1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS initialization and VFS superblock operations. Some 13 * initialization stuff which is rather large and complex is placed at 14 * corresponding subsystems, but most of it is here. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/kthread.h> 22 #include <linux/fs_context.h> 23 #include <linux/fs_parser.h> 24 #include <linux/seq_file.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include "ubifs.h" 28 29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp) 30 { 31 int n = 0, ret; 32 33 ret = kstrtoint(val, 10, &n); 34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION) 35 return -EINVAL; 36 return param_set_int(val, kp); 37 } 38 39 static const struct kernel_param_ops ubifs_default_version_ops = { 40 .set = ubifs_default_version_set, 41 .get = param_get_int, 42 }; 43 44 int ubifs_default_version = UBIFS_FORMAT_VERSION; 45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600); 46 47 /* 48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 49 * allocating too much. 50 */ 51 #define UBIFS_KMALLOC_OK (128*1024) 52 53 /* Slab cache for UBIFS inodes */ 54 static struct kmem_cache *ubifs_inode_slab; 55 56 /* UBIFS TNC shrinker description */ 57 static struct shrinker *ubifs_shrinker_info; 58 59 /** 60 * validate_inode - validate inode. 61 * @c: UBIFS file-system description object 62 * @inode: the inode to validate 63 * 64 * This is a helper function for 'ubifs_iget()' which validates various fields 65 * of a newly built inode to make sure they contain sane values and prevent 66 * possible vulnerabilities. Returns zero if the inode is all right and 67 * a non-zero error code if not. 68 */ 69 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 70 { 71 int err; 72 const struct ubifs_inode *ui = ubifs_inode(inode); 73 74 if (inode->i_size > c->max_inode_sz) { 75 ubifs_err(c, "inode is too large (%lld)", 76 (long long)inode->i_size); 77 return 1; 78 } 79 80 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 81 ubifs_err(c, "unknown compression type %d", ui->compr_type); 82 return 2; 83 } 84 85 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 86 return 3; 87 88 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 89 return 4; 90 91 if (ui->xattr && !S_ISREG(inode->i_mode)) 92 return 5; 93 94 if (!ubifs_compr_present(c, ui->compr_type)) { 95 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 96 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 97 } 98 99 err = dbg_check_dir(c, inode); 100 return err; 101 } 102 103 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 104 { 105 int err; 106 union ubifs_key key; 107 struct ubifs_ino_node *ino; 108 struct ubifs_info *c = sb->s_fs_info; 109 struct inode *inode; 110 struct ubifs_inode *ui; 111 112 dbg_gen("inode %lu", inum); 113 114 inode = iget_locked(sb, inum); 115 if (!inode) 116 return ERR_PTR(-ENOMEM); 117 if (!(inode->i_state & I_NEW)) 118 return inode; 119 ui = ubifs_inode(inode); 120 121 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 122 if (!ino) { 123 err = -ENOMEM; 124 goto out; 125 } 126 127 ino_key_init(c, &key, inode->i_ino); 128 129 err = ubifs_tnc_lookup(c, &key, ino); 130 if (err) 131 goto out_ino; 132 133 inode->i_flags |= S_NOCMTIME; 134 135 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 136 inode->i_flags |= S_NOATIME; 137 138 set_nlink(inode, le32_to_cpu(ino->nlink)); 139 i_uid_write(inode, le32_to_cpu(ino->uid)); 140 i_gid_write(inode, le32_to_cpu(ino->gid)); 141 inode_set_atime(inode, (int64_t)le64_to_cpu(ino->atime_sec), 142 le32_to_cpu(ino->atime_nsec)); 143 inode_set_mtime(inode, (int64_t)le64_to_cpu(ino->mtime_sec), 144 le32_to_cpu(ino->mtime_nsec)); 145 inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec), 146 le32_to_cpu(ino->ctime_nsec)); 147 inode->i_mode = le32_to_cpu(ino->mode); 148 inode->i_size = le64_to_cpu(ino->size); 149 150 ui->data_len = le32_to_cpu(ino->data_len); 151 ui->flags = le32_to_cpu(ino->flags); 152 ui->compr_type = le16_to_cpu(ino->compr_type); 153 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 154 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 155 ui->xattr_size = le32_to_cpu(ino->xattr_size); 156 ui->xattr_names = le32_to_cpu(ino->xattr_names); 157 ui->synced_i_size = ui->ui_size = inode->i_size; 158 159 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 160 161 err = validate_inode(c, inode); 162 if (err) 163 goto out_invalid; 164 165 switch (inode->i_mode & S_IFMT) { 166 case S_IFREG: 167 inode->i_mapping->a_ops = &ubifs_file_address_operations; 168 inode->i_op = &ubifs_file_inode_operations; 169 inode->i_fop = &ubifs_file_operations; 170 if (ui->xattr) { 171 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 172 if (!ui->data) { 173 err = -ENOMEM; 174 goto out_ino; 175 } 176 memcpy(ui->data, ino->data, ui->data_len); 177 ((char *)ui->data)[ui->data_len] = '\0'; 178 } else if (ui->data_len != 0) { 179 err = 10; 180 goto out_invalid; 181 } 182 break; 183 case S_IFDIR: 184 inode->i_op = &ubifs_dir_inode_operations; 185 inode->i_fop = &ubifs_dir_operations; 186 if (ui->data_len != 0) { 187 err = 11; 188 goto out_invalid; 189 } 190 break; 191 case S_IFLNK: 192 inode->i_op = &ubifs_symlink_inode_operations; 193 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 194 err = 12; 195 goto out_invalid; 196 } 197 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 198 if (!ui->data) { 199 err = -ENOMEM; 200 goto out_ino; 201 } 202 memcpy(ui->data, ino->data, ui->data_len); 203 ((char *)ui->data)[ui->data_len] = '\0'; 204 break; 205 case S_IFBLK: 206 case S_IFCHR: 207 { 208 dev_t rdev; 209 union ubifs_dev_desc *dev; 210 211 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 212 if (!ui->data) { 213 err = -ENOMEM; 214 goto out_ino; 215 } 216 217 dev = (union ubifs_dev_desc *)ino->data; 218 if (ui->data_len == sizeof(dev->new)) 219 rdev = new_decode_dev(le32_to_cpu(dev->new)); 220 else if (ui->data_len == sizeof(dev->huge)) 221 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 222 else { 223 err = 13; 224 goto out_invalid; 225 } 226 memcpy(ui->data, ino->data, ui->data_len); 227 inode->i_op = &ubifs_file_inode_operations; 228 init_special_inode(inode, inode->i_mode, rdev); 229 break; 230 } 231 case S_IFSOCK: 232 case S_IFIFO: 233 inode->i_op = &ubifs_file_inode_operations; 234 init_special_inode(inode, inode->i_mode, 0); 235 if (ui->data_len != 0) { 236 err = 14; 237 goto out_invalid; 238 } 239 break; 240 default: 241 err = 15; 242 goto out_invalid; 243 } 244 245 kfree(ino); 246 ubifs_set_inode_flags(inode); 247 unlock_new_inode(inode); 248 return inode; 249 250 out_invalid: 251 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 252 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ); 253 ubifs_dump_inode(c, inode); 254 err = -EINVAL; 255 out_ino: 256 kfree(ino); 257 out: 258 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 259 iget_failed(inode); 260 return ERR_PTR(err); 261 } 262 263 static struct inode *ubifs_alloc_inode(struct super_block *sb) 264 { 265 struct ubifs_inode *ui; 266 267 ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS); 268 if (!ui) 269 return NULL; 270 271 memset((void *)ui + sizeof(struct inode), 0, 272 sizeof(struct ubifs_inode) - sizeof(struct inode)); 273 mutex_init(&ui->ui_mutex); 274 init_rwsem(&ui->xattr_sem); 275 spin_lock_init(&ui->ui_lock); 276 return &ui->vfs_inode; 277 }; 278 279 static void ubifs_free_inode(struct inode *inode) 280 { 281 struct ubifs_inode *ui = ubifs_inode(inode); 282 283 kfree(ui->data); 284 fscrypt_free_inode(inode); 285 286 kmem_cache_free(ubifs_inode_slab, ui); 287 } 288 289 /* 290 * Note, Linux write-back code calls this without 'i_mutex'. 291 */ 292 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 293 { 294 int err = 0; 295 struct ubifs_info *c = inode->i_sb->s_fs_info; 296 struct ubifs_inode *ui = ubifs_inode(inode); 297 298 ubifs_assert(c, !ui->xattr); 299 if (is_bad_inode(inode)) 300 return 0; 301 302 mutex_lock(&ui->ui_mutex); 303 /* 304 * Due to races between write-back forced by budgeting 305 * (see 'sync_some_inodes()') and background write-back, the inode may 306 * have already been synchronized, do not do this again. This might 307 * also happen if it was synchronized in an VFS operation, e.g. 308 * 'ubifs_link()'. 309 */ 310 if (!ui->dirty) { 311 mutex_unlock(&ui->ui_mutex); 312 return 0; 313 } 314 315 /* 316 * As an optimization, do not write orphan inodes to the media just 317 * because this is not needed. 318 */ 319 dbg_gen("inode %lu, mode %#x, nlink %u", 320 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 321 if (inode->i_nlink) { 322 err = ubifs_jnl_write_inode(c, inode); 323 if (err) 324 ubifs_err(c, "can't write inode %lu, error %d", 325 inode->i_ino, err); 326 else 327 err = dbg_check_inode_size(c, inode, ui->ui_size); 328 } 329 330 ui->dirty = 0; 331 mutex_unlock(&ui->ui_mutex); 332 ubifs_release_dirty_inode_budget(c, ui); 333 return err; 334 } 335 336 static int ubifs_drop_inode(struct inode *inode) 337 { 338 int drop = generic_drop_inode(inode); 339 340 if (!drop) 341 drop = fscrypt_drop_inode(inode); 342 343 return drop; 344 } 345 346 static void ubifs_evict_inode(struct inode *inode) 347 { 348 int err; 349 struct ubifs_info *c = inode->i_sb->s_fs_info; 350 struct ubifs_inode *ui = ubifs_inode(inode); 351 352 if (ui->xattr) 353 /* 354 * Extended attribute inode deletions are fully handled in 355 * 'ubifs_removexattr()'. These inodes are special and have 356 * limited usage, so there is nothing to do here. 357 */ 358 goto out; 359 360 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 361 ubifs_assert(c, !atomic_read(&inode->i_count)); 362 363 truncate_inode_pages_final(&inode->i_data); 364 365 if (inode->i_nlink) 366 goto done; 367 368 if (is_bad_inode(inode)) 369 goto out; 370 371 ui->ui_size = inode->i_size = 0; 372 err = ubifs_jnl_delete_inode(c, inode); 373 if (err) 374 /* 375 * Worst case we have a lost orphan inode wasting space, so a 376 * simple error message is OK here. 377 */ 378 ubifs_err(c, "can't delete inode %lu, error %d", 379 inode->i_ino, err); 380 381 out: 382 if (ui->dirty) 383 ubifs_release_dirty_inode_budget(c, ui); 384 else { 385 /* We've deleted something - clean the "no space" flags */ 386 c->bi.nospace = c->bi.nospace_rp = 0; 387 smp_wmb(); 388 } 389 done: 390 clear_inode(inode); 391 fscrypt_put_encryption_info(inode); 392 } 393 394 static void ubifs_dirty_inode(struct inode *inode, int flags) 395 { 396 struct ubifs_info *c = inode->i_sb->s_fs_info; 397 struct ubifs_inode *ui = ubifs_inode(inode); 398 399 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 400 if (!ui->dirty) { 401 ui->dirty = 1; 402 dbg_gen("inode %lu", inode->i_ino); 403 } 404 } 405 406 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 407 { 408 struct ubifs_info *c = dentry->d_sb->s_fs_info; 409 unsigned long long free; 410 __le32 *uuid = (__le32 *)c->uuid; 411 412 free = ubifs_get_free_space(c); 413 dbg_gen("free space %lld bytes (%lld blocks)", 414 free, free >> UBIFS_BLOCK_SHIFT); 415 416 buf->f_type = UBIFS_SUPER_MAGIC; 417 buf->f_bsize = UBIFS_BLOCK_SIZE; 418 buf->f_blocks = c->block_cnt; 419 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 420 if (free > c->report_rp_size) 421 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 422 else 423 buf->f_bavail = 0; 424 buf->f_files = 0; 425 buf->f_ffree = 0; 426 buf->f_namelen = UBIFS_MAX_NLEN; 427 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 428 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 429 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 430 return 0; 431 } 432 433 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 434 { 435 struct ubifs_info *c = root->d_sb->s_fs_info; 436 437 if (c->mount_opts.unmount_mode == 2) 438 seq_puts(s, ",fast_unmount"); 439 else if (c->mount_opts.unmount_mode == 1) 440 seq_puts(s, ",norm_unmount"); 441 442 if (c->mount_opts.bulk_read == 2) 443 seq_puts(s, ",bulk_read"); 444 else if (c->mount_opts.bulk_read == 1) 445 seq_puts(s, ",no_bulk_read"); 446 447 if (c->mount_opts.chk_data_crc == 2) 448 seq_puts(s, ",chk_data_crc"); 449 else if (c->mount_opts.chk_data_crc == 1) 450 seq_puts(s, ",no_chk_data_crc"); 451 452 if (c->mount_opts.override_compr) { 453 seq_printf(s, ",compr=%s", 454 ubifs_compr_name(c, c->mount_opts.compr_type)); 455 } 456 457 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 458 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 459 460 return 0; 461 } 462 463 static int ubifs_sync_fs(struct super_block *sb, int wait) 464 { 465 int i, err; 466 struct ubifs_info *c = sb->s_fs_info; 467 468 /* 469 * Zero @wait is just an advisory thing to help the file system shove 470 * lots of data into the queues, and there will be the second 471 * '->sync_fs()' call, with non-zero @wait. 472 */ 473 if (!wait) 474 return 0; 475 476 /* 477 * Synchronize write buffers, because 'ubifs_run_commit()' does not 478 * do this if it waits for an already running commit. 479 */ 480 for (i = 0; i < c->jhead_cnt; i++) { 481 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 482 if (err) 483 return err; 484 } 485 486 /* 487 * Strictly speaking, it is not necessary to commit the journal here, 488 * synchronizing write-buffers would be enough. But committing makes 489 * UBIFS free space predictions much more accurate, so we want to let 490 * the user be able to get more accurate results of 'statfs()' after 491 * they synchronize the file system. 492 */ 493 err = ubifs_run_commit(c); 494 if (err) 495 return err; 496 497 return ubi_sync(c->vi.ubi_num); 498 } 499 500 /** 501 * init_constants_early - initialize UBIFS constants. 502 * @c: UBIFS file-system description object 503 * 504 * This function initialize UBIFS constants which do not need the superblock to 505 * be read. It also checks that the UBI volume satisfies basic UBIFS 506 * requirements. Returns zero in case of success and a negative error code in 507 * case of failure. 508 */ 509 static int init_constants_early(struct ubifs_info *c) 510 { 511 if (c->vi.corrupted) { 512 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 513 c->ro_media = 1; 514 } 515 516 if (c->di.ro_mode) { 517 ubifs_msg(c, "read-only UBI device"); 518 c->ro_media = 1; 519 } 520 521 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 522 ubifs_msg(c, "static UBI volume - read-only mode"); 523 c->ro_media = 1; 524 } 525 526 c->leb_cnt = c->vi.size; 527 c->leb_size = c->vi.usable_leb_size; 528 c->leb_start = c->di.leb_start; 529 c->half_leb_size = c->leb_size / 2; 530 c->min_io_size = c->di.min_io_size; 531 c->min_io_shift = fls(c->min_io_size) - 1; 532 c->max_write_size = c->di.max_write_size; 533 c->max_write_shift = fls(c->max_write_size) - 1; 534 535 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 536 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 537 c->leb_size, UBIFS_MIN_LEB_SZ); 538 return -EINVAL; 539 } 540 541 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 542 ubifs_errc(c, "too few LEBs (%d), min. is %d", 543 c->leb_cnt, UBIFS_MIN_LEB_CNT); 544 return -EINVAL; 545 } 546 547 if (!is_power_of_2(c->min_io_size)) { 548 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 549 return -EINVAL; 550 } 551 552 /* 553 * Maximum write size has to be greater or equivalent to min. I/O 554 * size, and be multiple of min. I/O size. 555 */ 556 if (c->max_write_size < c->min_io_size || 557 c->max_write_size % c->min_io_size || 558 !is_power_of_2(c->max_write_size)) { 559 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 560 c->max_write_size, c->min_io_size); 561 return -EINVAL; 562 } 563 564 /* 565 * UBIFS aligns all node to 8-byte boundary, so to make function in 566 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 567 * less than 8. 568 */ 569 if (c->min_io_size < 8) { 570 c->min_io_size = 8; 571 c->min_io_shift = 3; 572 if (c->max_write_size < c->min_io_size) { 573 c->max_write_size = c->min_io_size; 574 c->max_write_shift = c->min_io_shift; 575 } 576 } 577 578 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 579 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 580 581 /* 582 * Initialize node length ranges which are mostly needed for node 583 * length validation. 584 */ 585 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 586 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 587 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 588 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 589 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 590 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 591 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 592 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 593 UBIFS_MAX_HMAC_LEN; 594 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ; 595 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ; 596 597 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 598 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 599 c->ranges[UBIFS_ORPH_NODE].min_len = 600 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 601 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 602 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 603 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 604 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 605 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 606 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 607 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 608 /* 609 * Minimum indexing node size is amended later when superblock is 610 * read and the key length is known. 611 */ 612 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 613 /* 614 * Maximum indexing node size is amended later when superblock is 615 * read and the fanout is known. 616 */ 617 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 618 619 /* 620 * Initialize dead and dark LEB space watermarks. See gc.c for comments 621 * about these values. 622 */ 623 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 624 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 625 626 /* 627 * Calculate how many bytes would be wasted at the end of LEB if it was 628 * fully filled with data nodes of maximum size. This is used in 629 * calculations when reporting free space. 630 */ 631 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 632 633 /* Buffer size for bulk-reads */ 634 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 635 if (c->max_bu_buf_len > c->leb_size) 636 c->max_bu_buf_len = c->leb_size; 637 638 /* Log is ready, preserve one LEB for commits. */ 639 c->min_log_bytes = c->leb_size; 640 641 return 0; 642 } 643 644 /** 645 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 646 * @c: UBIFS file-system description object 647 * @lnum: LEB the write-buffer was synchronized to 648 * @free: how many free bytes left in this LEB 649 * @pad: how many bytes were padded 650 * 651 * This is a callback function which is called by the I/O unit when the 652 * write-buffer is synchronized. We need this to correctly maintain space 653 * accounting in bud logical eraseblocks. This function returns zero in case of 654 * success and a negative error code in case of failure. 655 * 656 * This function actually belongs to the journal, but we keep it here because 657 * we want to keep it static. 658 */ 659 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 660 { 661 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 662 } 663 664 /* 665 * init_constants_sb - initialize UBIFS constants. 666 * @c: UBIFS file-system description object 667 * 668 * This is a helper function which initializes various UBIFS constants after 669 * the superblock has been read. It also checks various UBIFS parameters and 670 * makes sure they are all right. Returns zero in case of success and a 671 * negative error code in case of failure. 672 */ 673 static int init_constants_sb(struct ubifs_info *c) 674 { 675 int tmp, err; 676 long long tmp64; 677 678 c->main_bytes = (long long)c->main_lebs * c->leb_size; 679 c->max_znode_sz = sizeof(struct ubifs_znode) + 680 c->fanout * sizeof(struct ubifs_zbranch); 681 682 tmp = ubifs_idx_node_sz(c, 1); 683 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 684 c->min_idx_node_sz = ALIGN(tmp, 8); 685 686 tmp = ubifs_idx_node_sz(c, c->fanout); 687 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 688 c->max_idx_node_sz = ALIGN(tmp, 8); 689 690 /* Make sure LEB size is large enough to fit full commit */ 691 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 692 tmp = ALIGN(tmp, c->min_io_size); 693 if (tmp > c->leb_size) { 694 ubifs_err(c, "too small LEB size %d, at least %d needed", 695 c->leb_size, tmp); 696 return -EINVAL; 697 } 698 699 /* 700 * Make sure that the log is large enough to fit reference nodes for 701 * all buds plus one reserved LEB. 702 */ 703 tmp64 = c->max_bud_bytes + c->leb_size - 1; 704 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 705 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 706 tmp /= c->leb_size; 707 tmp += 1; 708 if (c->log_lebs < tmp) { 709 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 710 c->log_lebs, tmp); 711 return -EINVAL; 712 } 713 714 /* 715 * When budgeting we assume worst-case scenarios when the pages are not 716 * be compressed and direntries are of the maximum size. 717 * 718 * Note, data, which may be stored in inodes is budgeted separately, so 719 * it is not included into 'c->bi.inode_budget'. 720 */ 721 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 722 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 723 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 724 725 /* 726 * When the amount of flash space used by buds becomes 727 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 728 * The writers are unblocked when the commit is finished. To avoid 729 * writers to be blocked UBIFS initiates background commit in advance, 730 * when number of bud bytes becomes above the limit defined below. 731 */ 732 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 733 734 /* 735 * Ensure minimum journal size. All the bytes in the journal heads are 736 * considered to be used, when calculating the current journal usage. 737 * Consequently, if the journal is too small, UBIFS will treat it as 738 * always full. 739 */ 740 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 741 if (c->bg_bud_bytes < tmp64) 742 c->bg_bud_bytes = tmp64; 743 if (c->max_bud_bytes < tmp64 + c->leb_size) 744 c->max_bud_bytes = tmp64 + c->leb_size; 745 746 err = ubifs_calc_lpt_geom(c); 747 if (err) 748 return err; 749 750 /* Initialize effective LEB size used in budgeting calculations */ 751 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 752 return 0; 753 } 754 755 /* 756 * init_constants_master - initialize UBIFS constants. 757 * @c: UBIFS file-system description object 758 * 759 * This is a helper function which initializes various UBIFS constants after 760 * the master node has been read. It also checks various UBIFS parameters and 761 * makes sure they are all right. 762 */ 763 static void init_constants_master(struct ubifs_info *c) 764 { 765 long long tmp64; 766 767 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 768 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 769 770 /* 771 * Calculate total amount of FS blocks. This number is not used 772 * internally because it does not make much sense for UBIFS, but it is 773 * necessary to report something for the 'statfs()' call. 774 * 775 * Subtract the LEB reserved for GC, the LEB which is reserved for 776 * deletions, minimum LEBs for the index, the LEBs which are reserved 777 * for each journal head. 778 */ 779 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt; 780 tmp64 *= (long long)c->leb_size - c->leb_overhead; 781 tmp64 = ubifs_reported_space(c, tmp64); 782 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 783 } 784 785 /** 786 * take_gc_lnum - reserve GC LEB. 787 * @c: UBIFS file-system description object 788 * 789 * This function ensures that the LEB reserved for garbage collection is marked 790 * as "taken" in lprops. We also have to set free space to LEB size and dirty 791 * space to zero, because lprops may contain out-of-date information if the 792 * file-system was un-mounted before it has been committed. This function 793 * returns zero in case of success and a negative error code in case of 794 * failure. 795 */ 796 static int take_gc_lnum(struct ubifs_info *c) 797 { 798 int err; 799 800 if (c->gc_lnum == -1) { 801 ubifs_err(c, "no LEB for GC"); 802 return -EINVAL; 803 } 804 805 /* And we have to tell lprops that this LEB is taken */ 806 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 807 LPROPS_TAKEN, 0, 0); 808 return err; 809 } 810 811 /** 812 * alloc_wbufs - allocate write-buffers. 813 * @c: UBIFS file-system description object 814 * 815 * This helper function allocates and initializes UBIFS write-buffers. Returns 816 * zero in case of success and %-ENOMEM in case of failure. 817 */ 818 static int alloc_wbufs(struct ubifs_info *c) 819 { 820 int i, err; 821 822 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 823 GFP_KERNEL); 824 if (!c->jheads) 825 return -ENOMEM; 826 827 /* Initialize journal heads */ 828 for (i = 0; i < c->jhead_cnt; i++) { 829 INIT_LIST_HEAD(&c->jheads[i].buds_list); 830 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 831 if (err) 832 goto out_wbuf; 833 834 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 835 c->jheads[i].wbuf.jhead = i; 836 c->jheads[i].grouped = 1; 837 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 838 if (IS_ERR(c->jheads[i].log_hash)) { 839 err = PTR_ERR(c->jheads[i].log_hash); 840 goto out_log_hash; 841 } 842 } 843 844 /* 845 * Garbage Collector head does not need to be synchronized by timer. 846 * Also GC head nodes are not grouped. 847 */ 848 c->jheads[GCHD].wbuf.no_timer = 1; 849 c->jheads[GCHD].grouped = 0; 850 851 return 0; 852 853 out_log_hash: 854 kfree(c->jheads[i].wbuf.buf); 855 kfree(c->jheads[i].wbuf.inodes); 856 857 out_wbuf: 858 while (i--) { 859 kfree(c->jheads[i].wbuf.buf); 860 kfree(c->jheads[i].wbuf.inodes); 861 kfree(c->jheads[i].log_hash); 862 } 863 kfree(c->jheads); 864 c->jheads = NULL; 865 866 return err; 867 } 868 869 /** 870 * free_wbufs - free write-buffers. 871 * @c: UBIFS file-system description object 872 */ 873 static void free_wbufs(struct ubifs_info *c) 874 { 875 int i; 876 877 if (c->jheads) { 878 for (i = 0; i < c->jhead_cnt; i++) { 879 kfree(c->jheads[i].wbuf.buf); 880 kfree(c->jheads[i].wbuf.inodes); 881 kfree(c->jheads[i].log_hash); 882 } 883 kfree(c->jheads); 884 c->jheads = NULL; 885 } 886 } 887 888 /** 889 * free_orphans - free orphans. 890 * @c: UBIFS file-system description object 891 */ 892 static void free_orphans(struct ubifs_info *c) 893 { 894 struct ubifs_orphan *orph; 895 896 while (c->orph_dnext) { 897 orph = c->orph_dnext; 898 c->orph_dnext = orph->dnext; 899 list_del(&orph->list); 900 kfree(orph); 901 } 902 903 while (!list_empty(&c->orph_list)) { 904 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 905 list_del(&orph->list); 906 kfree(orph); 907 ubifs_err(c, "orphan list not empty at unmount"); 908 } 909 910 vfree(c->orph_buf); 911 c->orph_buf = NULL; 912 } 913 914 /** 915 * free_buds - free per-bud objects. 916 * @c: UBIFS file-system description object 917 */ 918 static void free_buds(struct ubifs_info *c) 919 { 920 struct ubifs_bud *bud, *n; 921 922 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) { 923 kfree(bud->log_hash); 924 kfree(bud); 925 } 926 } 927 928 /** 929 * check_volume_empty - check if the UBI volume is empty. 930 * @c: UBIFS file-system description object 931 * 932 * This function checks if the UBIFS volume is empty by looking if its LEBs are 933 * mapped or not. The result of checking is stored in the @c->empty variable. 934 * Returns zero in case of success and a negative error code in case of 935 * failure. 936 */ 937 static int check_volume_empty(struct ubifs_info *c) 938 { 939 int lnum, err; 940 941 c->empty = 1; 942 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 943 err = ubifs_is_mapped(c, lnum); 944 if (unlikely(err < 0)) 945 return err; 946 if (err == 1) { 947 c->empty = 0; 948 break; 949 } 950 951 cond_resched(); 952 } 953 954 return 0; 955 } 956 957 /* 958 * UBIFS mount options. 959 * 960 * Opt_fast_unmount: do not run a journal commit before un-mounting 961 * Opt_norm_unmount: run a journal commit before un-mounting 962 * Opt_bulk_read: enable bulk-reads 963 * Opt_no_bulk_read: disable bulk-reads 964 * Opt_chk_data_crc: check CRCs when reading data nodes 965 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 966 * Opt_override_compr: override default compressor 967 * Opt_assert: set ubifs_assert() action 968 * Opt_auth_key: The key name used for authentication 969 * Opt_auth_hash_name: The hash type used for authentication 970 * Opt_err: just end of array marker 971 */ 972 enum { 973 Opt_fast_unmount, 974 Opt_norm_unmount, 975 Opt_bulk_read, 976 Opt_no_bulk_read, 977 Opt_chk_data_crc, 978 Opt_no_chk_data_crc, 979 Opt_override_compr, 980 Opt_assert, 981 Opt_auth_key, 982 Opt_auth_hash_name, 983 Opt_ignore, 984 }; 985 986 static const struct constant_table ubifs_param_compr[] = { 987 { "none", UBIFS_COMPR_NONE }, 988 { "lzo", UBIFS_COMPR_LZO }, 989 { "zlib", UBIFS_COMPR_ZLIB }, 990 { "zstd", UBIFS_COMPR_ZSTD }, 991 {} 992 }; 993 994 static const struct constant_table ubifs_param_assert[] = { 995 { "report", ASSACT_REPORT }, 996 { "read-only", ASSACT_RO }, 997 { "panic", ASSACT_PANIC }, 998 {} 999 }; 1000 1001 static const struct fs_parameter_spec ubifs_fs_param_spec[] = { 1002 fsparam_flag ("fast_unmount", Opt_fast_unmount), 1003 fsparam_flag ("norm_unmount", Opt_norm_unmount), 1004 fsparam_flag ("bulk_read", Opt_bulk_read), 1005 fsparam_flag ("no_bulk_read", Opt_no_bulk_read), 1006 fsparam_flag ("chk_data_crc", Opt_chk_data_crc), 1007 fsparam_flag ("no_chk_data_crc", Opt_no_chk_data_crc), 1008 fsparam_enum ("compr", Opt_override_compr, ubifs_param_compr), 1009 fsparam_enum ("assert", Opt_assert, ubifs_param_assert), 1010 fsparam_string ("auth_key", Opt_auth_key), 1011 fsparam_string ("auth_hash_name", Opt_auth_hash_name), 1012 fsparam_string ("ubi", Opt_ignore), 1013 fsparam_string ("vol", Opt_ignore), 1014 {} 1015 }; 1016 1017 struct ubifs_fs_context { 1018 struct ubifs_mount_opts mount_opts; 1019 char *auth_key_name; 1020 char *auth_hash_name; 1021 unsigned int no_chk_data_crc:1; 1022 unsigned int bulk_read:1; 1023 unsigned int default_compr:2; 1024 unsigned int assert_action:2; 1025 }; 1026 1027 /** 1028 * ubifs_parse_param - parse a parameter. 1029 * @fc: the filesystem context 1030 * @param: the parameter to parse 1031 * 1032 * This function parses UBIFS mount options and returns zero in case success 1033 * and a negative error code in case of failure. 1034 */ 1035 static int ubifs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1036 { 1037 struct ubifs_fs_context *ctx = fc->fs_private; 1038 struct fs_parse_result result; 1039 bool is_remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE); 1040 int opt; 1041 1042 opt = fs_parse(fc, ubifs_fs_param_spec, param, &result); 1043 if (opt < 0) 1044 return opt; 1045 1046 switch (opt) { 1047 /* 1048 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1049 * We accept them in order to be backward-compatible. But this 1050 * should be removed at some point. 1051 */ 1052 case Opt_fast_unmount: 1053 ctx->mount_opts.unmount_mode = 2; 1054 break; 1055 case Opt_norm_unmount: 1056 ctx->mount_opts.unmount_mode = 1; 1057 break; 1058 case Opt_bulk_read: 1059 ctx->mount_opts.bulk_read = 2; 1060 ctx->bulk_read = 1; 1061 break; 1062 case Opt_no_bulk_read: 1063 ctx->mount_opts.bulk_read = 1; 1064 ctx->bulk_read = 0; 1065 break; 1066 case Opt_chk_data_crc: 1067 ctx->mount_opts.chk_data_crc = 2; 1068 ctx->no_chk_data_crc = 0; 1069 break; 1070 case Opt_no_chk_data_crc: 1071 ctx->mount_opts.chk_data_crc = 1; 1072 ctx->no_chk_data_crc = 1; 1073 break; 1074 case Opt_override_compr: 1075 ctx->mount_opts.compr_type = result.uint_32; 1076 ctx->mount_opts.override_compr = 1; 1077 ctx->default_compr = ctx->mount_opts.compr_type; 1078 break; 1079 case Opt_assert: 1080 ctx->assert_action = result.uint_32; 1081 break; 1082 case Opt_auth_key: 1083 if (!is_remount) { 1084 kfree(ctx->auth_key_name); 1085 ctx->auth_key_name = param->string; 1086 param->string = NULL; 1087 } 1088 break; 1089 case Opt_auth_hash_name: 1090 if (!is_remount) { 1091 kfree(ctx->auth_hash_name); 1092 ctx->auth_hash_name = param->string; 1093 param->string = NULL; 1094 } 1095 break; 1096 case Opt_ignore: 1097 break; 1098 } 1099 1100 return 0; 1101 } 1102 1103 /* 1104 * ubifs_release_options - release mount parameters which have been dumped. 1105 * @c: UBIFS file-system description object 1106 */ 1107 static void ubifs_release_options(struct ubifs_info *c) 1108 { 1109 kfree(c->auth_key_name); 1110 c->auth_key_name = NULL; 1111 kfree(c->auth_hash_name); 1112 c->auth_hash_name = NULL; 1113 } 1114 1115 /** 1116 * destroy_journal - destroy journal data structures. 1117 * @c: UBIFS file-system description object 1118 * 1119 * This function destroys journal data structures including those that may have 1120 * been created by recovery functions. 1121 */ 1122 static void destroy_journal(struct ubifs_info *c) 1123 { 1124 while (!list_empty(&c->unclean_leb_list)) { 1125 struct ubifs_unclean_leb *ucleb; 1126 1127 ucleb = list_entry(c->unclean_leb_list.next, 1128 struct ubifs_unclean_leb, list); 1129 list_del(&ucleb->list); 1130 kfree(ucleb); 1131 } 1132 while (!list_empty(&c->old_buds)) { 1133 struct ubifs_bud *bud; 1134 1135 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1136 list_del(&bud->list); 1137 kfree(bud->log_hash); 1138 kfree(bud); 1139 } 1140 ubifs_destroy_idx_gc(c); 1141 ubifs_destroy_size_tree(c); 1142 ubifs_tnc_close(c); 1143 free_buds(c); 1144 } 1145 1146 /** 1147 * bu_init - initialize bulk-read information. 1148 * @c: UBIFS file-system description object 1149 */ 1150 static void bu_init(struct ubifs_info *c) 1151 { 1152 ubifs_assert(c, c->bulk_read == 1); 1153 1154 if (c->bu.buf) 1155 return; /* Already initialized */ 1156 1157 again: 1158 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1159 if (!c->bu.buf) { 1160 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1161 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1162 goto again; 1163 } 1164 1165 /* Just disable bulk-read */ 1166 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1167 c->max_bu_buf_len); 1168 c->mount_opts.bulk_read = 1; 1169 c->bulk_read = 0; 1170 return; 1171 } 1172 } 1173 1174 /** 1175 * check_free_space - check if there is enough free space to mount. 1176 * @c: UBIFS file-system description object 1177 * 1178 * This function makes sure UBIFS has enough free space to be mounted in 1179 * read/write mode. UBIFS must always have some free space to allow deletions. 1180 */ 1181 static int check_free_space(struct ubifs_info *c) 1182 { 1183 ubifs_assert(c, c->dark_wm > 0); 1184 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1185 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1186 ubifs_dump_budg(c, &c->bi); 1187 ubifs_dump_lprops(c); 1188 return -ENOSPC; 1189 } 1190 return 0; 1191 } 1192 1193 /** 1194 * mount_ubifs - mount UBIFS file-system. 1195 * @c: UBIFS file-system description object 1196 * 1197 * This function mounts UBIFS file system. Returns zero in case of success and 1198 * a negative error code in case of failure. 1199 */ 1200 static int mount_ubifs(struct ubifs_info *c) 1201 { 1202 int err; 1203 long long x, y; 1204 size_t sz; 1205 1206 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1207 /* Suppress error messages while probing if SB_SILENT is set */ 1208 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1209 1210 err = init_constants_early(c); 1211 if (err) 1212 return err; 1213 1214 err = ubifs_debugging_init(c); 1215 if (err) 1216 return err; 1217 1218 err = ubifs_sysfs_register(c); 1219 if (err) 1220 goto out_debugging; 1221 1222 err = check_volume_empty(c); 1223 if (err) 1224 goto out_free; 1225 1226 if (c->empty && (c->ro_mount || c->ro_media)) { 1227 /* 1228 * This UBI volume is empty, and read-only, or the file system 1229 * is mounted read-only - we cannot format it. 1230 */ 1231 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1232 c->ro_media ? "UBI volume" : "mount"); 1233 err = -EROFS; 1234 goto out_free; 1235 } 1236 1237 if (c->ro_media && !c->ro_mount) { 1238 ubifs_err(c, "cannot mount read-write - read-only media"); 1239 err = -EROFS; 1240 goto out_free; 1241 } 1242 1243 /* 1244 * The requirement for the buffer is that it should fit indexing B-tree 1245 * height amount of integers. We assume the height if the TNC tree will 1246 * never exceed 64. 1247 */ 1248 err = -ENOMEM; 1249 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1250 GFP_KERNEL); 1251 if (!c->bottom_up_buf) 1252 goto out_free; 1253 1254 c->sbuf = vmalloc(c->leb_size); 1255 if (!c->sbuf) 1256 goto out_free; 1257 1258 if (!c->ro_mount) { 1259 c->ileb_buf = vmalloc(c->leb_size); 1260 if (!c->ileb_buf) 1261 goto out_free; 1262 } 1263 1264 if (c->bulk_read == 1) 1265 bu_init(c); 1266 1267 if (!c->ro_mount) { 1268 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1269 UBIFS_CIPHER_BLOCK_SIZE, 1270 GFP_KERNEL); 1271 if (!c->write_reserve_buf) 1272 goto out_free; 1273 } 1274 1275 c->mounting = 1; 1276 1277 if (c->auth_key_name) { 1278 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1279 err = ubifs_init_authentication(c); 1280 if (err) 1281 goto out_free; 1282 } else { 1283 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1284 " authentication support"); 1285 err = -EINVAL; 1286 goto out_free; 1287 } 1288 } 1289 1290 err = ubifs_read_superblock(c); 1291 if (err) 1292 goto out_auth; 1293 1294 c->probing = 0; 1295 1296 /* 1297 * Make sure the compressor which is set as default in the superblock 1298 * or overridden by mount options is actually compiled in. 1299 */ 1300 if (!ubifs_compr_present(c, c->default_compr)) { 1301 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1302 ubifs_compr_name(c, c->default_compr)); 1303 err = -ENOTSUPP; 1304 goto out_auth; 1305 } 1306 1307 err = init_constants_sb(c); 1308 if (err) 1309 goto out_auth; 1310 1311 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2; 1312 c->cbuf = kmalloc(sz, GFP_NOFS); 1313 if (!c->cbuf) { 1314 err = -ENOMEM; 1315 goto out_auth; 1316 } 1317 1318 err = alloc_wbufs(c); 1319 if (err) 1320 goto out_cbuf; 1321 1322 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1323 if (!c->ro_mount) { 1324 /* Create background thread */ 1325 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name); 1326 if (IS_ERR(c->bgt)) { 1327 err = PTR_ERR(c->bgt); 1328 c->bgt = NULL; 1329 ubifs_err(c, "cannot spawn \"%s\", error %d", 1330 c->bgt_name, err); 1331 goto out_wbufs; 1332 } 1333 } 1334 1335 err = ubifs_read_master(c); 1336 if (err) 1337 goto out_master; 1338 1339 init_constants_master(c); 1340 1341 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1342 ubifs_msg(c, "recovery needed"); 1343 c->need_recovery = 1; 1344 } 1345 1346 if (c->need_recovery && !c->ro_mount) { 1347 err = ubifs_recover_inl_heads(c, c->sbuf); 1348 if (err) 1349 goto out_master; 1350 } 1351 1352 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1353 if (err) 1354 goto out_master; 1355 1356 if (!c->ro_mount && c->space_fixup) { 1357 err = ubifs_fixup_free_space(c); 1358 if (err) 1359 goto out_lpt; 1360 } 1361 1362 if (!c->ro_mount && !c->need_recovery) { 1363 /* 1364 * Set the "dirty" flag so that if we reboot uncleanly we 1365 * will notice this immediately on the next mount. 1366 */ 1367 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1368 err = ubifs_write_master(c); 1369 if (err) 1370 goto out_lpt; 1371 } 1372 1373 /* 1374 * Handle offline signed images: Now that the master node is 1375 * written and its validation no longer depends on the hash 1376 * in the superblock, we can update the offline signed 1377 * superblock with a HMAC version, 1378 */ 1379 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) { 1380 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm); 1381 if (err) 1382 goto out_lpt; 1383 c->superblock_need_write = 1; 1384 } 1385 1386 if (!c->ro_mount && c->superblock_need_write) { 1387 err = ubifs_write_sb_node(c, c->sup_node); 1388 if (err) 1389 goto out_lpt; 1390 c->superblock_need_write = 0; 1391 } 1392 1393 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1394 if (err) 1395 goto out_lpt; 1396 1397 err = ubifs_replay_journal(c); 1398 if (err) 1399 goto out_journal; 1400 1401 /* Calculate 'min_idx_lebs' after journal replay */ 1402 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1403 1404 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1405 if (err) 1406 goto out_orphans; 1407 1408 if (!c->ro_mount) { 1409 int lnum; 1410 1411 err = check_free_space(c); 1412 if (err) 1413 goto out_orphans; 1414 1415 /* Check for enough log space */ 1416 lnum = c->lhead_lnum + 1; 1417 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1418 lnum = UBIFS_LOG_LNUM; 1419 if (lnum == c->ltail_lnum) { 1420 err = ubifs_consolidate_log(c); 1421 if (err) 1422 goto out_orphans; 1423 } 1424 1425 if (c->need_recovery) { 1426 if (!ubifs_authenticated(c)) { 1427 err = ubifs_recover_size(c, true); 1428 if (err) 1429 goto out_orphans; 1430 } 1431 1432 err = ubifs_rcvry_gc_commit(c); 1433 if (err) 1434 goto out_orphans; 1435 1436 if (ubifs_authenticated(c)) { 1437 err = ubifs_recover_size(c, false); 1438 if (err) 1439 goto out_orphans; 1440 } 1441 } else { 1442 err = take_gc_lnum(c); 1443 if (err) 1444 goto out_orphans; 1445 1446 /* 1447 * GC LEB may contain garbage if there was an unclean 1448 * reboot, and it should be un-mapped. 1449 */ 1450 err = ubifs_leb_unmap(c, c->gc_lnum); 1451 if (err) 1452 goto out_orphans; 1453 } 1454 1455 err = dbg_check_lprops(c); 1456 if (err) 1457 goto out_orphans; 1458 } else if (c->need_recovery) { 1459 err = ubifs_recover_size(c, false); 1460 if (err) 1461 goto out_orphans; 1462 } else { 1463 /* 1464 * Even if we mount read-only, we have to set space in GC LEB 1465 * to proper value because this affects UBIFS free space 1466 * reporting. We do not want to have a situation when 1467 * re-mounting from R/O to R/W changes amount of free space. 1468 */ 1469 err = take_gc_lnum(c); 1470 if (err) 1471 goto out_orphans; 1472 } 1473 1474 spin_lock(&ubifs_infos_lock); 1475 list_add_tail(&c->infos_list, &ubifs_infos); 1476 spin_unlock(&ubifs_infos_lock); 1477 1478 if (c->need_recovery) { 1479 if (c->ro_mount) 1480 ubifs_msg(c, "recovery deferred"); 1481 else { 1482 c->need_recovery = 0; 1483 ubifs_msg(c, "recovery completed"); 1484 /* 1485 * GC LEB has to be empty and taken at this point. But 1486 * the journal head LEBs may also be accounted as 1487 * "empty taken" if they are empty. 1488 */ 1489 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1490 } 1491 } else 1492 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1493 1494 err = dbg_check_filesystem(c); 1495 if (err) 1496 goto out_infos; 1497 1498 dbg_debugfs_init_fs(c); 1499 1500 c->mounting = 0; 1501 1502 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1503 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1504 c->ro_mount ? ", R/O mode" : ""); 1505 x = (long long)c->main_lebs * c->leb_size; 1506 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1507 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1508 c->leb_size, c->leb_size >> 10, c->min_io_size, 1509 c->max_write_size); 1510 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)", 1511 x, x >> 20, c->main_lebs, c->max_leb_cnt, 1512 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1513 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1514 c->report_rp_size, c->report_rp_size >> 10); 1515 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1516 c->fmt_version, c->ro_compat_version, 1517 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1518 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1519 1520 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1521 dbg_gen("data journal heads: %d", 1522 c->jhead_cnt - NONDATA_JHEADS_CNT); 1523 dbg_gen("log LEBs: %d (%d - %d)", 1524 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1525 dbg_gen("LPT area LEBs: %d (%d - %d)", 1526 c->lpt_lebs, c->lpt_first, c->lpt_last); 1527 dbg_gen("orphan area LEBs: %d (%d - %d)", 1528 c->orph_lebs, c->orph_first, c->orph_last); 1529 dbg_gen("main area LEBs: %d (%d - %d)", 1530 c->main_lebs, c->main_first, c->leb_cnt - 1); 1531 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1532 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)", 1533 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1534 c->bi.old_idx_sz >> 20); 1535 dbg_gen("key hash type: %d", c->key_hash_type); 1536 dbg_gen("tree fanout: %d", c->fanout); 1537 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1538 dbg_gen("max. znode size %d", c->max_znode_sz); 1539 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1540 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1541 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1542 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1543 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1544 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1545 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1546 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1547 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1548 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1549 dbg_gen("dead watermark: %d", c->dead_wm); 1550 dbg_gen("dark watermark: %d", c->dark_wm); 1551 dbg_gen("LEB overhead: %d", c->leb_overhead); 1552 x = (long long)c->main_lebs * c->dark_wm; 1553 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1554 x, x >> 10, x >> 20); 1555 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1556 c->max_bud_bytes, c->max_bud_bytes >> 10, 1557 c->max_bud_bytes >> 20); 1558 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1559 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1560 c->bg_bud_bytes >> 20); 1561 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1562 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1563 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1564 dbg_gen("commit number: %llu", c->cmt_no); 1565 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c)); 1566 dbg_gen("max orphans: %d", c->max_orphans); 1567 1568 return 0; 1569 1570 out_infos: 1571 spin_lock(&ubifs_infos_lock); 1572 list_del(&c->infos_list); 1573 spin_unlock(&ubifs_infos_lock); 1574 out_orphans: 1575 free_orphans(c); 1576 out_journal: 1577 destroy_journal(c); 1578 out_lpt: 1579 ubifs_lpt_free(c, 0); 1580 out_master: 1581 kfree(c->mst_node); 1582 kfree(c->rcvrd_mst_node); 1583 if (c->bgt) 1584 kthread_stop(c->bgt); 1585 out_wbufs: 1586 free_wbufs(c); 1587 out_cbuf: 1588 kfree(c->cbuf); 1589 out_auth: 1590 ubifs_exit_authentication(c); 1591 out_free: 1592 kfree(c->write_reserve_buf); 1593 kfree(c->bu.buf); 1594 vfree(c->ileb_buf); 1595 vfree(c->sbuf); 1596 kfree(c->bottom_up_buf); 1597 kfree(c->sup_node); 1598 ubifs_sysfs_unregister(c); 1599 out_debugging: 1600 ubifs_debugging_exit(c); 1601 return err; 1602 } 1603 1604 /** 1605 * ubifs_umount - un-mount UBIFS file-system. 1606 * @c: UBIFS file-system description object 1607 * 1608 * Note, this function is called to free allocated resourced when un-mounting, 1609 * as well as free resources when an error occurred while we were half way 1610 * through mounting (error path cleanup function). So it has to make sure the 1611 * resource was actually allocated before freeing it. 1612 */ 1613 static void ubifs_umount(struct ubifs_info *c) 1614 { 1615 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1616 c->vi.vol_id); 1617 1618 dbg_debugfs_exit_fs(c); 1619 spin_lock(&ubifs_infos_lock); 1620 list_del(&c->infos_list); 1621 spin_unlock(&ubifs_infos_lock); 1622 1623 if (c->bgt) 1624 kthread_stop(c->bgt); 1625 1626 destroy_journal(c); 1627 free_wbufs(c); 1628 free_orphans(c); 1629 ubifs_lpt_free(c, 0); 1630 ubifs_exit_authentication(c); 1631 1632 ubifs_release_options(c); 1633 kfree(c->cbuf); 1634 kfree(c->rcvrd_mst_node); 1635 kfree(c->mst_node); 1636 kfree(c->write_reserve_buf); 1637 kfree(c->bu.buf); 1638 vfree(c->ileb_buf); 1639 vfree(c->sbuf); 1640 kfree(c->bottom_up_buf); 1641 kfree(c->sup_node); 1642 ubifs_debugging_exit(c); 1643 ubifs_sysfs_unregister(c); 1644 } 1645 1646 /** 1647 * ubifs_remount_rw - re-mount in read-write mode. 1648 * @c: UBIFS file-system description object 1649 * 1650 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1651 * mode. This function allocates the needed resources and re-mounts UBIFS in 1652 * read-write mode. 1653 */ 1654 static int ubifs_remount_rw(struct ubifs_info *c) 1655 { 1656 int err, lnum; 1657 1658 if (c->rw_incompat) { 1659 ubifs_err(c, "the file-system is not R/W-compatible"); 1660 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1661 c->fmt_version, c->ro_compat_version, 1662 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1663 return -EROFS; 1664 } 1665 1666 mutex_lock(&c->umount_mutex); 1667 dbg_save_space_info(c); 1668 c->remounting_rw = 1; 1669 c->ro_mount = 0; 1670 1671 if (c->space_fixup) { 1672 err = ubifs_fixup_free_space(c); 1673 if (err) 1674 goto out; 1675 } 1676 1677 err = check_free_space(c); 1678 if (err) 1679 goto out; 1680 1681 if (c->need_recovery) { 1682 ubifs_msg(c, "completing deferred recovery"); 1683 err = ubifs_write_rcvrd_mst_node(c); 1684 if (err) 1685 goto out; 1686 if (!ubifs_authenticated(c)) { 1687 err = ubifs_recover_size(c, true); 1688 if (err) 1689 goto out; 1690 } 1691 err = ubifs_clean_lebs(c, c->sbuf); 1692 if (err) 1693 goto out; 1694 err = ubifs_recover_inl_heads(c, c->sbuf); 1695 if (err) 1696 goto out; 1697 } else { 1698 /* A readonly mount is not allowed to have orphans */ 1699 ubifs_assert(c, c->tot_orphans == 0); 1700 err = ubifs_clear_orphans(c); 1701 if (err) 1702 goto out; 1703 } 1704 1705 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1706 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1707 err = ubifs_write_master(c); 1708 if (err) 1709 goto out; 1710 } 1711 1712 if (c->superblock_need_write) { 1713 struct ubifs_sb_node *sup = c->sup_node; 1714 1715 err = ubifs_write_sb_node(c, sup); 1716 if (err) 1717 goto out; 1718 1719 c->superblock_need_write = 0; 1720 } 1721 1722 c->ileb_buf = vmalloc(c->leb_size); 1723 if (!c->ileb_buf) { 1724 err = -ENOMEM; 1725 goto out; 1726 } 1727 1728 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1729 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1730 if (!c->write_reserve_buf) { 1731 err = -ENOMEM; 1732 goto out; 1733 } 1734 1735 err = ubifs_lpt_init(c, 0, 1); 1736 if (err) 1737 goto out; 1738 1739 /* Create background thread */ 1740 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name); 1741 if (IS_ERR(c->bgt)) { 1742 err = PTR_ERR(c->bgt); 1743 c->bgt = NULL; 1744 ubifs_err(c, "cannot spawn \"%s\", error %d", 1745 c->bgt_name, err); 1746 goto out; 1747 } 1748 1749 c->orph_buf = vmalloc(c->leb_size); 1750 if (!c->orph_buf) { 1751 err = -ENOMEM; 1752 goto out; 1753 } 1754 1755 /* Check for enough log space */ 1756 lnum = c->lhead_lnum + 1; 1757 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1758 lnum = UBIFS_LOG_LNUM; 1759 if (lnum == c->ltail_lnum) { 1760 err = ubifs_consolidate_log(c); 1761 if (err) 1762 goto out; 1763 } 1764 1765 if (c->need_recovery) { 1766 err = ubifs_rcvry_gc_commit(c); 1767 if (err) 1768 goto out; 1769 1770 if (ubifs_authenticated(c)) { 1771 err = ubifs_recover_size(c, false); 1772 if (err) 1773 goto out; 1774 } 1775 } else { 1776 err = ubifs_leb_unmap(c, c->gc_lnum); 1777 } 1778 if (err) 1779 goto out; 1780 1781 dbg_gen("re-mounted read-write"); 1782 c->remounting_rw = 0; 1783 1784 if (c->need_recovery) { 1785 c->need_recovery = 0; 1786 ubifs_msg(c, "deferred recovery completed"); 1787 } else { 1788 /* 1789 * Do not run the debugging space check if the were doing 1790 * recovery, because when we saved the information we had the 1791 * file-system in a state where the TNC and lprops has been 1792 * modified in memory, but all the I/O operations (including a 1793 * commit) were deferred. So the file-system was in 1794 * "non-committed" state. Now the file-system is in committed 1795 * state, and of course the amount of free space will change 1796 * because, for example, the old index size was imprecise. 1797 */ 1798 err = dbg_check_space_info(c); 1799 } 1800 1801 mutex_unlock(&c->umount_mutex); 1802 return err; 1803 1804 out: 1805 c->ro_mount = 1; 1806 vfree(c->orph_buf); 1807 c->orph_buf = NULL; 1808 if (c->bgt) { 1809 kthread_stop(c->bgt); 1810 c->bgt = NULL; 1811 } 1812 kfree(c->write_reserve_buf); 1813 c->write_reserve_buf = NULL; 1814 vfree(c->ileb_buf); 1815 c->ileb_buf = NULL; 1816 ubifs_lpt_free(c, 1); 1817 c->remounting_rw = 0; 1818 mutex_unlock(&c->umount_mutex); 1819 return err; 1820 } 1821 1822 /** 1823 * ubifs_remount_ro - re-mount in read-only mode. 1824 * @c: UBIFS file-system description object 1825 * 1826 * We assume VFS has stopped writing. Possibly the background thread could be 1827 * running a commit, however kthread_stop will wait in that case. 1828 */ 1829 static void ubifs_remount_ro(struct ubifs_info *c) 1830 { 1831 int i, err; 1832 1833 ubifs_assert(c, !c->need_recovery); 1834 ubifs_assert(c, !c->ro_mount); 1835 1836 mutex_lock(&c->umount_mutex); 1837 if (c->bgt) { 1838 kthread_stop(c->bgt); 1839 c->bgt = NULL; 1840 } 1841 1842 dbg_save_space_info(c); 1843 1844 for (i = 0; i < c->jhead_cnt; i++) { 1845 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1846 if (err) 1847 ubifs_ro_mode(c, err); 1848 } 1849 1850 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1851 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1852 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1853 err = ubifs_write_master(c); 1854 if (err) 1855 ubifs_ro_mode(c, err); 1856 1857 vfree(c->orph_buf); 1858 c->orph_buf = NULL; 1859 kfree(c->write_reserve_buf); 1860 c->write_reserve_buf = NULL; 1861 vfree(c->ileb_buf); 1862 c->ileb_buf = NULL; 1863 ubifs_lpt_free(c, 1); 1864 c->ro_mount = 1; 1865 err = dbg_check_space_info(c); 1866 if (err) 1867 ubifs_ro_mode(c, err); 1868 mutex_unlock(&c->umount_mutex); 1869 } 1870 1871 static void ubifs_put_super(struct super_block *sb) 1872 { 1873 int i; 1874 struct ubifs_info *c = sb->s_fs_info; 1875 1876 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1877 1878 /* 1879 * The following asserts are only valid if there has not been a failure 1880 * of the media. For example, there will be dirty inodes if we failed 1881 * to write them back because of I/O errors. 1882 */ 1883 if (!c->ro_error) { 1884 ubifs_assert(c, c->bi.idx_growth == 0); 1885 ubifs_assert(c, c->bi.dd_growth == 0); 1886 ubifs_assert(c, c->bi.data_growth == 0); 1887 } 1888 1889 /* 1890 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1891 * and file system un-mount. Namely, it prevents the shrinker from 1892 * picking this superblock for shrinking - it will be just skipped if 1893 * the mutex is locked. 1894 */ 1895 mutex_lock(&c->umount_mutex); 1896 if (!c->ro_mount) { 1897 /* 1898 * First of all kill the background thread to make sure it does 1899 * not interfere with un-mounting and freeing resources. 1900 */ 1901 if (c->bgt) { 1902 kthread_stop(c->bgt); 1903 c->bgt = NULL; 1904 } 1905 1906 /* 1907 * On fatal errors c->ro_error is set to 1, in which case we do 1908 * not write the master node. 1909 */ 1910 if (!c->ro_error) { 1911 int err; 1912 1913 /* Synchronize write-buffers */ 1914 for (i = 0; i < c->jhead_cnt; i++) { 1915 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1916 if (err) 1917 ubifs_ro_mode(c, err); 1918 } 1919 1920 /* 1921 * We are being cleanly unmounted which means the 1922 * orphans were killed - indicate this in the master 1923 * node. Also save the reserved GC LEB number. 1924 */ 1925 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1926 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1927 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1928 err = ubifs_write_master(c); 1929 if (err) 1930 /* 1931 * Recovery will attempt to fix the master area 1932 * next mount, so we just print a message and 1933 * continue to unmount normally. 1934 */ 1935 ubifs_err(c, "failed to write master node, error %d", 1936 err); 1937 } else { 1938 for (i = 0; i < c->jhead_cnt; i++) 1939 /* Make sure write-buffer timers are canceled */ 1940 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1941 } 1942 } 1943 1944 ubifs_umount(c); 1945 ubi_close_volume(c->ubi); 1946 mutex_unlock(&c->umount_mutex); 1947 } 1948 1949 static int ubifs_reconfigure(struct fs_context *fc) 1950 { 1951 struct ubifs_fs_context *ctx = fc->fs_private; 1952 struct super_block *sb = fc->root->d_sb; 1953 int err; 1954 struct ubifs_info *c = sb->s_fs_info; 1955 1956 sync_filesystem(sb); 1957 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, fc->sb_flags); 1958 1959 /* 1960 * Apply the mount option changes. 1961 * auth_key_name and auth_hash_name are ignored on remount. 1962 */ 1963 c->mount_opts = ctx->mount_opts; 1964 c->bulk_read = ctx->bulk_read; 1965 c->no_chk_data_crc = ctx->no_chk_data_crc; 1966 c->default_compr = ctx->default_compr; 1967 c->assert_action = ctx->assert_action; 1968 1969 if (c->ro_mount && !(fc->sb_flags & SB_RDONLY)) { 1970 if (c->ro_error) { 1971 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1972 return -EROFS; 1973 } 1974 if (c->ro_media) { 1975 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1976 return -EROFS; 1977 } 1978 err = ubifs_remount_rw(c); 1979 if (err) 1980 return err; 1981 } else if (!c->ro_mount && (fc->sb_flags & SB_RDONLY)) { 1982 if (c->ro_error) { 1983 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1984 return -EROFS; 1985 } 1986 ubifs_remount_ro(c); 1987 } 1988 1989 if (c->bulk_read == 1) 1990 bu_init(c); 1991 else { 1992 dbg_gen("disable bulk-read"); 1993 mutex_lock(&c->bu_mutex); 1994 kfree(c->bu.buf); 1995 c->bu.buf = NULL; 1996 mutex_unlock(&c->bu_mutex); 1997 } 1998 1999 if (!c->need_recovery) 2000 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 2001 2002 return 0; 2003 } 2004 2005 const struct super_operations ubifs_super_operations = { 2006 .alloc_inode = ubifs_alloc_inode, 2007 .free_inode = ubifs_free_inode, 2008 .put_super = ubifs_put_super, 2009 .write_inode = ubifs_write_inode, 2010 .drop_inode = ubifs_drop_inode, 2011 .evict_inode = ubifs_evict_inode, 2012 .statfs = ubifs_statfs, 2013 .dirty_inode = ubifs_dirty_inode, 2014 .show_options = ubifs_show_options, 2015 .sync_fs = ubifs_sync_fs, 2016 }; 2017 2018 /** 2019 * open_ubi - parse UBI device name string and open the UBI device. 2020 * @fc: The filesystem context 2021 * @mode: UBI volume open mode 2022 * 2023 * The primary method of mounting UBIFS is by specifying the UBI volume 2024 * character device node path. However, UBIFS may also be mounted without any 2025 * character device node using one of the following methods: 2026 * 2027 * o ubiX_Y - mount UBI device number X, volume Y; 2028 * o ubiY - mount UBI device number 0, volume Y; 2029 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2030 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2031 * 2032 * Alternative '!' separator may be used instead of ':' (because some shells 2033 * like busybox may interpret ':' as an NFS host name separator). This function 2034 * returns UBI volume description object in case of success and a negative 2035 * error code in case of failure. 2036 */ 2037 static struct ubi_volume_desc *open_ubi(struct fs_context *fc, int mode) 2038 { 2039 struct ubi_volume_desc *ubi; 2040 const char *name = fc->source; 2041 int dev, vol; 2042 char *endptr; 2043 2044 /* First, try to open using the device node path method */ 2045 ubi = ubi_open_volume_path(name, mode); 2046 if (!IS_ERR(ubi)) 2047 return ubi; 2048 2049 /* Try the "nodev" method */ 2050 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2051 goto invalid_source; 2052 2053 /* ubi:NAME method */ 2054 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2055 return ubi_open_volume_nm(0, name + 4, mode); 2056 2057 if (!isdigit(name[3])) 2058 goto invalid_source; 2059 2060 dev = simple_strtoul(name + 3, &endptr, 0); 2061 2062 /* ubiY method */ 2063 if (*endptr == '\0') 2064 return ubi_open_volume(0, dev, mode); 2065 2066 /* ubiX_Y method */ 2067 if (*endptr == '_' && isdigit(endptr[1])) { 2068 vol = simple_strtoul(endptr + 1, &endptr, 0); 2069 if (*endptr != '\0') 2070 goto invalid_source; 2071 return ubi_open_volume(dev, vol, mode); 2072 } 2073 2074 /* ubiX:NAME method */ 2075 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2076 return ubi_open_volume_nm(dev, ++endptr, mode); 2077 2078 invalid_source: 2079 return ERR_PTR(invalf(fc, "Invalid source name")); 2080 } 2081 2082 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2083 { 2084 struct ubifs_info *c; 2085 2086 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2087 if (c) { 2088 spin_lock_init(&c->cnt_lock); 2089 spin_lock_init(&c->cs_lock); 2090 spin_lock_init(&c->buds_lock); 2091 spin_lock_init(&c->space_lock); 2092 spin_lock_init(&c->orphan_lock); 2093 init_rwsem(&c->commit_sem); 2094 mutex_init(&c->lp_mutex); 2095 mutex_init(&c->tnc_mutex); 2096 mutex_init(&c->log_mutex); 2097 mutex_init(&c->umount_mutex); 2098 mutex_init(&c->bu_mutex); 2099 mutex_init(&c->write_reserve_mutex); 2100 init_waitqueue_head(&c->cmt_wq); 2101 init_waitqueue_head(&c->reserve_space_wq); 2102 atomic_set(&c->need_wait_space, 0); 2103 c->buds = RB_ROOT; 2104 c->old_idx = RB_ROOT; 2105 c->size_tree = RB_ROOT; 2106 c->orph_tree = RB_ROOT; 2107 INIT_LIST_HEAD(&c->infos_list); 2108 INIT_LIST_HEAD(&c->idx_gc); 2109 INIT_LIST_HEAD(&c->replay_list); 2110 INIT_LIST_HEAD(&c->replay_buds); 2111 INIT_LIST_HEAD(&c->uncat_list); 2112 INIT_LIST_HEAD(&c->empty_list); 2113 INIT_LIST_HEAD(&c->freeable_list); 2114 INIT_LIST_HEAD(&c->frdi_idx_list); 2115 INIT_LIST_HEAD(&c->unclean_leb_list); 2116 INIT_LIST_HEAD(&c->old_buds); 2117 INIT_LIST_HEAD(&c->orph_list); 2118 INIT_LIST_HEAD(&c->orph_new); 2119 c->no_chk_data_crc = 1; 2120 c->assert_action = ASSACT_RO; 2121 2122 c->highest_inum = UBIFS_FIRST_INO; 2123 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2124 2125 ubi_get_volume_info(ubi, &c->vi); 2126 ubi_get_device_info(c->vi.ubi_num, &c->di); 2127 } 2128 return c; 2129 } 2130 2131 static int ubifs_fill_super(struct super_block *sb, struct fs_context *fc) 2132 { 2133 struct ubifs_info *c = sb->s_fs_info; 2134 struct ubifs_fs_context *ctx = fc->fs_private; 2135 struct inode *root; 2136 int err; 2137 2138 c->vfs_sb = sb; 2139 /* Re-open the UBI device in read-write mode */ 2140 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2141 if (IS_ERR(c->ubi)) { 2142 err = PTR_ERR(c->ubi); 2143 goto out; 2144 } 2145 2146 /* Copy in parsed mount options */ 2147 c->mount_opts = ctx->mount_opts; 2148 c->auth_key_name = ctx->auth_key_name; 2149 c->auth_hash_name = ctx->auth_hash_name; 2150 c->no_chk_data_crc = ctx->no_chk_data_crc; 2151 c->bulk_read = ctx->bulk_read; 2152 c->default_compr = ctx->default_compr; 2153 c->assert_action = ctx->assert_action; 2154 2155 /* ubifs_info owns auth strings now */ 2156 ctx->auth_key_name = NULL; 2157 ctx->auth_hash_name = NULL; 2158 2159 /* 2160 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2161 * UBIFS, I/O is not deferred, it is done immediately in read_folio, 2162 * which means the user would have to wait not just for their own I/O 2163 * but the read-ahead I/O as well i.e. completely pointless. 2164 * 2165 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2166 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2167 * writeback happening. 2168 */ 2169 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2170 c->vi.vol_id); 2171 if (err) 2172 goto out_close; 2173 sb->s_bdi->ra_pages = 0; 2174 sb->s_bdi->io_pages = 0; 2175 2176 sb->s_fs_info = c; 2177 sb->s_magic = UBIFS_SUPER_MAGIC; 2178 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2179 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2180 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2181 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2182 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2183 sb->s_op = &ubifs_super_operations; 2184 sb->s_xattr = ubifs_xattr_handlers; 2185 fscrypt_set_ops(sb, &ubifs_crypt_operations); 2186 2187 mutex_lock(&c->umount_mutex); 2188 err = mount_ubifs(c); 2189 if (err) { 2190 ubifs_assert(c, err < 0); 2191 goto out_unlock; 2192 } 2193 2194 /* Read the root inode */ 2195 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2196 if (IS_ERR(root)) { 2197 err = PTR_ERR(root); 2198 goto out_umount; 2199 } 2200 2201 generic_set_sb_d_ops(sb); 2202 sb->s_root = d_make_root(root); 2203 if (!sb->s_root) { 2204 err = -ENOMEM; 2205 goto out_umount; 2206 } 2207 2208 super_set_uuid(sb, c->uuid, sizeof(c->uuid)); 2209 super_set_sysfs_name_generic(sb, UBIFS_DFS_DIR_NAME, 2210 c->vi.ubi_num, c->vi.vol_id); 2211 2212 mutex_unlock(&c->umount_mutex); 2213 return 0; 2214 2215 out_umount: 2216 ubifs_umount(c); 2217 out_unlock: 2218 mutex_unlock(&c->umount_mutex); 2219 out_close: 2220 ubifs_release_options(c); 2221 ubi_close_volume(c->ubi); 2222 out: 2223 return err; 2224 } 2225 2226 static int sb_test(struct super_block *sb, struct fs_context *fc) 2227 { 2228 struct ubifs_info *c1 = fc->s_fs_info; 2229 struct ubifs_info *c = sb->s_fs_info; 2230 2231 return c->vi.cdev == c1->vi.cdev; 2232 } 2233 2234 static int ubifs_get_tree(struct fs_context *fc) 2235 { 2236 struct ubi_volume_desc *ubi; 2237 struct ubifs_info *c; 2238 struct super_block *sb; 2239 int err; 2240 2241 if (!fc->source || !*fc->source) 2242 return invalf(fc, "No source specified"); 2243 2244 dbg_gen("name %s, flags %#x", fc->source, fc->sb_flags); 2245 2246 /* 2247 * Get UBI device number and volume ID. Mount it read-only so far 2248 * because this might be a new mount point, and UBI allows only one 2249 * read-write user at a time. 2250 */ 2251 ubi = open_ubi(fc, UBI_READONLY); 2252 if (IS_ERR(ubi)) { 2253 err = PTR_ERR(ubi); 2254 if (!(fc->sb_flags & SB_SILENT)) 2255 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2256 current->pid, fc->source, err); 2257 return err; 2258 } 2259 2260 c = alloc_ubifs_info(ubi); 2261 if (!c) { 2262 err = -ENOMEM; 2263 goto out_close; 2264 } 2265 fc->s_fs_info = c; 2266 2267 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2268 2269 sb = sget_fc(fc, sb_test, set_anon_super_fc); 2270 if (IS_ERR(sb)) { 2271 err = PTR_ERR(sb); 2272 kfree(c); 2273 goto out_close; 2274 } 2275 2276 if (sb->s_root) { 2277 struct ubifs_info *c1 = sb->s_fs_info; 2278 kfree(c); 2279 /* A new mount point for already mounted UBIFS */ 2280 dbg_gen("this ubi volume is already mounted"); 2281 if (!!(fc->sb_flags & SB_RDONLY) != c1->ro_mount) { 2282 err = -EBUSY; 2283 goto out_deact; 2284 } 2285 } else { 2286 err = ubifs_fill_super(sb, fc); 2287 if (err) 2288 goto out_deact; 2289 /* We do not support atime */ 2290 sb->s_flags |= SB_ACTIVE; 2291 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 2292 ubifs_msg(c, "full atime support is enabled."); 2293 else 2294 sb->s_flags |= SB_NOATIME; 2295 } 2296 2297 /* 'fill_super()' opens ubi again so we must close it here */ 2298 ubi_close_volume(ubi); 2299 2300 fc->root = dget(sb->s_root); 2301 return 0; 2302 2303 out_deact: 2304 deactivate_locked_super(sb); 2305 out_close: 2306 ubi_close_volume(ubi); 2307 return err; 2308 } 2309 2310 static void kill_ubifs_super(struct super_block *s) 2311 { 2312 struct ubifs_info *c = s->s_fs_info; 2313 kill_anon_super(s); 2314 kfree(c); 2315 } 2316 2317 static void ubifs_free_fc(struct fs_context *fc) 2318 { 2319 struct ubifs_fs_context *ctx = fc->fs_private; 2320 2321 if (ctx) { 2322 kfree(ctx->auth_key_name); 2323 kfree(ctx->auth_hash_name); 2324 kfree(ctx); 2325 } 2326 } 2327 2328 static const struct fs_context_operations ubifs_context_ops = { 2329 .free = ubifs_free_fc, 2330 .parse_param = ubifs_parse_param, 2331 .get_tree = ubifs_get_tree, 2332 .reconfigure = ubifs_reconfigure, 2333 }; 2334 2335 static int ubifs_init_fs_context(struct fs_context *fc) 2336 { 2337 struct ubifs_fs_context *ctx; 2338 2339 ctx = kzalloc(sizeof(struct ubifs_fs_context), GFP_KERNEL); 2340 if (!ctx) 2341 return -ENOMEM; 2342 2343 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) { 2344 /* Iniitialize for first mount */ 2345 ctx->no_chk_data_crc = 1; 2346 ctx->assert_action = ASSACT_RO; 2347 } else { 2348 struct ubifs_info *c = fc->root->d_sb->s_fs_info; 2349 2350 /* 2351 * Preserve existing options across remounts. 2352 * auth_key_name and auth_hash_name are not remountable. 2353 */ 2354 ctx->mount_opts = c->mount_opts; 2355 ctx->bulk_read = c->bulk_read; 2356 ctx->no_chk_data_crc = c->no_chk_data_crc; 2357 ctx->default_compr = c->default_compr; 2358 ctx->assert_action = c->assert_action; 2359 } 2360 2361 fc->ops = &ubifs_context_ops; 2362 fc->fs_private = ctx; 2363 2364 return 0; 2365 } 2366 2367 static struct file_system_type ubifs_fs_type = { 2368 .name = "ubifs", 2369 .owner = THIS_MODULE, 2370 .init_fs_context = ubifs_init_fs_context, 2371 .parameters = ubifs_fs_param_spec, 2372 .kill_sb = kill_ubifs_super, 2373 }; 2374 MODULE_ALIAS_FS("ubifs"); 2375 2376 /* 2377 * Inode slab cache constructor. 2378 */ 2379 static void inode_slab_ctor(void *obj) 2380 { 2381 struct ubifs_inode *ui = obj; 2382 inode_init_once(&ui->vfs_inode); 2383 } 2384 2385 static int __init ubifs_init(void) 2386 { 2387 int err = -ENOMEM; 2388 2389 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2390 2391 /* Make sure node sizes are 8-byte aligned */ 2392 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2393 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2394 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2395 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2396 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2397 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2398 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2399 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2400 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2401 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2402 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2403 2404 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2405 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2406 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2407 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2408 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2409 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2410 2411 /* Check min. node size */ 2412 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2413 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2414 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2415 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2416 2417 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2418 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2419 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2420 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2421 2422 /* Defined node sizes */ 2423 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2424 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2425 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2426 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2427 2428 /* 2429 * We use 2 bit wide bit-fields to store compression type, which should 2430 * be amended if more compressors are added. The bit-fields are: 2431 * @compr_type in 'struct ubifs_inode', @default_compr in 2432 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2433 */ 2434 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2435 2436 /* 2437 * We require that PAGE_SIZE is greater-than-or-equal-to 2438 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2439 */ 2440 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2441 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2442 current->pid, (unsigned int)PAGE_SIZE); 2443 return -EINVAL; 2444 } 2445 2446 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2447 sizeof(struct ubifs_inode), 0, 2448 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 2449 &inode_slab_ctor); 2450 if (!ubifs_inode_slab) 2451 return -ENOMEM; 2452 2453 ubifs_shrinker_info = shrinker_alloc(0, "ubifs-slab"); 2454 if (!ubifs_shrinker_info) 2455 goto out_slab; 2456 2457 ubifs_shrinker_info->count_objects = ubifs_shrink_count; 2458 ubifs_shrinker_info->scan_objects = ubifs_shrink_scan; 2459 2460 shrinker_register(ubifs_shrinker_info); 2461 2462 err = ubifs_compressors_init(); 2463 if (err) 2464 goto out_shrinker; 2465 2466 dbg_debugfs_init(); 2467 2468 err = ubifs_sysfs_init(); 2469 if (err) 2470 goto out_dbg; 2471 2472 err = register_filesystem(&ubifs_fs_type); 2473 if (err) { 2474 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2475 current->pid, err); 2476 goto out_sysfs; 2477 } 2478 return 0; 2479 2480 out_sysfs: 2481 ubifs_sysfs_exit(); 2482 out_dbg: 2483 dbg_debugfs_exit(); 2484 ubifs_compressors_exit(); 2485 out_shrinker: 2486 shrinker_free(ubifs_shrinker_info); 2487 out_slab: 2488 kmem_cache_destroy(ubifs_inode_slab); 2489 return err; 2490 } 2491 /* late_initcall to let compressors initialize first */ 2492 late_initcall(ubifs_init); 2493 2494 static void __exit ubifs_exit(void) 2495 { 2496 WARN_ON(!list_empty(&ubifs_infos)); 2497 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2498 2499 dbg_debugfs_exit(); 2500 ubifs_sysfs_exit(); 2501 ubifs_compressors_exit(); 2502 shrinker_free(ubifs_shrinker_info); 2503 2504 /* 2505 * Make sure all delayed rcu free inodes are flushed before we 2506 * destroy cache. 2507 */ 2508 rcu_barrier(); 2509 kmem_cache_destroy(ubifs_inode_slab); 2510 unregister_filesystem(&ubifs_fs_type); 2511 } 2512 module_exit(ubifs_exit); 2513 2514 MODULE_LICENSE("GPL"); 2515 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2516 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2517 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2518