1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err(c, "inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err(c, "unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(ui->compr_type)) { 93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 set_nlink(inode, le32_to_cpu(ino->nlink)); 133 i_uid_write(inode, le32_to_cpu(ino->uid)); 134 i_gid_write(inode, le32_to_cpu(ino->gid)); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 switch (inode->i_mode & S_IFMT) { 160 case S_IFREG: 161 inode->i_mapping->a_ops = &ubifs_file_address_operations; 162 inode->i_op = &ubifs_file_inode_operations; 163 inode->i_fop = &ubifs_file_operations; 164 if (ui->xattr) { 165 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 166 if (!ui->data) { 167 err = -ENOMEM; 168 goto out_ino; 169 } 170 memcpy(ui->data, ino->data, ui->data_len); 171 ((char *)ui->data)[ui->data_len] = '\0'; 172 } else if (ui->data_len != 0) { 173 err = 10; 174 goto out_invalid; 175 } 176 break; 177 case S_IFDIR: 178 inode->i_op = &ubifs_dir_inode_operations; 179 inode->i_fop = &ubifs_dir_operations; 180 if (ui->data_len != 0) { 181 err = 11; 182 goto out_invalid; 183 } 184 break; 185 case S_IFLNK: 186 inode->i_op = &ubifs_symlink_inode_operations; 187 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 188 err = 12; 189 goto out_invalid; 190 } 191 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 192 if (!ui->data) { 193 err = -ENOMEM; 194 goto out_ino; 195 } 196 memcpy(ui->data, ino->data, ui->data_len); 197 ((char *)ui->data)[ui->data_len] = '\0'; 198 break; 199 case S_IFBLK: 200 case S_IFCHR: 201 { 202 dev_t rdev; 203 union ubifs_dev_desc *dev; 204 205 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 206 if (!ui->data) { 207 err = -ENOMEM; 208 goto out_ino; 209 } 210 211 dev = (union ubifs_dev_desc *)ino->data; 212 if (ui->data_len == sizeof(dev->new)) 213 rdev = new_decode_dev(le32_to_cpu(dev->new)); 214 else if (ui->data_len == sizeof(dev->huge)) 215 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 216 else { 217 err = 13; 218 goto out_invalid; 219 } 220 memcpy(ui->data, ino->data, ui->data_len); 221 inode->i_op = &ubifs_file_inode_operations; 222 init_special_inode(inode, inode->i_mode, rdev); 223 break; 224 } 225 case S_IFSOCK: 226 case S_IFIFO: 227 inode->i_op = &ubifs_file_inode_operations; 228 init_special_inode(inode, inode->i_mode, 0); 229 if (ui->data_len != 0) { 230 err = 14; 231 goto out_invalid; 232 } 233 break; 234 default: 235 err = 15; 236 goto out_invalid; 237 } 238 239 kfree(ino); 240 ubifs_set_inode_flags(inode); 241 unlock_new_inode(inode); 242 return inode; 243 244 out_invalid: 245 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 246 ubifs_dump_node(c, ino); 247 ubifs_dump_inode(c, inode); 248 err = -EINVAL; 249 out_ino: 250 kfree(ino); 251 out: 252 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 253 iget_failed(inode); 254 return ERR_PTR(err); 255 } 256 257 static struct inode *ubifs_alloc_inode(struct super_block *sb) 258 { 259 struct ubifs_inode *ui; 260 261 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 262 if (!ui) 263 return NULL; 264 265 memset((void *)ui + sizeof(struct inode), 0, 266 sizeof(struct ubifs_inode) - sizeof(struct inode)); 267 mutex_init(&ui->ui_mutex); 268 spin_lock_init(&ui->ui_lock); 269 return &ui->vfs_inode; 270 }; 271 272 static void ubifs_i_callback(struct rcu_head *head) 273 { 274 struct inode *inode = container_of(head, struct inode, i_rcu); 275 struct ubifs_inode *ui = ubifs_inode(inode); 276 kmem_cache_free(ubifs_inode_slab, ui); 277 } 278 279 static void ubifs_destroy_inode(struct inode *inode) 280 { 281 struct ubifs_inode *ui = ubifs_inode(inode); 282 283 kfree(ui->data); 284 call_rcu(&inode->i_rcu, ubifs_i_callback); 285 } 286 287 /* 288 * Note, Linux write-back code calls this without 'i_mutex'. 289 */ 290 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 291 { 292 int err = 0; 293 struct ubifs_info *c = inode->i_sb->s_fs_info; 294 struct ubifs_inode *ui = ubifs_inode(inode); 295 296 ubifs_assert(!ui->xattr); 297 if (is_bad_inode(inode)) 298 return 0; 299 300 mutex_lock(&ui->ui_mutex); 301 /* 302 * Due to races between write-back forced by budgeting 303 * (see 'sync_some_inodes()') and background write-back, the inode may 304 * have already been synchronized, do not do this again. This might 305 * also happen if it was synchronized in an VFS operation, e.g. 306 * 'ubifs_link()'. 307 */ 308 if (!ui->dirty) { 309 mutex_unlock(&ui->ui_mutex); 310 return 0; 311 } 312 313 /* 314 * As an optimization, do not write orphan inodes to the media just 315 * because this is not needed. 316 */ 317 dbg_gen("inode %lu, mode %#x, nlink %u", 318 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 319 if (inode->i_nlink) { 320 err = ubifs_jnl_write_inode(c, inode); 321 if (err) 322 ubifs_err(c, "can't write inode %lu, error %d", 323 inode->i_ino, err); 324 else 325 err = dbg_check_inode_size(c, inode, ui->ui_size); 326 } 327 328 ui->dirty = 0; 329 mutex_unlock(&ui->ui_mutex); 330 ubifs_release_dirty_inode_budget(c, ui); 331 return err; 332 } 333 334 static void ubifs_evict_inode(struct inode *inode) 335 { 336 int err; 337 struct ubifs_info *c = inode->i_sb->s_fs_info; 338 struct ubifs_inode *ui = ubifs_inode(inode); 339 340 if (ui->xattr) 341 /* 342 * Extended attribute inode deletions are fully handled in 343 * 'ubifs_removexattr()'. These inodes are special and have 344 * limited usage, so there is nothing to do here. 345 */ 346 goto out; 347 348 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 349 ubifs_assert(!atomic_read(&inode->i_count)); 350 351 truncate_inode_pages_final(&inode->i_data); 352 353 if (inode->i_nlink) 354 goto done; 355 356 if (is_bad_inode(inode)) 357 goto out; 358 359 ui->ui_size = inode->i_size = 0; 360 err = ubifs_jnl_delete_inode(c, inode); 361 if (err) 362 /* 363 * Worst case we have a lost orphan inode wasting space, so a 364 * simple error message is OK here. 365 */ 366 ubifs_err(c, "can't delete inode %lu, error %d", 367 inode->i_ino, err); 368 369 out: 370 if (ui->dirty) 371 ubifs_release_dirty_inode_budget(c, ui); 372 else { 373 /* We've deleted something - clean the "no space" flags */ 374 c->bi.nospace = c->bi.nospace_rp = 0; 375 smp_wmb(); 376 } 377 done: 378 clear_inode(inode); 379 } 380 381 static void ubifs_dirty_inode(struct inode *inode, int flags) 382 { 383 struct ubifs_inode *ui = ubifs_inode(inode); 384 385 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 386 if (!ui->dirty) { 387 ui->dirty = 1; 388 dbg_gen("inode %lu", inode->i_ino); 389 } 390 } 391 392 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 393 { 394 struct ubifs_info *c = dentry->d_sb->s_fs_info; 395 unsigned long long free; 396 __le32 *uuid = (__le32 *)c->uuid; 397 398 free = ubifs_get_free_space(c); 399 dbg_gen("free space %lld bytes (%lld blocks)", 400 free, free >> UBIFS_BLOCK_SHIFT); 401 402 buf->f_type = UBIFS_SUPER_MAGIC; 403 buf->f_bsize = UBIFS_BLOCK_SIZE; 404 buf->f_blocks = c->block_cnt; 405 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 406 if (free > c->report_rp_size) 407 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 408 else 409 buf->f_bavail = 0; 410 buf->f_files = 0; 411 buf->f_ffree = 0; 412 buf->f_namelen = UBIFS_MAX_NLEN; 413 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 414 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 415 ubifs_assert(buf->f_bfree <= c->block_cnt); 416 return 0; 417 } 418 419 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 420 { 421 struct ubifs_info *c = root->d_sb->s_fs_info; 422 423 if (c->mount_opts.unmount_mode == 2) 424 seq_puts(s, ",fast_unmount"); 425 else if (c->mount_opts.unmount_mode == 1) 426 seq_puts(s, ",norm_unmount"); 427 428 if (c->mount_opts.bulk_read == 2) 429 seq_puts(s, ",bulk_read"); 430 else if (c->mount_opts.bulk_read == 1) 431 seq_puts(s, ",no_bulk_read"); 432 433 if (c->mount_opts.chk_data_crc == 2) 434 seq_puts(s, ",chk_data_crc"); 435 else if (c->mount_opts.chk_data_crc == 1) 436 seq_puts(s, ",no_chk_data_crc"); 437 438 if (c->mount_opts.override_compr) { 439 seq_printf(s, ",compr=%s", 440 ubifs_compr_name(c->mount_opts.compr_type)); 441 } 442 443 return 0; 444 } 445 446 static int ubifs_sync_fs(struct super_block *sb, int wait) 447 { 448 int i, err; 449 struct ubifs_info *c = sb->s_fs_info; 450 451 /* 452 * Zero @wait is just an advisory thing to help the file system shove 453 * lots of data into the queues, and there will be the second 454 * '->sync_fs()' call, with non-zero @wait. 455 */ 456 if (!wait) 457 return 0; 458 459 /* 460 * Synchronize write buffers, because 'ubifs_run_commit()' does not 461 * do this if it waits for an already running commit. 462 */ 463 for (i = 0; i < c->jhead_cnt; i++) { 464 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 465 if (err) 466 return err; 467 } 468 469 /* 470 * Strictly speaking, it is not necessary to commit the journal here, 471 * synchronizing write-buffers would be enough. But committing makes 472 * UBIFS free space predictions much more accurate, so we want to let 473 * the user be able to get more accurate results of 'statfs()' after 474 * they synchronize the file system. 475 */ 476 err = ubifs_run_commit(c); 477 if (err) 478 return err; 479 480 return ubi_sync(c->vi.ubi_num); 481 } 482 483 /** 484 * init_constants_early - initialize UBIFS constants. 485 * @c: UBIFS file-system description object 486 * 487 * This function initialize UBIFS constants which do not need the superblock to 488 * be read. It also checks that the UBI volume satisfies basic UBIFS 489 * requirements. Returns zero in case of success and a negative error code in 490 * case of failure. 491 */ 492 static int init_constants_early(struct ubifs_info *c) 493 { 494 if (c->vi.corrupted) { 495 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 496 c->ro_media = 1; 497 } 498 499 if (c->di.ro_mode) { 500 ubifs_msg(c, "read-only UBI device"); 501 c->ro_media = 1; 502 } 503 504 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 505 ubifs_msg(c, "static UBI volume - read-only mode"); 506 c->ro_media = 1; 507 } 508 509 c->leb_cnt = c->vi.size; 510 c->leb_size = c->vi.usable_leb_size; 511 c->leb_start = c->di.leb_start; 512 c->half_leb_size = c->leb_size / 2; 513 c->min_io_size = c->di.min_io_size; 514 c->min_io_shift = fls(c->min_io_size) - 1; 515 c->max_write_size = c->di.max_write_size; 516 c->max_write_shift = fls(c->max_write_size) - 1; 517 518 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 519 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes", 520 c->leb_size, UBIFS_MIN_LEB_SZ); 521 return -EINVAL; 522 } 523 524 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 525 ubifs_err(c, "too few LEBs (%d), min. is %d", 526 c->leb_cnt, UBIFS_MIN_LEB_CNT); 527 return -EINVAL; 528 } 529 530 if (!is_power_of_2(c->min_io_size)) { 531 ubifs_err(c, "bad min. I/O size %d", c->min_io_size); 532 return -EINVAL; 533 } 534 535 /* 536 * Maximum write size has to be greater or equivalent to min. I/O 537 * size, and be multiple of min. I/O size. 538 */ 539 if (c->max_write_size < c->min_io_size || 540 c->max_write_size % c->min_io_size || 541 !is_power_of_2(c->max_write_size)) { 542 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit", 543 c->max_write_size, c->min_io_size); 544 return -EINVAL; 545 } 546 547 /* 548 * UBIFS aligns all node to 8-byte boundary, so to make function in 549 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 550 * less than 8. 551 */ 552 if (c->min_io_size < 8) { 553 c->min_io_size = 8; 554 c->min_io_shift = 3; 555 if (c->max_write_size < c->min_io_size) { 556 c->max_write_size = c->min_io_size; 557 c->max_write_shift = c->min_io_shift; 558 } 559 } 560 561 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 562 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 563 564 /* 565 * Initialize node length ranges which are mostly needed for node 566 * length validation. 567 */ 568 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 569 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 570 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 571 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 572 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 573 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 574 575 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 576 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 577 c->ranges[UBIFS_ORPH_NODE].min_len = 578 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 579 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 580 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 581 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 582 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 583 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 584 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 585 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 586 /* 587 * Minimum indexing node size is amended later when superblock is 588 * read and the key length is known. 589 */ 590 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 591 /* 592 * Maximum indexing node size is amended later when superblock is 593 * read and the fanout is known. 594 */ 595 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 596 597 /* 598 * Initialize dead and dark LEB space watermarks. See gc.c for comments 599 * about these values. 600 */ 601 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 602 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 603 604 /* 605 * Calculate how many bytes would be wasted at the end of LEB if it was 606 * fully filled with data nodes of maximum size. This is used in 607 * calculations when reporting free space. 608 */ 609 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 610 611 /* Buffer size for bulk-reads */ 612 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 613 if (c->max_bu_buf_len > c->leb_size) 614 c->max_bu_buf_len = c->leb_size; 615 return 0; 616 } 617 618 /** 619 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 620 * @c: UBIFS file-system description object 621 * @lnum: LEB the write-buffer was synchronized to 622 * @free: how many free bytes left in this LEB 623 * @pad: how many bytes were padded 624 * 625 * This is a callback function which is called by the I/O unit when the 626 * write-buffer is synchronized. We need this to correctly maintain space 627 * accounting in bud logical eraseblocks. This function returns zero in case of 628 * success and a negative error code in case of failure. 629 * 630 * This function actually belongs to the journal, but we keep it here because 631 * we want to keep it static. 632 */ 633 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 634 { 635 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 636 } 637 638 /* 639 * init_constants_sb - initialize UBIFS constants. 640 * @c: UBIFS file-system description object 641 * 642 * This is a helper function which initializes various UBIFS constants after 643 * the superblock has been read. It also checks various UBIFS parameters and 644 * makes sure they are all right. Returns zero in case of success and a 645 * negative error code in case of failure. 646 */ 647 static int init_constants_sb(struct ubifs_info *c) 648 { 649 int tmp, err; 650 long long tmp64; 651 652 c->main_bytes = (long long)c->main_lebs * c->leb_size; 653 c->max_znode_sz = sizeof(struct ubifs_znode) + 654 c->fanout * sizeof(struct ubifs_zbranch); 655 656 tmp = ubifs_idx_node_sz(c, 1); 657 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 658 c->min_idx_node_sz = ALIGN(tmp, 8); 659 660 tmp = ubifs_idx_node_sz(c, c->fanout); 661 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 662 c->max_idx_node_sz = ALIGN(tmp, 8); 663 664 /* Make sure LEB size is large enough to fit full commit */ 665 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 666 tmp = ALIGN(tmp, c->min_io_size); 667 if (tmp > c->leb_size) { 668 ubifs_err(c, "too small LEB size %d, at least %d needed", 669 c->leb_size, tmp); 670 return -EINVAL; 671 } 672 673 /* 674 * Make sure that the log is large enough to fit reference nodes for 675 * all buds plus one reserved LEB. 676 */ 677 tmp64 = c->max_bud_bytes + c->leb_size - 1; 678 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 679 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 680 tmp /= c->leb_size; 681 tmp += 1; 682 if (c->log_lebs < tmp) { 683 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 684 c->log_lebs, tmp); 685 return -EINVAL; 686 } 687 688 /* 689 * When budgeting we assume worst-case scenarios when the pages are not 690 * be compressed and direntries are of the maximum size. 691 * 692 * Note, data, which may be stored in inodes is budgeted separately, so 693 * it is not included into 'c->bi.inode_budget'. 694 */ 695 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 696 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 697 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 698 699 /* 700 * When the amount of flash space used by buds becomes 701 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 702 * The writers are unblocked when the commit is finished. To avoid 703 * writers to be blocked UBIFS initiates background commit in advance, 704 * when number of bud bytes becomes above the limit defined below. 705 */ 706 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 707 708 /* 709 * Ensure minimum journal size. All the bytes in the journal heads are 710 * considered to be used, when calculating the current journal usage. 711 * Consequently, if the journal is too small, UBIFS will treat it as 712 * always full. 713 */ 714 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 715 if (c->bg_bud_bytes < tmp64) 716 c->bg_bud_bytes = tmp64; 717 if (c->max_bud_bytes < tmp64 + c->leb_size) 718 c->max_bud_bytes = tmp64 + c->leb_size; 719 720 err = ubifs_calc_lpt_geom(c); 721 if (err) 722 return err; 723 724 /* Initialize effective LEB size used in budgeting calculations */ 725 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 726 return 0; 727 } 728 729 /* 730 * init_constants_master - initialize UBIFS constants. 731 * @c: UBIFS file-system description object 732 * 733 * This is a helper function which initializes various UBIFS constants after 734 * the master node has been read. It also checks various UBIFS parameters and 735 * makes sure they are all right. 736 */ 737 static void init_constants_master(struct ubifs_info *c) 738 { 739 long long tmp64; 740 741 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 742 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 743 744 /* 745 * Calculate total amount of FS blocks. This number is not used 746 * internally because it does not make much sense for UBIFS, but it is 747 * necessary to report something for the 'statfs()' call. 748 * 749 * Subtract the LEB reserved for GC, the LEB which is reserved for 750 * deletions, minimum LEBs for the index, and assume only one journal 751 * head is available. 752 */ 753 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 754 tmp64 *= (long long)c->leb_size - c->leb_overhead; 755 tmp64 = ubifs_reported_space(c, tmp64); 756 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 757 } 758 759 /** 760 * take_gc_lnum - reserve GC LEB. 761 * @c: UBIFS file-system description object 762 * 763 * This function ensures that the LEB reserved for garbage collection is marked 764 * as "taken" in lprops. We also have to set free space to LEB size and dirty 765 * space to zero, because lprops may contain out-of-date information if the 766 * file-system was un-mounted before it has been committed. This function 767 * returns zero in case of success and a negative error code in case of 768 * failure. 769 */ 770 static int take_gc_lnum(struct ubifs_info *c) 771 { 772 int err; 773 774 if (c->gc_lnum == -1) { 775 ubifs_err(c, "no LEB for GC"); 776 return -EINVAL; 777 } 778 779 /* And we have to tell lprops that this LEB is taken */ 780 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 781 LPROPS_TAKEN, 0, 0); 782 return err; 783 } 784 785 /** 786 * alloc_wbufs - allocate write-buffers. 787 * @c: UBIFS file-system description object 788 * 789 * This helper function allocates and initializes UBIFS write-buffers. Returns 790 * zero in case of success and %-ENOMEM in case of failure. 791 */ 792 static int alloc_wbufs(struct ubifs_info *c) 793 { 794 int i, err; 795 796 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 797 GFP_KERNEL); 798 if (!c->jheads) 799 return -ENOMEM; 800 801 /* Initialize journal heads */ 802 for (i = 0; i < c->jhead_cnt; i++) { 803 INIT_LIST_HEAD(&c->jheads[i].buds_list); 804 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 805 if (err) 806 return err; 807 808 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 809 c->jheads[i].wbuf.jhead = i; 810 c->jheads[i].grouped = 1; 811 } 812 813 /* 814 * Garbage Collector head does not need to be synchronized by timer. 815 * Also GC head nodes are not grouped. 816 */ 817 c->jheads[GCHD].wbuf.no_timer = 1; 818 c->jheads[GCHD].grouped = 0; 819 820 return 0; 821 } 822 823 /** 824 * free_wbufs - free write-buffers. 825 * @c: UBIFS file-system description object 826 */ 827 static void free_wbufs(struct ubifs_info *c) 828 { 829 int i; 830 831 if (c->jheads) { 832 for (i = 0; i < c->jhead_cnt; i++) { 833 kfree(c->jheads[i].wbuf.buf); 834 kfree(c->jheads[i].wbuf.inodes); 835 } 836 kfree(c->jheads); 837 c->jheads = NULL; 838 } 839 } 840 841 /** 842 * free_orphans - free orphans. 843 * @c: UBIFS file-system description object 844 */ 845 static void free_orphans(struct ubifs_info *c) 846 { 847 struct ubifs_orphan *orph; 848 849 while (c->orph_dnext) { 850 orph = c->orph_dnext; 851 c->orph_dnext = orph->dnext; 852 list_del(&orph->list); 853 kfree(orph); 854 } 855 856 while (!list_empty(&c->orph_list)) { 857 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 858 list_del(&orph->list); 859 kfree(orph); 860 ubifs_err(c, "orphan list not empty at unmount"); 861 } 862 863 vfree(c->orph_buf); 864 c->orph_buf = NULL; 865 } 866 867 /** 868 * free_buds - free per-bud objects. 869 * @c: UBIFS file-system description object 870 */ 871 static void free_buds(struct ubifs_info *c) 872 { 873 struct ubifs_bud *bud, *n; 874 875 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 876 kfree(bud); 877 } 878 879 /** 880 * check_volume_empty - check if the UBI volume is empty. 881 * @c: UBIFS file-system description object 882 * 883 * This function checks if the UBIFS volume is empty by looking if its LEBs are 884 * mapped or not. The result of checking is stored in the @c->empty variable. 885 * Returns zero in case of success and a negative error code in case of 886 * failure. 887 */ 888 static int check_volume_empty(struct ubifs_info *c) 889 { 890 int lnum, err; 891 892 c->empty = 1; 893 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 894 err = ubifs_is_mapped(c, lnum); 895 if (unlikely(err < 0)) 896 return err; 897 if (err == 1) { 898 c->empty = 0; 899 break; 900 } 901 902 cond_resched(); 903 } 904 905 return 0; 906 } 907 908 /* 909 * UBIFS mount options. 910 * 911 * Opt_fast_unmount: do not run a journal commit before un-mounting 912 * Opt_norm_unmount: run a journal commit before un-mounting 913 * Opt_bulk_read: enable bulk-reads 914 * Opt_no_bulk_read: disable bulk-reads 915 * Opt_chk_data_crc: check CRCs when reading data nodes 916 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 917 * Opt_override_compr: override default compressor 918 * Opt_err: just end of array marker 919 */ 920 enum { 921 Opt_fast_unmount, 922 Opt_norm_unmount, 923 Opt_bulk_read, 924 Opt_no_bulk_read, 925 Opt_chk_data_crc, 926 Opt_no_chk_data_crc, 927 Opt_override_compr, 928 Opt_err, 929 }; 930 931 static const match_table_t tokens = { 932 {Opt_fast_unmount, "fast_unmount"}, 933 {Opt_norm_unmount, "norm_unmount"}, 934 {Opt_bulk_read, "bulk_read"}, 935 {Opt_no_bulk_read, "no_bulk_read"}, 936 {Opt_chk_data_crc, "chk_data_crc"}, 937 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 938 {Opt_override_compr, "compr=%s"}, 939 {Opt_err, NULL}, 940 }; 941 942 /** 943 * parse_standard_option - parse a standard mount option. 944 * @option: the option to parse 945 * 946 * Normally, standard mount options like "sync" are passed to file-systems as 947 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 948 * be present in the options string. This function tries to deal with this 949 * situation and parse standard options. Returns 0 if the option was not 950 * recognized, and the corresponding integer flag if it was. 951 * 952 * UBIFS is only interested in the "sync" option, so do not check for anything 953 * else. 954 */ 955 static int parse_standard_option(const char *option) 956 { 957 958 pr_notice("UBIFS: parse %s\n", option); 959 if (!strcmp(option, "sync")) 960 return MS_SYNCHRONOUS; 961 return 0; 962 } 963 964 /** 965 * ubifs_parse_options - parse mount parameters. 966 * @c: UBIFS file-system description object 967 * @options: parameters to parse 968 * @is_remount: non-zero if this is FS re-mount 969 * 970 * This function parses UBIFS mount options and returns zero in case success 971 * and a negative error code in case of failure. 972 */ 973 static int ubifs_parse_options(struct ubifs_info *c, char *options, 974 int is_remount) 975 { 976 char *p; 977 substring_t args[MAX_OPT_ARGS]; 978 979 if (!options) 980 return 0; 981 982 while ((p = strsep(&options, ","))) { 983 int token; 984 985 if (!*p) 986 continue; 987 988 token = match_token(p, tokens, args); 989 switch (token) { 990 /* 991 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 992 * We accept them in order to be backward-compatible. But this 993 * should be removed at some point. 994 */ 995 case Opt_fast_unmount: 996 c->mount_opts.unmount_mode = 2; 997 break; 998 case Opt_norm_unmount: 999 c->mount_opts.unmount_mode = 1; 1000 break; 1001 case Opt_bulk_read: 1002 c->mount_opts.bulk_read = 2; 1003 c->bulk_read = 1; 1004 break; 1005 case Opt_no_bulk_read: 1006 c->mount_opts.bulk_read = 1; 1007 c->bulk_read = 0; 1008 break; 1009 case Opt_chk_data_crc: 1010 c->mount_opts.chk_data_crc = 2; 1011 c->no_chk_data_crc = 0; 1012 break; 1013 case Opt_no_chk_data_crc: 1014 c->mount_opts.chk_data_crc = 1; 1015 c->no_chk_data_crc = 1; 1016 break; 1017 case Opt_override_compr: 1018 { 1019 char *name = match_strdup(&args[0]); 1020 1021 if (!name) 1022 return -ENOMEM; 1023 if (!strcmp(name, "none")) 1024 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1025 else if (!strcmp(name, "lzo")) 1026 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1027 else if (!strcmp(name, "zlib")) 1028 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1029 else { 1030 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1031 kfree(name); 1032 return -EINVAL; 1033 } 1034 kfree(name); 1035 c->mount_opts.override_compr = 1; 1036 c->default_compr = c->mount_opts.compr_type; 1037 break; 1038 } 1039 default: 1040 { 1041 unsigned long flag; 1042 struct super_block *sb = c->vfs_sb; 1043 1044 flag = parse_standard_option(p); 1045 if (!flag) { 1046 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1047 p); 1048 return -EINVAL; 1049 } 1050 sb->s_flags |= flag; 1051 break; 1052 } 1053 } 1054 } 1055 1056 return 0; 1057 } 1058 1059 /** 1060 * destroy_journal - destroy journal data structures. 1061 * @c: UBIFS file-system description object 1062 * 1063 * This function destroys journal data structures including those that may have 1064 * been created by recovery functions. 1065 */ 1066 static void destroy_journal(struct ubifs_info *c) 1067 { 1068 while (!list_empty(&c->unclean_leb_list)) { 1069 struct ubifs_unclean_leb *ucleb; 1070 1071 ucleb = list_entry(c->unclean_leb_list.next, 1072 struct ubifs_unclean_leb, list); 1073 list_del(&ucleb->list); 1074 kfree(ucleb); 1075 } 1076 while (!list_empty(&c->old_buds)) { 1077 struct ubifs_bud *bud; 1078 1079 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1080 list_del(&bud->list); 1081 kfree(bud); 1082 } 1083 ubifs_destroy_idx_gc(c); 1084 ubifs_destroy_size_tree(c); 1085 ubifs_tnc_close(c); 1086 free_buds(c); 1087 } 1088 1089 /** 1090 * bu_init - initialize bulk-read information. 1091 * @c: UBIFS file-system description object 1092 */ 1093 static void bu_init(struct ubifs_info *c) 1094 { 1095 ubifs_assert(c->bulk_read == 1); 1096 1097 if (c->bu.buf) 1098 return; /* Already initialized */ 1099 1100 again: 1101 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1102 if (!c->bu.buf) { 1103 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1104 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1105 goto again; 1106 } 1107 1108 /* Just disable bulk-read */ 1109 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1110 c->max_bu_buf_len); 1111 c->mount_opts.bulk_read = 1; 1112 c->bulk_read = 0; 1113 return; 1114 } 1115 } 1116 1117 /** 1118 * check_free_space - check if there is enough free space to mount. 1119 * @c: UBIFS file-system description object 1120 * 1121 * This function makes sure UBIFS has enough free space to be mounted in 1122 * read/write mode. UBIFS must always have some free space to allow deletions. 1123 */ 1124 static int check_free_space(struct ubifs_info *c) 1125 { 1126 ubifs_assert(c->dark_wm > 0); 1127 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1128 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1129 ubifs_dump_budg(c, &c->bi); 1130 ubifs_dump_lprops(c); 1131 return -ENOSPC; 1132 } 1133 return 0; 1134 } 1135 1136 /** 1137 * mount_ubifs - mount UBIFS file-system. 1138 * @c: UBIFS file-system description object 1139 * 1140 * This function mounts UBIFS file system. Returns zero in case of success and 1141 * a negative error code in case of failure. 1142 */ 1143 static int mount_ubifs(struct ubifs_info *c) 1144 { 1145 int err; 1146 long long x, y; 1147 size_t sz; 1148 1149 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1150 /* Suppress error messages while probing if MS_SILENT is set */ 1151 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); 1152 1153 err = init_constants_early(c); 1154 if (err) 1155 return err; 1156 1157 err = ubifs_debugging_init(c); 1158 if (err) 1159 return err; 1160 1161 err = check_volume_empty(c); 1162 if (err) 1163 goto out_free; 1164 1165 if (c->empty && (c->ro_mount || c->ro_media)) { 1166 /* 1167 * This UBI volume is empty, and read-only, or the file system 1168 * is mounted read-only - we cannot format it. 1169 */ 1170 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1171 c->ro_media ? "UBI volume" : "mount"); 1172 err = -EROFS; 1173 goto out_free; 1174 } 1175 1176 if (c->ro_media && !c->ro_mount) { 1177 ubifs_err(c, "cannot mount read-write - read-only media"); 1178 err = -EROFS; 1179 goto out_free; 1180 } 1181 1182 /* 1183 * The requirement for the buffer is that it should fit indexing B-tree 1184 * height amount of integers. We assume the height if the TNC tree will 1185 * never exceed 64. 1186 */ 1187 err = -ENOMEM; 1188 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1189 if (!c->bottom_up_buf) 1190 goto out_free; 1191 1192 c->sbuf = vmalloc(c->leb_size); 1193 if (!c->sbuf) 1194 goto out_free; 1195 1196 if (!c->ro_mount) { 1197 c->ileb_buf = vmalloc(c->leb_size); 1198 if (!c->ileb_buf) 1199 goto out_free; 1200 } 1201 1202 if (c->bulk_read == 1) 1203 bu_init(c); 1204 1205 if (!c->ro_mount) { 1206 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1207 GFP_KERNEL); 1208 if (!c->write_reserve_buf) 1209 goto out_free; 1210 } 1211 1212 c->mounting = 1; 1213 1214 err = ubifs_read_superblock(c); 1215 if (err) 1216 goto out_free; 1217 1218 c->probing = 0; 1219 1220 /* 1221 * Make sure the compressor which is set as default in the superblock 1222 * or overridden by mount options is actually compiled in. 1223 */ 1224 if (!ubifs_compr_present(c->default_compr)) { 1225 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1226 ubifs_compr_name(c->default_compr)); 1227 err = -ENOTSUPP; 1228 goto out_free; 1229 } 1230 1231 err = init_constants_sb(c); 1232 if (err) 1233 goto out_free; 1234 1235 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1236 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1237 c->cbuf = kmalloc(sz, GFP_NOFS); 1238 if (!c->cbuf) { 1239 err = -ENOMEM; 1240 goto out_free; 1241 } 1242 1243 err = alloc_wbufs(c); 1244 if (err) 1245 goto out_cbuf; 1246 1247 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1248 if (!c->ro_mount) { 1249 /* Create background thread */ 1250 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1251 if (IS_ERR(c->bgt)) { 1252 err = PTR_ERR(c->bgt); 1253 c->bgt = NULL; 1254 ubifs_err(c, "cannot spawn \"%s\", error %d", 1255 c->bgt_name, err); 1256 goto out_wbufs; 1257 } 1258 wake_up_process(c->bgt); 1259 } 1260 1261 err = ubifs_read_master(c); 1262 if (err) 1263 goto out_master; 1264 1265 init_constants_master(c); 1266 1267 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1268 ubifs_msg(c, "recovery needed"); 1269 c->need_recovery = 1; 1270 } 1271 1272 if (c->need_recovery && !c->ro_mount) { 1273 err = ubifs_recover_inl_heads(c, c->sbuf); 1274 if (err) 1275 goto out_master; 1276 } 1277 1278 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1279 if (err) 1280 goto out_master; 1281 1282 if (!c->ro_mount && c->space_fixup) { 1283 err = ubifs_fixup_free_space(c); 1284 if (err) 1285 goto out_lpt; 1286 } 1287 1288 if (!c->ro_mount && !c->need_recovery) { 1289 /* 1290 * Set the "dirty" flag so that if we reboot uncleanly we 1291 * will notice this immediately on the next mount. 1292 */ 1293 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1294 err = ubifs_write_master(c); 1295 if (err) 1296 goto out_lpt; 1297 } 1298 1299 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1300 if (err) 1301 goto out_lpt; 1302 1303 err = ubifs_replay_journal(c); 1304 if (err) 1305 goto out_journal; 1306 1307 /* Calculate 'min_idx_lebs' after journal replay */ 1308 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1309 1310 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1311 if (err) 1312 goto out_orphans; 1313 1314 if (!c->ro_mount) { 1315 int lnum; 1316 1317 err = check_free_space(c); 1318 if (err) 1319 goto out_orphans; 1320 1321 /* Check for enough log space */ 1322 lnum = c->lhead_lnum + 1; 1323 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1324 lnum = UBIFS_LOG_LNUM; 1325 if (lnum == c->ltail_lnum) { 1326 err = ubifs_consolidate_log(c); 1327 if (err) 1328 goto out_orphans; 1329 } 1330 1331 if (c->need_recovery) { 1332 err = ubifs_recover_size(c); 1333 if (err) 1334 goto out_orphans; 1335 err = ubifs_rcvry_gc_commit(c); 1336 if (err) 1337 goto out_orphans; 1338 } else { 1339 err = take_gc_lnum(c); 1340 if (err) 1341 goto out_orphans; 1342 1343 /* 1344 * GC LEB may contain garbage if there was an unclean 1345 * reboot, and it should be un-mapped. 1346 */ 1347 err = ubifs_leb_unmap(c, c->gc_lnum); 1348 if (err) 1349 goto out_orphans; 1350 } 1351 1352 err = dbg_check_lprops(c); 1353 if (err) 1354 goto out_orphans; 1355 } else if (c->need_recovery) { 1356 err = ubifs_recover_size(c); 1357 if (err) 1358 goto out_orphans; 1359 } else { 1360 /* 1361 * Even if we mount read-only, we have to set space in GC LEB 1362 * to proper value because this affects UBIFS free space 1363 * reporting. We do not want to have a situation when 1364 * re-mounting from R/O to R/W changes amount of free space. 1365 */ 1366 err = take_gc_lnum(c); 1367 if (err) 1368 goto out_orphans; 1369 } 1370 1371 spin_lock(&ubifs_infos_lock); 1372 list_add_tail(&c->infos_list, &ubifs_infos); 1373 spin_unlock(&ubifs_infos_lock); 1374 1375 if (c->need_recovery) { 1376 if (c->ro_mount) 1377 ubifs_msg(c, "recovery deferred"); 1378 else { 1379 c->need_recovery = 0; 1380 ubifs_msg(c, "recovery completed"); 1381 /* 1382 * GC LEB has to be empty and taken at this point. But 1383 * the journal head LEBs may also be accounted as 1384 * "empty taken" if they are empty. 1385 */ 1386 ubifs_assert(c->lst.taken_empty_lebs > 0); 1387 } 1388 } else 1389 ubifs_assert(c->lst.taken_empty_lebs > 0); 1390 1391 err = dbg_check_filesystem(c); 1392 if (err) 1393 goto out_infos; 1394 1395 err = dbg_debugfs_init_fs(c); 1396 if (err) 1397 goto out_infos; 1398 1399 c->mounting = 0; 1400 1401 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1402 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1403 c->ro_mount ? ", R/O mode" : ""); 1404 x = (long long)c->main_lebs * c->leb_size; 1405 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1406 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1407 c->leb_size, c->leb_size >> 10, c->min_io_size, 1408 c->max_write_size); 1409 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1410 x, x >> 20, c->main_lebs, 1411 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1412 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1413 c->report_rp_size, c->report_rp_size >> 10); 1414 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1415 c->fmt_version, c->ro_compat_version, 1416 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1417 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1418 1419 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1420 dbg_gen("data journal heads: %d", 1421 c->jhead_cnt - NONDATA_JHEADS_CNT); 1422 dbg_gen("log LEBs: %d (%d - %d)", 1423 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1424 dbg_gen("LPT area LEBs: %d (%d - %d)", 1425 c->lpt_lebs, c->lpt_first, c->lpt_last); 1426 dbg_gen("orphan area LEBs: %d (%d - %d)", 1427 c->orph_lebs, c->orph_first, c->orph_last); 1428 dbg_gen("main area LEBs: %d (%d - %d)", 1429 c->main_lebs, c->main_first, c->leb_cnt - 1); 1430 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1431 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1432 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1433 c->bi.old_idx_sz >> 20); 1434 dbg_gen("key hash type: %d", c->key_hash_type); 1435 dbg_gen("tree fanout: %d", c->fanout); 1436 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1437 dbg_gen("max. znode size %d", c->max_znode_sz); 1438 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1439 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1440 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1441 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1442 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1443 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1444 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1445 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1446 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1447 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1448 dbg_gen("dead watermark: %d", c->dead_wm); 1449 dbg_gen("dark watermark: %d", c->dark_wm); 1450 dbg_gen("LEB overhead: %d", c->leb_overhead); 1451 x = (long long)c->main_lebs * c->dark_wm; 1452 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1453 x, x >> 10, x >> 20); 1454 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1455 c->max_bud_bytes, c->max_bud_bytes >> 10, 1456 c->max_bud_bytes >> 20); 1457 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1458 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1459 c->bg_bud_bytes >> 20); 1460 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1461 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1462 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1463 dbg_gen("commit number: %llu", c->cmt_no); 1464 1465 return 0; 1466 1467 out_infos: 1468 spin_lock(&ubifs_infos_lock); 1469 list_del(&c->infos_list); 1470 spin_unlock(&ubifs_infos_lock); 1471 out_orphans: 1472 free_orphans(c); 1473 out_journal: 1474 destroy_journal(c); 1475 out_lpt: 1476 ubifs_lpt_free(c, 0); 1477 out_master: 1478 kfree(c->mst_node); 1479 kfree(c->rcvrd_mst_node); 1480 if (c->bgt) 1481 kthread_stop(c->bgt); 1482 out_wbufs: 1483 free_wbufs(c); 1484 out_cbuf: 1485 kfree(c->cbuf); 1486 out_free: 1487 kfree(c->write_reserve_buf); 1488 kfree(c->bu.buf); 1489 vfree(c->ileb_buf); 1490 vfree(c->sbuf); 1491 kfree(c->bottom_up_buf); 1492 ubifs_debugging_exit(c); 1493 return err; 1494 } 1495 1496 /** 1497 * ubifs_umount - un-mount UBIFS file-system. 1498 * @c: UBIFS file-system description object 1499 * 1500 * Note, this function is called to free allocated resourced when un-mounting, 1501 * as well as free resources when an error occurred while we were half way 1502 * through mounting (error path cleanup function). So it has to make sure the 1503 * resource was actually allocated before freeing it. 1504 */ 1505 static void ubifs_umount(struct ubifs_info *c) 1506 { 1507 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1508 c->vi.vol_id); 1509 1510 dbg_debugfs_exit_fs(c); 1511 spin_lock(&ubifs_infos_lock); 1512 list_del(&c->infos_list); 1513 spin_unlock(&ubifs_infos_lock); 1514 1515 if (c->bgt) 1516 kthread_stop(c->bgt); 1517 1518 destroy_journal(c); 1519 free_wbufs(c); 1520 free_orphans(c); 1521 ubifs_lpt_free(c, 0); 1522 1523 kfree(c->cbuf); 1524 kfree(c->rcvrd_mst_node); 1525 kfree(c->mst_node); 1526 kfree(c->write_reserve_buf); 1527 kfree(c->bu.buf); 1528 vfree(c->ileb_buf); 1529 vfree(c->sbuf); 1530 kfree(c->bottom_up_buf); 1531 ubifs_debugging_exit(c); 1532 } 1533 1534 /** 1535 * ubifs_remount_rw - re-mount in read-write mode. 1536 * @c: UBIFS file-system description object 1537 * 1538 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1539 * mode. This function allocates the needed resources and re-mounts UBIFS in 1540 * read-write mode. 1541 */ 1542 static int ubifs_remount_rw(struct ubifs_info *c) 1543 { 1544 int err, lnum; 1545 1546 if (c->rw_incompat) { 1547 ubifs_err(c, "the file-system is not R/W-compatible"); 1548 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1549 c->fmt_version, c->ro_compat_version, 1550 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1551 return -EROFS; 1552 } 1553 1554 mutex_lock(&c->umount_mutex); 1555 dbg_save_space_info(c); 1556 c->remounting_rw = 1; 1557 c->ro_mount = 0; 1558 1559 if (c->space_fixup) { 1560 err = ubifs_fixup_free_space(c); 1561 if (err) 1562 goto out; 1563 } 1564 1565 err = check_free_space(c); 1566 if (err) 1567 goto out; 1568 1569 if (c->old_leb_cnt != c->leb_cnt) { 1570 struct ubifs_sb_node *sup; 1571 1572 sup = ubifs_read_sb_node(c); 1573 if (IS_ERR(sup)) { 1574 err = PTR_ERR(sup); 1575 goto out; 1576 } 1577 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1578 err = ubifs_write_sb_node(c, sup); 1579 kfree(sup); 1580 if (err) 1581 goto out; 1582 } 1583 1584 if (c->need_recovery) { 1585 ubifs_msg(c, "completing deferred recovery"); 1586 err = ubifs_write_rcvrd_mst_node(c); 1587 if (err) 1588 goto out; 1589 err = ubifs_recover_size(c); 1590 if (err) 1591 goto out; 1592 err = ubifs_clean_lebs(c, c->sbuf); 1593 if (err) 1594 goto out; 1595 err = ubifs_recover_inl_heads(c, c->sbuf); 1596 if (err) 1597 goto out; 1598 } else { 1599 /* A readonly mount is not allowed to have orphans */ 1600 ubifs_assert(c->tot_orphans == 0); 1601 err = ubifs_clear_orphans(c); 1602 if (err) 1603 goto out; 1604 } 1605 1606 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1607 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1608 err = ubifs_write_master(c); 1609 if (err) 1610 goto out; 1611 } 1612 1613 c->ileb_buf = vmalloc(c->leb_size); 1614 if (!c->ileb_buf) { 1615 err = -ENOMEM; 1616 goto out; 1617 } 1618 1619 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1620 if (!c->write_reserve_buf) { 1621 err = -ENOMEM; 1622 goto out; 1623 } 1624 1625 err = ubifs_lpt_init(c, 0, 1); 1626 if (err) 1627 goto out; 1628 1629 /* Create background thread */ 1630 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1631 if (IS_ERR(c->bgt)) { 1632 err = PTR_ERR(c->bgt); 1633 c->bgt = NULL; 1634 ubifs_err(c, "cannot spawn \"%s\", error %d", 1635 c->bgt_name, err); 1636 goto out; 1637 } 1638 wake_up_process(c->bgt); 1639 1640 c->orph_buf = vmalloc(c->leb_size); 1641 if (!c->orph_buf) { 1642 err = -ENOMEM; 1643 goto out; 1644 } 1645 1646 /* Check for enough log space */ 1647 lnum = c->lhead_lnum + 1; 1648 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1649 lnum = UBIFS_LOG_LNUM; 1650 if (lnum == c->ltail_lnum) { 1651 err = ubifs_consolidate_log(c); 1652 if (err) 1653 goto out; 1654 } 1655 1656 if (c->need_recovery) 1657 err = ubifs_rcvry_gc_commit(c); 1658 else 1659 err = ubifs_leb_unmap(c, c->gc_lnum); 1660 if (err) 1661 goto out; 1662 1663 dbg_gen("re-mounted read-write"); 1664 c->remounting_rw = 0; 1665 1666 if (c->need_recovery) { 1667 c->need_recovery = 0; 1668 ubifs_msg(c, "deferred recovery completed"); 1669 } else { 1670 /* 1671 * Do not run the debugging space check if the were doing 1672 * recovery, because when we saved the information we had the 1673 * file-system in a state where the TNC and lprops has been 1674 * modified in memory, but all the I/O operations (including a 1675 * commit) were deferred. So the file-system was in 1676 * "non-committed" state. Now the file-system is in committed 1677 * state, and of course the amount of free space will change 1678 * because, for example, the old index size was imprecise. 1679 */ 1680 err = dbg_check_space_info(c); 1681 } 1682 1683 mutex_unlock(&c->umount_mutex); 1684 return err; 1685 1686 out: 1687 c->ro_mount = 1; 1688 vfree(c->orph_buf); 1689 c->orph_buf = NULL; 1690 if (c->bgt) { 1691 kthread_stop(c->bgt); 1692 c->bgt = NULL; 1693 } 1694 free_wbufs(c); 1695 kfree(c->write_reserve_buf); 1696 c->write_reserve_buf = NULL; 1697 vfree(c->ileb_buf); 1698 c->ileb_buf = NULL; 1699 ubifs_lpt_free(c, 1); 1700 c->remounting_rw = 0; 1701 mutex_unlock(&c->umount_mutex); 1702 return err; 1703 } 1704 1705 /** 1706 * ubifs_remount_ro - re-mount in read-only mode. 1707 * @c: UBIFS file-system description object 1708 * 1709 * We assume VFS has stopped writing. Possibly the background thread could be 1710 * running a commit, however kthread_stop will wait in that case. 1711 */ 1712 static void ubifs_remount_ro(struct ubifs_info *c) 1713 { 1714 int i, err; 1715 1716 ubifs_assert(!c->need_recovery); 1717 ubifs_assert(!c->ro_mount); 1718 1719 mutex_lock(&c->umount_mutex); 1720 if (c->bgt) { 1721 kthread_stop(c->bgt); 1722 c->bgt = NULL; 1723 } 1724 1725 dbg_save_space_info(c); 1726 1727 for (i = 0; i < c->jhead_cnt; i++) 1728 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1729 1730 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1731 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1732 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1733 err = ubifs_write_master(c); 1734 if (err) 1735 ubifs_ro_mode(c, err); 1736 1737 vfree(c->orph_buf); 1738 c->orph_buf = NULL; 1739 kfree(c->write_reserve_buf); 1740 c->write_reserve_buf = NULL; 1741 vfree(c->ileb_buf); 1742 c->ileb_buf = NULL; 1743 ubifs_lpt_free(c, 1); 1744 c->ro_mount = 1; 1745 err = dbg_check_space_info(c); 1746 if (err) 1747 ubifs_ro_mode(c, err); 1748 mutex_unlock(&c->umount_mutex); 1749 } 1750 1751 static void ubifs_put_super(struct super_block *sb) 1752 { 1753 int i; 1754 struct ubifs_info *c = sb->s_fs_info; 1755 1756 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1757 1758 /* 1759 * The following asserts are only valid if there has not been a failure 1760 * of the media. For example, there will be dirty inodes if we failed 1761 * to write them back because of I/O errors. 1762 */ 1763 if (!c->ro_error) { 1764 ubifs_assert(c->bi.idx_growth == 0); 1765 ubifs_assert(c->bi.dd_growth == 0); 1766 ubifs_assert(c->bi.data_growth == 0); 1767 } 1768 1769 /* 1770 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1771 * and file system un-mount. Namely, it prevents the shrinker from 1772 * picking this superblock for shrinking - it will be just skipped if 1773 * the mutex is locked. 1774 */ 1775 mutex_lock(&c->umount_mutex); 1776 if (!c->ro_mount) { 1777 /* 1778 * First of all kill the background thread to make sure it does 1779 * not interfere with un-mounting and freeing resources. 1780 */ 1781 if (c->bgt) { 1782 kthread_stop(c->bgt); 1783 c->bgt = NULL; 1784 } 1785 1786 /* 1787 * On fatal errors c->ro_error is set to 1, in which case we do 1788 * not write the master node. 1789 */ 1790 if (!c->ro_error) { 1791 int err; 1792 1793 /* Synchronize write-buffers */ 1794 for (i = 0; i < c->jhead_cnt; i++) 1795 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1796 1797 /* 1798 * We are being cleanly unmounted which means the 1799 * orphans were killed - indicate this in the master 1800 * node. Also save the reserved GC LEB number. 1801 */ 1802 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1803 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1804 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1805 err = ubifs_write_master(c); 1806 if (err) 1807 /* 1808 * Recovery will attempt to fix the master area 1809 * next mount, so we just print a message and 1810 * continue to unmount normally. 1811 */ 1812 ubifs_err(c, "failed to write master node, error %d", 1813 err); 1814 } else { 1815 for (i = 0; i < c->jhead_cnt; i++) 1816 /* Make sure write-buffer timers are canceled */ 1817 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1818 } 1819 } 1820 1821 ubifs_umount(c); 1822 bdi_destroy(&c->bdi); 1823 ubi_close_volume(c->ubi); 1824 mutex_unlock(&c->umount_mutex); 1825 } 1826 1827 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1828 { 1829 int err; 1830 struct ubifs_info *c = sb->s_fs_info; 1831 1832 sync_filesystem(sb); 1833 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1834 1835 err = ubifs_parse_options(c, data, 1); 1836 if (err) { 1837 ubifs_err(c, "invalid or unknown remount parameter"); 1838 return err; 1839 } 1840 1841 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1842 if (c->ro_error) { 1843 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1844 return -EROFS; 1845 } 1846 if (c->ro_media) { 1847 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1848 return -EROFS; 1849 } 1850 err = ubifs_remount_rw(c); 1851 if (err) 1852 return err; 1853 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1854 if (c->ro_error) { 1855 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1856 return -EROFS; 1857 } 1858 ubifs_remount_ro(c); 1859 } 1860 1861 if (c->bulk_read == 1) 1862 bu_init(c); 1863 else { 1864 dbg_gen("disable bulk-read"); 1865 kfree(c->bu.buf); 1866 c->bu.buf = NULL; 1867 } 1868 1869 ubifs_assert(c->lst.taken_empty_lebs > 0); 1870 return 0; 1871 } 1872 1873 const struct super_operations ubifs_super_operations = { 1874 .alloc_inode = ubifs_alloc_inode, 1875 .destroy_inode = ubifs_destroy_inode, 1876 .put_super = ubifs_put_super, 1877 .write_inode = ubifs_write_inode, 1878 .evict_inode = ubifs_evict_inode, 1879 .statfs = ubifs_statfs, 1880 .dirty_inode = ubifs_dirty_inode, 1881 .remount_fs = ubifs_remount_fs, 1882 .show_options = ubifs_show_options, 1883 .sync_fs = ubifs_sync_fs, 1884 }; 1885 1886 /** 1887 * open_ubi - parse UBI device name string and open the UBI device. 1888 * @name: UBI volume name 1889 * @mode: UBI volume open mode 1890 * 1891 * The primary method of mounting UBIFS is by specifying the UBI volume 1892 * character device node path. However, UBIFS may also be mounted withoug any 1893 * character device node using one of the following methods: 1894 * 1895 * o ubiX_Y - mount UBI device number X, volume Y; 1896 * o ubiY - mount UBI device number 0, volume Y; 1897 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1898 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1899 * 1900 * Alternative '!' separator may be used instead of ':' (because some shells 1901 * like busybox may interpret ':' as an NFS host name separator). This function 1902 * returns UBI volume description object in case of success and a negative 1903 * error code in case of failure. 1904 */ 1905 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1906 { 1907 struct ubi_volume_desc *ubi; 1908 int dev, vol; 1909 char *endptr; 1910 1911 /* First, try to open using the device node path method */ 1912 ubi = ubi_open_volume_path(name, mode); 1913 if (!IS_ERR(ubi)) 1914 return ubi; 1915 1916 /* Try the "nodev" method */ 1917 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1918 return ERR_PTR(-EINVAL); 1919 1920 /* ubi:NAME method */ 1921 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1922 return ubi_open_volume_nm(0, name + 4, mode); 1923 1924 if (!isdigit(name[3])) 1925 return ERR_PTR(-EINVAL); 1926 1927 dev = simple_strtoul(name + 3, &endptr, 0); 1928 1929 /* ubiY method */ 1930 if (*endptr == '\0') 1931 return ubi_open_volume(0, dev, mode); 1932 1933 /* ubiX_Y method */ 1934 if (*endptr == '_' && isdigit(endptr[1])) { 1935 vol = simple_strtoul(endptr + 1, &endptr, 0); 1936 if (*endptr != '\0') 1937 return ERR_PTR(-EINVAL); 1938 return ubi_open_volume(dev, vol, mode); 1939 } 1940 1941 /* ubiX:NAME method */ 1942 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1943 return ubi_open_volume_nm(dev, ++endptr, mode); 1944 1945 return ERR_PTR(-EINVAL); 1946 } 1947 1948 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1949 { 1950 struct ubifs_info *c; 1951 1952 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1953 if (c) { 1954 spin_lock_init(&c->cnt_lock); 1955 spin_lock_init(&c->cs_lock); 1956 spin_lock_init(&c->buds_lock); 1957 spin_lock_init(&c->space_lock); 1958 spin_lock_init(&c->orphan_lock); 1959 init_rwsem(&c->commit_sem); 1960 mutex_init(&c->lp_mutex); 1961 mutex_init(&c->tnc_mutex); 1962 mutex_init(&c->log_mutex); 1963 mutex_init(&c->umount_mutex); 1964 mutex_init(&c->bu_mutex); 1965 mutex_init(&c->write_reserve_mutex); 1966 init_waitqueue_head(&c->cmt_wq); 1967 c->buds = RB_ROOT; 1968 c->old_idx = RB_ROOT; 1969 c->size_tree = RB_ROOT; 1970 c->orph_tree = RB_ROOT; 1971 INIT_LIST_HEAD(&c->infos_list); 1972 INIT_LIST_HEAD(&c->idx_gc); 1973 INIT_LIST_HEAD(&c->replay_list); 1974 INIT_LIST_HEAD(&c->replay_buds); 1975 INIT_LIST_HEAD(&c->uncat_list); 1976 INIT_LIST_HEAD(&c->empty_list); 1977 INIT_LIST_HEAD(&c->freeable_list); 1978 INIT_LIST_HEAD(&c->frdi_idx_list); 1979 INIT_LIST_HEAD(&c->unclean_leb_list); 1980 INIT_LIST_HEAD(&c->old_buds); 1981 INIT_LIST_HEAD(&c->orph_list); 1982 INIT_LIST_HEAD(&c->orph_new); 1983 c->no_chk_data_crc = 1; 1984 1985 c->highest_inum = UBIFS_FIRST_INO; 1986 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1987 1988 ubi_get_volume_info(ubi, &c->vi); 1989 ubi_get_device_info(c->vi.ubi_num, &c->di); 1990 } 1991 return c; 1992 } 1993 1994 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1995 { 1996 struct ubifs_info *c = sb->s_fs_info; 1997 struct inode *root; 1998 int err; 1999 2000 c->vfs_sb = sb; 2001 /* Re-open the UBI device in read-write mode */ 2002 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2003 if (IS_ERR(c->ubi)) { 2004 err = PTR_ERR(c->ubi); 2005 goto out; 2006 } 2007 2008 /* 2009 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2010 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2011 * which means the user would have to wait not just for their own I/O 2012 * but the read-ahead I/O as well i.e. completely pointless. 2013 * 2014 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2015 */ 2016 c->bdi.name = "ubifs", 2017 c->bdi.capabilities = 0; 2018 err = bdi_init(&c->bdi); 2019 if (err) 2020 goto out_close; 2021 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2022 c->vi.ubi_num, c->vi.vol_id); 2023 if (err) 2024 goto out_bdi; 2025 2026 err = ubifs_parse_options(c, data, 0); 2027 if (err) 2028 goto out_bdi; 2029 2030 sb->s_bdi = &c->bdi; 2031 sb->s_fs_info = c; 2032 sb->s_magic = UBIFS_SUPER_MAGIC; 2033 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2034 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2035 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2036 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2037 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2038 sb->s_op = &ubifs_super_operations; 2039 sb->s_xattr = ubifs_xattr_handlers; 2040 2041 mutex_lock(&c->umount_mutex); 2042 err = mount_ubifs(c); 2043 if (err) { 2044 ubifs_assert(err < 0); 2045 goto out_unlock; 2046 } 2047 2048 /* Read the root inode */ 2049 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2050 if (IS_ERR(root)) { 2051 err = PTR_ERR(root); 2052 goto out_umount; 2053 } 2054 2055 sb->s_root = d_make_root(root); 2056 if (!sb->s_root) { 2057 err = -ENOMEM; 2058 goto out_umount; 2059 } 2060 2061 mutex_unlock(&c->umount_mutex); 2062 return 0; 2063 2064 out_umount: 2065 ubifs_umount(c); 2066 out_unlock: 2067 mutex_unlock(&c->umount_mutex); 2068 out_bdi: 2069 bdi_destroy(&c->bdi); 2070 out_close: 2071 ubi_close_volume(c->ubi); 2072 out: 2073 return err; 2074 } 2075 2076 static int sb_test(struct super_block *sb, void *data) 2077 { 2078 struct ubifs_info *c1 = data; 2079 struct ubifs_info *c = sb->s_fs_info; 2080 2081 return c->vi.cdev == c1->vi.cdev; 2082 } 2083 2084 static int sb_set(struct super_block *sb, void *data) 2085 { 2086 sb->s_fs_info = data; 2087 return set_anon_super(sb, NULL); 2088 } 2089 2090 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2091 const char *name, void *data) 2092 { 2093 struct ubi_volume_desc *ubi; 2094 struct ubifs_info *c; 2095 struct super_block *sb; 2096 int err; 2097 2098 dbg_gen("name %s, flags %#x", name, flags); 2099 2100 /* 2101 * Get UBI device number and volume ID. Mount it read-only so far 2102 * because this might be a new mount point, and UBI allows only one 2103 * read-write user at a time. 2104 */ 2105 ubi = open_ubi(name, UBI_READONLY); 2106 if (IS_ERR(ubi)) { 2107 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2108 current->pid, name, (int)PTR_ERR(ubi)); 2109 return ERR_CAST(ubi); 2110 } 2111 2112 c = alloc_ubifs_info(ubi); 2113 if (!c) { 2114 err = -ENOMEM; 2115 goto out_close; 2116 } 2117 2118 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2119 2120 sb = sget(fs_type, sb_test, sb_set, flags, c); 2121 if (IS_ERR(sb)) { 2122 err = PTR_ERR(sb); 2123 kfree(c); 2124 goto out_close; 2125 } 2126 2127 if (sb->s_root) { 2128 struct ubifs_info *c1 = sb->s_fs_info; 2129 kfree(c); 2130 /* A new mount point for already mounted UBIFS */ 2131 dbg_gen("this ubi volume is already mounted"); 2132 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2133 err = -EBUSY; 2134 goto out_deact; 2135 } 2136 } else { 2137 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2138 if (err) 2139 goto out_deact; 2140 /* We do not support atime */ 2141 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2142 } 2143 2144 /* 'fill_super()' opens ubi again so we must close it here */ 2145 ubi_close_volume(ubi); 2146 2147 return dget(sb->s_root); 2148 2149 out_deact: 2150 deactivate_locked_super(sb); 2151 out_close: 2152 ubi_close_volume(ubi); 2153 return ERR_PTR(err); 2154 } 2155 2156 static void kill_ubifs_super(struct super_block *s) 2157 { 2158 struct ubifs_info *c = s->s_fs_info; 2159 kill_anon_super(s); 2160 kfree(c); 2161 } 2162 2163 static struct file_system_type ubifs_fs_type = { 2164 .name = "ubifs", 2165 .owner = THIS_MODULE, 2166 .mount = ubifs_mount, 2167 .kill_sb = kill_ubifs_super, 2168 }; 2169 MODULE_ALIAS_FS("ubifs"); 2170 2171 /* 2172 * Inode slab cache constructor. 2173 */ 2174 static void inode_slab_ctor(void *obj) 2175 { 2176 struct ubifs_inode *ui = obj; 2177 inode_init_once(&ui->vfs_inode); 2178 } 2179 2180 static int __init ubifs_init(void) 2181 { 2182 int err; 2183 2184 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2185 2186 /* Make sure node sizes are 8-byte aligned */ 2187 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2188 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2189 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2190 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2191 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2192 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2193 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2194 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2195 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2196 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2197 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2198 2199 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2200 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2201 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2202 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2203 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2204 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2205 2206 /* Check min. node size */ 2207 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2208 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2209 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2210 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2211 2212 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2213 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2214 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2215 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2216 2217 /* Defined node sizes */ 2218 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2219 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2220 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2221 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2222 2223 /* 2224 * We use 2 bit wide bit-fields to store compression type, which should 2225 * be amended if more compressors are added. The bit-fields are: 2226 * @compr_type in 'struct ubifs_inode', @default_compr in 2227 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2228 */ 2229 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2230 2231 /* 2232 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2233 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2234 */ 2235 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2236 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2237 current->pid, (unsigned int)PAGE_CACHE_SIZE); 2238 return -EINVAL; 2239 } 2240 2241 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2242 sizeof(struct ubifs_inode), 0, 2243 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2244 &inode_slab_ctor); 2245 if (!ubifs_inode_slab) 2246 return -ENOMEM; 2247 2248 register_shrinker(&ubifs_shrinker_info); 2249 2250 err = ubifs_compressors_init(); 2251 if (err) 2252 goto out_shrinker; 2253 2254 err = dbg_debugfs_init(); 2255 if (err) 2256 goto out_compr; 2257 2258 err = register_filesystem(&ubifs_fs_type); 2259 if (err) { 2260 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2261 current->pid, err); 2262 goto out_dbg; 2263 } 2264 return 0; 2265 2266 out_dbg: 2267 dbg_debugfs_exit(); 2268 out_compr: 2269 ubifs_compressors_exit(); 2270 out_shrinker: 2271 unregister_shrinker(&ubifs_shrinker_info); 2272 kmem_cache_destroy(ubifs_inode_slab); 2273 return err; 2274 } 2275 /* late_initcall to let compressors initialize first */ 2276 late_initcall(ubifs_init); 2277 2278 static void __exit ubifs_exit(void) 2279 { 2280 ubifs_assert(list_empty(&ubifs_infos)); 2281 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2282 2283 dbg_debugfs_exit(); 2284 ubifs_compressors_exit(); 2285 unregister_shrinker(&ubifs_shrinker_info); 2286 2287 /* 2288 * Make sure all delayed rcu free inodes are flushed before we 2289 * destroy cache. 2290 */ 2291 rcu_barrier(); 2292 kmem_cache_destroy(ubifs_inode_slab); 2293 unregister_filesystem(&ubifs_fs_type); 2294 } 2295 module_exit(ubifs_exit); 2296 2297 MODULE_LICENSE("GPL"); 2298 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2299 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2300 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2301