981 	{Opt_no_bulk_read, "no_bulk_read"},
982 	{Opt_chk_data_crc, "chk_data_crc"},
983 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
984 	{Opt_override_compr, "compr=%s"},
985 	{Opt_auth_key, "auth_key=%s"},
986 	{Opt_auth_hash_name, "auth_hash_name=%s"},
987 	{Opt_ignore, "ubi=%s"},
988 	{Opt_ignore, "vol=%s"},
989 	{Opt_assert, "assert=%s"},
990 	{Opt_err, NULL},
991 };
992 
993 /**
994  * parse_standard_option - parse a standard mount option.
995  * @option: the option to parse
996  *
997  * Normally, standard mount options like "sync" are passed to file-systems as
998  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
999  * be present in the options string. This function tries to deal with this
1000  * situation and parse standard options. Returns 0 if the option was not
1001  * recognized, and the corresponding integer flag if it was.
1002  *
1003  * UBIFS is only interested in the "sync" option, so do not check for anything
1004  * else.
1005  */
1006 static int parse_standard_option(const char *option)
1007 {
1008 
1009 	pr_notice("UBIFS: parse %s\n", option);
1010 	if (!strcmp(option, "sync"))
1011 		return SB_SYNCHRONOUS;
1012 	return 0;
1013 }
1014 
1015 /**
1016  * ubifs_parse_options - parse mount parameters.
1017  * @c: UBIFS file-system description object
1018  * @options: parameters to parse
1019  * @is_remount: non-zero if this is FS re-mount
1020  *
1021  * This function parses UBIFS mount options and returns zero in case success
1022  * and a negative error code in case of failure.
1023  */
1024 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1025 			       int is_remount)
1026 {
1027 	char *p;
1028 	substring_t args[MAX_OPT_ARGS];
1029 
1030 	if (!options)
1031 		return 0;
1032 
1033 	while ((p = strsep(&options, ","))) {
1034 		int token;
1035 
1036 		if (!*p)
1037 			continue;
1038 
1039 		token = match_token(p, tokens, args);
1040 		switch (token) {
1041 		/*
1042 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1043 		 * We accept them in order to be backward-compatible. But this
1044 		 * should be removed at some point.
1045 		 */
1046 		case Opt_fast_unmount:
1047 			c->mount_opts.unmount_mode = 2;
1048 			break;
1049 		case Opt_norm_unmount:
1050 			c->mount_opts.unmount_mode = 1;
1051 			break;
1052 		case Opt_bulk_read:
1053 			c->mount_opts.bulk_read = 2;
1054 			c->bulk_read = 1;
1055 			break;
1056 		case Opt_no_bulk_read:
1057 			c->mount_opts.bulk_read = 1;
1058 			c->bulk_read = 0;
1059 			break;
1060 		case Opt_chk_data_crc:
1061 			c->mount_opts.chk_data_crc = 2;
1062 			c->no_chk_data_crc = 0;
1063 			break;
1064 		case Opt_no_chk_data_crc:
1065 			c->mount_opts.chk_data_crc = 1;
1066 			c->no_chk_data_crc = 1;
1067 			break;
1068 		case Opt_override_compr:
1069 		{
1070 			char *name = match_strdup(&args[0]);
1071 
1072 			if (!name)
1073 				return -ENOMEM;
1074 			if (!strcmp(name, "none"))
1075 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1076 			else if (!strcmp(name, "lzo"))
1077 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1078 			else if (!strcmp(name, "zlib"))
1079 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1080 			else if (!strcmp(name, "zstd"))
1081 				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1082 			else {
1083 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1084 				kfree(name);
1085 				return -EINVAL;
1086 			}
1087 			kfree(name);
1088 			c->mount_opts.override_compr = 1;
1089 			c->default_compr = c->mount_opts.compr_type;
1090 			break;
1091 		}
1092 		case Opt_assert:
1093 		{
1094 			char *act = match_strdup(&args[0]);
1095 
1096 			if (!act)
1097 				return -ENOMEM;
1098 			if (!strcmp(act, "report"))
1099 				c->assert_action = ASSACT_REPORT;
1100 			else if (!strcmp(act, "read-only"))
1101 				c->assert_action = ASSACT_RO;
1102 			else if (!strcmp(act, "panic"))
1103 				c->assert_action = ASSACT_PANIC;
1104 			else {
1105 				ubifs_err(c, "unknown assert action \"%s\"", act);
1106 				kfree(act);
1107 				return -EINVAL;
1108 			}
1109 			kfree(act);
1110 			break;
1111 		}
1112 		case Opt_auth_key:
1113 			if (!is_remount) {
1114 				c->auth_key_name = kstrdup(args[0].from,
1115 								GFP_KERNEL);
1116 				if (!c->auth_key_name)
1117 					return -ENOMEM;
1118 			}
1119 			break;
1120 		case Opt_auth_hash_name:
1121 			if (!is_remount) {
1122 				c->auth_hash_name = kstrdup(args[0].from,
1123 								GFP_KERNEL);
1124 				if (!c->auth_hash_name)
1125 					return -ENOMEM;
1126 			}
1127 			break;
1128 		case Opt_ignore:
1129 			break;
1130 		default:
1131 		{
1132 			unsigned long flag;
1133 			struct super_block *sb = c->vfs_sb;
1134 
1135 			flag = parse_standard_option(p);
1136 			if (!flag) {
1137 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1138 					  p);
1139 				return -EINVAL;
1140 			}
1141 			sb->s_flags |= flag;
1142 			break;
1143 		}
1144 		}
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 /*
1151  * ubifs_release_options - release mount parameters which have been dumped.
1152  * @c: UBIFS file-system description object
1153  */
1154 static void ubifs_release_options(struct ubifs_info *c)
1155 {
1156 	kfree(c->auth_key_name);
1157 	c->auth_key_name = NULL;
1158 	kfree(c->auth_hash_name);
1159 	c->auth_hash_name = NULL;
1160 }
1161 
1162 /**
1163  * destroy_journal - destroy journal data structures.
1164  * @c: UBIFS file-system description object
1165  *
1166  * This function destroys journal data structures including those that may have
1167  * been created by recovery functions.
1168  */
1169 static void destroy_journal(struct ubifs_info *c)
1170 {
1171 	while (!list_empty(&c->unclean_leb_list)) {
1172 		struct ubifs_unclean_leb *ucleb;
1173 
1174 		ucleb = list_entry(c->unclean_leb_list.next,
1175 				   struct ubifs_unclean_leb, list);
1176 		list_del(&ucleb->list);
1177 		kfree(ucleb);
1178 	}
1179 	while (!list_empty(&c->old_buds)) {
1180 		struct ubifs_bud *bud;
1181 
1182 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1183 		list_del(&bud->list);
1184 		kfree(bud);
1185 	}
1186 	ubifs_destroy_idx_gc(c);
1187 	ubifs_destroy_size_tree(c);
1188 	ubifs_tnc_close(c);
1189 	free_buds(c);
1190 }
1191 
1192 /**
1193  * bu_init - initialize bulk-read information.
1194  * @c: UBIFS file-system description object
1195  */
1196 static void bu_init(struct ubifs_info *c)
1197 {
1198 	ubifs_assert(c, c->bulk_read == 1);
1199 
1200 	if (c->bu.buf)
1201 		return; /* Already initialized */
1202 
1203 again:
1204 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1205 	if (!c->bu.buf) {
1206 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1207 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1208 			goto again;
1209 		}
1210 
1211 		/* Just disable bulk-read */
1212 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1213 			   c->max_bu_buf_len);
1214 		c->mount_opts.bulk_read = 1;
1215 		c->bulk_read = 0;
1216 		return;
1217 	}
1218 }
1219 
1220 /**
1221  * check_free_space - check if there is enough free space to mount.
1222  * @c: UBIFS file-system description object
1223  *
1224  * This function makes sure UBIFS has enough free space to be mounted in
1225  * read/write mode. UBIFS must always have some free space to allow deletions.
1226  */
1227 static int check_free_space(struct ubifs_info *c)
1228 {
1229 	ubifs_assert(c, c->dark_wm > 0);
1230 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1231 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1232 		ubifs_dump_budg(c, &c->bi);
1233 		ubifs_dump_lprops(c);
1234 		return -ENOSPC;
1235 	}
1236 	return 0;
1237 }
1238 
1239 /**
1240  * mount_ubifs - mount UBIFS file-system.
1241  * @c: UBIFS file-system description object
1242  *
1243  * This function mounts UBIFS file system. Returns zero in case of success and
1244  * a negative error code in case of failure.
1245  */
1246 static int mount_ubifs(struct ubifs_info *c)
1247 {
1248 	int err;
1249 	long long x, y;
1250 	size_t sz;
1251 
1252 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1253 	/* Suppress error messages while probing if SB_SILENT is set */
1254 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1255 
1256 	err = init_constants_early(c);
1257 	if (err)
1258 		return err;
1259 
1260 	err = ubifs_debugging_init(c);
1261 	if (err)
1262 		return err;
1263 
1264 	err = check_volume_empty(c);
1265 	if (err)
1266 		goto out_free;
1267 
1268 	if (c->empty && (c->ro_mount || c->ro_media)) {
1269 		/*
1270 		 * This UBI volume is empty, and read-only, or the file system
1271 		 * is mounted read-only - we cannot format it.
1272 		 */
1273 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1274 			  c->ro_media ? "UBI volume" : "mount");
1275 		err = -EROFS;
1276 		goto out_free;
1277 	}
1278 
1279 	if (c->ro_media && !c->ro_mount) {
1280 		ubifs_err(c, "cannot mount read-write - read-only media");
1281 		err = -EROFS;
1282 		goto out_free;
1283 	}
1284 
1285 	/*
1286 	 * The requirement for the buffer is that it should fit indexing B-tree
1287 	 * height amount of integers. We assume the height if the TNC tree will
1288 	 * never exceed 64.
1289 	 */
1290 	err = -ENOMEM;
1291 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1292 					 GFP_KERNEL);
1293 	if (!c->bottom_up_buf)
1294 		goto out_free;
1295 
1296 	c->sbuf = vmalloc(c->leb_size);
1297 	if (!c->sbuf)
1298 		goto out_free;
1299 
1300 	if (!c->ro_mount) {
1301 		c->ileb_buf = vmalloc(c->leb_size);
1302 		if (!c->ileb_buf)
1303 			goto out_free;
1304 	}
1305 
1306 	if (c->bulk_read == 1)
1307 		bu_init(c);
1308 
1309 	if (!c->ro_mount) {
1310 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1311 					       UBIFS_CIPHER_BLOCK_SIZE,
1312 					       GFP_KERNEL);
1313 		if (!c->write_reserve_buf)
1314 			goto out_free;
1315 	}
1316 
1317 	c->mounting = 1;
1318 
1319 	if (c->auth_key_name) {
1320 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1321 			err = ubifs_init_authentication(c);
1322 			if (err)
1323 				goto out_free;
1324 		} else {
1325 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1326 				  " authentication support");
1327 			err = -EINVAL;
1328 			goto out_free;
1329 		}
1330 	}
1331 
1332 	err = ubifs_read_superblock(c);
1333 	if (err)
1334 		goto out_auth;
1335 
1336 	c->probing = 0;
1337 
1338 	/*
1339 	 * Make sure the compressor which is set as default in the superblock
1340 	 * or overridden by mount options is actually compiled in.
1341 	 */
1342 	if (!ubifs_compr_present(c, c->default_compr)) {
1343 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1344 			  ubifs_compr_name(c, c->default_compr));
1345 		err = -ENOTSUPP;
1346 		goto out_auth;
1347 	}
1348 
1349 	err = init_constants_sb(c);
1350 	if (err)
1351 		goto out_auth;
1352 
1353 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1354 	c->cbuf = kmalloc(sz, GFP_NOFS);
1355 	if (!c->cbuf) {
1356 		err = -ENOMEM;
1357 		goto out_auth;
1358 	}
1359 
1360 	err = alloc_wbufs(c);
1361 	if (err)
1362 		goto out_cbuf;
1363 
1364 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1365 	if (!c->ro_mount) {
1366 		/* Create background thread */
1367 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1368 		if (IS_ERR(c->bgt)) {
1369 			err = PTR_ERR(c->bgt);
1370 			c->bgt = NULL;
1371 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1372 				  c->bgt_name, err);
1373 			goto out_wbufs;
1374 		}
1375 		wake_up_process(c->bgt);
1376 	}
1377 
1378 	err = ubifs_read_master(c);
1379 	if (err)
1380 		goto out_master;
1381 
1382 	init_constants_master(c);
1383 
1384 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1385 		ubifs_msg(c, "recovery needed");
1386 		c->need_recovery = 1;
1387 	}
1388 
1389 	if (c->need_recovery && !c->ro_mount) {
1390 		err = ubifs_recover_inl_heads(c, c->sbuf);
1391 		if (err)
1392 			goto out_master;
1393 	}
1394 
1395 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1396 	if (err)
1397 		goto out_master;
1398 
1399 	if (!c->ro_mount && c->space_fixup) {
1400 		err = ubifs_fixup_free_space(c);
1401 		if (err)
1402 			goto out_lpt;
1403 	}
1404 
1405 	if (!c->ro_mount && !c->need_recovery) {
1406 		/*
1407 		 * Set the "dirty" flag so that if we reboot uncleanly we
1408 		 * will notice this immediately on the next mount.
1409 		 */
1410 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1411 		err = ubifs_write_master(c);
1412 		if (err)
1413 			goto out_lpt;
1414 	}
1415 
1416 	/*
1417 	 * Handle offline signed images: Now that the master node is
1418 	 * written and its validation no longer depends on the hash
1419 	 * in the superblock, we can update the offline signed
1420 	 * superblock with a HMAC version,
1421 	 */
1422 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1423 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1424 		if (err)
1425 			goto out_lpt;
1426 		c->superblock_need_write = 1;
1427 	}
1428 
1429 	if (!c->ro_mount && c->superblock_need_write) {
1430 		err = ubifs_write_sb_node(c, c->sup_node);
1431 		if (err)
1432 			goto out_lpt;
1433 		c->superblock_need_write = 0;
1434 	}
1435 
1436 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1437 	if (err)
1438 		goto out_lpt;
1439 
1440 	err = ubifs_replay_journal(c);
1441 	if (err)
1442 		goto out_journal;
1443 
1444 	/* Calculate 'min_idx_lebs' after journal replay */
1445 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1446 
1447 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1448 	if (err)
1449 		goto out_orphans;
1450 
1451 	if (!c->ro_mount) {
1452 		int lnum;
1453 
1454 		err = check_free_space(c);
1455 		if (err)
1456 			goto out_orphans;
1457 
1458 		/* Check for enough log space */
1459 		lnum = c->lhead_lnum + 1;
1460 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1461 			lnum = UBIFS_LOG_LNUM;
1462 		if (lnum == c->ltail_lnum) {
1463 			err = ubifs_consolidate_log(c);
1464 			if (err)
1465 				goto out_orphans;
1466 		}
1467 
1468 		if (c->need_recovery) {
1469 			if (!ubifs_authenticated(c)) {
1470 				err = ubifs_recover_size(c, true);
1471 				if (err)
1472 					goto out_orphans;
1473 			}
1474 
1475 			err = ubifs_rcvry_gc_commit(c);
1476 			if (err)
1477 				goto out_orphans;
1478 
1479 			if (ubifs_authenticated(c)) {
1480 				err = ubifs_recover_size(c, false);
1481 				if (err)
1482 					goto out_orphans;
1483 			}
1484 		} else {
1485 			err = take_gc_lnum(c);
1486 			if (err)
1487 				goto out_orphans;
1488 
1489 			/*
1490 			 * GC LEB may contain garbage if there was an unclean
1491 			 * reboot, and it should be un-mapped.
1492 			 */
1493 			err = ubifs_leb_unmap(c, c->gc_lnum);
1494 			if (err)
1495 				goto out_orphans;
1496 		}
1497 
1498 		err = dbg_check_lprops(c);
1499 		if (err)
1500 			goto out_orphans;
1501 	} else if (c->need_recovery) {
1502 		err = ubifs_recover_size(c, false);
1503 		if (err)
1504 			goto out_orphans;
1505 	} else {
1506 		/*
1507 		 * Even if we mount read-only, we have to set space in GC LEB
1508 		 * to proper value because this affects UBIFS free space
1509 		 * reporting. We do not want to have a situation when
1510 		 * re-mounting from R/O to R/W changes amount of free space.
1511 		 */
1512 		err = take_gc_lnum(c);
1513 		if (err)
1514 			goto out_orphans;
1515 	}
1516 
1517 	spin_lock(&ubifs_infos_lock);
1518 	list_add_tail(&c->infos_list, &ubifs_infos);
1519 	spin_unlock(&ubifs_infos_lock);
1520 
1521 	if (c->need_recovery) {
1522 		if (c->ro_mount)
1523 			ubifs_msg(c, "recovery deferred");
1524 		else {
1525 			c->need_recovery = 0;
1526 			ubifs_msg(c, "recovery completed");
1527 			/*
1528 			 * GC LEB has to be empty and taken at this point. But
1529 			 * the journal head LEBs may also be accounted as
1530 			 * "empty taken" if they are empty.
1531 			 */
1532 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1533 		}
1534 	} else
1535 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1536 
1537 	err = dbg_check_filesystem(c);
1538 	if (err)
1539 		goto out_infos;
1540 
1541 	dbg_debugfs_init_fs(c);
1542 
1543 	c->mounting = 0;
1544 
1545 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1546 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1547 		  c->ro_mount ? ", R/O mode" : "");
1548 	x = (long long)c->main_lebs * c->leb_size;
1549 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1550 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1551 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1552 		  c->max_write_size);
1553 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1554 		  x, x >> 20, c->main_lebs,
1555 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1556 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1557 		  c->report_rp_size, c->report_rp_size >> 10);
1558 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1559 		  c->fmt_version, c->ro_compat_version,
1560 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1561 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1562 
1563 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1564 	dbg_gen("data journal heads:  %d",
1565 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1566 	dbg_gen("log LEBs:            %d (%d - %d)",
1567 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1568 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1569 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1570 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1571 		c->orph_lebs, c->orph_first, c->orph_last);
1572 	dbg_gen("main area LEBs:      %d (%d - %d)",
1573 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1574 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1575 	dbg_gen("total index bytes:   %llu (%llu KiB, %llu MiB)",
1576 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1577 		c->bi.old_idx_sz >> 20);
1578 	dbg_gen("key hash type:       %d", c->key_hash_type);
1579 	dbg_gen("tree fanout:         %d", c->fanout);
1580 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1581 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1582 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1583 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1584 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1585 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1586 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1587 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1588 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1589 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1590 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1591 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1592 	dbg_gen("dead watermark:      %d", c->dead_wm);
1593 	dbg_gen("dark watermark:      %d", c->dark_wm);
1594 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1595 	x = (long long)c->main_lebs * c->dark_wm;
1596 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1597 		x, x >> 10, x >> 20);
1598 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1599 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1600 		c->max_bud_bytes >> 20);
1601 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1602 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1603 		c->bg_bud_bytes >> 20);
1604 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1605 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1606 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1607 	dbg_gen("commit number:       %llu", c->cmt_no);
1608 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1609 	dbg_gen("max orphans:           %d", c->max_orphans);
1610 
1611 	return 0;
1612 
1613 out_infos:
1614 	spin_lock(&ubifs_infos_lock);
1615 	list_del(&c->infos_list);
1616 	spin_unlock(&ubifs_infos_lock);
1617 out_orphans:
1618 	free_orphans(c);
1619 out_journal:
1620 	destroy_journal(c);
1621 out_lpt:
1622 	ubifs_lpt_free(c, 0);
1623 out_master:
1624 	kfree(c->mst_node);
1625 	kfree(c->rcvrd_mst_node);
1626 	if (c->bgt)
1627 		kthread_stop(c->bgt);
1628 out_wbufs:
1629 	free_wbufs(c);
1630 out_cbuf:
1631 	kfree(c->cbuf);
1632 out_auth:
1633 	ubifs_exit_authentication(c);
1634 out_free:
1635 	kfree(c->write_reserve_buf);
1636 	kfree(c->bu.buf);
1637 	vfree(c->ileb_buf);
1638 	vfree(c->sbuf);
1639 	kfree(c->bottom_up_buf);
1640 	kfree(c->sup_node);
1641 	ubifs_debugging_exit(c);
1642 	return err;
1643 }
1644 
1645 /**
1646  * ubifs_umount - un-mount UBIFS file-system.
1647  * @c: UBIFS file-system description object
1648  *
1649  * Note, this function is called to free allocated resourced when un-mounting,
1650  * as well as free resources when an error occurred while we were half way
1651  * through mounting (error path cleanup function). So it has to make sure the
1652  * resource was actually allocated before freeing it.
1653  */
1654 static void ubifs_umount(struct ubifs_info *c)
1655 {
1656 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1657 		c->vi.vol_id);
1658 
1659 	dbg_debugfs_exit_fs(c);
1660 	spin_lock(&ubifs_infos_lock);
1661 	list_del(&c->infos_list);
1662 	spin_unlock(&ubifs_infos_lock);
1663 
1664 	if (c->bgt)
1665 		kthread_stop(c->bgt);
1666 
1667 	destroy_journal(c);
1668 	free_wbufs(c);
1669 	free_orphans(c);
1670 	ubifs_lpt_free(c, 0);
1671 	ubifs_exit_authentication(c);
1672 
1673 	ubifs_release_options(c);
1674 	kfree(c->cbuf);
1675 	kfree(c->rcvrd_mst_node);
1676 	kfree(c->mst_node);
1677 	kfree(c->write_reserve_buf);
1678 	kfree(c->bu.buf);
1679 	vfree(c->ileb_buf);
1680 	vfree(c->sbuf);
1681 	kfree(c->bottom_up_buf);
1682 	kfree(c->sup_node);
1683 	ubifs_debugging_exit(c);
1684 }
1685 
1686 /**
1687  * ubifs_remount_rw - re-mount in read-write mode.
1688  * @c: UBIFS file-system description object
1689  *
1690  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1691  * mode. This function allocates the needed resources and re-mounts UBIFS in
1692  * read-write mode.
1693  */
1694 static int ubifs_remount_rw(struct ubifs_info *c)
1695 {
1696 	int err, lnum;
1697 
1698 	if (c->rw_incompat) {
1699 		ubifs_err(c, "the file-system is not R/W-compatible");
1700 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1701 			  c->fmt_version, c->ro_compat_version,
1702 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1703 		return -EROFS;
1704 	}
1705 
1706 	mutex_lock(&c->umount_mutex);
1707 	dbg_save_space_info(c);
1708 	c->remounting_rw = 1;
1709 	c->ro_mount = 0;
1710 
1711 	if (c->space_fixup) {
1712 		err = ubifs_fixup_free_space(c);
1713 		if (err)
1714 			goto out;
1715 	}
1716 
1717 	err = check_free_space(c);
1718 	if (err)
1719 		goto out;
1720 
1721 	if (c->need_recovery) {
1722 		ubifs_msg(c, "completing deferred recovery");
1723 		err = ubifs_write_rcvrd_mst_node(c);
1724 		if (err)
1725 			goto out;
1726 		if (!ubifs_authenticated(c)) {
1727 			err = ubifs_recover_size(c, true);
1728 			if (err)
1729 				goto out;
1730 		}
1731 		err = ubifs_clean_lebs(c, c->sbuf);
1732 		if (err)
1733 			goto out;
1734 		err = ubifs_recover_inl_heads(c, c->sbuf);
1735 		if (err)
1736 			goto out;
1737 	} else {
1738 		/* A readonly mount is not allowed to have orphans */
1739 		ubifs_assert(c, c->tot_orphans == 0);
1740 		err = ubifs_clear_orphans(c);
1741 		if (err)
1742 			goto out;
1743 	}
1744 
1745 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1746 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1747 		err = ubifs_write_master(c);
1748 		if (err)
1749 			goto out;
1750 	}
1751 
1752 	if (c->superblock_need_write) {
1753 		struct ubifs_sb_node *sup = c->sup_node;
1754 
1755 		err = ubifs_write_sb_node(c, sup);
1756 		if (err)
1757 			goto out;
1758 
1759 		c->superblock_need_write = 0;
1760 	}
1761 
1762 	c->ileb_buf = vmalloc(c->leb_size);
1763 	if (!c->ileb_buf) {
1764 		err = -ENOMEM;
1765 		goto out;
1766 	}
1767 
1768 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1769 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1770 	if (!c->write_reserve_buf) {
1771 		err = -ENOMEM;
1772 		goto out;
1773 	}
1774 
1775 	err = ubifs_lpt_init(c, 0, 1);
1776 	if (err)
1777 		goto out;
1778 
1779 	/* Create background thread */
1780 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1781 	if (IS_ERR(c->bgt)) {
1782 		err = PTR_ERR(c->bgt);
1783 		c->bgt = NULL;
1784 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1785 			  c->bgt_name, err);
1786 		goto out;
1787 	}
1788 	wake_up_process(c->bgt);
1789 
1790 	c->orph_buf = vmalloc(c->leb_size);
1791 	if (!c->orph_buf) {
1792 		err = -ENOMEM;
1793 		goto out;
1794 	}
1795 
1796 	/* Check for enough log space */
1797 	lnum = c->lhead_lnum + 1;
1798 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1799 		lnum = UBIFS_LOG_LNUM;
1800 	if (lnum == c->ltail_lnum) {
1801 		err = ubifs_consolidate_log(c);
1802 		if (err)
1803 			goto out;
1804 	}
1805 
1806 	if (c->need_recovery) {
1807 		err = ubifs_rcvry_gc_commit(c);
1808 		if (err)
1809 			goto out;
1810 
1811 		if (ubifs_authenticated(c)) {
1812 			err = ubifs_recover_size(c, false);
1813 			if (err)
1814 				goto out;
1815 		}
1816 	} else {
1817 		err = ubifs_leb_unmap(c, c->gc_lnum);
1818 	}
1819 	if (err)
1820 		goto out;
1821 
1822 	dbg_gen("re-mounted read-write");
1823 	c->remounting_rw = 0;
1824 
1825 	if (c->need_recovery) {
1826 		c->need_recovery = 0;
1827 		ubifs_msg(c, "deferred recovery completed");
1828 	} else {
1829 		/*
1830 		 * Do not run the debugging space check if the were doing
1831 		 * recovery, because when we saved the information we had the
1832 		 * file-system in a state where the TNC and lprops has been
1833 		 * modified in memory, but all the I/O operations (including a
1834 		 * commit) were deferred. So the file-system was in
1835 		 * "non-committed" state. Now the file-system is in committed
1836 		 * state, and of course the amount of free space will change
1837 		 * because, for example, the old index size was imprecise.
1838 		 */
1839 		err = dbg_check_space_info(c);
1840 	}
1841 
1842 	mutex_unlock(&c->umount_mutex);
1843 	return err;
1844 
1845 out:
1846 	c->ro_mount = 1;
1847 	vfree(c->orph_buf);
1848 	c->orph_buf = NULL;
1849 	if (c->bgt) {
1850 		kthread_stop(c->bgt);
1851 		c->bgt = NULL;
1852 	}
1853 	free_wbufs(c);
1854 	kfree(c->write_reserve_buf);
1855 	c->write_reserve_buf = NULL;
1856 	vfree(c->ileb_buf);
1857 	c->ileb_buf = NULL;
1858 	ubifs_lpt_free(c, 1);
1859 	c->remounting_rw = 0;
1860 	mutex_unlock(&c->umount_mutex);
1861 	return err;
1862 }
1863 
1864 /**
1865  * ubifs_remount_ro - re-mount in read-only mode.
1866  * @c: UBIFS file-system description object
1867  *
1868  * We assume VFS has stopped writing. Possibly the background thread could be
1869  * running a commit, however kthread_stop will wait in that case.
1870  */
1871 static void ubifs_remount_ro(struct ubifs_info *c)
1872 {
1873 	int i, err;
1874 
1875 	ubifs_assert(c, !c->need_recovery);
1876 	ubifs_assert(c, !c->ro_mount);
1877 
1878 	mutex_lock(&c->umount_mutex);
1879 	if (c->bgt) {
1880 		kthread_stop(c->bgt);
1881 		c->bgt = NULL;
1882 	}
1883 
1884 	dbg_save_space_info(c);
1885 
1886 	for (i = 0; i < c->jhead_cnt; i++) {
1887 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1888 		if (err)
1889 			ubifs_ro_mode(c, err);
1890 	}
1891 
1892 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1893 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1894 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1895 	err = ubifs_write_master(c);
1896 	if (err)
1897 		ubifs_ro_mode(c, err);
1898 
1899 	vfree(c->orph_buf);
1900 	c->orph_buf = NULL;
1901 	kfree(c->write_reserve_buf);
1902 	c->write_reserve_buf = NULL;
1903 	vfree(c->ileb_buf);
1904 	c->ileb_buf = NULL;
1905 	ubifs_lpt_free(c, 1);
1906 	c->ro_mount = 1;
1907 	err = dbg_check_space_info(c);
1908 	if (err)
1909 		ubifs_ro_mode(c, err);
1910 	mutex_unlock(&c->umount_mutex);
1911 }
1912 
1913 static void ubifs_put_super(struct super_block *sb)
1914 {
1915 	int i;
1916 	struct ubifs_info *c = sb->s_fs_info;
1917 
1918 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1919 
1920 	/*
1921 	 * The following asserts are only valid if there has not been a failure
1922 	 * of the media. For example, there will be dirty inodes if we failed
1923 	 * to write them back because of I/O errors.
1924 	 */
1925 	if (!c->ro_error) {
1926 		ubifs_assert(c, c->bi.idx_growth == 0);
1927 		ubifs_assert(c, c->bi.dd_growth == 0);
1928 		ubifs_assert(c, c->bi.data_growth == 0);
1929 	}
1930 
1931 	/*
1932 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1933 	 * and file system un-mount. Namely, it prevents the shrinker from
1934 	 * picking this superblock for shrinking - it will be just skipped if
1935 	 * the mutex is locked.
1936 	 */
1937 	mutex_lock(&c->umount_mutex);
1938 	if (!c->ro_mount) {
1939 		/*
1940 		 * First of all kill the background thread to make sure it does
1941 		 * not interfere with un-mounting and freeing resources.
1942 		 */
1943 		if (c->bgt) {
1944 			kthread_stop(c->bgt);
1945 			c->bgt = NULL;
1946 		}
1947 
1948 		/*
1949 		 * On fatal errors c->ro_error is set to 1, in which case we do
1950 		 * not write the master node.
1951 		 */
1952 		if (!c->ro_error) {
1953 			int err;
1954 
1955 			/* Synchronize write-buffers */
1956 			for (i = 0; i < c->jhead_cnt; i++) {
1957 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1958 				if (err)
1959 					ubifs_ro_mode(c, err);
1960 			}
1961 
1962 			/*
1963 			 * We are being cleanly unmounted which means the
1964 			 * orphans were killed - indicate this in the master
1965 			 * node. Also save the reserved GC LEB number.
1966 			 */
1967 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1968 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1969 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1970 			err = ubifs_write_master(c);
1971 			if (err)
1972 				/*
1973 				 * Recovery will attempt to fix the master area
1974 				 * next mount, so we just print a message and
1975 				 * continue to unmount normally.
1976 				 */
1977 				ubifs_err(c, "failed to write master node, error %d",
1978 					  err);
1979 		} else {
1980 			for (i = 0; i < c->jhead_cnt; i++)
1981 				/* Make sure write-buffer timers are canceled */
1982 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1983 		}
1984 	}
1985 
1986 	ubifs_umount(c);
1987 	ubi_close_volume(c->ubi);
1988 	mutex_unlock(&c->umount_mutex);
1989 }
1990 
1991 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1992 {
1993 	int err;
1994 	struct ubifs_info *c = sb->s_fs_info;
1995 
1996 	sync_filesystem(sb);
1997 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1998 
1999 	err = ubifs_parse_options(c, data, 1);
2000 	if (err) {
2001 		ubifs_err(c, "invalid or unknown remount parameter");
2002 		return err;
2003 	}
2004 
2005 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
2006 		if (c->ro_error) {
2007 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2008 			return -EROFS;
2009 		}
2010 		if (c->ro_media) {
2011 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2012 			return -EROFS;
2013 		}
2014 		err = ubifs_remount_rw(c);
2015 		if (err)
2016 			return err;
2017 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2018 		if (c->ro_error) {
2019 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2020 			return -EROFS;
2021 		}
2022 		ubifs_remount_ro(c);
2023 	}
2024 
2025 	if (c->bulk_read == 1)
2026 		bu_init(c);
2027 	else {
2028 		dbg_gen("disable bulk-read");
2029 		mutex_lock(&c->bu_mutex);
2030 		kfree(c->bu.buf);
2031 		c->bu.buf = NULL;
2032 		mutex_unlock(&c->bu_mutex);
2033 	}
2034 
2035 	if (!c->need_recovery)
2036 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2037 
2038 	return 0;
2039 }
2040 
2041 const struct super_operations ubifs_super_operations = {
2042 	.alloc_inode   = ubifs_alloc_inode,
2043 	.free_inode    = ubifs_free_inode,
2044 	.put_super     = ubifs_put_super,
2045 	.write_inode   = ubifs_write_inode,
2046 	.drop_inode    = ubifs_drop_inode,
2047 	.evict_inode   = ubifs_evict_inode,
2048 	.statfs        = ubifs_statfs,
2049 	.dirty_inode   = ubifs_dirty_inode,
2050 	.remount_fs    = ubifs_remount_fs,
2051 	.show_options  = ubifs_show_options,
2052 	.sync_fs       = ubifs_sync_fs,
2053 };
2054 
2055 /**
2056  * open_ubi - parse UBI device name string and open the UBI device.
2057  * @name: UBI volume name
2058  * @mode: UBI volume open mode
2059  *
2060  * The primary method of mounting UBIFS is by specifying the UBI volume
2061  * character device node path. However, UBIFS may also be mounted withoug any
2062  * character device node using one of the following methods:
2063  *
2064  * o ubiX_Y    - mount UBI device number X, volume Y;
2065  * o ubiY      - mount UBI device number 0, volume Y;
2066  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2067  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2068  *
2069  * Alternative '!' separator may be used instead of ':' (because some shells
2070  * like busybox may interpret ':' as an NFS host name separator). This function
2071  * returns UBI volume description object in case of success and a negative
2072  * error code in case of failure.
2073  */
2074 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2075 {
2076 	struct ubi_volume_desc *ubi;
2077 	int dev, vol;
2078 	char *endptr;
2079 
2080 	if (!name || !*name)
2081 		return ERR_PTR(-EINVAL);
2082 
2083 	/* First, try to open using the device node path method */
2084 	ubi = ubi_open_volume_path(name, mode);
2085 	if (!IS_ERR(ubi))
2086 		return ubi;
2087 
2088 	/* Try the "nodev" method */
2089 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2090 		return ERR_PTR(-EINVAL);
2091 
2092 	/* ubi:NAME method */
2093 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2094 		return ubi_open_volume_nm(0, name + 4, mode);
2095 
2096 	if (!isdigit(name[3]))
2097 		return ERR_PTR(-EINVAL);
2098 
2099 	dev = simple_strtoul(name + 3, &endptr, 0);
2100 
2101 	/* ubiY method */
2102 	if (*endptr == '\0')
2103 		return ubi_open_volume(0, dev, mode);
2104 
2105 	/* ubiX_Y method */
2106 	if (*endptr == '_' && isdigit(endptr[1])) {
2107 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2108 		if (*endptr != '\0')
2109 			return ERR_PTR(-EINVAL);
2110 		return ubi_open_volume(dev, vol, mode);
2111 	}
2112 
2113 	/* ubiX:NAME method */
2114 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2115 		return ubi_open_volume_nm(dev, ++endptr, mode);
2116 
2117 	return ERR_PTR(-EINVAL);
2118 }
2119 
2120 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2121 {
2122 	struct ubifs_info *c;
2123 
2124 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2125 	if (c) {
2126 		spin_lock_init(&c->cnt_lock);
2127 		spin_lock_init(&c->cs_lock);
2128 		spin_lock_init(&c->buds_lock);
2129 		spin_lock_init(&c->space_lock);
2130 		spin_lock_init(&c->orphan_lock);
2131 		init_rwsem(&c->commit_sem);
2132 		mutex_init(&c->lp_mutex);
2133 		mutex_init(&c->tnc_mutex);
2134 		mutex_init(&c->log_mutex);
2135 		mutex_init(&c->umount_mutex);
2136 		mutex_init(&c->bu_mutex);
2137 		mutex_init(&c->write_reserve_mutex);
2138 		init_waitqueue_head(&c->cmt_wq);
2139 		c->buds = RB_ROOT;
2140 		c->old_idx = RB_ROOT;
2141 		c->size_tree = RB_ROOT;
2142 		c->orph_tree = RB_ROOT;
2143 		INIT_LIST_HEAD(&c->infos_list);
2144 		INIT_LIST_HEAD(&c->idx_gc);
2145 		INIT_LIST_HEAD(&c->replay_list);
2146 		INIT_LIST_HEAD(&c->replay_buds);
2147 		INIT_LIST_HEAD(&c->uncat_list);
2148 		INIT_LIST_HEAD(&c->empty_list);
2149 		INIT_LIST_HEAD(&c->freeable_list);
2150 		INIT_LIST_HEAD(&c->frdi_idx_list);
2151 		INIT_LIST_HEAD(&c->unclean_leb_list);
2152 		INIT_LIST_HEAD(&c->old_buds);
2153 		INIT_LIST_HEAD(&c->orph_list);
2154 		INIT_LIST_HEAD(&c->orph_new);
2155 		c->no_chk_data_crc = 1;
2156 		c->assert_action = ASSACT_RO;
2157 
2158 		c->highest_inum = UBIFS_FIRST_INO;
2159 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2160 
2161 		ubi_get_volume_info(ubi, &c->vi);
2162 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2163 	}
2164 	return c;
2165 }
2166 
2167 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2168 {
2169 	struct ubifs_info *c = sb->s_fs_info;
2170 	struct inode *root;
2171 	int err;
2172 
2173 	c->vfs_sb = sb;
2174 	/* Re-open the UBI device in read-write mode */
2175 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2176 	if (IS_ERR(c->ubi)) {
2177 		err = PTR_ERR(c->ubi);
2178 		goto out;
2179 	}
2180 
2181 	err = ubifs_parse_options(c, data, 0);
2182 	if (err)
2183 		goto out_close;
2184 
2185 	/*
2186 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2187 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2188 	 * which means the user would have to wait not just for their own I/O
2189 	 * but the read-ahead I/O as well i.e. completely pointless.
2190 	 *
2191 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2192 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2193 	 * writeback happening.
2194 	 */
2195 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2196 				   c->vi.vol_id);
2197 	if (err)
2198 		goto out_close;
2199 	sb->s_bdi->ra_pages = 0;
2200 	sb->s_bdi->io_pages = 0;
2201 
2202 	sb->s_fs_info = c;
2203 	sb->s_magic = UBIFS_SUPER_MAGIC;
2204 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2205 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2206 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2207 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2208 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2209 	sb->s_op = &ubifs_super_operations;
2210 	sb->s_xattr = ubifs_xattr_handlers;
2211 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2212 
2213 	mutex_lock(&c->umount_mutex);
2214 	err = mount_ubifs(c);
2215 	if (err) {
2216 		ubifs_assert(c, err < 0);
2217 		goto out_unlock;
2218 	}
2219 
2220 	/* Read the root inode */
2221 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2222 	if (IS_ERR(root)) {
2223 		err = PTR_ERR(root);
2224 		goto out_umount;
2225 	}
2226 
2227 	sb->s_root = d_make_root(root);
2228 	if (!sb->s_root) {
2229 		err = -ENOMEM;
2230 		goto out_umount;
2231 	}
2232 
2233 	mutex_unlock(&c->umount_mutex);
2234 	return 0;
2235 
2236 out_umount:
2237 	ubifs_umount(c);
2238 out_unlock:
2239 	mutex_unlock(&c->umount_mutex);
2240 out_close:
2241 	ubifs_release_options(c);
2242 	ubi_close_volume(c->ubi);
2243 out:
2244 	return err;
2245 }
2246 
2247 static int sb_test(struct super_block *sb, void *data)
2248 {
2249 	struct ubifs_info *c1 = data;
2250 	struct ubifs_info *c = sb->s_fs_info;
2251 
2252 	return c->vi.cdev == c1->vi.cdev;
2253 }
2254 
2255 static int sb_set(struct super_block *sb, void *data)
2256 {
2257 	sb->s_fs_info = data;
2258 	return set_anon_super(sb, NULL);
2259 }
2260 
2261 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2262 			const char *name, void *data)
2263 {
2264 	struct ubi_volume_desc *ubi;
2265 	struct ubifs_info *c;
2266 	struct super_block *sb;
2267 	int err;
2268 
2269 	dbg_gen("name %s, flags %#x", name, flags);
2270 
2271 	/*
2272 	 * Get UBI device number and volume ID. Mount it read-only so far
2273 	 * because this might be a new mount point, and UBI allows only one
2274 	 * read-write user at a time.
2275 	 */
2276 	ubi = open_ubi(name, UBI_READONLY);
2277 	if (IS_ERR(ubi)) {
2278 		if (!(flags & SB_SILENT))
2279 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2280 			       current->pid, name, (int)PTR_ERR(ubi));
2281 		return ERR_CAST(ubi);
2282 	}
2283 
2284 	c = alloc_ubifs_info(ubi);
2285 	if (!c) {
2286 		err = -ENOMEM;
2287 		goto out_close;
2288 	}
2289 
2290 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2291 
2292 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2293 	if (IS_ERR(sb)) {
2294 		err = PTR_ERR(sb);
2295 		kfree(c);
2296 		goto out_close;
2297 	}
2298 
2299 	if (sb->s_root) {
2300 		struct ubifs_info *c1 = sb->s_fs_info;
2301 		kfree(c);
2302 		/* A new mount point for already mounted UBIFS */
2303 		dbg_gen("this ubi volume is already mounted");
2304 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2305 			err = -EBUSY;
2306 			goto out_deact;
2307 		}
2308 	} else {
2309 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2310 		if (err)
2311 			goto out_deact;
2312 		/* We do not support atime */
2313 		sb->s_flags |= SB_ACTIVE;
2314 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2315 			ubifs_msg(c, "full atime support is enabled.");
2316 		else
2317 			sb->s_flags |= SB_NOATIME;
2318 	}
2319 
2320 	/* 'fill_super()' opens ubi again so we must close it here */
2321 	ubi_close_volume(ubi);
2322 
2323 	return dget(sb->s_root);
2324 
2325 out_deact:
2326 	deactivate_locked_super(sb);
2327 out_close:
2328 	ubi_close_volume(ubi);
2329 	return ERR_PTR(err);
2330 }
2331 
2332 static void kill_ubifs_super(struct super_block *s)
2333 {
2334 	struct ubifs_info *c = s->s_fs_info;
2335 	kill_anon_super(s);
2336 	kfree(c);
2337 }
2338 
2339 static struct file_system_type ubifs_fs_type = {
2340 	.name    = "ubifs",
2341 	.owner   = THIS_MODULE,
2342 	.mount   = ubifs_mount,
2343 	.kill_sb = kill_ubifs_super,
2344 };
2345 MODULE_ALIAS_FS("ubifs");
2346 
2347 /*
2348  * Inode slab cache constructor.
2349  */
2350 static void inode_slab_ctor(void *obj)
2351 {
2352 	struct ubifs_inode *ui = obj;
2353 	inode_init_once(&ui->vfs_inode);
2354 }
2355 
2356 static int __init ubifs_init(void)
2357 {
2358 	int err;
2359 
2360 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2361 
2362 	/* Make sure node sizes are 8-byte aligned */
2363 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2364 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2365 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2366 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2367 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2368 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2369 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2370 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2371 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2372 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2373 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2374 
2375 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2376 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2377 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2378 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2379 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2380 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2381 
2382 	/* Check min. node size */
2383 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2384 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2385 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2386 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2387 
2388 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2389 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2390 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2391 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2392 
2393 	/* Defined node sizes */
2394 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2395 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2396 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2397 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2398 
2399 	/*
2400 	 * We use 2 bit wide bit-fields to store compression type, which should
2401 	 * be amended if more compressors are added. The bit-fields are:
2402 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2403 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2404 	 */
2405 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2406 
2407 	/*
2408 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2409 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2410 	 */
2411 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2412 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2413 		       current->pid, (unsigned int)PAGE_SIZE);
2414 		return -EINVAL;
2415 	}
2416 
2417 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2418 				sizeof(struct ubifs_inode), 0,
2419 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2420 				SLAB_ACCOUNT, &inode_slab_ctor);
2421 	if (!ubifs_inode_slab)
2422 		return -ENOMEM;
2423 
2424 	err = register_shrinker(&ubifs_shrinker_info);
2425 	if (err)
2426 		goto out_slab;
2427 
2428 	err = ubifs_compressors_init();
2429 	if (err)
2430 		goto out_shrinker;
2431 
2432 	dbg_debugfs_init();
2433 
2434 	err = register_filesystem(&ubifs_fs_type);
2435 	if (err) {
2436 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2437 		       current->pid, err);
2438 		goto out_dbg;
2439 	}
2440 	return 0;
2441 
2442 out_dbg:
2443 	dbg_debugfs_exit();
2444 	ubifs_compressors_exit();
2445 out_shrinker:
2446 	unregister_shrinker(&ubifs_shrinker_info);
2447 out_slab:
2448 	kmem_cache_destroy(ubifs_inode_slab);
2449 	return err;
2450 }
2451 /* late_initcall to let compressors initialize first */
2452 late_initcall(ubifs_init);
2453 
2454 static void __exit ubifs_exit(void)
2455 {
2456 	WARN_ON(!list_empty(&ubifs_infos));
2457 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2458 
2459 	dbg_debugfs_exit();
2460 	ubifs_compressors_exit();
2461 	unregister_shrinker(&ubifs_shrinker_info);
2462 
2463 	/*
2464 	 * Make sure all delayed rcu free inodes are flushed before we
2465 	 * destroy cache.
2466 	 */
2467 	rcu_barrier();
2468 	kmem_cache_destroy(ubifs_inode_slab);
2469 	unregister_filesystem(&ubifs_fs_type);
2470 }
2471 module_exit(ubifs_exit);
2472 
2473 MODULE_LICENSE("GPL");
2474 MODULE_VERSION(__stringify(UBIFS_VERSION));
2475 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2476 MODULE_DESCRIPTION("UBIFS - UBI File System");
2477