1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .shrink = ubifs_shrinker, 53 .seeks = DEFAULT_SEEKS, 54 }; 55 56 /** 57 * validate_inode - validate inode. 58 * @c: UBIFS file-system description object 59 * @inode: the inode to validate 60 * 61 * This is a helper function for 'ubifs_iget()' which validates various fields 62 * of a newly built inode to make sure they contain sane values and prevent 63 * possible vulnerabilities. Returns zero if the inode is all right and 64 * a non-zero error code if not. 65 */ 66 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 67 { 68 int err; 69 const struct ubifs_inode *ui = ubifs_inode(inode); 70 71 if (inode->i_size > c->max_inode_sz) { 72 ubifs_err("inode is too large (%lld)", 73 (long long)inode->i_size); 74 return 1; 75 } 76 77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 78 ubifs_err("unknown compression type %d", ui->compr_type); 79 return 2; 80 } 81 82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 83 return 3; 84 85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 86 return 4; 87 88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 89 return 5; 90 91 if (!ubifs_compr_present(ui->compr_type)) { 92 ubifs_warn("inode %lu uses '%s' compression, but it was not " 93 "compiled in", inode->i_ino, 94 ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir_size(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 inode->i_nlink = le32_to_cpu(ino->nlink); 133 inode->i_uid = le32_to_cpu(ino->uid); 134 inode->i_gid = le32_to_cpu(ino->gid); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 /* Disable read-ahead */ 160 inode->i_mapping->backing_dev_info = &c->bdi; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 249 dbg_dump_node(c, ino); 250 dbg_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_destroy_inode(struct inode *inode) 276 { 277 struct ubifs_inode *ui = ubifs_inode(inode); 278 279 kfree(ui->data); 280 kmem_cache_free(ubifs_inode_slab, inode); 281 } 282 283 /* 284 * Note, Linux write-back code calls this without 'i_mutex'. 285 */ 286 static int ubifs_write_inode(struct inode *inode, int wait) 287 { 288 int err = 0; 289 struct ubifs_info *c = inode->i_sb->s_fs_info; 290 struct ubifs_inode *ui = ubifs_inode(inode); 291 292 ubifs_assert(!ui->xattr); 293 if (is_bad_inode(inode)) 294 return 0; 295 296 mutex_lock(&ui->ui_mutex); 297 /* 298 * Due to races between write-back forced by budgeting 299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 300 * have already been synchronized, do not do this again. This might 301 * also happen if it was synchronized in an VFS operation, e.g. 302 * 'ubifs_link()'. 303 */ 304 if (!ui->dirty) { 305 mutex_unlock(&ui->ui_mutex); 306 return 0; 307 } 308 309 /* 310 * As an optimization, do not write orphan inodes to the media just 311 * because this is not needed. 312 */ 313 dbg_gen("inode %lu, mode %#x, nlink %u", 314 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 315 if (inode->i_nlink) { 316 err = ubifs_jnl_write_inode(c, inode); 317 if (err) 318 ubifs_err("can't write inode %lu, error %d", 319 inode->i_ino, err); 320 } 321 322 ui->dirty = 0; 323 mutex_unlock(&ui->ui_mutex); 324 ubifs_release_dirty_inode_budget(c, ui); 325 return err; 326 } 327 328 static void ubifs_delete_inode(struct inode *inode) 329 { 330 int err; 331 struct ubifs_info *c = inode->i_sb->s_fs_info; 332 struct ubifs_inode *ui = ubifs_inode(inode); 333 334 if (ui->xattr) 335 /* 336 * Extended attribute inode deletions are fully handled in 337 * 'ubifs_removexattr()'. These inodes are special and have 338 * limited usage, so there is nothing to do here. 339 */ 340 goto out; 341 342 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 343 ubifs_assert(!atomic_read(&inode->i_count)); 344 ubifs_assert(inode->i_nlink == 0); 345 346 truncate_inode_pages(&inode->i_data, 0); 347 if (is_bad_inode(inode)) 348 goto out; 349 350 ui->ui_size = inode->i_size = 0; 351 err = ubifs_jnl_delete_inode(c, inode); 352 if (err) 353 /* 354 * Worst case we have a lost orphan inode wasting space, so a 355 * simple error message is OK here. 356 */ 357 ubifs_err("can't delete inode %lu, error %d", 358 inode->i_ino, err); 359 360 out: 361 if (ui->dirty) 362 ubifs_release_dirty_inode_budget(c, ui); 363 clear_inode(inode); 364 } 365 366 static void ubifs_dirty_inode(struct inode *inode) 367 { 368 struct ubifs_inode *ui = ubifs_inode(inode); 369 370 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 371 if (!ui->dirty) { 372 ui->dirty = 1; 373 dbg_gen("inode %lu", inode->i_ino); 374 } 375 } 376 377 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 378 { 379 struct ubifs_info *c = dentry->d_sb->s_fs_info; 380 unsigned long long free; 381 __le32 *uuid = (__le32 *)c->uuid; 382 383 free = ubifs_get_free_space(c); 384 dbg_gen("free space %lld bytes (%lld blocks)", 385 free, free >> UBIFS_BLOCK_SHIFT); 386 387 buf->f_type = UBIFS_SUPER_MAGIC; 388 buf->f_bsize = UBIFS_BLOCK_SIZE; 389 buf->f_blocks = c->block_cnt; 390 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 391 if (free > c->report_rp_size) 392 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 393 else 394 buf->f_bavail = 0; 395 buf->f_files = 0; 396 buf->f_ffree = 0; 397 buf->f_namelen = UBIFS_MAX_NLEN; 398 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 399 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 400 ubifs_assert(buf->f_bfree <= c->block_cnt); 401 return 0; 402 } 403 404 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 405 { 406 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 407 408 if (c->mount_opts.unmount_mode == 2) 409 seq_printf(s, ",fast_unmount"); 410 else if (c->mount_opts.unmount_mode == 1) 411 seq_printf(s, ",norm_unmount"); 412 413 if (c->mount_opts.bulk_read == 2) 414 seq_printf(s, ",bulk_read"); 415 else if (c->mount_opts.bulk_read == 1) 416 seq_printf(s, ",no_bulk_read"); 417 418 if (c->mount_opts.chk_data_crc == 2) 419 seq_printf(s, ",chk_data_crc"); 420 else if (c->mount_opts.chk_data_crc == 1) 421 seq_printf(s, ",no_chk_data_crc"); 422 423 if (c->mount_opts.override_compr) { 424 seq_printf(s, ",compr="); 425 seq_printf(s, ubifs_compr_name(c->mount_opts.compr_type)); 426 } 427 428 return 0; 429 } 430 431 static int ubifs_sync_fs(struct super_block *sb, int wait) 432 { 433 int i, err; 434 struct ubifs_info *c = sb->s_fs_info; 435 struct writeback_control wbc = { 436 .sync_mode = WB_SYNC_ALL, 437 .range_start = 0, 438 .range_end = LLONG_MAX, 439 .nr_to_write = LONG_MAX, 440 }; 441 442 /* 443 * Zero @wait is just an advisory thing to help the file system shove 444 * lots of data into the queues, and there will be the second 445 * '->sync_fs()' call, with non-zero @wait. 446 */ 447 if (!wait) 448 return 0; 449 450 if (sb->s_flags & MS_RDONLY) 451 return 0; 452 453 /* 454 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and 455 * pages, so synchronize them first, then commit the journal. Strictly 456 * speaking, it is not necessary to commit the journal here, 457 * synchronizing write-buffers would be enough. But committing makes 458 * UBIFS free space predictions much more accurate, so we want to let 459 * the user be able to get more accurate results of 'statfs()' after 460 * they synchronize the file system. 461 */ 462 generic_sync_sb_inodes(sb, &wbc); 463 464 /* 465 * Synchronize write buffers, because 'ubifs_run_commit()' does not 466 * do this if it waits for an already running commit. 467 */ 468 for (i = 0; i < c->jhead_cnt; i++) { 469 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 470 if (err) 471 return err; 472 } 473 474 err = ubifs_run_commit(c); 475 if (err) 476 return err; 477 478 return ubi_sync(c->vi.ubi_num); 479 } 480 481 /** 482 * init_constants_early - initialize UBIFS constants. 483 * @c: UBIFS file-system description object 484 * 485 * This function initialize UBIFS constants which do not need the superblock to 486 * be read. It also checks that the UBI volume satisfies basic UBIFS 487 * requirements. Returns zero in case of success and a negative error code in 488 * case of failure. 489 */ 490 static int init_constants_early(struct ubifs_info *c) 491 { 492 if (c->vi.corrupted) { 493 ubifs_warn("UBI volume is corrupted - read-only mode"); 494 c->ro_media = 1; 495 } 496 497 if (c->di.ro_mode) { 498 ubifs_msg("read-only UBI device"); 499 c->ro_media = 1; 500 } 501 502 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 503 ubifs_msg("static UBI volume - read-only mode"); 504 c->ro_media = 1; 505 } 506 507 c->leb_cnt = c->vi.size; 508 c->leb_size = c->vi.usable_leb_size; 509 c->half_leb_size = c->leb_size / 2; 510 c->min_io_size = c->di.min_io_size; 511 c->min_io_shift = fls(c->min_io_size) - 1; 512 513 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 514 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 515 c->leb_size, UBIFS_MIN_LEB_SZ); 516 return -EINVAL; 517 } 518 519 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 520 ubifs_err("too few LEBs (%d), min. is %d", 521 c->leb_cnt, UBIFS_MIN_LEB_CNT); 522 return -EINVAL; 523 } 524 525 if (!is_power_of_2(c->min_io_size)) { 526 ubifs_err("bad min. I/O size %d", c->min_io_size); 527 return -EINVAL; 528 } 529 530 /* 531 * UBIFS aligns all node to 8-byte boundary, so to make function in 532 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 533 * less than 8. 534 */ 535 if (c->min_io_size < 8) { 536 c->min_io_size = 8; 537 c->min_io_shift = 3; 538 } 539 540 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 541 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 542 543 /* 544 * Initialize node length ranges which are mostly needed for node 545 * length validation. 546 */ 547 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 548 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 549 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 550 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 551 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 552 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 553 554 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 555 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 556 c->ranges[UBIFS_ORPH_NODE].min_len = 557 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 558 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 559 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 560 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 561 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 562 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 563 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 564 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 565 /* 566 * Minimum indexing node size is amended later when superblock is 567 * read and the key length is known. 568 */ 569 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 570 /* 571 * Maximum indexing node size is amended later when superblock is 572 * read and the fanout is known. 573 */ 574 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 575 576 /* 577 * Initialize dead and dark LEB space watermarks. See gc.c for comments 578 * about these values. 579 */ 580 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 581 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 582 583 /* 584 * Calculate how many bytes would be wasted at the end of LEB if it was 585 * fully filled with data nodes of maximum size. This is used in 586 * calculations when reporting free space. 587 */ 588 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 589 590 /* Buffer size for bulk-reads */ 591 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 592 if (c->max_bu_buf_len > c->leb_size) 593 c->max_bu_buf_len = c->leb_size; 594 return 0; 595 } 596 597 /** 598 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 599 * @c: UBIFS file-system description object 600 * @lnum: LEB the write-buffer was synchronized to 601 * @free: how many free bytes left in this LEB 602 * @pad: how many bytes were padded 603 * 604 * This is a callback function which is called by the I/O unit when the 605 * write-buffer is synchronized. We need this to correctly maintain space 606 * accounting in bud logical eraseblocks. This function returns zero in case of 607 * success and a negative error code in case of failure. 608 * 609 * This function actually belongs to the journal, but we keep it here because 610 * we want to keep it static. 611 */ 612 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 613 { 614 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 615 } 616 617 /* 618 * init_constants_sb - initialize UBIFS constants. 619 * @c: UBIFS file-system description object 620 * 621 * This is a helper function which initializes various UBIFS constants after 622 * the superblock has been read. It also checks various UBIFS parameters and 623 * makes sure they are all right. Returns zero in case of success and a 624 * negative error code in case of failure. 625 */ 626 static int init_constants_sb(struct ubifs_info *c) 627 { 628 int tmp, err; 629 long long tmp64; 630 631 c->main_bytes = (long long)c->main_lebs * c->leb_size; 632 c->max_znode_sz = sizeof(struct ubifs_znode) + 633 c->fanout * sizeof(struct ubifs_zbranch); 634 635 tmp = ubifs_idx_node_sz(c, 1); 636 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 637 c->min_idx_node_sz = ALIGN(tmp, 8); 638 639 tmp = ubifs_idx_node_sz(c, c->fanout); 640 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 641 c->max_idx_node_sz = ALIGN(tmp, 8); 642 643 /* Make sure LEB size is large enough to fit full commit */ 644 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 645 tmp = ALIGN(tmp, c->min_io_size); 646 if (tmp > c->leb_size) { 647 dbg_err("too small LEB size %d, at least %d needed", 648 c->leb_size, tmp); 649 return -EINVAL; 650 } 651 652 /* 653 * Make sure that the log is large enough to fit reference nodes for 654 * all buds plus one reserved LEB. 655 */ 656 tmp64 = c->max_bud_bytes + c->leb_size - 1; 657 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 658 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 659 tmp /= c->leb_size; 660 tmp += 1; 661 if (c->log_lebs < tmp) { 662 dbg_err("too small log %d LEBs, required min. %d LEBs", 663 c->log_lebs, tmp); 664 return -EINVAL; 665 } 666 667 /* 668 * When budgeting we assume worst-case scenarios when the pages are not 669 * be compressed and direntries are of the maximum size. 670 * 671 * Note, data, which may be stored in inodes is budgeted separately, so 672 * it is not included into 'c->inode_budget'. 673 */ 674 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 675 c->inode_budget = UBIFS_INO_NODE_SZ; 676 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 677 678 /* 679 * When the amount of flash space used by buds becomes 680 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 681 * The writers are unblocked when the commit is finished. To avoid 682 * writers to be blocked UBIFS initiates background commit in advance, 683 * when number of bud bytes becomes above the limit defined below. 684 */ 685 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 686 687 /* 688 * Ensure minimum journal size. All the bytes in the journal heads are 689 * considered to be used, when calculating the current journal usage. 690 * Consequently, if the journal is too small, UBIFS will treat it as 691 * always full. 692 */ 693 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 694 if (c->bg_bud_bytes < tmp64) 695 c->bg_bud_bytes = tmp64; 696 if (c->max_bud_bytes < tmp64 + c->leb_size) 697 c->max_bud_bytes = tmp64 + c->leb_size; 698 699 err = ubifs_calc_lpt_geom(c); 700 if (err) 701 return err; 702 703 return 0; 704 } 705 706 /* 707 * init_constants_master - initialize UBIFS constants. 708 * @c: UBIFS file-system description object 709 * 710 * This is a helper function which initializes various UBIFS constants after 711 * the master node has been read. It also checks various UBIFS parameters and 712 * makes sure they are all right. 713 */ 714 static void init_constants_master(struct ubifs_info *c) 715 { 716 long long tmp64; 717 718 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 719 720 /* 721 * Calculate total amount of FS blocks. This number is not used 722 * internally because it does not make much sense for UBIFS, but it is 723 * necessary to report something for the 'statfs()' call. 724 * 725 * Subtract the LEB reserved for GC, the LEB which is reserved for 726 * deletions, minimum LEBs for the index, and assume only one journal 727 * head is available. 728 */ 729 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 730 tmp64 *= (long long)c->leb_size - c->leb_overhead; 731 tmp64 = ubifs_reported_space(c, tmp64); 732 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 733 } 734 735 /** 736 * take_gc_lnum - reserve GC LEB. 737 * @c: UBIFS file-system description object 738 * 739 * This function ensures that the LEB reserved for garbage collection is marked 740 * as "taken" in lprops. We also have to set free space to LEB size and dirty 741 * space to zero, because lprops may contain out-of-date information if the 742 * file-system was un-mounted before it has been committed. This function 743 * returns zero in case of success and a negative error code in case of 744 * failure. 745 */ 746 static int take_gc_lnum(struct ubifs_info *c) 747 { 748 int err; 749 750 if (c->gc_lnum == -1) { 751 ubifs_err("no LEB for GC"); 752 return -EINVAL; 753 } 754 755 /* And we have to tell lprops that this LEB is taken */ 756 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 757 LPROPS_TAKEN, 0, 0); 758 return err; 759 } 760 761 /** 762 * alloc_wbufs - allocate write-buffers. 763 * @c: UBIFS file-system description object 764 * 765 * This helper function allocates and initializes UBIFS write-buffers. Returns 766 * zero in case of success and %-ENOMEM in case of failure. 767 */ 768 static int alloc_wbufs(struct ubifs_info *c) 769 { 770 int i, err; 771 772 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 773 GFP_KERNEL); 774 if (!c->jheads) 775 return -ENOMEM; 776 777 /* Initialize journal heads */ 778 for (i = 0; i < c->jhead_cnt; i++) { 779 INIT_LIST_HEAD(&c->jheads[i].buds_list); 780 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 781 if (err) 782 return err; 783 784 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 785 c->jheads[i].wbuf.jhead = i; 786 } 787 788 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 789 /* 790 * Garbage Collector head likely contains long-term data and 791 * does not need to be synchronized by timer. 792 */ 793 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 794 c->jheads[GCHD].wbuf.timeout = 0; 795 796 return 0; 797 } 798 799 /** 800 * free_wbufs - free write-buffers. 801 * @c: UBIFS file-system description object 802 */ 803 static void free_wbufs(struct ubifs_info *c) 804 { 805 int i; 806 807 if (c->jheads) { 808 for (i = 0; i < c->jhead_cnt; i++) { 809 kfree(c->jheads[i].wbuf.buf); 810 kfree(c->jheads[i].wbuf.inodes); 811 } 812 kfree(c->jheads); 813 c->jheads = NULL; 814 } 815 } 816 817 /** 818 * free_orphans - free orphans. 819 * @c: UBIFS file-system description object 820 */ 821 static void free_orphans(struct ubifs_info *c) 822 { 823 struct ubifs_orphan *orph; 824 825 while (c->orph_dnext) { 826 orph = c->orph_dnext; 827 c->orph_dnext = orph->dnext; 828 list_del(&orph->list); 829 kfree(orph); 830 } 831 832 while (!list_empty(&c->orph_list)) { 833 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 834 list_del(&orph->list); 835 kfree(orph); 836 dbg_err("orphan list not empty at unmount"); 837 } 838 839 vfree(c->orph_buf); 840 c->orph_buf = NULL; 841 } 842 843 /** 844 * free_buds - free per-bud objects. 845 * @c: UBIFS file-system description object 846 */ 847 static void free_buds(struct ubifs_info *c) 848 { 849 struct rb_node *this = c->buds.rb_node; 850 struct ubifs_bud *bud; 851 852 while (this) { 853 if (this->rb_left) 854 this = this->rb_left; 855 else if (this->rb_right) 856 this = this->rb_right; 857 else { 858 bud = rb_entry(this, struct ubifs_bud, rb); 859 this = rb_parent(this); 860 if (this) { 861 if (this->rb_left == &bud->rb) 862 this->rb_left = NULL; 863 else 864 this->rb_right = NULL; 865 } 866 kfree(bud); 867 } 868 } 869 } 870 871 /** 872 * check_volume_empty - check if the UBI volume is empty. 873 * @c: UBIFS file-system description object 874 * 875 * This function checks if the UBIFS volume is empty by looking if its LEBs are 876 * mapped or not. The result of checking is stored in the @c->empty variable. 877 * Returns zero in case of success and a negative error code in case of 878 * failure. 879 */ 880 static int check_volume_empty(struct ubifs_info *c) 881 { 882 int lnum, err; 883 884 c->empty = 1; 885 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 886 err = ubi_is_mapped(c->ubi, lnum); 887 if (unlikely(err < 0)) 888 return err; 889 if (err == 1) { 890 c->empty = 0; 891 break; 892 } 893 894 cond_resched(); 895 } 896 897 return 0; 898 } 899 900 /* 901 * UBIFS mount options. 902 * 903 * Opt_fast_unmount: do not run a journal commit before un-mounting 904 * Opt_norm_unmount: run a journal commit before un-mounting 905 * Opt_bulk_read: enable bulk-reads 906 * Opt_no_bulk_read: disable bulk-reads 907 * Opt_chk_data_crc: check CRCs when reading data nodes 908 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 909 * Opt_override_compr: override default compressor 910 * Opt_err: just end of array marker 911 */ 912 enum { 913 Opt_fast_unmount, 914 Opt_norm_unmount, 915 Opt_bulk_read, 916 Opt_no_bulk_read, 917 Opt_chk_data_crc, 918 Opt_no_chk_data_crc, 919 Opt_override_compr, 920 Opt_err, 921 }; 922 923 static const match_table_t tokens = { 924 {Opt_fast_unmount, "fast_unmount"}, 925 {Opt_norm_unmount, "norm_unmount"}, 926 {Opt_bulk_read, "bulk_read"}, 927 {Opt_no_bulk_read, "no_bulk_read"}, 928 {Opt_chk_data_crc, "chk_data_crc"}, 929 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 930 {Opt_override_compr, "compr=%s"}, 931 {Opt_err, NULL}, 932 }; 933 934 /** 935 * ubifs_parse_options - parse mount parameters. 936 * @c: UBIFS file-system description object 937 * @options: parameters to parse 938 * @is_remount: non-zero if this is FS re-mount 939 * 940 * This function parses UBIFS mount options and returns zero in case success 941 * and a negative error code in case of failure. 942 */ 943 static int ubifs_parse_options(struct ubifs_info *c, char *options, 944 int is_remount) 945 { 946 char *p; 947 substring_t args[MAX_OPT_ARGS]; 948 949 if (!options) 950 return 0; 951 952 while ((p = strsep(&options, ","))) { 953 int token; 954 955 if (!*p) 956 continue; 957 958 token = match_token(p, tokens, args); 959 switch (token) { 960 /* 961 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 962 * We accepte them in order to be backware-compatible. But this 963 * should be removed at some point. 964 */ 965 case Opt_fast_unmount: 966 c->mount_opts.unmount_mode = 2; 967 break; 968 case Opt_norm_unmount: 969 c->mount_opts.unmount_mode = 1; 970 break; 971 case Opt_bulk_read: 972 c->mount_opts.bulk_read = 2; 973 c->bulk_read = 1; 974 break; 975 case Opt_no_bulk_read: 976 c->mount_opts.bulk_read = 1; 977 c->bulk_read = 0; 978 break; 979 case Opt_chk_data_crc: 980 c->mount_opts.chk_data_crc = 2; 981 c->no_chk_data_crc = 0; 982 break; 983 case Opt_no_chk_data_crc: 984 c->mount_opts.chk_data_crc = 1; 985 c->no_chk_data_crc = 1; 986 break; 987 case Opt_override_compr: 988 { 989 char *name = match_strdup(&args[0]); 990 991 if (!name) 992 return -ENOMEM; 993 if (!strcmp(name, "none")) 994 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 995 else if (!strcmp(name, "lzo")) 996 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 997 else if (!strcmp(name, "zlib")) 998 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 999 else { 1000 ubifs_err("unknown compressor \"%s\"", name); 1001 kfree(name); 1002 return -EINVAL; 1003 } 1004 kfree(name); 1005 c->mount_opts.override_compr = 1; 1006 c->default_compr = c->mount_opts.compr_type; 1007 break; 1008 } 1009 default: 1010 ubifs_err("unrecognized mount option \"%s\" " 1011 "or missing value", p); 1012 return -EINVAL; 1013 } 1014 } 1015 1016 return 0; 1017 } 1018 1019 /** 1020 * destroy_journal - destroy journal data structures. 1021 * @c: UBIFS file-system description object 1022 * 1023 * This function destroys journal data structures including those that may have 1024 * been created by recovery functions. 1025 */ 1026 static void destroy_journal(struct ubifs_info *c) 1027 { 1028 while (!list_empty(&c->unclean_leb_list)) { 1029 struct ubifs_unclean_leb *ucleb; 1030 1031 ucleb = list_entry(c->unclean_leb_list.next, 1032 struct ubifs_unclean_leb, list); 1033 list_del(&ucleb->list); 1034 kfree(ucleb); 1035 } 1036 while (!list_empty(&c->old_buds)) { 1037 struct ubifs_bud *bud; 1038 1039 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1040 list_del(&bud->list); 1041 kfree(bud); 1042 } 1043 ubifs_destroy_idx_gc(c); 1044 ubifs_destroy_size_tree(c); 1045 ubifs_tnc_close(c); 1046 free_buds(c); 1047 } 1048 1049 /** 1050 * bu_init - initialize bulk-read information. 1051 * @c: UBIFS file-system description object 1052 */ 1053 static void bu_init(struct ubifs_info *c) 1054 { 1055 ubifs_assert(c->bulk_read == 1); 1056 1057 if (c->bu.buf) 1058 return; /* Already initialized */ 1059 1060 again: 1061 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1062 if (!c->bu.buf) { 1063 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1064 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1065 goto again; 1066 } 1067 1068 /* Just disable bulk-read */ 1069 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " 1070 "disabling it", c->max_bu_buf_len); 1071 c->mount_opts.bulk_read = 1; 1072 c->bulk_read = 0; 1073 return; 1074 } 1075 } 1076 1077 /** 1078 * check_free_space - check if there is enough free space to mount. 1079 * @c: UBIFS file-system description object 1080 * 1081 * This function makes sure UBIFS has enough free space to be mounted in 1082 * read/write mode. UBIFS must always have some free space to allow deletions. 1083 */ 1084 static int check_free_space(struct ubifs_info *c) 1085 { 1086 ubifs_assert(c->dark_wm > 0); 1087 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1088 ubifs_err("insufficient free space to mount in read/write mode"); 1089 dbg_dump_budg(c); 1090 dbg_dump_lprops(c); 1091 return -ENOSPC; 1092 } 1093 return 0; 1094 } 1095 1096 /** 1097 * mount_ubifs - mount UBIFS file-system. 1098 * @c: UBIFS file-system description object 1099 * 1100 * This function mounts UBIFS file system. Returns zero in case of success and 1101 * a negative error code in case of failure. 1102 * 1103 * Note, the function does not de-allocate resources it it fails half way 1104 * through, and the caller has to do this instead. 1105 */ 1106 static int mount_ubifs(struct ubifs_info *c) 1107 { 1108 struct super_block *sb = c->vfs_sb; 1109 int err, mounted_read_only = (sb->s_flags & MS_RDONLY); 1110 long long x; 1111 size_t sz; 1112 1113 err = init_constants_early(c); 1114 if (err) 1115 return err; 1116 1117 err = ubifs_debugging_init(c); 1118 if (err) 1119 return err; 1120 1121 err = check_volume_empty(c); 1122 if (err) 1123 goto out_free; 1124 1125 if (c->empty && (mounted_read_only || c->ro_media)) { 1126 /* 1127 * This UBI volume is empty, and read-only, or the file system 1128 * is mounted read-only - we cannot format it. 1129 */ 1130 ubifs_err("can't format empty UBI volume: read-only %s", 1131 c->ro_media ? "UBI volume" : "mount"); 1132 err = -EROFS; 1133 goto out_free; 1134 } 1135 1136 if (c->ro_media && !mounted_read_only) { 1137 ubifs_err("cannot mount read-write - read-only media"); 1138 err = -EROFS; 1139 goto out_free; 1140 } 1141 1142 /* 1143 * The requirement for the buffer is that it should fit indexing B-tree 1144 * height amount of integers. We assume the height if the TNC tree will 1145 * never exceed 64. 1146 */ 1147 err = -ENOMEM; 1148 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1149 if (!c->bottom_up_buf) 1150 goto out_free; 1151 1152 c->sbuf = vmalloc(c->leb_size); 1153 if (!c->sbuf) 1154 goto out_free; 1155 1156 if (!mounted_read_only) { 1157 c->ileb_buf = vmalloc(c->leb_size); 1158 if (!c->ileb_buf) 1159 goto out_free; 1160 } 1161 1162 if (c->bulk_read == 1) 1163 bu_init(c); 1164 1165 /* 1166 * We have to check all CRCs, even for data nodes, when we mount the FS 1167 * (specifically, when we are replaying). 1168 */ 1169 c->always_chk_crc = 1; 1170 1171 err = ubifs_read_superblock(c); 1172 if (err) 1173 goto out_free; 1174 1175 /* 1176 * Make sure the compressor which is set as default in the superblock 1177 * or overridden by mount options is actually compiled in. 1178 */ 1179 if (!ubifs_compr_present(c->default_compr)) { 1180 ubifs_err("'compressor \"%s\" is not compiled in", 1181 ubifs_compr_name(c->default_compr)); 1182 goto out_free; 1183 } 1184 1185 err = init_constants_sb(c); 1186 if (err) 1187 goto out_free; 1188 1189 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1190 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1191 c->cbuf = kmalloc(sz, GFP_NOFS); 1192 if (!c->cbuf) { 1193 err = -ENOMEM; 1194 goto out_free; 1195 } 1196 1197 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1198 if (!mounted_read_only) { 1199 err = alloc_wbufs(c); 1200 if (err) 1201 goto out_cbuf; 1202 1203 /* Create background thread */ 1204 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1205 if (IS_ERR(c->bgt)) { 1206 err = PTR_ERR(c->bgt); 1207 c->bgt = NULL; 1208 ubifs_err("cannot spawn \"%s\", error %d", 1209 c->bgt_name, err); 1210 goto out_wbufs; 1211 } 1212 wake_up_process(c->bgt); 1213 } 1214 1215 err = ubifs_read_master(c); 1216 if (err) 1217 goto out_master; 1218 1219 init_constants_master(c); 1220 1221 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1222 ubifs_msg("recovery needed"); 1223 c->need_recovery = 1; 1224 if (!mounted_read_only) { 1225 err = ubifs_recover_inl_heads(c, c->sbuf); 1226 if (err) 1227 goto out_master; 1228 } 1229 } else if (!mounted_read_only) { 1230 /* 1231 * Set the "dirty" flag so that if we reboot uncleanly we 1232 * will notice this immediately on the next mount. 1233 */ 1234 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1235 err = ubifs_write_master(c); 1236 if (err) 1237 goto out_master; 1238 } 1239 1240 err = ubifs_lpt_init(c, 1, !mounted_read_only); 1241 if (err) 1242 goto out_lpt; 1243 1244 err = dbg_check_idx_size(c, c->old_idx_sz); 1245 if (err) 1246 goto out_lpt; 1247 1248 err = ubifs_replay_journal(c); 1249 if (err) 1250 goto out_journal; 1251 1252 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); 1253 if (err) 1254 goto out_orphans; 1255 1256 if (!mounted_read_only) { 1257 int lnum; 1258 1259 err = check_free_space(c); 1260 if (err) 1261 goto out_orphans; 1262 1263 /* Check for enough log space */ 1264 lnum = c->lhead_lnum + 1; 1265 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1266 lnum = UBIFS_LOG_LNUM; 1267 if (lnum == c->ltail_lnum) { 1268 err = ubifs_consolidate_log(c); 1269 if (err) 1270 goto out_orphans; 1271 } 1272 1273 if (c->need_recovery) { 1274 err = ubifs_recover_size(c); 1275 if (err) 1276 goto out_orphans; 1277 err = ubifs_rcvry_gc_commit(c); 1278 } else { 1279 err = take_gc_lnum(c); 1280 if (err) 1281 goto out_orphans; 1282 1283 /* 1284 * GC LEB may contain garbage if there was an unclean 1285 * reboot, and it should be un-mapped. 1286 */ 1287 err = ubifs_leb_unmap(c, c->gc_lnum); 1288 if (err) 1289 return err; 1290 } 1291 1292 err = dbg_check_lprops(c); 1293 if (err) 1294 goto out_orphans; 1295 } else if (c->need_recovery) { 1296 err = ubifs_recover_size(c); 1297 if (err) 1298 goto out_orphans; 1299 } else { 1300 /* 1301 * Even if we mount read-only, we have to set space in GC LEB 1302 * to proper value because this affects UBIFS free space 1303 * reporting. We do not want to have a situation when 1304 * re-mounting from R/O to R/W changes amount of free space. 1305 */ 1306 err = take_gc_lnum(c); 1307 if (err) 1308 goto out_orphans; 1309 } 1310 1311 spin_lock(&ubifs_infos_lock); 1312 list_add_tail(&c->infos_list, &ubifs_infos); 1313 spin_unlock(&ubifs_infos_lock); 1314 1315 if (c->need_recovery) { 1316 if (mounted_read_only) 1317 ubifs_msg("recovery deferred"); 1318 else { 1319 c->need_recovery = 0; 1320 ubifs_msg("recovery completed"); 1321 /* GC LEB has to be empty and taken at this point */ 1322 ubifs_assert(c->lst.taken_empty_lebs == 1); 1323 } 1324 } else 1325 ubifs_assert(c->lst.taken_empty_lebs == 1); 1326 1327 err = dbg_check_filesystem(c); 1328 if (err) 1329 goto out_infos; 1330 1331 err = dbg_debugfs_init_fs(c); 1332 if (err) 1333 goto out_infos; 1334 1335 c->always_chk_crc = 0; 1336 1337 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1338 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1339 if (mounted_read_only) 1340 ubifs_msg("mounted read-only"); 1341 x = (long long)c->main_lebs * c->leb_size; 1342 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1343 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1344 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1345 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1346 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1347 ubifs_msg("media format: %d (latest is %d)", 1348 c->fmt_version, UBIFS_FORMAT_VERSION); 1349 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1350 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1351 c->report_rp_size, c->report_rp_size >> 10); 1352 1353 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1354 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1355 dbg_msg("LEB size: %d bytes (%d KiB)", 1356 c->leb_size, c->leb_size >> 10); 1357 dbg_msg("data journal heads: %d", 1358 c->jhead_cnt - NONDATA_JHEADS_CNT); 1359 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X" 1360 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 1361 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3], 1362 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], 1363 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], 1364 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); 1365 dbg_msg("big_lpt %d", c->big_lpt); 1366 dbg_msg("log LEBs: %d (%d - %d)", 1367 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1368 dbg_msg("LPT area LEBs: %d (%d - %d)", 1369 c->lpt_lebs, c->lpt_first, c->lpt_last); 1370 dbg_msg("orphan area LEBs: %d (%d - %d)", 1371 c->orph_lebs, c->orph_first, c->orph_last); 1372 dbg_msg("main area LEBs: %d (%d - %d)", 1373 c->main_lebs, c->main_first, c->leb_cnt - 1); 1374 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1375 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1376 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1377 dbg_msg("key hash type: %d", c->key_hash_type); 1378 dbg_msg("tree fanout: %d", c->fanout); 1379 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1380 dbg_msg("first main LEB: %d", c->main_first); 1381 dbg_msg("max. znode size %d", c->max_znode_sz); 1382 dbg_msg("max. index node size %d", c->max_idx_node_sz); 1383 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", 1384 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1385 dbg_msg("node sizes: trun %zu, sb %zu, master %zu", 1386 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1387 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", 1388 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1389 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu", 1390 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1391 UBIFS_MAX_DENT_NODE_SZ); 1392 dbg_msg("dead watermark: %d", c->dead_wm); 1393 dbg_msg("dark watermark: %d", c->dark_wm); 1394 dbg_msg("LEB overhead: %d", c->leb_overhead); 1395 x = (long long)c->main_lebs * c->dark_wm; 1396 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1397 x, x >> 10, x >> 20); 1398 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1399 c->max_bud_bytes, c->max_bud_bytes >> 10, 1400 c->max_bud_bytes >> 20); 1401 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1402 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1403 c->bg_bud_bytes >> 20); 1404 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1405 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1406 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1407 dbg_msg("commit number: %llu", c->cmt_no); 1408 1409 return 0; 1410 1411 out_infos: 1412 spin_lock(&ubifs_infos_lock); 1413 list_del(&c->infos_list); 1414 spin_unlock(&ubifs_infos_lock); 1415 out_orphans: 1416 free_orphans(c); 1417 out_journal: 1418 destroy_journal(c); 1419 out_lpt: 1420 ubifs_lpt_free(c, 0); 1421 out_master: 1422 kfree(c->mst_node); 1423 kfree(c->rcvrd_mst_node); 1424 if (c->bgt) 1425 kthread_stop(c->bgt); 1426 out_wbufs: 1427 free_wbufs(c); 1428 out_cbuf: 1429 kfree(c->cbuf); 1430 out_free: 1431 kfree(c->bu.buf); 1432 vfree(c->ileb_buf); 1433 vfree(c->sbuf); 1434 kfree(c->bottom_up_buf); 1435 ubifs_debugging_exit(c); 1436 return err; 1437 } 1438 1439 /** 1440 * ubifs_umount - un-mount UBIFS file-system. 1441 * @c: UBIFS file-system description object 1442 * 1443 * Note, this function is called to free allocated resourced when un-mounting, 1444 * as well as free resources when an error occurred while we were half way 1445 * through mounting (error path cleanup function). So it has to make sure the 1446 * resource was actually allocated before freeing it. 1447 */ 1448 static void ubifs_umount(struct ubifs_info *c) 1449 { 1450 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1451 c->vi.vol_id); 1452 1453 dbg_debugfs_exit_fs(c); 1454 spin_lock(&ubifs_infos_lock); 1455 list_del(&c->infos_list); 1456 spin_unlock(&ubifs_infos_lock); 1457 1458 if (c->bgt) 1459 kthread_stop(c->bgt); 1460 1461 destroy_journal(c); 1462 free_wbufs(c); 1463 free_orphans(c); 1464 ubifs_lpt_free(c, 0); 1465 1466 kfree(c->cbuf); 1467 kfree(c->rcvrd_mst_node); 1468 kfree(c->mst_node); 1469 kfree(c->bu.buf); 1470 vfree(c->ileb_buf); 1471 vfree(c->sbuf); 1472 kfree(c->bottom_up_buf); 1473 ubifs_debugging_exit(c); 1474 } 1475 1476 /** 1477 * ubifs_remount_rw - re-mount in read-write mode. 1478 * @c: UBIFS file-system description object 1479 * 1480 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1481 * mode. This function allocates the needed resources and re-mounts UBIFS in 1482 * read-write mode. 1483 */ 1484 static int ubifs_remount_rw(struct ubifs_info *c) 1485 { 1486 int err, lnum; 1487 1488 mutex_lock(&c->umount_mutex); 1489 dbg_save_space_info(c); 1490 c->remounting_rw = 1; 1491 c->always_chk_crc = 1; 1492 1493 err = check_free_space(c); 1494 if (err) 1495 goto out; 1496 1497 if (c->old_leb_cnt != c->leb_cnt) { 1498 struct ubifs_sb_node *sup; 1499 1500 sup = ubifs_read_sb_node(c); 1501 if (IS_ERR(sup)) { 1502 err = PTR_ERR(sup); 1503 goto out; 1504 } 1505 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1506 err = ubifs_write_sb_node(c, sup); 1507 if (err) 1508 goto out; 1509 } 1510 1511 if (c->need_recovery) { 1512 ubifs_msg("completing deferred recovery"); 1513 err = ubifs_write_rcvrd_mst_node(c); 1514 if (err) 1515 goto out; 1516 err = ubifs_recover_size(c); 1517 if (err) 1518 goto out; 1519 err = ubifs_clean_lebs(c, c->sbuf); 1520 if (err) 1521 goto out; 1522 err = ubifs_recover_inl_heads(c, c->sbuf); 1523 if (err) 1524 goto out; 1525 } else { 1526 /* A readonly mount is not allowed to have orphans */ 1527 ubifs_assert(c->tot_orphans == 0); 1528 err = ubifs_clear_orphans(c); 1529 if (err) 1530 goto out; 1531 } 1532 1533 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1534 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1535 err = ubifs_write_master(c); 1536 if (err) 1537 goto out; 1538 } 1539 1540 c->ileb_buf = vmalloc(c->leb_size); 1541 if (!c->ileb_buf) { 1542 err = -ENOMEM; 1543 goto out; 1544 } 1545 1546 err = ubifs_lpt_init(c, 0, 1); 1547 if (err) 1548 goto out; 1549 1550 err = alloc_wbufs(c); 1551 if (err) 1552 goto out; 1553 1554 ubifs_create_buds_lists(c); 1555 1556 /* Create background thread */ 1557 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1558 if (IS_ERR(c->bgt)) { 1559 err = PTR_ERR(c->bgt); 1560 c->bgt = NULL; 1561 ubifs_err("cannot spawn \"%s\", error %d", 1562 c->bgt_name, err); 1563 goto out; 1564 } 1565 wake_up_process(c->bgt); 1566 1567 c->orph_buf = vmalloc(c->leb_size); 1568 if (!c->orph_buf) { 1569 err = -ENOMEM; 1570 goto out; 1571 } 1572 1573 /* Check for enough log space */ 1574 lnum = c->lhead_lnum + 1; 1575 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1576 lnum = UBIFS_LOG_LNUM; 1577 if (lnum == c->ltail_lnum) { 1578 err = ubifs_consolidate_log(c); 1579 if (err) 1580 goto out; 1581 } 1582 1583 if (c->need_recovery) 1584 err = ubifs_rcvry_gc_commit(c); 1585 else 1586 err = ubifs_leb_unmap(c, c->gc_lnum); 1587 if (err) 1588 goto out; 1589 1590 if (c->need_recovery) { 1591 c->need_recovery = 0; 1592 ubifs_msg("deferred recovery completed"); 1593 } 1594 1595 dbg_gen("re-mounted read-write"); 1596 c->vfs_sb->s_flags &= ~MS_RDONLY; 1597 c->remounting_rw = 0; 1598 c->always_chk_crc = 0; 1599 err = dbg_check_space_info(c); 1600 mutex_unlock(&c->umount_mutex); 1601 return err; 1602 1603 out: 1604 vfree(c->orph_buf); 1605 c->orph_buf = NULL; 1606 if (c->bgt) { 1607 kthread_stop(c->bgt); 1608 c->bgt = NULL; 1609 } 1610 free_wbufs(c); 1611 vfree(c->ileb_buf); 1612 c->ileb_buf = NULL; 1613 ubifs_lpt_free(c, 1); 1614 c->remounting_rw = 0; 1615 c->always_chk_crc = 0; 1616 mutex_unlock(&c->umount_mutex); 1617 return err; 1618 } 1619 1620 /** 1621 * ubifs_remount_ro - re-mount in read-only mode. 1622 * @c: UBIFS file-system description object 1623 * 1624 * We assume VFS has stopped writing. Possibly the background thread could be 1625 * running a commit, however kthread_stop will wait in that case. 1626 */ 1627 static void ubifs_remount_ro(struct ubifs_info *c) 1628 { 1629 int i, err; 1630 1631 ubifs_assert(!c->need_recovery); 1632 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 1633 1634 mutex_lock(&c->umount_mutex); 1635 if (c->bgt) { 1636 kthread_stop(c->bgt); 1637 c->bgt = NULL; 1638 } 1639 1640 dbg_save_space_info(c); 1641 1642 for (i = 0; i < c->jhead_cnt; i++) { 1643 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1644 del_timer_sync(&c->jheads[i].wbuf.timer); 1645 } 1646 1647 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1648 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1649 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1650 err = ubifs_write_master(c); 1651 if (err) 1652 ubifs_ro_mode(c, err); 1653 1654 free_wbufs(c); 1655 vfree(c->orph_buf); 1656 c->orph_buf = NULL; 1657 vfree(c->ileb_buf); 1658 c->ileb_buf = NULL; 1659 ubifs_lpt_free(c, 1); 1660 err = dbg_check_space_info(c); 1661 if (err) 1662 ubifs_ro_mode(c, err); 1663 mutex_unlock(&c->umount_mutex); 1664 } 1665 1666 static void ubifs_put_super(struct super_block *sb) 1667 { 1668 int i; 1669 struct ubifs_info *c = sb->s_fs_info; 1670 1671 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1672 c->vi.vol_id); 1673 /* 1674 * The following asserts are only valid if there has not been a failure 1675 * of the media. For example, there will be dirty inodes if we failed 1676 * to write them back because of I/O errors. 1677 */ 1678 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1679 ubifs_assert(c->budg_idx_growth == 0); 1680 ubifs_assert(c->budg_dd_growth == 0); 1681 ubifs_assert(c->budg_data_growth == 0); 1682 1683 /* 1684 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1685 * and file system un-mount. Namely, it prevents the shrinker from 1686 * picking this superblock for shrinking - it will be just skipped if 1687 * the mutex is locked. 1688 */ 1689 mutex_lock(&c->umount_mutex); 1690 if (!(c->vfs_sb->s_flags & MS_RDONLY)) { 1691 /* 1692 * First of all kill the background thread to make sure it does 1693 * not interfere with un-mounting and freeing resources. 1694 */ 1695 if (c->bgt) { 1696 kthread_stop(c->bgt); 1697 c->bgt = NULL; 1698 } 1699 1700 /* Synchronize write-buffers */ 1701 if (c->jheads) 1702 for (i = 0; i < c->jhead_cnt; i++) { 1703 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1704 del_timer_sync(&c->jheads[i].wbuf.timer); 1705 } 1706 1707 /* 1708 * On fatal errors c->ro_media is set to 1, in which case we do 1709 * not write the master node. 1710 */ 1711 if (!c->ro_media) { 1712 /* 1713 * We are being cleanly unmounted which means the 1714 * orphans were killed - indicate this in the master 1715 * node. Also save the reserved GC LEB number. 1716 */ 1717 int err; 1718 1719 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1720 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1721 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1722 err = ubifs_write_master(c); 1723 if (err) 1724 /* 1725 * Recovery will attempt to fix the master area 1726 * next mount, so we just print a message and 1727 * continue to unmount normally. 1728 */ 1729 ubifs_err("failed to write master node, " 1730 "error %d", err); 1731 } 1732 } 1733 1734 ubifs_umount(c); 1735 bdi_destroy(&c->bdi); 1736 ubi_close_volume(c->ubi); 1737 mutex_unlock(&c->umount_mutex); 1738 kfree(c); 1739 } 1740 1741 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1742 { 1743 int err; 1744 struct ubifs_info *c = sb->s_fs_info; 1745 1746 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1747 1748 err = ubifs_parse_options(c, data, 1); 1749 if (err) { 1750 ubifs_err("invalid or unknown remount parameter"); 1751 return err; 1752 } 1753 1754 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1755 if (c->ro_media) { 1756 ubifs_msg("cannot re-mount due to prior errors"); 1757 return -EROFS; 1758 } 1759 err = ubifs_remount_rw(c); 1760 if (err) 1761 return err; 1762 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 1763 if (c->ro_media) { 1764 ubifs_msg("cannot re-mount due to prior errors"); 1765 return -EROFS; 1766 } 1767 ubifs_remount_ro(c); 1768 } 1769 1770 if (c->bulk_read == 1) 1771 bu_init(c); 1772 else { 1773 dbg_gen("disable bulk-read"); 1774 kfree(c->bu.buf); 1775 c->bu.buf = NULL; 1776 } 1777 1778 ubifs_assert(c->lst.taken_empty_lebs == 1); 1779 return 0; 1780 } 1781 1782 const struct super_operations ubifs_super_operations = { 1783 .alloc_inode = ubifs_alloc_inode, 1784 .destroy_inode = ubifs_destroy_inode, 1785 .put_super = ubifs_put_super, 1786 .write_inode = ubifs_write_inode, 1787 .delete_inode = ubifs_delete_inode, 1788 .statfs = ubifs_statfs, 1789 .dirty_inode = ubifs_dirty_inode, 1790 .remount_fs = ubifs_remount_fs, 1791 .show_options = ubifs_show_options, 1792 .sync_fs = ubifs_sync_fs, 1793 }; 1794 1795 /** 1796 * open_ubi - parse UBI device name string and open the UBI device. 1797 * @name: UBI volume name 1798 * @mode: UBI volume open mode 1799 * 1800 * There are several ways to specify UBI volumes when mounting UBIFS: 1801 * o ubiX_Y - UBI device number X, volume Y; 1802 * o ubiY - UBI device number 0, volume Y; 1803 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1804 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1805 * 1806 * Alternative '!' separator may be used instead of ':' (because some shells 1807 * like busybox may interpret ':' as an NFS host name separator). This function 1808 * returns ubi volume object in case of success and a negative error code in 1809 * case of failure. 1810 */ 1811 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1812 { 1813 int dev, vol; 1814 char *endptr; 1815 1816 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1817 return ERR_PTR(-EINVAL); 1818 1819 /* ubi:NAME method */ 1820 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1821 return ubi_open_volume_nm(0, name + 4, mode); 1822 1823 if (!isdigit(name[3])) 1824 return ERR_PTR(-EINVAL); 1825 1826 dev = simple_strtoul(name + 3, &endptr, 0); 1827 1828 /* ubiY method */ 1829 if (*endptr == '\0') 1830 return ubi_open_volume(0, dev, mode); 1831 1832 /* ubiX_Y method */ 1833 if (*endptr == '_' && isdigit(endptr[1])) { 1834 vol = simple_strtoul(endptr + 1, &endptr, 0); 1835 if (*endptr != '\0') 1836 return ERR_PTR(-EINVAL); 1837 return ubi_open_volume(dev, vol, mode); 1838 } 1839 1840 /* ubiX:NAME method */ 1841 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1842 return ubi_open_volume_nm(dev, ++endptr, mode); 1843 1844 return ERR_PTR(-EINVAL); 1845 } 1846 1847 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1848 { 1849 struct ubi_volume_desc *ubi = sb->s_fs_info; 1850 struct ubifs_info *c; 1851 struct inode *root; 1852 int err; 1853 1854 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1855 if (!c) 1856 return -ENOMEM; 1857 1858 spin_lock_init(&c->cnt_lock); 1859 spin_lock_init(&c->cs_lock); 1860 spin_lock_init(&c->buds_lock); 1861 spin_lock_init(&c->space_lock); 1862 spin_lock_init(&c->orphan_lock); 1863 init_rwsem(&c->commit_sem); 1864 mutex_init(&c->lp_mutex); 1865 mutex_init(&c->tnc_mutex); 1866 mutex_init(&c->log_mutex); 1867 mutex_init(&c->mst_mutex); 1868 mutex_init(&c->umount_mutex); 1869 mutex_init(&c->bu_mutex); 1870 init_waitqueue_head(&c->cmt_wq); 1871 c->buds = RB_ROOT; 1872 c->old_idx = RB_ROOT; 1873 c->size_tree = RB_ROOT; 1874 c->orph_tree = RB_ROOT; 1875 INIT_LIST_HEAD(&c->infos_list); 1876 INIT_LIST_HEAD(&c->idx_gc); 1877 INIT_LIST_HEAD(&c->replay_list); 1878 INIT_LIST_HEAD(&c->replay_buds); 1879 INIT_LIST_HEAD(&c->uncat_list); 1880 INIT_LIST_HEAD(&c->empty_list); 1881 INIT_LIST_HEAD(&c->freeable_list); 1882 INIT_LIST_HEAD(&c->frdi_idx_list); 1883 INIT_LIST_HEAD(&c->unclean_leb_list); 1884 INIT_LIST_HEAD(&c->old_buds); 1885 INIT_LIST_HEAD(&c->orph_list); 1886 INIT_LIST_HEAD(&c->orph_new); 1887 1888 c->highest_inum = UBIFS_FIRST_INO; 1889 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1890 1891 ubi_get_volume_info(ubi, &c->vi); 1892 ubi_get_device_info(c->vi.ubi_num, &c->di); 1893 1894 /* Re-open the UBI device in read-write mode */ 1895 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1896 if (IS_ERR(c->ubi)) { 1897 err = PTR_ERR(c->ubi); 1898 goto out_free; 1899 } 1900 1901 /* 1902 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 1903 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1904 * which means the user would have to wait not just for their own I/O 1905 * but the read-ahead I/O as well i.e. completely pointless. 1906 * 1907 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1908 */ 1909 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1910 c->bdi.unplug_io_fn = default_unplug_io_fn; 1911 err = bdi_init(&c->bdi); 1912 if (err) 1913 goto out_close; 1914 1915 err = ubifs_parse_options(c, data, 0); 1916 if (err) 1917 goto out_bdi; 1918 1919 c->vfs_sb = sb; 1920 1921 sb->s_fs_info = c; 1922 sb->s_magic = UBIFS_SUPER_MAGIC; 1923 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1924 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 1925 sb->s_dev = c->vi.cdev; 1926 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 1927 if (c->max_inode_sz > MAX_LFS_FILESIZE) 1928 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 1929 sb->s_op = &ubifs_super_operations; 1930 1931 mutex_lock(&c->umount_mutex); 1932 err = mount_ubifs(c); 1933 if (err) { 1934 ubifs_assert(err < 0); 1935 goto out_unlock; 1936 } 1937 1938 /* Read the root inode */ 1939 root = ubifs_iget(sb, UBIFS_ROOT_INO); 1940 if (IS_ERR(root)) { 1941 err = PTR_ERR(root); 1942 goto out_umount; 1943 } 1944 1945 sb->s_root = d_alloc_root(root); 1946 if (!sb->s_root) 1947 goto out_iput; 1948 1949 mutex_unlock(&c->umount_mutex); 1950 return 0; 1951 1952 out_iput: 1953 iput(root); 1954 out_umount: 1955 ubifs_umount(c); 1956 out_unlock: 1957 mutex_unlock(&c->umount_mutex); 1958 out_bdi: 1959 bdi_destroy(&c->bdi); 1960 out_close: 1961 ubi_close_volume(c->ubi); 1962 out_free: 1963 kfree(c); 1964 return err; 1965 } 1966 1967 static int sb_test(struct super_block *sb, void *data) 1968 { 1969 dev_t *dev = data; 1970 1971 return sb->s_dev == *dev; 1972 } 1973 1974 static int sb_set(struct super_block *sb, void *data) 1975 { 1976 dev_t *dev = data; 1977 1978 sb->s_dev = *dev; 1979 return 0; 1980 } 1981 1982 static int ubifs_get_sb(struct file_system_type *fs_type, int flags, 1983 const char *name, void *data, struct vfsmount *mnt) 1984 { 1985 struct ubi_volume_desc *ubi; 1986 struct ubi_volume_info vi; 1987 struct super_block *sb; 1988 int err; 1989 1990 dbg_gen("name %s, flags %#x", name, flags); 1991 1992 /* 1993 * Get UBI device number and volume ID. Mount it read-only so far 1994 * because this might be a new mount point, and UBI allows only one 1995 * read-write user at a time. 1996 */ 1997 ubi = open_ubi(name, UBI_READONLY); 1998 if (IS_ERR(ubi)) { 1999 ubifs_err("cannot open \"%s\", error %d", 2000 name, (int)PTR_ERR(ubi)); 2001 return PTR_ERR(ubi); 2002 } 2003 ubi_get_volume_info(ubi, &vi); 2004 2005 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 2006 2007 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev); 2008 if (IS_ERR(sb)) { 2009 err = PTR_ERR(sb); 2010 goto out_close; 2011 } 2012 2013 if (sb->s_root) { 2014 /* A new mount point for already mounted UBIFS */ 2015 dbg_gen("this ubi volume is already mounted"); 2016 if ((flags ^ sb->s_flags) & MS_RDONLY) { 2017 err = -EBUSY; 2018 goto out_deact; 2019 } 2020 } else { 2021 sb->s_flags = flags; 2022 /* 2023 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 2024 * replaced by 'c'. 2025 */ 2026 sb->s_fs_info = ubi; 2027 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2028 if (err) 2029 goto out_deact; 2030 /* We do not support atime */ 2031 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2032 } 2033 2034 /* 'fill_super()' opens ubi again so we must close it here */ 2035 ubi_close_volume(ubi); 2036 2037 simple_set_mnt(mnt, sb); 2038 return 0; 2039 2040 out_deact: 2041 up_write(&sb->s_umount); 2042 deactivate_super(sb); 2043 out_close: 2044 ubi_close_volume(ubi); 2045 return err; 2046 } 2047 2048 static void ubifs_kill_sb(struct super_block *sb) 2049 { 2050 generic_shutdown_super(sb); 2051 } 2052 2053 static struct file_system_type ubifs_fs_type = { 2054 .name = "ubifs", 2055 .owner = THIS_MODULE, 2056 .get_sb = ubifs_get_sb, 2057 .kill_sb = ubifs_kill_sb 2058 }; 2059 2060 /* 2061 * Inode slab cache constructor. 2062 */ 2063 static void inode_slab_ctor(void *obj) 2064 { 2065 struct ubifs_inode *ui = obj; 2066 inode_init_once(&ui->vfs_inode); 2067 } 2068 2069 static int __init ubifs_init(void) 2070 { 2071 int err; 2072 2073 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2074 2075 /* Make sure node sizes are 8-byte aligned */ 2076 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2077 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2078 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2079 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2080 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2081 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2082 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2083 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2084 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2085 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2086 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2087 2088 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2089 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2090 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2091 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2092 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2093 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2094 2095 /* Check min. node size */ 2096 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2097 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2098 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2099 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2100 2101 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2102 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2103 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2104 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2105 2106 /* Defined node sizes */ 2107 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2108 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2109 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2110 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2111 2112 /* 2113 * We use 2 bit wide bit-fields to store compression type, which should 2114 * be amended if more compressors are added. The bit-fields are: 2115 * @compr_type in 'struct ubifs_inode', @default_compr in 2116 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2117 */ 2118 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2119 2120 /* 2121 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2122 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2123 */ 2124 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2125 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 2126 " at least 4096 bytes", 2127 (unsigned int)PAGE_CACHE_SIZE); 2128 return -EINVAL; 2129 } 2130 2131 err = register_filesystem(&ubifs_fs_type); 2132 if (err) { 2133 ubifs_err("cannot register file system, error %d", err); 2134 return err; 2135 } 2136 2137 err = -ENOMEM; 2138 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2139 sizeof(struct ubifs_inode), 0, 2140 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2141 &inode_slab_ctor); 2142 if (!ubifs_inode_slab) 2143 goto out_reg; 2144 2145 register_shrinker(&ubifs_shrinker_info); 2146 2147 err = ubifs_compressors_init(); 2148 if (err) 2149 goto out_shrinker; 2150 2151 err = dbg_debugfs_init(); 2152 if (err) 2153 goto out_compr; 2154 2155 return 0; 2156 2157 out_compr: 2158 ubifs_compressors_exit(); 2159 out_shrinker: 2160 unregister_shrinker(&ubifs_shrinker_info); 2161 kmem_cache_destroy(ubifs_inode_slab); 2162 out_reg: 2163 unregister_filesystem(&ubifs_fs_type); 2164 return err; 2165 } 2166 /* late_initcall to let compressors initialize first */ 2167 late_initcall(ubifs_init); 2168 2169 static void __exit ubifs_exit(void) 2170 { 2171 ubifs_assert(list_empty(&ubifs_infos)); 2172 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2173 2174 dbg_debugfs_exit(); 2175 ubifs_compressors_exit(); 2176 unregister_shrinker(&ubifs_shrinker_info); 2177 kmem_cache_destroy(ubifs_inode_slab); 2178 unregister_filesystem(&ubifs_fs_type); 2179 } 2180 module_exit(ubifs_exit); 2181 2182 MODULE_LICENSE("GPL"); 2183 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2184 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2185 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2186