xref: /linux/fs/ubifs/super.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/fs_context.h>
23 #include <linux/fs_parser.h>
24 #include <linux/seq_file.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30 {
31 	int n = 0, ret;
32 
33 	ret = kstrtoint(val, 10, &n);
34 	if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 		return -EINVAL;
36 	return param_set_int(val, kp);
37 }
38 
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 	.set = ubifs_default_version_set,
41 	.get = param_get_int,
42 };
43 
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46 
47 /*
48  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49  * allocating too much.
50  */
51 #define UBIFS_KMALLOC_OK (128*1024)
52 
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
55 
56 /* UBIFS TNC shrinker description */
57 static struct shrinker *ubifs_shrinker_info;
58 
59 /**
60  * validate_inode - validate inode.
61  * @c: UBIFS file-system description object
62  * @inode: the inode to validate
63  *
64  * This is a helper function for 'ubifs_iget()' which validates various fields
65  * of a newly built inode to make sure they contain sane values and prevent
66  * possible vulnerabilities. Returns zero if the inode is all right and
67  * a non-zero error code if not.
68  */
69 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
70 {
71 	int err;
72 	const struct ubifs_inode *ui = ubifs_inode(inode);
73 
74 	if (inode->i_size > c->max_inode_sz) {
75 		ubifs_err(c, "inode is too large (%lld)",
76 			  (long long)inode->i_size);
77 		return 1;
78 	}
79 
80 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
81 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
82 		return 2;
83 	}
84 
85 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
86 		return 3;
87 
88 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
89 		return 4;
90 
91 	if (ui->xattr && !S_ISREG(inode->i_mode))
92 		return 5;
93 
94 	if (!ubifs_compr_present(c, ui->compr_type)) {
95 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
96 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
97 	}
98 
99 	err = dbg_check_dir(c, inode);
100 	return err;
101 }
102 
103 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
104 {
105 	int err;
106 	union ubifs_key key;
107 	struct ubifs_ino_node *ino;
108 	struct ubifs_info *c = sb->s_fs_info;
109 	struct inode *inode;
110 	struct ubifs_inode *ui;
111 
112 	dbg_gen("inode %lu", inum);
113 
114 	inode = iget_locked(sb, inum);
115 	if (!inode)
116 		return ERR_PTR(-ENOMEM);
117 	if (!(inode->i_state & I_NEW))
118 		return inode;
119 	ui = ubifs_inode(inode);
120 
121 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
122 	if (!ino) {
123 		err = -ENOMEM;
124 		goto out;
125 	}
126 
127 	ino_key_init(c, &key, inode->i_ino);
128 
129 	err = ubifs_tnc_lookup(c, &key, ino);
130 	if (err)
131 		goto out_ino;
132 
133 	inode->i_flags |= S_NOCMTIME;
134 
135 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
136 		inode->i_flags |= S_NOATIME;
137 
138 	set_nlink(inode, le32_to_cpu(ino->nlink));
139 	i_uid_write(inode, le32_to_cpu(ino->uid));
140 	i_gid_write(inode, le32_to_cpu(ino->gid));
141 	inode_set_atime(inode, (int64_t)le64_to_cpu(ino->atime_sec),
142 			le32_to_cpu(ino->atime_nsec));
143 	inode_set_mtime(inode, (int64_t)le64_to_cpu(ino->mtime_sec),
144 			le32_to_cpu(ino->mtime_nsec));
145 	inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec),
146 			le32_to_cpu(ino->ctime_nsec));
147 	inode->i_mode = le32_to_cpu(ino->mode);
148 	inode->i_size = le64_to_cpu(ino->size);
149 
150 	ui->data_len    = le32_to_cpu(ino->data_len);
151 	ui->flags       = le32_to_cpu(ino->flags);
152 	ui->compr_type  = le16_to_cpu(ino->compr_type);
153 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
154 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
155 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
156 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
157 	ui->synced_i_size = ui->ui_size = inode->i_size;
158 
159 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
160 
161 	err = validate_inode(c, inode);
162 	if (err)
163 		goto out_invalid;
164 
165 	switch (inode->i_mode & S_IFMT) {
166 	case S_IFREG:
167 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
168 		inode->i_op = &ubifs_file_inode_operations;
169 		inode->i_fop = &ubifs_file_operations;
170 		if (ui->xattr) {
171 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
172 			if (!ui->data) {
173 				err = -ENOMEM;
174 				goto out_ino;
175 			}
176 			memcpy(ui->data, ino->data, ui->data_len);
177 			((char *)ui->data)[ui->data_len] = '\0';
178 		} else if (ui->data_len != 0) {
179 			err = 10;
180 			goto out_invalid;
181 		}
182 		break;
183 	case S_IFDIR:
184 		inode->i_op  = &ubifs_dir_inode_operations;
185 		inode->i_fop = &ubifs_dir_operations;
186 		if (ui->data_len != 0) {
187 			err = 11;
188 			goto out_invalid;
189 		}
190 		break;
191 	case S_IFLNK:
192 		inode->i_op = &ubifs_symlink_inode_operations;
193 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
194 			err = 12;
195 			goto out_invalid;
196 		}
197 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
198 		if (!ui->data) {
199 			err = -ENOMEM;
200 			goto out_ino;
201 		}
202 		memcpy(ui->data, ino->data, ui->data_len);
203 		((char *)ui->data)[ui->data_len] = '\0';
204 		break;
205 	case S_IFBLK:
206 	case S_IFCHR:
207 	{
208 		dev_t rdev;
209 		union ubifs_dev_desc *dev;
210 
211 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
212 		if (!ui->data) {
213 			err = -ENOMEM;
214 			goto out_ino;
215 		}
216 
217 		dev = (union ubifs_dev_desc *)ino->data;
218 		if (ui->data_len == sizeof(dev->new))
219 			rdev = new_decode_dev(le32_to_cpu(dev->new));
220 		else if (ui->data_len == sizeof(dev->huge))
221 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
222 		else {
223 			err = 13;
224 			goto out_invalid;
225 		}
226 		memcpy(ui->data, ino->data, ui->data_len);
227 		inode->i_op = &ubifs_file_inode_operations;
228 		init_special_inode(inode, inode->i_mode, rdev);
229 		break;
230 	}
231 	case S_IFSOCK:
232 	case S_IFIFO:
233 		inode->i_op = &ubifs_file_inode_operations;
234 		init_special_inode(inode, inode->i_mode, 0);
235 		if (ui->data_len != 0) {
236 			err = 14;
237 			goto out_invalid;
238 		}
239 		break;
240 	default:
241 		err = 15;
242 		goto out_invalid;
243 	}
244 
245 	kfree(ino);
246 	ubifs_set_inode_flags(inode);
247 	unlock_new_inode(inode);
248 	return inode;
249 
250 out_invalid:
251 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
252 	ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
253 	ubifs_dump_inode(c, inode);
254 	err = -EINVAL;
255 out_ino:
256 	kfree(ino);
257 out:
258 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
259 	iget_failed(inode);
260 	return ERR_PTR(err);
261 }
262 
263 static struct inode *ubifs_alloc_inode(struct super_block *sb)
264 {
265 	struct ubifs_inode *ui;
266 
267 	ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
268 	if (!ui)
269 		return NULL;
270 
271 	memset((void *)ui + sizeof(struct inode), 0,
272 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
273 	mutex_init(&ui->ui_mutex);
274 	init_rwsem(&ui->xattr_sem);
275 	spin_lock_init(&ui->ui_lock);
276 	return &ui->vfs_inode;
277 };
278 
279 static void ubifs_free_inode(struct inode *inode)
280 {
281 	struct ubifs_inode *ui = ubifs_inode(inode);
282 
283 	kfree(ui->data);
284 	fscrypt_free_inode(inode);
285 
286 	kmem_cache_free(ubifs_inode_slab, ui);
287 }
288 
289 /*
290  * Note, Linux write-back code calls this without 'i_mutex'.
291  */
292 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293 {
294 	int err = 0;
295 	struct ubifs_info *c = inode->i_sb->s_fs_info;
296 	struct ubifs_inode *ui = ubifs_inode(inode);
297 
298 	ubifs_assert(c, !ui->xattr);
299 	if (is_bad_inode(inode))
300 		return 0;
301 
302 	mutex_lock(&ui->ui_mutex);
303 	/*
304 	 * Due to races between write-back forced by budgeting
305 	 * (see 'sync_some_inodes()') and background write-back, the inode may
306 	 * have already been synchronized, do not do this again. This might
307 	 * also happen if it was synchronized in an VFS operation, e.g.
308 	 * 'ubifs_link()'.
309 	 */
310 	if (!ui->dirty) {
311 		mutex_unlock(&ui->ui_mutex);
312 		return 0;
313 	}
314 
315 	/*
316 	 * As an optimization, do not write orphan inodes to the media just
317 	 * because this is not needed.
318 	 */
319 	dbg_gen("inode %lu, mode %#x, nlink %u",
320 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321 	if (inode->i_nlink) {
322 		err = ubifs_jnl_write_inode(c, inode);
323 		if (err)
324 			ubifs_err(c, "can't write inode %lu, error %d",
325 				  inode->i_ino, err);
326 		else
327 			err = dbg_check_inode_size(c, inode, ui->ui_size);
328 	}
329 
330 	ui->dirty = 0;
331 	mutex_unlock(&ui->ui_mutex);
332 	ubifs_release_dirty_inode_budget(c, ui);
333 	return err;
334 }
335 
336 static int ubifs_drop_inode(struct inode *inode)
337 {
338 	int drop = generic_drop_inode(inode);
339 
340 	if (!drop)
341 		drop = fscrypt_drop_inode(inode);
342 
343 	return drop;
344 }
345 
346 static void ubifs_evict_inode(struct inode *inode)
347 {
348 	int err;
349 	struct ubifs_info *c = inode->i_sb->s_fs_info;
350 	struct ubifs_inode *ui = ubifs_inode(inode);
351 
352 	if (ui->xattr)
353 		/*
354 		 * Extended attribute inode deletions are fully handled in
355 		 * 'ubifs_removexattr()'. These inodes are special and have
356 		 * limited usage, so there is nothing to do here.
357 		 */
358 		goto out;
359 
360 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
361 	ubifs_assert(c, !atomic_read(&inode->i_count));
362 
363 	truncate_inode_pages_final(&inode->i_data);
364 
365 	if (inode->i_nlink)
366 		goto done;
367 
368 	if (is_bad_inode(inode))
369 		goto out;
370 
371 	ui->ui_size = inode->i_size = 0;
372 	err = ubifs_jnl_delete_inode(c, inode);
373 	if (err)
374 		/*
375 		 * Worst case we have a lost orphan inode wasting space, so a
376 		 * simple error message is OK here.
377 		 */
378 		ubifs_err(c, "can't delete inode %lu, error %d",
379 			  inode->i_ino, err);
380 
381 out:
382 	if (ui->dirty)
383 		ubifs_release_dirty_inode_budget(c, ui);
384 	else {
385 		/* We've deleted something - clean the "no space" flags */
386 		c->bi.nospace = c->bi.nospace_rp = 0;
387 		smp_wmb();
388 	}
389 done:
390 	clear_inode(inode);
391 	fscrypt_put_encryption_info(inode);
392 }
393 
394 static void ubifs_dirty_inode(struct inode *inode, int flags)
395 {
396 	struct ubifs_info *c = inode->i_sb->s_fs_info;
397 	struct ubifs_inode *ui = ubifs_inode(inode);
398 
399 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
400 	if (!ui->dirty) {
401 		ui->dirty = 1;
402 		dbg_gen("inode %lu",  inode->i_ino);
403 	}
404 }
405 
406 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
407 {
408 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
409 	unsigned long long free;
410 	__le32 *uuid = (__le32 *)c->uuid;
411 
412 	free = ubifs_get_free_space(c);
413 	dbg_gen("free space %lld bytes (%lld blocks)",
414 		free, free >> UBIFS_BLOCK_SHIFT);
415 
416 	buf->f_type = UBIFS_SUPER_MAGIC;
417 	buf->f_bsize = UBIFS_BLOCK_SIZE;
418 	buf->f_blocks = c->block_cnt;
419 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
420 	if (free > c->report_rp_size)
421 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
422 	else
423 		buf->f_bavail = 0;
424 	buf->f_files = 0;
425 	buf->f_ffree = 0;
426 	buf->f_namelen = UBIFS_MAX_NLEN;
427 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
428 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
429 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
430 	return 0;
431 }
432 
433 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
434 {
435 	struct ubifs_info *c = root->d_sb->s_fs_info;
436 
437 	if (c->mount_opts.unmount_mode == 2)
438 		seq_puts(s, ",fast_unmount");
439 	else if (c->mount_opts.unmount_mode == 1)
440 		seq_puts(s, ",norm_unmount");
441 
442 	if (c->mount_opts.bulk_read == 2)
443 		seq_puts(s, ",bulk_read");
444 	else if (c->mount_opts.bulk_read == 1)
445 		seq_puts(s, ",no_bulk_read");
446 
447 	if (c->mount_opts.chk_data_crc == 2)
448 		seq_puts(s, ",chk_data_crc");
449 	else if (c->mount_opts.chk_data_crc == 1)
450 		seq_puts(s, ",no_chk_data_crc");
451 
452 	if (c->mount_opts.override_compr) {
453 		seq_printf(s, ",compr=%s",
454 			   ubifs_compr_name(c, c->mount_opts.compr_type));
455 	}
456 
457 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
458 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
459 
460 	return 0;
461 }
462 
463 static int ubifs_sync_fs(struct super_block *sb, int wait)
464 {
465 	int i, err;
466 	struct ubifs_info *c = sb->s_fs_info;
467 
468 	/*
469 	 * Zero @wait is just an advisory thing to help the file system shove
470 	 * lots of data into the queues, and there will be the second
471 	 * '->sync_fs()' call, with non-zero @wait.
472 	 */
473 	if (!wait)
474 		return 0;
475 
476 	/*
477 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
478 	 * do this if it waits for an already running commit.
479 	 */
480 	for (i = 0; i < c->jhead_cnt; i++) {
481 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
482 		if (err)
483 			return err;
484 	}
485 
486 	/*
487 	 * Strictly speaking, it is not necessary to commit the journal here,
488 	 * synchronizing write-buffers would be enough. But committing makes
489 	 * UBIFS free space predictions much more accurate, so we want to let
490 	 * the user be able to get more accurate results of 'statfs()' after
491 	 * they synchronize the file system.
492 	 */
493 	err = ubifs_run_commit(c);
494 	if (err)
495 		return err;
496 
497 	return ubi_sync(c->vi.ubi_num);
498 }
499 
500 /**
501  * init_constants_early - initialize UBIFS constants.
502  * @c: UBIFS file-system description object
503  *
504  * This function initialize UBIFS constants which do not need the superblock to
505  * be read. It also checks that the UBI volume satisfies basic UBIFS
506  * requirements. Returns zero in case of success and a negative error code in
507  * case of failure.
508  */
509 static int init_constants_early(struct ubifs_info *c)
510 {
511 	if (c->vi.corrupted) {
512 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
513 		c->ro_media = 1;
514 	}
515 
516 	if (c->di.ro_mode) {
517 		ubifs_msg(c, "read-only UBI device");
518 		c->ro_media = 1;
519 	}
520 
521 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
522 		ubifs_msg(c, "static UBI volume - read-only mode");
523 		c->ro_media = 1;
524 	}
525 
526 	c->leb_cnt = c->vi.size;
527 	c->leb_size = c->vi.usable_leb_size;
528 	c->leb_start = c->di.leb_start;
529 	c->half_leb_size = c->leb_size / 2;
530 	c->min_io_size = c->di.min_io_size;
531 	c->min_io_shift = fls(c->min_io_size) - 1;
532 	c->max_write_size = c->di.max_write_size;
533 	c->max_write_shift = fls(c->max_write_size) - 1;
534 
535 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
536 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
537 			   c->leb_size, UBIFS_MIN_LEB_SZ);
538 		return -EINVAL;
539 	}
540 
541 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
542 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
543 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
544 		return -EINVAL;
545 	}
546 
547 	if (!is_power_of_2(c->min_io_size)) {
548 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
549 		return -EINVAL;
550 	}
551 
552 	/*
553 	 * Maximum write size has to be greater or equivalent to min. I/O
554 	 * size, and be multiple of min. I/O size.
555 	 */
556 	if (c->max_write_size < c->min_io_size ||
557 	    c->max_write_size % c->min_io_size ||
558 	    !is_power_of_2(c->max_write_size)) {
559 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
560 			   c->max_write_size, c->min_io_size);
561 		return -EINVAL;
562 	}
563 
564 	/*
565 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
566 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
567 	 * less than 8.
568 	 */
569 	if (c->min_io_size < 8) {
570 		c->min_io_size = 8;
571 		c->min_io_shift = 3;
572 		if (c->max_write_size < c->min_io_size) {
573 			c->max_write_size = c->min_io_size;
574 			c->max_write_shift = c->min_io_shift;
575 		}
576 	}
577 
578 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
579 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
580 
581 	/*
582 	 * Initialize node length ranges which are mostly needed for node
583 	 * length validation.
584 	 */
585 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
586 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
587 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
588 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
589 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
590 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
591 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
592 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
593 				UBIFS_MAX_HMAC_LEN;
594 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
595 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
596 
597 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
598 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
599 	c->ranges[UBIFS_ORPH_NODE].min_len =
600 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
601 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
602 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
603 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
604 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
605 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
606 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
607 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
608 	/*
609 	 * Minimum indexing node size is amended later when superblock is
610 	 * read and the key length is known.
611 	 */
612 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
613 	/*
614 	 * Maximum indexing node size is amended later when superblock is
615 	 * read and the fanout is known.
616 	 */
617 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
618 
619 	/*
620 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
621 	 * about these values.
622 	 */
623 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
624 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
625 
626 	/*
627 	 * Calculate how many bytes would be wasted at the end of LEB if it was
628 	 * fully filled with data nodes of maximum size. This is used in
629 	 * calculations when reporting free space.
630 	 */
631 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
632 
633 	/* Buffer size for bulk-reads */
634 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
635 	if (c->max_bu_buf_len > c->leb_size)
636 		c->max_bu_buf_len = c->leb_size;
637 
638 	/* Log is ready, preserve one LEB for commits. */
639 	c->min_log_bytes = c->leb_size;
640 
641 	return 0;
642 }
643 
644 /**
645  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
646  * @c: UBIFS file-system description object
647  * @lnum: LEB the write-buffer was synchronized to
648  * @free: how many free bytes left in this LEB
649  * @pad: how many bytes were padded
650  *
651  * This is a callback function which is called by the I/O unit when the
652  * write-buffer is synchronized. We need this to correctly maintain space
653  * accounting in bud logical eraseblocks. This function returns zero in case of
654  * success and a negative error code in case of failure.
655  *
656  * This function actually belongs to the journal, but we keep it here because
657  * we want to keep it static.
658  */
659 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
660 {
661 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
662 }
663 
664 /*
665  * init_constants_sb - initialize UBIFS constants.
666  * @c: UBIFS file-system description object
667  *
668  * This is a helper function which initializes various UBIFS constants after
669  * the superblock has been read. It also checks various UBIFS parameters and
670  * makes sure they are all right. Returns zero in case of success and a
671  * negative error code in case of failure.
672  */
673 static int init_constants_sb(struct ubifs_info *c)
674 {
675 	int tmp, err;
676 	long long tmp64;
677 
678 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
679 	c->max_znode_sz = sizeof(struct ubifs_znode) +
680 				c->fanout * sizeof(struct ubifs_zbranch);
681 
682 	tmp = ubifs_idx_node_sz(c, 1);
683 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
684 	c->min_idx_node_sz = ALIGN(tmp, 8);
685 
686 	tmp = ubifs_idx_node_sz(c, c->fanout);
687 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
688 	c->max_idx_node_sz = ALIGN(tmp, 8);
689 
690 	/* Make sure LEB size is large enough to fit full commit */
691 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
692 	tmp = ALIGN(tmp, c->min_io_size);
693 	if (tmp > c->leb_size) {
694 		ubifs_err(c, "too small LEB size %d, at least %d needed",
695 			  c->leb_size, tmp);
696 		return -EINVAL;
697 	}
698 
699 	/*
700 	 * Make sure that the log is large enough to fit reference nodes for
701 	 * all buds plus one reserved LEB.
702 	 */
703 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
704 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
705 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
706 	tmp /= c->leb_size;
707 	tmp += 1;
708 	if (c->log_lebs < tmp) {
709 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
710 			  c->log_lebs, tmp);
711 		return -EINVAL;
712 	}
713 
714 	/*
715 	 * When budgeting we assume worst-case scenarios when the pages are not
716 	 * be compressed and direntries are of the maximum size.
717 	 *
718 	 * Note, data, which may be stored in inodes is budgeted separately, so
719 	 * it is not included into 'c->bi.inode_budget'.
720 	 */
721 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
722 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
723 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
724 
725 	/*
726 	 * When the amount of flash space used by buds becomes
727 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
728 	 * The writers are unblocked when the commit is finished. To avoid
729 	 * writers to be blocked UBIFS initiates background commit in advance,
730 	 * when number of bud bytes becomes above the limit defined below.
731 	 */
732 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
733 
734 	/*
735 	 * Ensure minimum journal size. All the bytes in the journal heads are
736 	 * considered to be used, when calculating the current journal usage.
737 	 * Consequently, if the journal is too small, UBIFS will treat it as
738 	 * always full.
739 	 */
740 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
741 	if (c->bg_bud_bytes < tmp64)
742 		c->bg_bud_bytes = tmp64;
743 	if (c->max_bud_bytes < tmp64 + c->leb_size)
744 		c->max_bud_bytes = tmp64 + c->leb_size;
745 
746 	err = ubifs_calc_lpt_geom(c);
747 	if (err)
748 		return err;
749 
750 	/* Initialize effective LEB size used in budgeting calculations */
751 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
752 	return 0;
753 }
754 
755 /*
756  * init_constants_master - initialize UBIFS constants.
757  * @c: UBIFS file-system description object
758  *
759  * This is a helper function which initializes various UBIFS constants after
760  * the master node has been read. It also checks various UBIFS parameters and
761  * makes sure they are all right.
762  */
763 static void init_constants_master(struct ubifs_info *c)
764 {
765 	long long tmp64;
766 
767 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
768 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
769 
770 	/*
771 	 * Calculate total amount of FS blocks. This number is not used
772 	 * internally because it does not make much sense for UBIFS, but it is
773 	 * necessary to report something for the 'statfs()' call.
774 	 *
775 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
776 	 * deletions, minimum LEBs for the index, the LEBs which are reserved
777 	 * for each journal head.
778 	 */
779 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt;
780 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
781 	tmp64 = ubifs_reported_space(c, tmp64);
782 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
783 }
784 
785 /**
786  * take_gc_lnum - reserve GC LEB.
787  * @c: UBIFS file-system description object
788  *
789  * This function ensures that the LEB reserved for garbage collection is marked
790  * as "taken" in lprops. We also have to set free space to LEB size and dirty
791  * space to zero, because lprops may contain out-of-date information if the
792  * file-system was un-mounted before it has been committed. This function
793  * returns zero in case of success and a negative error code in case of
794  * failure.
795  */
796 static int take_gc_lnum(struct ubifs_info *c)
797 {
798 	int err;
799 
800 	if (c->gc_lnum == -1) {
801 		ubifs_err(c, "no LEB for GC");
802 		return -EINVAL;
803 	}
804 
805 	/* And we have to tell lprops that this LEB is taken */
806 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
807 				  LPROPS_TAKEN, 0, 0);
808 	return err;
809 }
810 
811 /**
812  * alloc_wbufs - allocate write-buffers.
813  * @c: UBIFS file-system description object
814  *
815  * This helper function allocates and initializes UBIFS write-buffers. Returns
816  * zero in case of success and %-ENOMEM in case of failure.
817  */
818 static int alloc_wbufs(struct ubifs_info *c)
819 {
820 	int i, err;
821 
822 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
823 			    GFP_KERNEL);
824 	if (!c->jheads)
825 		return -ENOMEM;
826 
827 	/* Initialize journal heads */
828 	for (i = 0; i < c->jhead_cnt; i++) {
829 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
830 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
831 		if (err)
832 			goto out_wbuf;
833 
834 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
835 		c->jheads[i].wbuf.jhead = i;
836 		c->jheads[i].grouped = 1;
837 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
838 		if (IS_ERR(c->jheads[i].log_hash)) {
839 			err = PTR_ERR(c->jheads[i].log_hash);
840 			goto out_log_hash;
841 		}
842 	}
843 
844 	/*
845 	 * Garbage Collector head does not need to be synchronized by timer.
846 	 * Also GC head nodes are not grouped.
847 	 */
848 	c->jheads[GCHD].wbuf.no_timer = 1;
849 	c->jheads[GCHD].grouped = 0;
850 
851 	return 0;
852 
853 out_log_hash:
854 	kfree(c->jheads[i].wbuf.buf);
855 	kfree(c->jheads[i].wbuf.inodes);
856 
857 out_wbuf:
858 	while (i--) {
859 		kfree(c->jheads[i].wbuf.buf);
860 		kfree(c->jheads[i].wbuf.inodes);
861 		kfree(c->jheads[i].log_hash);
862 	}
863 	kfree(c->jheads);
864 	c->jheads = NULL;
865 
866 	return err;
867 }
868 
869 /**
870  * free_wbufs - free write-buffers.
871  * @c: UBIFS file-system description object
872  */
873 static void free_wbufs(struct ubifs_info *c)
874 {
875 	int i;
876 
877 	if (c->jheads) {
878 		for (i = 0; i < c->jhead_cnt; i++) {
879 			kfree(c->jheads[i].wbuf.buf);
880 			kfree(c->jheads[i].wbuf.inodes);
881 			kfree(c->jheads[i].log_hash);
882 		}
883 		kfree(c->jheads);
884 		c->jheads = NULL;
885 	}
886 }
887 
888 /**
889  * free_orphans - free orphans.
890  * @c: UBIFS file-system description object
891  */
892 static void free_orphans(struct ubifs_info *c)
893 {
894 	struct ubifs_orphan *orph;
895 
896 	while (c->orph_dnext) {
897 		orph = c->orph_dnext;
898 		c->orph_dnext = orph->dnext;
899 		list_del(&orph->list);
900 		kfree(orph);
901 	}
902 
903 	while (!list_empty(&c->orph_list)) {
904 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
905 		list_del(&orph->list);
906 		kfree(orph);
907 		ubifs_err(c, "orphan list not empty at unmount");
908 	}
909 
910 	vfree(c->orph_buf);
911 	c->orph_buf = NULL;
912 }
913 
914 /**
915  * free_buds - free per-bud objects.
916  * @c: UBIFS file-system description object
917  */
918 static void free_buds(struct ubifs_info *c)
919 {
920 	struct ubifs_bud *bud, *n;
921 
922 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) {
923 		kfree(bud->log_hash);
924 		kfree(bud);
925 	}
926 }
927 
928 /**
929  * check_volume_empty - check if the UBI volume is empty.
930  * @c: UBIFS file-system description object
931  *
932  * This function checks if the UBIFS volume is empty by looking if its LEBs are
933  * mapped or not. The result of checking is stored in the @c->empty variable.
934  * Returns zero in case of success and a negative error code in case of
935  * failure.
936  */
937 static int check_volume_empty(struct ubifs_info *c)
938 {
939 	int lnum, err;
940 
941 	c->empty = 1;
942 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
943 		err = ubifs_is_mapped(c, lnum);
944 		if (unlikely(err < 0))
945 			return err;
946 		if (err == 1) {
947 			c->empty = 0;
948 			break;
949 		}
950 
951 		cond_resched();
952 	}
953 
954 	return 0;
955 }
956 
957 /*
958  * UBIFS mount options.
959  *
960  * Opt_fast_unmount: do not run a journal commit before un-mounting
961  * Opt_norm_unmount: run a journal commit before un-mounting
962  * Opt_bulk_read: enable bulk-reads
963  * Opt_no_bulk_read: disable bulk-reads
964  * Opt_chk_data_crc: check CRCs when reading data nodes
965  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
966  * Opt_override_compr: override default compressor
967  * Opt_assert: set ubifs_assert() action
968  * Opt_auth_key: The key name used for authentication
969  * Opt_auth_hash_name: The hash type used for authentication
970  * Opt_err: just end of array marker
971  */
972 enum {
973 	Opt_fast_unmount,
974 	Opt_norm_unmount,
975 	Opt_bulk_read,
976 	Opt_no_bulk_read,
977 	Opt_chk_data_crc,
978 	Opt_no_chk_data_crc,
979 	Opt_override_compr,
980 	Opt_assert,
981 	Opt_auth_key,
982 	Opt_auth_hash_name,
983 	Opt_ignore,
984 };
985 
986 static const struct constant_table ubifs_param_compr[] = {
987 	{ "none",	UBIFS_COMPR_NONE },
988 	{ "lzo",	UBIFS_COMPR_LZO },
989 	{ "zlib",	UBIFS_COMPR_ZLIB },
990 	{ "zstd",	UBIFS_COMPR_ZSTD },
991 	{}
992 };
993 
994 static const struct constant_table ubifs_param_assert[] = {
995 	{ "report",	ASSACT_REPORT },
996 	{ "read-only",	ASSACT_RO },
997 	{ "panic",	ASSACT_PANIC },
998 	{}
999 };
1000 
1001 static const struct fs_parameter_spec ubifs_fs_param_spec[] = {
1002 	fsparam_flag	("fast_unmount",	Opt_fast_unmount),
1003 	fsparam_flag	("norm_unmount",	Opt_norm_unmount),
1004 	fsparam_flag	("bulk_read",		Opt_bulk_read),
1005 	fsparam_flag	("no_bulk_read",	Opt_no_bulk_read),
1006 	fsparam_flag	("chk_data_crc",	Opt_chk_data_crc),
1007 	fsparam_flag	("no_chk_data_crc",	Opt_no_chk_data_crc),
1008 	fsparam_enum	("compr",		Opt_override_compr, ubifs_param_compr),
1009 	fsparam_enum	("assert",		Opt_assert, ubifs_param_assert),
1010 	fsparam_string	("auth_key",		Opt_auth_key),
1011 	fsparam_string	("auth_hash_name",	Opt_auth_hash_name),
1012 	fsparam_string	("ubi",			Opt_ignore),
1013 	fsparam_string	("vol",			Opt_ignore),
1014 	{}
1015 };
1016 
1017 struct ubifs_fs_context {
1018 	struct ubifs_mount_opts mount_opts;
1019 	char *auth_key_name;
1020 	char *auth_hash_name;
1021 	unsigned int no_chk_data_crc:1;
1022 	unsigned int bulk_read:1;
1023 	unsigned int default_compr:2;
1024 	unsigned int assert_action:2;
1025 };
1026 
1027 /**
1028  * ubifs_parse_param - parse a parameter.
1029  * @fc: the filesystem context
1030  * @param: the parameter to parse
1031  *
1032  * This function parses UBIFS mount options and returns zero in case success
1033  * and a negative error code in case of failure.
1034  */
1035 static int ubifs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1036 {
1037 	struct ubifs_fs_context *ctx = fc->fs_private;
1038 	struct fs_parse_result result;
1039 	bool is_remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
1040 	int opt;
1041 
1042 	opt = fs_parse(fc, ubifs_fs_param_spec, param, &result);
1043 	if (opt < 0)
1044 		return opt;
1045 
1046 	switch (opt) {
1047 		/*
1048 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1049 		 * We accept them in order to be backward-compatible. But this
1050 		 * should be removed at some point.
1051 		 */
1052 	case Opt_fast_unmount:
1053 		ctx->mount_opts.unmount_mode = 2;
1054 		break;
1055 	case Opt_norm_unmount:
1056 		ctx->mount_opts.unmount_mode = 1;
1057 		break;
1058 	case Opt_bulk_read:
1059 		ctx->mount_opts.bulk_read = 2;
1060 		ctx->bulk_read = 1;
1061 		break;
1062 	case Opt_no_bulk_read:
1063 		ctx->mount_opts.bulk_read = 1;
1064 		ctx->bulk_read = 0;
1065 		break;
1066 	case Opt_chk_data_crc:
1067 		ctx->mount_opts.chk_data_crc = 2;
1068 		ctx->no_chk_data_crc = 0;
1069 		break;
1070 	case Opt_no_chk_data_crc:
1071 		ctx->mount_opts.chk_data_crc = 1;
1072 		ctx->no_chk_data_crc = 1;
1073 		break;
1074 	case Opt_override_compr:
1075 		ctx->mount_opts.compr_type = result.uint_32;
1076 		ctx->mount_opts.override_compr = 1;
1077 		ctx->default_compr = ctx->mount_opts.compr_type;
1078 		break;
1079 	case Opt_assert:
1080 		ctx->assert_action = result.uint_32;
1081 		break;
1082 	case Opt_auth_key:
1083 		if (!is_remount) {
1084 			kfree(ctx->auth_key_name);
1085 			ctx->auth_key_name = param->string;
1086 			param->string = NULL;
1087 		}
1088 		break;
1089 	case Opt_auth_hash_name:
1090 		if (!is_remount) {
1091 			kfree(ctx->auth_hash_name);
1092 			ctx->auth_hash_name = param->string;
1093 			param->string = NULL;
1094 		}
1095 		break;
1096 	case Opt_ignore:
1097 		break;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /*
1104  * ubifs_release_options - release mount parameters which have been dumped.
1105  * @c: UBIFS file-system description object
1106  */
1107 static void ubifs_release_options(struct ubifs_info *c)
1108 {
1109 	kfree(c->auth_key_name);
1110 	c->auth_key_name = NULL;
1111 	kfree(c->auth_hash_name);
1112 	c->auth_hash_name = NULL;
1113 }
1114 
1115 /**
1116  * destroy_journal - destroy journal data structures.
1117  * @c: UBIFS file-system description object
1118  *
1119  * This function destroys journal data structures including those that may have
1120  * been created by recovery functions.
1121  */
1122 static void destroy_journal(struct ubifs_info *c)
1123 {
1124 	while (!list_empty(&c->unclean_leb_list)) {
1125 		struct ubifs_unclean_leb *ucleb;
1126 
1127 		ucleb = list_entry(c->unclean_leb_list.next,
1128 				   struct ubifs_unclean_leb, list);
1129 		list_del(&ucleb->list);
1130 		kfree(ucleb);
1131 	}
1132 	while (!list_empty(&c->old_buds)) {
1133 		struct ubifs_bud *bud;
1134 
1135 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1136 		list_del(&bud->list);
1137 		kfree(bud->log_hash);
1138 		kfree(bud);
1139 	}
1140 	ubifs_destroy_idx_gc(c);
1141 	ubifs_destroy_size_tree(c);
1142 	ubifs_tnc_close(c);
1143 	free_buds(c);
1144 }
1145 
1146 /**
1147  * bu_init - initialize bulk-read information.
1148  * @c: UBIFS file-system description object
1149  */
1150 static void bu_init(struct ubifs_info *c)
1151 {
1152 	ubifs_assert(c, c->bulk_read == 1);
1153 
1154 	if (c->bu.buf)
1155 		return; /* Already initialized */
1156 
1157 again:
1158 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1159 	if (!c->bu.buf) {
1160 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1161 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1162 			goto again;
1163 		}
1164 
1165 		/* Just disable bulk-read */
1166 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1167 			   c->max_bu_buf_len);
1168 		c->mount_opts.bulk_read = 1;
1169 		c->bulk_read = 0;
1170 		return;
1171 	}
1172 }
1173 
1174 /**
1175  * check_free_space - check if there is enough free space to mount.
1176  * @c: UBIFS file-system description object
1177  *
1178  * This function makes sure UBIFS has enough free space to be mounted in
1179  * read/write mode. UBIFS must always have some free space to allow deletions.
1180  */
1181 static int check_free_space(struct ubifs_info *c)
1182 {
1183 	ubifs_assert(c, c->dark_wm > 0);
1184 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1185 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1186 		ubifs_dump_budg(c, &c->bi);
1187 		ubifs_dump_lprops(c);
1188 		return -ENOSPC;
1189 	}
1190 	return 0;
1191 }
1192 
1193 /**
1194  * mount_ubifs - mount UBIFS file-system.
1195  * @c: UBIFS file-system description object
1196  *
1197  * This function mounts UBIFS file system. Returns zero in case of success and
1198  * a negative error code in case of failure.
1199  */
1200 static int mount_ubifs(struct ubifs_info *c)
1201 {
1202 	int err;
1203 	long long x, y;
1204 	size_t sz;
1205 
1206 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1207 	/* Suppress error messages while probing if SB_SILENT is set */
1208 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1209 
1210 	err = init_constants_early(c);
1211 	if (err)
1212 		return err;
1213 
1214 	err = ubifs_debugging_init(c);
1215 	if (err)
1216 		return err;
1217 
1218 	err = ubifs_sysfs_register(c);
1219 	if (err)
1220 		goto out_debugging;
1221 
1222 	err = check_volume_empty(c);
1223 	if (err)
1224 		goto out_free;
1225 
1226 	if (c->empty && (c->ro_mount || c->ro_media)) {
1227 		/*
1228 		 * This UBI volume is empty, and read-only, or the file system
1229 		 * is mounted read-only - we cannot format it.
1230 		 */
1231 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1232 			  c->ro_media ? "UBI volume" : "mount");
1233 		err = -EROFS;
1234 		goto out_free;
1235 	}
1236 
1237 	if (c->ro_media && !c->ro_mount) {
1238 		ubifs_err(c, "cannot mount read-write - read-only media");
1239 		err = -EROFS;
1240 		goto out_free;
1241 	}
1242 
1243 	/*
1244 	 * The requirement for the buffer is that it should fit indexing B-tree
1245 	 * height amount of integers. We assume the height if the TNC tree will
1246 	 * never exceed 64.
1247 	 */
1248 	err = -ENOMEM;
1249 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1250 					 GFP_KERNEL);
1251 	if (!c->bottom_up_buf)
1252 		goto out_free;
1253 
1254 	c->sbuf = vmalloc(c->leb_size);
1255 	if (!c->sbuf)
1256 		goto out_free;
1257 
1258 	if (!c->ro_mount) {
1259 		c->ileb_buf = vmalloc(c->leb_size);
1260 		if (!c->ileb_buf)
1261 			goto out_free;
1262 	}
1263 
1264 	if (c->bulk_read == 1)
1265 		bu_init(c);
1266 
1267 	if (!c->ro_mount) {
1268 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1269 					       UBIFS_CIPHER_BLOCK_SIZE,
1270 					       GFP_KERNEL);
1271 		if (!c->write_reserve_buf)
1272 			goto out_free;
1273 	}
1274 
1275 	c->mounting = 1;
1276 
1277 	if (c->auth_key_name) {
1278 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1279 			err = ubifs_init_authentication(c);
1280 			if (err)
1281 				goto out_free;
1282 		} else {
1283 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1284 				  " authentication support");
1285 			err = -EINVAL;
1286 			goto out_free;
1287 		}
1288 	}
1289 
1290 	err = ubifs_read_superblock(c);
1291 	if (err)
1292 		goto out_auth;
1293 
1294 	c->probing = 0;
1295 
1296 	/*
1297 	 * Make sure the compressor which is set as default in the superblock
1298 	 * or overridden by mount options is actually compiled in.
1299 	 */
1300 	if (!ubifs_compr_present(c, c->default_compr)) {
1301 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1302 			  ubifs_compr_name(c, c->default_compr));
1303 		err = -ENOTSUPP;
1304 		goto out_auth;
1305 	}
1306 
1307 	err = init_constants_sb(c);
1308 	if (err)
1309 		goto out_auth;
1310 
1311 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1312 	c->cbuf = kmalloc(sz, GFP_NOFS);
1313 	if (!c->cbuf) {
1314 		err = -ENOMEM;
1315 		goto out_auth;
1316 	}
1317 
1318 	err = alloc_wbufs(c);
1319 	if (err)
1320 		goto out_cbuf;
1321 
1322 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1323 	if (!c->ro_mount) {
1324 		/* Create background thread */
1325 		c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1326 		if (IS_ERR(c->bgt)) {
1327 			err = PTR_ERR(c->bgt);
1328 			c->bgt = NULL;
1329 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1330 				  c->bgt_name, err);
1331 			goto out_wbufs;
1332 		}
1333 	}
1334 
1335 	err = ubifs_read_master(c);
1336 	if (err)
1337 		goto out_master;
1338 
1339 	init_constants_master(c);
1340 
1341 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1342 		ubifs_msg(c, "recovery needed");
1343 		c->need_recovery = 1;
1344 	}
1345 
1346 	if (c->need_recovery && !c->ro_mount) {
1347 		err = ubifs_recover_inl_heads(c, c->sbuf);
1348 		if (err)
1349 			goto out_master;
1350 	}
1351 
1352 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1353 	if (err)
1354 		goto out_master;
1355 
1356 	if (!c->ro_mount && c->space_fixup) {
1357 		err = ubifs_fixup_free_space(c);
1358 		if (err)
1359 			goto out_lpt;
1360 	}
1361 
1362 	if (!c->ro_mount && !c->need_recovery) {
1363 		/*
1364 		 * Set the "dirty" flag so that if we reboot uncleanly we
1365 		 * will notice this immediately on the next mount.
1366 		 */
1367 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1368 		err = ubifs_write_master(c);
1369 		if (err)
1370 			goto out_lpt;
1371 	}
1372 
1373 	/*
1374 	 * Handle offline signed images: Now that the master node is
1375 	 * written and its validation no longer depends on the hash
1376 	 * in the superblock, we can update the offline signed
1377 	 * superblock with a HMAC version,
1378 	 */
1379 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1380 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1381 		if (err)
1382 			goto out_lpt;
1383 		c->superblock_need_write = 1;
1384 	}
1385 
1386 	if (!c->ro_mount && c->superblock_need_write) {
1387 		err = ubifs_write_sb_node(c, c->sup_node);
1388 		if (err)
1389 			goto out_lpt;
1390 		c->superblock_need_write = 0;
1391 	}
1392 
1393 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1394 	if (err)
1395 		goto out_lpt;
1396 
1397 	err = ubifs_replay_journal(c);
1398 	if (err)
1399 		goto out_journal;
1400 
1401 	/* Calculate 'min_idx_lebs' after journal replay */
1402 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1403 
1404 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1405 	if (err)
1406 		goto out_orphans;
1407 
1408 	if (!c->ro_mount) {
1409 		int lnum;
1410 
1411 		err = check_free_space(c);
1412 		if (err)
1413 			goto out_orphans;
1414 
1415 		/* Check for enough log space */
1416 		lnum = c->lhead_lnum + 1;
1417 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1418 			lnum = UBIFS_LOG_LNUM;
1419 		if (lnum == c->ltail_lnum) {
1420 			err = ubifs_consolidate_log(c);
1421 			if (err)
1422 				goto out_orphans;
1423 		}
1424 
1425 		if (c->need_recovery) {
1426 			if (!ubifs_authenticated(c)) {
1427 				err = ubifs_recover_size(c, true);
1428 				if (err)
1429 					goto out_orphans;
1430 			}
1431 
1432 			err = ubifs_rcvry_gc_commit(c);
1433 			if (err)
1434 				goto out_orphans;
1435 
1436 			if (ubifs_authenticated(c)) {
1437 				err = ubifs_recover_size(c, false);
1438 				if (err)
1439 					goto out_orphans;
1440 			}
1441 		} else {
1442 			err = take_gc_lnum(c);
1443 			if (err)
1444 				goto out_orphans;
1445 
1446 			/*
1447 			 * GC LEB may contain garbage if there was an unclean
1448 			 * reboot, and it should be un-mapped.
1449 			 */
1450 			err = ubifs_leb_unmap(c, c->gc_lnum);
1451 			if (err)
1452 				goto out_orphans;
1453 		}
1454 
1455 		err = dbg_check_lprops(c);
1456 		if (err)
1457 			goto out_orphans;
1458 	} else if (c->need_recovery) {
1459 		err = ubifs_recover_size(c, false);
1460 		if (err)
1461 			goto out_orphans;
1462 	} else {
1463 		/*
1464 		 * Even if we mount read-only, we have to set space in GC LEB
1465 		 * to proper value because this affects UBIFS free space
1466 		 * reporting. We do not want to have a situation when
1467 		 * re-mounting from R/O to R/W changes amount of free space.
1468 		 */
1469 		err = take_gc_lnum(c);
1470 		if (err)
1471 			goto out_orphans;
1472 	}
1473 
1474 	spin_lock(&ubifs_infos_lock);
1475 	list_add_tail(&c->infos_list, &ubifs_infos);
1476 	spin_unlock(&ubifs_infos_lock);
1477 
1478 	if (c->need_recovery) {
1479 		if (c->ro_mount)
1480 			ubifs_msg(c, "recovery deferred");
1481 		else {
1482 			c->need_recovery = 0;
1483 			ubifs_msg(c, "recovery completed");
1484 			/*
1485 			 * GC LEB has to be empty and taken at this point. But
1486 			 * the journal head LEBs may also be accounted as
1487 			 * "empty taken" if they are empty.
1488 			 */
1489 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1490 		}
1491 	} else
1492 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1493 
1494 	err = dbg_check_filesystem(c);
1495 	if (err)
1496 		goto out_infos;
1497 
1498 	dbg_debugfs_init_fs(c);
1499 
1500 	c->mounting = 0;
1501 
1502 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1503 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1504 		  c->ro_mount ? ", R/O mode" : "");
1505 	x = (long long)c->main_lebs * c->leb_size;
1506 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1507 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1508 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1509 		  c->max_write_size);
1510 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1511 		  x, x >> 20, c->main_lebs, c->max_leb_cnt,
1512 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1513 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1514 		  c->report_rp_size, c->report_rp_size >> 10);
1515 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1516 		  c->fmt_version, c->ro_compat_version,
1517 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1518 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1519 
1520 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1521 	dbg_gen("data journal heads:  %d",
1522 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1523 	dbg_gen("log LEBs:            %d (%d - %d)",
1524 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1525 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1526 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1527 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1528 		c->orph_lebs, c->orph_first, c->orph_last);
1529 	dbg_gen("main area LEBs:      %d (%d - %d)",
1530 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1531 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1532 	dbg_gen("total index bytes:   %llu (%llu KiB, %llu MiB)",
1533 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1534 		c->bi.old_idx_sz >> 20);
1535 	dbg_gen("key hash type:       %d", c->key_hash_type);
1536 	dbg_gen("tree fanout:         %d", c->fanout);
1537 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1538 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1539 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1540 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1541 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1542 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1543 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1544 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1545 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1546 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1547 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1548 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1549 	dbg_gen("dead watermark:      %d", c->dead_wm);
1550 	dbg_gen("dark watermark:      %d", c->dark_wm);
1551 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1552 	x = (long long)c->main_lebs * c->dark_wm;
1553 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1554 		x, x >> 10, x >> 20);
1555 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1556 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1557 		c->max_bud_bytes >> 20);
1558 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1559 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1560 		c->bg_bud_bytes >> 20);
1561 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1562 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1563 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1564 	dbg_gen("commit number:       %llu", c->cmt_no);
1565 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1566 	dbg_gen("max orphans:           %d", c->max_orphans);
1567 
1568 	return 0;
1569 
1570 out_infos:
1571 	spin_lock(&ubifs_infos_lock);
1572 	list_del(&c->infos_list);
1573 	spin_unlock(&ubifs_infos_lock);
1574 out_orphans:
1575 	free_orphans(c);
1576 out_journal:
1577 	destroy_journal(c);
1578 out_lpt:
1579 	ubifs_lpt_free(c, 0);
1580 out_master:
1581 	kfree(c->mst_node);
1582 	kfree(c->rcvrd_mst_node);
1583 	if (c->bgt)
1584 		kthread_stop(c->bgt);
1585 out_wbufs:
1586 	free_wbufs(c);
1587 out_cbuf:
1588 	kfree(c->cbuf);
1589 out_auth:
1590 	ubifs_exit_authentication(c);
1591 out_free:
1592 	kfree(c->write_reserve_buf);
1593 	kfree(c->bu.buf);
1594 	vfree(c->ileb_buf);
1595 	vfree(c->sbuf);
1596 	kfree(c->bottom_up_buf);
1597 	kfree(c->sup_node);
1598 	ubifs_sysfs_unregister(c);
1599 out_debugging:
1600 	ubifs_debugging_exit(c);
1601 	return err;
1602 }
1603 
1604 /**
1605  * ubifs_umount - un-mount UBIFS file-system.
1606  * @c: UBIFS file-system description object
1607  *
1608  * Note, this function is called to free allocated resourced when un-mounting,
1609  * as well as free resources when an error occurred while we were half way
1610  * through mounting (error path cleanup function). So it has to make sure the
1611  * resource was actually allocated before freeing it.
1612  */
1613 static void ubifs_umount(struct ubifs_info *c)
1614 {
1615 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1616 		c->vi.vol_id);
1617 
1618 	dbg_debugfs_exit_fs(c);
1619 	spin_lock(&ubifs_infos_lock);
1620 	list_del(&c->infos_list);
1621 	spin_unlock(&ubifs_infos_lock);
1622 
1623 	if (c->bgt)
1624 		kthread_stop(c->bgt);
1625 
1626 	destroy_journal(c);
1627 	free_wbufs(c);
1628 	free_orphans(c);
1629 	ubifs_lpt_free(c, 0);
1630 	ubifs_exit_authentication(c);
1631 
1632 	ubifs_release_options(c);
1633 	kfree(c->cbuf);
1634 	kfree(c->rcvrd_mst_node);
1635 	kfree(c->mst_node);
1636 	kfree(c->write_reserve_buf);
1637 	kfree(c->bu.buf);
1638 	vfree(c->ileb_buf);
1639 	vfree(c->sbuf);
1640 	kfree(c->bottom_up_buf);
1641 	kfree(c->sup_node);
1642 	ubifs_debugging_exit(c);
1643 	ubifs_sysfs_unregister(c);
1644 }
1645 
1646 /**
1647  * ubifs_remount_rw - re-mount in read-write mode.
1648  * @c: UBIFS file-system description object
1649  *
1650  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1651  * mode. This function allocates the needed resources and re-mounts UBIFS in
1652  * read-write mode.
1653  */
1654 static int ubifs_remount_rw(struct ubifs_info *c)
1655 {
1656 	int err, lnum;
1657 
1658 	if (c->rw_incompat) {
1659 		ubifs_err(c, "the file-system is not R/W-compatible");
1660 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1661 			  c->fmt_version, c->ro_compat_version,
1662 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1663 		return -EROFS;
1664 	}
1665 
1666 	mutex_lock(&c->umount_mutex);
1667 	dbg_save_space_info(c);
1668 	c->remounting_rw = 1;
1669 	c->ro_mount = 0;
1670 
1671 	if (c->space_fixup) {
1672 		err = ubifs_fixup_free_space(c);
1673 		if (err)
1674 			goto out;
1675 	}
1676 
1677 	err = check_free_space(c);
1678 	if (err)
1679 		goto out;
1680 
1681 	if (c->need_recovery) {
1682 		ubifs_msg(c, "completing deferred recovery");
1683 		err = ubifs_write_rcvrd_mst_node(c);
1684 		if (err)
1685 			goto out;
1686 		if (!ubifs_authenticated(c)) {
1687 			err = ubifs_recover_size(c, true);
1688 			if (err)
1689 				goto out;
1690 		}
1691 		err = ubifs_clean_lebs(c, c->sbuf);
1692 		if (err)
1693 			goto out;
1694 		err = ubifs_recover_inl_heads(c, c->sbuf);
1695 		if (err)
1696 			goto out;
1697 	} else {
1698 		/* A readonly mount is not allowed to have orphans */
1699 		ubifs_assert(c, c->tot_orphans == 0);
1700 		err = ubifs_clear_orphans(c);
1701 		if (err)
1702 			goto out;
1703 	}
1704 
1705 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1706 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1707 		err = ubifs_write_master(c);
1708 		if (err)
1709 			goto out;
1710 	}
1711 
1712 	if (c->superblock_need_write) {
1713 		struct ubifs_sb_node *sup = c->sup_node;
1714 
1715 		err = ubifs_write_sb_node(c, sup);
1716 		if (err)
1717 			goto out;
1718 
1719 		c->superblock_need_write = 0;
1720 	}
1721 
1722 	c->ileb_buf = vmalloc(c->leb_size);
1723 	if (!c->ileb_buf) {
1724 		err = -ENOMEM;
1725 		goto out;
1726 	}
1727 
1728 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1729 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1730 	if (!c->write_reserve_buf) {
1731 		err = -ENOMEM;
1732 		goto out;
1733 	}
1734 
1735 	err = ubifs_lpt_init(c, 0, 1);
1736 	if (err)
1737 		goto out;
1738 
1739 	/* Create background thread */
1740 	c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1741 	if (IS_ERR(c->bgt)) {
1742 		err = PTR_ERR(c->bgt);
1743 		c->bgt = NULL;
1744 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1745 			  c->bgt_name, err);
1746 		goto out;
1747 	}
1748 
1749 	c->orph_buf = vmalloc(c->leb_size);
1750 	if (!c->orph_buf) {
1751 		err = -ENOMEM;
1752 		goto out;
1753 	}
1754 
1755 	/* Check for enough log space */
1756 	lnum = c->lhead_lnum + 1;
1757 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1758 		lnum = UBIFS_LOG_LNUM;
1759 	if (lnum == c->ltail_lnum) {
1760 		err = ubifs_consolidate_log(c);
1761 		if (err)
1762 			goto out;
1763 	}
1764 
1765 	if (c->need_recovery) {
1766 		err = ubifs_rcvry_gc_commit(c);
1767 		if (err)
1768 			goto out;
1769 
1770 		if (ubifs_authenticated(c)) {
1771 			err = ubifs_recover_size(c, false);
1772 			if (err)
1773 				goto out;
1774 		}
1775 	} else {
1776 		err = ubifs_leb_unmap(c, c->gc_lnum);
1777 	}
1778 	if (err)
1779 		goto out;
1780 
1781 	dbg_gen("re-mounted read-write");
1782 	c->remounting_rw = 0;
1783 
1784 	if (c->need_recovery) {
1785 		c->need_recovery = 0;
1786 		ubifs_msg(c, "deferred recovery completed");
1787 	} else {
1788 		/*
1789 		 * Do not run the debugging space check if the were doing
1790 		 * recovery, because when we saved the information we had the
1791 		 * file-system in a state where the TNC and lprops has been
1792 		 * modified in memory, but all the I/O operations (including a
1793 		 * commit) were deferred. So the file-system was in
1794 		 * "non-committed" state. Now the file-system is in committed
1795 		 * state, and of course the amount of free space will change
1796 		 * because, for example, the old index size was imprecise.
1797 		 */
1798 		err = dbg_check_space_info(c);
1799 	}
1800 
1801 	mutex_unlock(&c->umount_mutex);
1802 	return err;
1803 
1804 out:
1805 	c->ro_mount = 1;
1806 	vfree(c->orph_buf);
1807 	c->orph_buf = NULL;
1808 	if (c->bgt) {
1809 		kthread_stop(c->bgt);
1810 		c->bgt = NULL;
1811 	}
1812 	kfree(c->write_reserve_buf);
1813 	c->write_reserve_buf = NULL;
1814 	vfree(c->ileb_buf);
1815 	c->ileb_buf = NULL;
1816 	ubifs_lpt_free(c, 1);
1817 	c->remounting_rw = 0;
1818 	mutex_unlock(&c->umount_mutex);
1819 	return err;
1820 }
1821 
1822 /**
1823  * ubifs_remount_ro - re-mount in read-only mode.
1824  * @c: UBIFS file-system description object
1825  *
1826  * We assume VFS has stopped writing. Possibly the background thread could be
1827  * running a commit, however kthread_stop will wait in that case.
1828  */
1829 static void ubifs_remount_ro(struct ubifs_info *c)
1830 {
1831 	int i, err;
1832 
1833 	ubifs_assert(c, !c->need_recovery);
1834 	ubifs_assert(c, !c->ro_mount);
1835 
1836 	mutex_lock(&c->umount_mutex);
1837 	if (c->bgt) {
1838 		kthread_stop(c->bgt);
1839 		c->bgt = NULL;
1840 	}
1841 
1842 	dbg_save_space_info(c);
1843 
1844 	for (i = 0; i < c->jhead_cnt; i++) {
1845 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1846 		if (err)
1847 			ubifs_ro_mode(c, err);
1848 	}
1849 
1850 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1851 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1852 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1853 	err = ubifs_write_master(c);
1854 	if (err)
1855 		ubifs_ro_mode(c, err);
1856 
1857 	vfree(c->orph_buf);
1858 	c->orph_buf = NULL;
1859 	kfree(c->write_reserve_buf);
1860 	c->write_reserve_buf = NULL;
1861 	vfree(c->ileb_buf);
1862 	c->ileb_buf = NULL;
1863 	ubifs_lpt_free(c, 1);
1864 	c->ro_mount = 1;
1865 	err = dbg_check_space_info(c);
1866 	if (err)
1867 		ubifs_ro_mode(c, err);
1868 	mutex_unlock(&c->umount_mutex);
1869 }
1870 
1871 static void ubifs_put_super(struct super_block *sb)
1872 {
1873 	int i;
1874 	struct ubifs_info *c = sb->s_fs_info;
1875 
1876 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1877 
1878 	/*
1879 	 * The following asserts are only valid if there has not been a failure
1880 	 * of the media. For example, there will be dirty inodes if we failed
1881 	 * to write them back because of I/O errors.
1882 	 */
1883 	if (!c->ro_error) {
1884 		ubifs_assert(c, c->bi.idx_growth == 0);
1885 		ubifs_assert(c, c->bi.dd_growth == 0);
1886 		ubifs_assert(c, c->bi.data_growth == 0);
1887 	}
1888 
1889 	/*
1890 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1891 	 * and file system un-mount. Namely, it prevents the shrinker from
1892 	 * picking this superblock for shrinking - it will be just skipped if
1893 	 * the mutex is locked.
1894 	 */
1895 	mutex_lock(&c->umount_mutex);
1896 	if (!c->ro_mount) {
1897 		/*
1898 		 * First of all kill the background thread to make sure it does
1899 		 * not interfere with un-mounting and freeing resources.
1900 		 */
1901 		if (c->bgt) {
1902 			kthread_stop(c->bgt);
1903 			c->bgt = NULL;
1904 		}
1905 
1906 		/*
1907 		 * On fatal errors c->ro_error is set to 1, in which case we do
1908 		 * not write the master node.
1909 		 */
1910 		if (!c->ro_error) {
1911 			int err;
1912 
1913 			/* Synchronize write-buffers */
1914 			for (i = 0; i < c->jhead_cnt; i++) {
1915 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1916 				if (err)
1917 					ubifs_ro_mode(c, err);
1918 			}
1919 
1920 			/*
1921 			 * We are being cleanly unmounted which means the
1922 			 * orphans were killed - indicate this in the master
1923 			 * node. Also save the reserved GC LEB number.
1924 			 */
1925 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1926 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1927 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1928 			err = ubifs_write_master(c);
1929 			if (err)
1930 				/*
1931 				 * Recovery will attempt to fix the master area
1932 				 * next mount, so we just print a message and
1933 				 * continue to unmount normally.
1934 				 */
1935 				ubifs_err(c, "failed to write master node, error %d",
1936 					  err);
1937 		} else {
1938 			for (i = 0; i < c->jhead_cnt; i++)
1939 				/* Make sure write-buffer timers are canceled */
1940 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1941 		}
1942 	}
1943 
1944 	ubifs_umount(c);
1945 	ubi_close_volume(c->ubi);
1946 	mutex_unlock(&c->umount_mutex);
1947 }
1948 
1949 static int ubifs_reconfigure(struct fs_context *fc)
1950 {
1951 	struct ubifs_fs_context *ctx = fc->fs_private;
1952 	struct super_block *sb = fc->root->d_sb;
1953 	int err;
1954 	struct ubifs_info *c = sb->s_fs_info;
1955 
1956 	sync_filesystem(sb);
1957 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, fc->sb_flags);
1958 
1959 	/*
1960 	 * Apply the mount option changes.
1961 	 * auth_key_name and auth_hash_name are ignored on remount.
1962 	 */
1963 	c->mount_opts		= ctx->mount_opts;
1964 	c->bulk_read		= ctx->bulk_read;
1965 	c->no_chk_data_crc	= ctx->no_chk_data_crc;
1966 	c->default_compr	= ctx->default_compr;
1967 	c->assert_action	= ctx->assert_action;
1968 
1969 	if (c->ro_mount && !(fc->sb_flags & SB_RDONLY)) {
1970 		if (c->ro_error) {
1971 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1972 			return -EROFS;
1973 		}
1974 		if (c->ro_media) {
1975 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1976 			return -EROFS;
1977 		}
1978 		err = ubifs_remount_rw(c);
1979 		if (err)
1980 			return err;
1981 	} else if (!c->ro_mount && (fc->sb_flags & SB_RDONLY)) {
1982 		if (c->ro_error) {
1983 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1984 			return -EROFS;
1985 		}
1986 		ubifs_remount_ro(c);
1987 	}
1988 
1989 	if (c->bulk_read == 1)
1990 		bu_init(c);
1991 	else {
1992 		dbg_gen("disable bulk-read");
1993 		mutex_lock(&c->bu_mutex);
1994 		kfree(c->bu.buf);
1995 		c->bu.buf = NULL;
1996 		mutex_unlock(&c->bu_mutex);
1997 	}
1998 
1999 	if (!c->need_recovery)
2000 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2001 
2002 	return 0;
2003 }
2004 
2005 const struct super_operations ubifs_super_operations = {
2006 	.alloc_inode   = ubifs_alloc_inode,
2007 	.free_inode    = ubifs_free_inode,
2008 	.put_super     = ubifs_put_super,
2009 	.write_inode   = ubifs_write_inode,
2010 	.drop_inode    = ubifs_drop_inode,
2011 	.evict_inode   = ubifs_evict_inode,
2012 	.statfs        = ubifs_statfs,
2013 	.dirty_inode   = ubifs_dirty_inode,
2014 	.show_options  = ubifs_show_options,
2015 	.sync_fs       = ubifs_sync_fs,
2016 };
2017 
2018 /**
2019  * open_ubi - parse UBI device name string and open the UBI device.
2020  * @fc: The filesystem context
2021  * @mode: UBI volume open mode
2022  *
2023  * The primary method of mounting UBIFS is by specifying the UBI volume
2024  * character device node path. However, UBIFS may also be mounted without any
2025  * character device node using one of the following methods:
2026  *
2027  * o ubiX_Y    - mount UBI device number X, volume Y;
2028  * o ubiY      - mount UBI device number 0, volume Y;
2029  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2030  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2031  *
2032  * Alternative '!' separator may be used instead of ':' (because some shells
2033  * like busybox may interpret ':' as an NFS host name separator). This function
2034  * returns UBI volume description object in case of success and a negative
2035  * error code in case of failure.
2036  */
2037 static struct ubi_volume_desc *open_ubi(struct fs_context *fc, int mode)
2038 {
2039 	struct ubi_volume_desc *ubi;
2040 	const char *name = fc->source;
2041 	int dev, vol;
2042 	char *endptr;
2043 
2044 	/* First, try to open using the device node path method */
2045 	ubi = ubi_open_volume_path(name, mode);
2046 	if (!IS_ERR(ubi))
2047 		return ubi;
2048 
2049 	/* Try the "nodev" method */
2050 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2051 		goto invalid_source;
2052 
2053 	/* ubi:NAME method */
2054 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2055 		return ubi_open_volume_nm(0, name + 4, mode);
2056 
2057 	if (!isdigit(name[3]))
2058 		goto invalid_source;
2059 
2060 	dev = simple_strtoul(name + 3, &endptr, 0);
2061 
2062 	/* ubiY method */
2063 	if (*endptr == '\0')
2064 		return ubi_open_volume(0, dev, mode);
2065 
2066 	/* ubiX_Y method */
2067 	if (*endptr == '_' && isdigit(endptr[1])) {
2068 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2069 		if (*endptr != '\0')
2070 			goto invalid_source;
2071 		return ubi_open_volume(dev, vol, mode);
2072 	}
2073 
2074 	/* ubiX:NAME method */
2075 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2076 		return ubi_open_volume_nm(dev, ++endptr, mode);
2077 
2078 invalid_source:
2079 	return ERR_PTR(invalf(fc, "Invalid source name"));
2080 }
2081 
2082 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2083 {
2084 	struct ubifs_info *c;
2085 
2086 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2087 	if (c) {
2088 		spin_lock_init(&c->cnt_lock);
2089 		spin_lock_init(&c->cs_lock);
2090 		spin_lock_init(&c->buds_lock);
2091 		spin_lock_init(&c->space_lock);
2092 		spin_lock_init(&c->orphan_lock);
2093 		init_rwsem(&c->commit_sem);
2094 		mutex_init(&c->lp_mutex);
2095 		mutex_init(&c->tnc_mutex);
2096 		mutex_init(&c->log_mutex);
2097 		mutex_init(&c->umount_mutex);
2098 		mutex_init(&c->bu_mutex);
2099 		mutex_init(&c->write_reserve_mutex);
2100 		init_waitqueue_head(&c->cmt_wq);
2101 		init_waitqueue_head(&c->reserve_space_wq);
2102 		atomic_set(&c->need_wait_space, 0);
2103 		c->buds = RB_ROOT;
2104 		c->old_idx = RB_ROOT;
2105 		c->size_tree = RB_ROOT;
2106 		c->orph_tree = RB_ROOT;
2107 		INIT_LIST_HEAD(&c->infos_list);
2108 		INIT_LIST_HEAD(&c->idx_gc);
2109 		INIT_LIST_HEAD(&c->replay_list);
2110 		INIT_LIST_HEAD(&c->replay_buds);
2111 		INIT_LIST_HEAD(&c->uncat_list);
2112 		INIT_LIST_HEAD(&c->empty_list);
2113 		INIT_LIST_HEAD(&c->freeable_list);
2114 		INIT_LIST_HEAD(&c->frdi_idx_list);
2115 		INIT_LIST_HEAD(&c->unclean_leb_list);
2116 		INIT_LIST_HEAD(&c->old_buds);
2117 		INIT_LIST_HEAD(&c->orph_list);
2118 		INIT_LIST_HEAD(&c->orph_new);
2119 		c->no_chk_data_crc = 1;
2120 		c->assert_action = ASSACT_RO;
2121 
2122 		c->highest_inum = UBIFS_FIRST_INO;
2123 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2124 
2125 		ubi_get_volume_info(ubi, &c->vi);
2126 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2127 	}
2128 	return c;
2129 }
2130 
2131 static int ubifs_fill_super(struct super_block *sb, struct fs_context *fc)
2132 {
2133 	struct ubifs_info *c = sb->s_fs_info;
2134 	struct ubifs_fs_context *ctx = fc->fs_private;
2135 	struct inode *root;
2136 	int err;
2137 
2138 	c->vfs_sb = sb;
2139 	/* Re-open the UBI device in read-write mode */
2140 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2141 	if (IS_ERR(c->ubi)) {
2142 		err = PTR_ERR(c->ubi);
2143 		goto out;
2144 	}
2145 
2146 	/* Copy in parsed mount options */
2147 	c->mount_opts		= ctx->mount_opts;
2148 	c->auth_key_name	= ctx->auth_key_name;
2149 	c->auth_hash_name	= ctx->auth_hash_name;
2150 	c->no_chk_data_crc	= ctx->no_chk_data_crc;
2151 	c->bulk_read		= ctx->bulk_read;
2152 	c->default_compr	= ctx->default_compr;
2153 	c->assert_action	= ctx->assert_action;
2154 
2155 	/* ubifs_info owns auth strings now */
2156 	ctx->auth_key_name = NULL;
2157 	ctx->auth_hash_name = NULL;
2158 
2159 	/*
2160 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2161 	 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2162 	 * which means the user would have to wait not just for their own I/O
2163 	 * but the read-ahead I/O as well i.e. completely pointless.
2164 	 *
2165 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2166 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2167 	 * writeback happening.
2168 	 */
2169 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2170 				   c->vi.vol_id);
2171 	if (err)
2172 		goto out_close;
2173 	sb->s_bdi->ra_pages = 0;
2174 	sb->s_bdi->io_pages = 0;
2175 
2176 	sb->s_fs_info = c;
2177 	sb->s_magic = UBIFS_SUPER_MAGIC;
2178 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2179 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2180 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2181 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2182 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2183 	sb->s_op = &ubifs_super_operations;
2184 	sb->s_xattr = ubifs_xattr_handlers;
2185 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2186 
2187 	mutex_lock(&c->umount_mutex);
2188 	err = mount_ubifs(c);
2189 	if (err) {
2190 		ubifs_assert(c, err < 0);
2191 		goto out_unlock;
2192 	}
2193 
2194 	/* Read the root inode */
2195 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2196 	if (IS_ERR(root)) {
2197 		err = PTR_ERR(root);
2198 		goto out_umount;
2199 	}
2200 
2201 	generic_set_sb_d_ops(sb);
2202 	sb->s_root = d_make_root(root);
2203 	if (!sb->s_root) {
2204 		err = -ENOMEM;
2205 		goto out_umount;
2206 	}
2207 
2208 	super_set_uuid(sb, c->uuid, sizeof(c->uuid));
2209 	super_set_sysfs_name_generic(sb, UBIFS_DFS_DIR_NAME,
2210 				     c->vi.ubi_num, c->vi.vol_id);
2211 
2212 	mutex_unlock(&c->umount_mutex);
2213 	return 0;
2214 
2215 out_umount:
2216 	ubifs_umount(c);
2217 out_unlock:
2218 	mutex_unlock(&c->umount_mutex);
2219 out_close:
2220 	ubifs_release_options(c);
2221 	ubi_close_volume(c->ubi);
2222 out:
2223 	return err;
2224 }
2225 
2226 static int sb_test(struct super_block *sb, struct fs_context *fc)
2227 {
2228 	struct ubifs_info *c1 = fc->s_fs_info;
2229 	struct ubifs_info *c = sb->s_fs_info;
2230 
2231 	return c->vi.cdev == c1->vi.cdev;
2232 }
2233 
2234 static int ubifs_get_tree(struct fs_context *fc)
2235 {
2236 	struct ubi_volume_desc *ubi;
2237 	struct ubifs_info *c;
2238 	struct super_block *sb;
2239 	int err;
2240 
2241 	if (!fc->source || !*fc->source)
2242 		return invalf(fc, "No source specified");
2243 
2244 	dbg_gen("name %s, flags %#x", fc->source, fc->sb_flags);
2245 
2246 	/*
2247 	 * Get UBI device number and volume ID. Mount it read-only so far
2248 	 * because this might be a new mount point, and UBI allows only one
2249 	 * read-write user at a time.
2250 	 */
2251 	ubi = open_ubi(fc, UBI_READONLY);
2252 	if (IS_ERR(ubi)) {
2253 		err = PTR_ERR(ubi);
2254 		if (!(fc->sb_flags & SB_SILENT))
2255 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2256 			       current->pid, fc->source, err);
2257 		return err;
2258 	}
2259 
2260 	c = alloc_ubifs_info(ubi);
2261 	if (!c) {
2262 		err = -ENOMEM;
2263 		goto out_close;
2264 	}
2265 	fc->s_fs_info = c;
2266 
2267 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2268 
2269 	sb = sget_fc(fc, sb_test, set_anon_super_fc);
2270 	if (IS_ERR(sb)) {
2271 		err = PTR_ERR(sb);
2272 		kfree(c);
2273 		goto out_close;
2274 	}
2275 
2276 	if (sb->s_root) {
2277 		struct ubifs_info *c1 = sb->s_fs_info;
2278 		kfree(c);
2279 		/* A new mount point for already mounted UBIFS */
2280 		dbg_gen("this ubi volume is already mounted");
2281 		if (!!(fc->sb_flags & SB_RDONLY) != c1->ro_mount) {
2282 			err = -EBUSY;
2283 			goto out_deact;
2284 		}
2285 	} else {
2286 		err = ubifs_fill_super(sb, fc);
2287 		if (err)
2288 			goto out_deact;
2289 		/* We do not support atime */
2290 		sb->s_flags |= SB_ACTIVE;
2291 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2292 			ubifs_msg(c, "full atime support is enabled.");
2293 		else
2294 			sb->s_flags |= SB_NOATIME;
2295 	}
2296 
2297 	/* 'fill_super()' opens ubi again so we must close it here */
2298 	ubi_close_volume(ubi);
2299 
2300 	fc->root = dget(sb->s_root);
2301 	return 0;
2302 
2303 out_deact:
2304 	deactivate_locked_super(sb);
2305 out_close:
2306 	ubi_close_volume(ubi);
2307 	return err;
2308 }
2309 
2310 static void kill_ubifs_super(struct super_block *s)
2311 {
2312 	struct ubifs_info *c = s->s_fs_info;
2313 	kill_anon_super(s);
2314 	kfree(c);
2315 }
2316 
2317 static void ubifs_free_fc(struct fs_context *fc)
2318 {
2319 	struct ubifs_fs_context *ctx = fc->fs_private;
2320 
2321 	if (ctx) {
2322 		kfree(ctx->auth_key_name);
2323 		kfree(ctx->auth_hash_name);
2324 		kfree(ctx);
2325 	}
2326 }
2327 
2328 static const struct fs_context_operations ubifs_context_ops = {
2329 	.free		= ubifs_free_fc,
2330 	.parse_param	= ubifs_parse_param,
2331 	.get_tree	= ubifs_get_tree,
2332 	.reconfigure	= ubifs_reconfigure,
2333 };
2334 
2335 static int ubifs_init_fs_context(struct fs_context *fc)
2336 {
2337 	struct ubifs_fs_context *ctx;
2338 
2339 	ctx = kzalloc(sizeof(struct ubifs_fs_context), GFP_KERNEL);
2340 	if (!ctx)
2341 		return -ENOMEM;
2342 
2343 	if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) {
2344 		/* Iniitialize for first mount */
2345 		ctx->no_chk_data_crc = 1;
2346 		ctx->assert_action = ASSACT_RO;
2347 	} else {
2348 		struct ubifs_info *c = fc->root->d_sb->s_fs_info;
2349 
2350 		/*
2351 		 * Preserve existing options across remounts.
2352 		 * auth_key_name and auth_hash_name are not remountable.
2353 		 */
2354 		ctx->mount_opts		= c->mount_opts;
2355 		ctx->bulk_read		= c->bulk_read;
2356 		ctx->no_chk_data_crc	= c->no_chk_data_crc;
2357 		ctx->default_compr	= c->default_compr;
2358 		ctx->assert_action	= c->assert_action;
2359 	}
2360 
2361 	fc->ops = &ubifs_context_ops;
2362 	fc->fs_private = ctx;
2363 
2364 	return 0;
2365 }
2366 
2367 static struct file_system_type ubifs_fs_type = {
2368 	.name    = "ubifs",
2369 	.owner   = THIS_MODULE,
2370 	.init_fs_context = ubifs_init_fs_context,
2371 	.parameters	= ubifs_fs_param_spec,
2372 	.kill_sb = kill_ubifs_super,
2373 };
2374 MODULE_ALIAS_FS("ubifs");
2375 
2376 /*
2377  * Inode slab cache constructor.
2378  */
2379 static void inode_slab_ctor(void *obj)
2380 {
2381 	struct ubifs_inode *ui = obj;
2382 	inode_init_once(&ui->vfs_inode);
2383 }
2384 
2385 static int __init ubifs_init(void)
2386 {
2387 	int err = -ENOMEM;
2388 
2389 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2390 
2391 	/* Make sure node sizes are 8-byte aligned */
2392 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2393 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2394 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2395 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2396 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2397 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2398 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2399 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2400 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2401 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2402 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2403 
2404 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2405 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2406 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2407 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2408 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2409 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2410 
2411 	/* Check min. node size */
2412 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2413 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2414 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2415 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2416 
2417 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2418 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2419 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2420 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2421 
2422 	/* Defined node sizes */
2423 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2424 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2425 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2426 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2427 
2428 	/*
2429 	 * We use 2 bit wide bit-fields to store compression type, which should
2430 	 * be amended if more compressors are added. The bit-fields are:
2431 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2432 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2433 	 */
2434 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2435 
2436 	/*
2437 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2438 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2439 	 */
2440 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2441 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2442 		       current->pid, (unsigned int)PAGE_SIZE);
2443 		return -EINVAL;
2444 	}
2445 
2446 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2447 				sizeof(struct ubifs_inode), 0,
2448 				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
2449 				&inode_slab_ctor);
2450 	if (!ubifs_inode_slab)
2451 		return -ENOMEM;
2452 
2453 	ubifs_shrinker_info = shrinker_alloc(0, "ubifs-slab");
2454 	if (!ubifs_shrinker_info)
2455 		goto out_slab;
2456 
2457 	ubifs_shrinker_info->count_objects = ubifs_shrink_count;
2458 	ubifs_shrinker_info->scan_objects = ubifs_shrink_scan;
2459 
2460 	shrinker_register(ubifs_shrinker_info);
2461 
2462 	err = ubifs_compressors_init();
2463 	if (err)
2464 		goto out_shrinker;
2465 
2466 	dbg_debugfs_init();
2467 
2468 	err = ubifs_sysfs_init();
2469 	if (err)
2470 		goto out_dbg;
2471 
2472 	err = register_filesystem(&ubifs_fs_type);
2473 	if (err) {
2474 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2475 		       current->pid, err);
2476 		goto out_sysfs;
2477 	}
2478 	return 0;
2479 
2480 out_sysfs:
2481 	ubifs_sysfs_exit();
2482 out_dbg:
2483 	dbg_debugfs_exit();
2484 	ubifs_compressors_exit();
2485 out_shrinker:
2486 	shrinker_free(ubifs_shrinker_info);
2487 out_slab:
2488 	kmem_cache_destroy(ubifs_inode_slab);
2489 	return err;
2490 }
2491 /* late_initcall to let compressors initialize first */
2492 late_initcall(ubifs_init);
2493 
2494 static void __exit ubifs_exit(void)
2495 {
2496 	WARN_ON(!list_empty(&ubifs_infos));
2497 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2498 
2499 	dbg_debugfs_exit();
2500 	ubifs_sysfs_exit();
2501 	ubifs_compressors_exit();
2502 	shrinker_free(ubifs_shrinker_info);
2503 
2504 	/*
2505 	 * Make sure all delayed rcu free inodes are flushed before we
2506 	 * destroy cache.
2507 	 */
2508 	rcu_barrier();
2509 	kmem_cache_destroy(ubifs_inode_slab);
2510 	unregister_filesystem(&ubifs_fs_type);
2511 }
2512 module_exit(ubifs_exit);
2513 
2514 MODULE_LICENSE("GPL");
2515 MODULE_VERSION(__stringify(UBIFS_VERSION));
2516 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2517 MODULE_DESCRIPTION("UBIFS - UBI File System");
2518