1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include "ubifs.h" 38 39 /* Slab cache for UBIFS inodes */ 40 struct kmem_cache *ubifs_inode_slab; 41 42 /* UBIFS TNC shrinker description */ 43 static struct shrinker ubifs_shrinker_info = { 44 .shrink = ubifs_shrinker, 45 .seeks = DEFAULT_SEEKS, 46 }; 47 48 /** 49 * validate_inode - validate inode. 50 * @c: UBIFS file-system description object 51 * @inode: the inode to validate 52 * 53 * This is a helper function for 'ubifs_iget()' which validates various fields 54 * of a newly built inode to make sure they contain sane values and prevent 55 * possible vulnerabilities. Returns zero if the inode is all right and 56 * a non-zero error code if not. 57 */ 58 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 59 { 60 int err; 61 const struct ubifs_inode *ui = ubifs_inode(inode); 62 63 if (inode->i_size > c->max_inode_sz) { 64 ubifs_err("inode is too large (%lld)", 65 (long long)inode->i_size); 66 return 1; 67 } 68 69 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 70 ubifs_err("unknown compression type %d", ui->compr_type); 71 return 2; 72 } 73 74 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 75 return 3; 76 77 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 78 return 4; 79 80 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 81 return 5; 82 83 if (!ubifs_compr_present(ui->compr_type)) { 84 ubifs_warn("inode %lu uses '%s' compression, but it was not " 85 "compiled in", inode->i_ino, 86 ubifs_compr_name(ui->compr_type)); 87 } 88 89 err = dbg_check_dir_size(c, inode); 90 return err; 91 } 92 93 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 94 { 95 int err; 96 union ubifs_key key; 97 struct ubifs_ino_node *ino; 98 struct ubifs_info *c = sb->s_fs_info; 99 struct inode *inode; 100 struct ubifs_inode *ui; 101 102 dbg_gen("inode %lu", inum); 103 104 inode = iget_locked(sb, inum); 105 if (!inode) 106 return ERR_PTR(-ENOMEM); 107 if (!(inode->i_state & I_NEW)) 108 return inode; 109 ui = ubifs_inode(inode); 110 111 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 112 if (!ino) { 113 err = -ENOMEM; 114 goto out; 115 } 116 117 ino_key_init(c, &key, inode->i_ino); 118 119 err = ubifs_tnc_lookup(c, &key, ino); 120 if (err) 121 goto out_ino; 122 123 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 124 inode->i_nlink = le32_to_cpu(ino->nlink); 125 inode->i_uid = le32_to_cpu(ino->uid); 126 inode->i_gid = le32_to_cpu(ino->gid); 127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 133 inode->i_mode = le32_to_cpu(ino->mode); 134 inode->i_size = le64_to_cpu(ino->size); 135 136 ui->data_len = le32_to_cpu(ino->data_len); 137 ui->flags = le32_to_cpu(ino->flags); 138 ui->compr_type = le16_to_cpu(ino->compr_type); 139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 141 ui->xattr_size = le32_to_cpu(ino->xattr_size); 142 ui->xattr_names = le32_to_cpu(ino->xattr_names); 143 ui->synced_i_size = ui->ui_size = inode->i_size; 144 145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 146 147 err = validate_inode(c, inode); 148 if (err) 149 goto out_invalid; 150 151 /* Disable read-ahead */ 152 inode->i_mapping->backing_dev_info = &c->bdi; 153 154 switch (inode->i_mode & S_IFMT) { 155 case S_IFREG: 156 inode->i_mapping->a_ops = &ubifs_file_address_operations; 157 inode->i_op = &ubifs_file_inode_operations; 158 inode->i_fop = &ubifs_file_operations; 159 if (ui->xattr) { 160 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 161 if (!ui->data) { 162 err = -ENOMEM; 163 goto out_ino; 164 } 165 memcpy(ui->data, ino->data, ui->data_len); 166 ((char *)ui->data)[ui->data_len] = '\0'; 167 } else if (ui->data_len != 0) { 168 err = 10; 169 goto out_invalid; 170 } 171 break; 172 case S_IFDIR: 173 inode->i_op = &ubifs_dir_inode_operations; 174 inode->i_fop = &ubifs_dir_operations; 175 if (ui->data_len != 0) { 176 err = 11; 177 goto out_invalid; 178 } 179 break; 180 case S_IFLNK: 181 inode->i_op = &ubifs_symlink_inode_operations; 182 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 183 err = 12; 184 goto out_invalid; 185 } 186 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 187 if (!ui->data) { 188 err = -ENOMEM; 189 goto out_ino; 190 } 191 memcpy(ui->data, ino->data, ui->data_len); 192 ((char *)ui->data)[ui->data_len] = '\0'; 193 break; 194 case S_IFBLK: 195 case S_IFCHR: 196 { 197 dev_t rdev; 198 union ubifs_dev_desc *dev; 199 200 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 201 if (!ui->data) { 202 err = -ENOMEM; 203 goto out_ino; 204 } 205 206 dev = (union ubifs_dev_desc *)ino->data; 207 if (ui->data_len == sizeof(dev->new)) 208 rdev = new_decode_dev(le32_to_cpu(dev->new)); 209 else if (ui->data_len == sizeof(dev->huge)) 210 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 211 else { 212 err = 13; 213 goto out_invalid; 214 } 215 memcpy(ui->data, ino->data, ui->data_len); 216 inode->i_op = &ubifs_file_inode_operations; 217 init_special_inode(inode, inode->i_mode, rdev); 218 break; 219 } 220 case S_IFSOCK: 221 case S_IFIFO: 222 inode->i_op = &ubifs_file_inode_operations; 223 init_special_inode(inode, inode->i_mode, 0); 224 if (ui->data_len != 0) { 225 err = 14; 226 goto out_invalid; 227 } 228 break; 229 default: 230 err = 15; 231 goto out_invalid; 232 } 233 234 kfree(ino); 235 ubifs_set_inode_flags(inode); 236 unlock_new_inode(inode); 237 return inode; 238 239 out_invalid: 240 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 241 dbg_dump_node(c, ino); 242 dbg_dump_inode(c, inode); 243 err = -EINVAL; 244 out_ino: 245 kfree(ino); 246 out: 247 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 248 iget_failed(inode); 249 return ERR_PTR(err); 250 } 251 252 static struct inode *ubifs_alloc_inode(struct super_block *sb) 253 { 254 struct ubifs_inode *ui; 255 256 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 257 if (!ui) 258 return NULL; 259 260 memset((void *)ui + sizeof(struct inode), 0, 261 sizeof(struct ubifs_inode) - sizeof(struct inode)); 262 mutex_init(&ui->ui_mutex); 263 spin_lock_init(&ui->ui_lock); 264 return &ui->vfs_inode; 265 }; 266 267 static void ubifs_destroy_inode(struct inode *inode) 268 { 269 struct ubifs_inode *ui = ubifs_inode(inode); 270 271 kfree(ui->data); 272 kmem_cache_free(ubifs_inode_slab, inode); 273 } 274 275 /* 276 * Note, Linux write-back code calls this without 'i_mutex'. 277 */ 278 static int ubifs_write_inode(struct inode *inode, int wait) 279 { 280 int err = 0; 281 struct ubifs_info *c = inode->i_sb->s_fs_info; 282 struct ubifs_inode *ui = ubifs_inode(inode); 283 284 ubifs_assert(!ui->xattr); 285 if (is_bad_inode(inode)) 286 return 0; 287 288 mutex_lock(&ui->ui_mutex); 289 /* 290 * Due to races between write-back forced by budgeting 291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 292 * have already been synchronized, do not do this again. This might 293 * also happen if it was synchronized in an VFS operation, e.g. 294 * 'ubifs_link()'. 295 */ 296 if (!ui->dirty) { 297 mutex_unlock(&ui->ui_mutex); 298 return 0; 299 } 300 301 /* 302 * As an optimization, do not write orphan inodes to the media just 303 * because this is not needed. 304 */ 305 dbg_gen("inode %lu, mode %#x, nlink %u", 306 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 307 if (inode->i_nlink) { 308 err = ubifs_jnl_write_inode(c, inode); 309 if (err) 310 ubifs_err("can't write inode %lu, error %d", 311 inode->i_ino, err); 312 } 313 314 ui->dirty = 0; 315 mutex_unlock(&ui->ui_mutex); 316 ubifs_release_dirty_inode_budget(c, ui); 317 return err; 318 } 319 320 static void ubifs_delete_inode(struct inode *inode) 321 { 322 int err; 323 struct ubifs_info *c = inode->i_sb->s_fs_info; 324 struct ubifs_inode *ui = ubifs_inode(inode); 325 326 if (ui->xattr) 327 /* 328 * Extended attribute inode deletions are fully handled in 329 * 'ubifs_removexattr()'. These inodes are special and have 330 * limited usage, so there is nothing to do here. 331 */ 332 goto out; 333 334 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 335 ubifs_assert(!atomic_read(&inode->i_count)); 336 ubifs_assert(inode->i_nlink == 0); 337 338 truncate_inode_pages(&inode->i_data, 0); 339 if (is_bad_inode(inode)) 340 goto out; 341 342 ui->ui_size = inode->i_size = 0; 343 err = ubifs_jnl_delete_inode(c, inode); 344 if (err) 345 /* 346 * Worst case we have a lost orphan inode wasting space, so a 347 * simple error message is OK here. 348 */ 349 ubifs_err("can't delete inode %lu, error %d", 350 inode->i_ino, err); 351 352 out: 353 if (ui->dirty) 354 ubifs_release_dirty_inode_budget(c, ui); 355 clear_inode(inode); 356 } 357 358 static void ubifs_dirty_inode(struct inode *inode) 359 { 360 struct ubifs_inode *ui = ubifs_inode(inode); 361 362 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 363 if (!ui->dirty) { 364 ui->dirty = 1; 365 dbg_gen("inode %lu", inode->i_ino); 366 } 367 } 368 369 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 370 { 371 struct ubifs_info *c = dentry->d_sb->s_fs_info; 372 unsigned long long free; 373 __le32 *uuid = (__le32 *)c->uuid; 374 375 free = ubifs_get_free_space(c); 376 dbg_gen("free space %lld bytes (%lld blocks)", 377 free, free >> UBIFS_BLOCK_SHIFT); 378 379 buf->f_type = UBIFS_SUPER_MAGIC; 380 buf->f_bsize = UBIFS_BLOCK_SIZE; 381 buf->f_blocks = c->block_cnt; 382 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 383 if (free > c->report_rp_size) 384 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 385 else 386 buf->f_bavail = 0; 387 buf->f_files = 0; 388 buf->f_ffree = 0; 389 buf->f_namelen = UBIFS_MAX_NLEN; 390 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 391 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 392 return 0; 393 } 394 395 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 396 { 397 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 398 399 if (c->mount_opts.unmount_mode == 2) 400 seq_printf(s, ",fast_unmount"); 401 else if (c->mount_opts.unmount_mode == 1) 402 seq_printf(s, ",norm_unmount"); 403 404 return 0; 405 } 406 407 static int ubifs_sync_fs(struct super_block *sb, int wait) 408 { 409 struct ubifs_info *c = sb->s_fs_info; 410 int i, ret = 0, err; 411 412 if (c->jheads) 413 for (i = 0; i < c->jhead_cnt; i++) { 414 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 415 if (err && !ret) 416 ret = err; 417 } 418 /* 419 * We ought to call sync for c->ubi but it does not have one. If it had 420 * it would in turn call mtd->sync, however mtd operations are 421 * synchronous anyway, so we don't lose any sleep here. 422 */ 423 return ret; 424 } 425 426 /** 427 * init_constants_early - initialize UBIFS constants. 428 * @c: UBIFS file-system description object 429 * 430 * This function initialize UBIFS constants which do not need the superblock to 431 * be read. It also checks that the UBI volume satisfies basic UBIFS 432 * requirements. Returns zero in case of success and a negative error code in 433 * case of failure. 434 */ 435 static int init_constants_early(struct ubifs_info *c) 436 { 437 if (c->vi.corrupted) { 438 ubifs_warn("UBI volume is corrupted - read-only mode"); 439 c->ro_media = 1; 440 } 441 442 if (c->di.ro_mode) { 443 ubifs_msg("read-only UBI device"); 444 c->ro_media = 1; 445 } 446 447 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 448 ubifs_msg("static UBI volume - read-only mode"); 449 c->ro_media = 1; 450 } 451 452 c->leb_cnt = c->vi.size; 453 c->leb_size = c->vi.usable_leb_size; 454 c->half_leb_size = c->leb_size / 2; 455 c->min_io_size = c->di.min_io_size; 456 c->min_io_shift = fls(c->min_io_size) - 1; 457 458 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 459 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 460 c->leb_size, UBIFS_MIN_LEB_SZ); 461 return -EINVAL; 462 } 463 464 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 465 ubifs_err("too few LEBs (%d), min. is %d", 466 c->leb_cnt, UBIFS_MIN_LEB_CNT); 467 return -EINVAL; 468 } 469 470 if (!is_power_of_2(c->min_io_size)) { 471 ubifs_err("bad min. I/O size %d", c->min_io_size); 472 return -EINVAL; 473 } 474 475 /* 476 * UBIFS aligns all node to 8-byte boundary, so to make function in 477 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 478 * less than 8. 479 */ 480 if (c->min_io_size < 8) { 481 c->min_io_size = 8; 482 c->min_io_shift = 3; 483 } 484 485 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 486 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 487 488 /* 489 * Initialize node length ranges which are mostly needed for node 490 * length validation. 491 */ 492 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 493 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 494 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 495 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 496 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 497 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 498 499 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 500 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 501 c->ranges[UBIFS_ORPH_NODE].min_len = 502 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 503 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 504 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 505 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 506 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 507 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 508 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 509 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 510 /* 511 * Minimum indexing node size is amended later when superblock is 512 * read and the key length is known. 513 */ 514 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 515 /* 516 * Maximum indexing node size is amended later when superblock is 517 * read and the fanout is known. 518 */ 519 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 520 521 /* 522 * Initialize dead and dark LEB space watermarks. 523 * 524 * Dead space is the space which cannot be used. Its watermark is 525 * equivalent to min. I/O unit or minimum node size if it is greater 526 * then min. I/O unit. 527 * 528 * Dark space is the space which might be used, or might not, depending 529 * on which node should be written to the LEB. Its watermark is 530 * equivalent to maximum UBIFS node size. 531 */ 532 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 533 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 534 535 /* 536 * Calculate how many bytes would be wasted at the end of LEB if it was 537 * fully filled with data nodes of maximum size. This is used in 538 * calculations when reporting free space. 539 */ 540 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 541 return 0; 542 } 543 544 /** 545 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 546 * @c: UBIFS file-system description object 547 * @lnum: LEB the write-buffer was synchronized to 548 * @free: how many free bytes left in this LEB 549 * @pad: how many bytes were padded 550 * 551 * This is a callback function which is called by the I/O unit when the 552 * write-buffer is synchronized. We need this to correctly maintain space 553 * accounting in bud logical eraseblocks. This function returns zero in case of 554 * success and a negative error code in case of failure. 555 * 556 * This function actually belongs to the journal, but we keep it here because 557 * we want to keep it static. 558 */ 559 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 560 { 561 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 562 } 563 564 /* 565 * init_constants_late - initialize UBIFS constants. 566 * @c: UBIFS file-system description object 567 * 568 * This is a helper function which initializes various UBIFS constants after 569 * the superblock has been read. It also checks various UBIFS parameters and 570 * makes sure they are all right. Returns zero in case of success and a 571 * negative error code in case of failure. 572 */ 573 static int init_constants_late(struct ubifs_info *c) 574 { 575 int tmp, err; 576 uint64_t tmp64; 577 578 c->main_bytes = (long long)c->main_lebs * c->leb_size; 579 c->max_znode_sz = sizeof(struct ubifs_znode) + 580 c->fanout * sizeof(struct ubifs_zbranch); 581 582 tmp = ubifs_idx_node_sz(c, 1); 583 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 584 c->min_idx_node_sz = ALIGN(tmp, 8); 585 586 tmp = ubifs_idx_node_sz(c, c->fanout); 587 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 588 c->max_idx_node_sz = ALIGN(tmp, 8); 589 590 /* Make sure LEB size is large enough to fit full commit */ 591 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 592 tmp = ALIGN(tmp, c->min_io_size); 593 if (tmp > c->leb_size) { 594 dbg_err("too small LEB size %d, at least %d needed", 595 c->leb_size, tmp); 596 return -EINVAL; 597 } 598 599 /* 600 * Make sure that the log is large enough to fit reference nodes for 601 * all buds plus one reserved LEB. 602 */ 603 tmp64 = c->max_bud_bytes; 604 tmp = do_div(tmp64, c->leb_size); 605 c->max_bud_cnt = tmp64 + !!tmp; 606 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 607 tmp /= c->leb_size; 608 tmp += 1; 609 if (c->log_lebs < tmp) { 610 dbg_err("too small log %d LEBs, required min. %d LEBs", 611 c->log_lebs, tmp); 612 return -EINVAL; 613 } 614 615 /* 616 * When budgeting we assume worst-case scenarios when the pages are not 617 * be compressed and direntries are of the maximum size. 618 * 619 * Note, data, which may be stored in inodes is budgeted separately, so 620 * it is not included into 'c->inode_budget'. 621 */ 622 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 623 c->inode_budget = UBIFS_INO_NODE_SZ; 624 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 625 626 /* 627 * When the amount of flash space used by buds becomes 628 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 629 * The writers are unblocked when the commit is finished. To avoid 630 * writers to be blocked UBIFS initiates background commit in advance, 631 * when number of bud bytes becomes above the limit defined below. 632 */ 633 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 634 635 /* 636 * Ensure minimum journal size. All the bytes in the journal heads are 637 * considered to be used, when calculating the current journal usage. 638 * Consequently, if the journal is too small, UBIFS will treat it as 639 * always full. 640 */ 641 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1; 642 if (c->bg_bud_bytes < tmp64) 643 c->bg_bud_bytes = tmp64; 644 if (c->max_bud_bytes < tmp64 + c->leb_size) 645 c->max_bud_bytes = tmp64 + c->leb_size; 646 647 err = ubifs_calc_lpt_geom(c); 648 if (err) 649 return err; 650 651 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 652 653 /* 654 * Calculate total amount of FS blocks. This number is not used 655 * internally because it does not make much sense for UBIFS, but it is 656 * necessary to report something for the 'statfs()' call. 657 * 658 * Subtract the LEB reserved for GC, the LEB which is reserved for 659 * deletions, and assume only one journal head is available. 660 */ 661 tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1; 662 tmp64 *= (uint64_t)c->leb_size - c->leb_overhead; 663 tmp64 = ubifs_reported_space(c, tmp64); 664 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 665 666 return 0; 667 } 668 669 /** 670 * take_gc_lnum - reserve GC LEB. 671 * @c: UBIFS file-system description object 672 * 673 * This function ensures that the LEB reserved for garbage collection is 674 * unmapped and is marked as "taken" in lprops. We also have to set free space 675 * to LEB size and dirty space to zero, because lprops may contain out-of-date 676 * information if the file-system was un-mounted before it has been committed. 677 * This function returns zero in case of success and a negative error code in 678 * case of failure. 679 */ 680 static int take_gc_lnum(struct ubifs_info *c) 681 { 682 int err; 683 684 if (c->gc_lnum == -1) { 685 ubifs_err("no LEB for GC"); 686 return -EINVAL; 687 } 688 689 err = ubifs_leb_unmap(c, c->gc_lnum); 690 if (err) 691 return err; 692 693 /* And we have to tell lprops that this LEB is taken */ 694 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 695 LPROPS_TAKEN, 0, 0); 696 return err; 697 } 698 699 /** 700 * alloc_wbufs - allocate write-buffers. 701 * @c: UBIFS file-system description object 702 * 703 * This helper function allocates and initializes UBIFS write-buffers. Returns 704 * zero in case of success and %-ENOMEM in case of failure. 705 */ 706 static int alloc_wbufs(struct ubifs_info *c) 707 { 708 int i, err; 709 710 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 711 GFP_KERNEL); 712 if (!c->jheads) 713 return -ENOMEM; 714 715 /* Initialize journal heads */ 716 for (i = 0; i < c->jhead_cnt; i++) { 717 INIT_LIST_HEAD(&c->jheads[i].buds_list); 718 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 719 if (err) 720 return err; 721 722 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 723 c->jheads[i].wbuf.jhead = i; 724 } 725 726 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 727 /* 728 * Garbage Collector head likely contains long-term data and 729 * does not need to be synchronized by timer. 730 */ 731 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 732 c->jheads[GCHD].wbuf.timeout = 0; 733 734 return 0; 735 } 736 737 /** 738 * free_wbufs - free write-buffers. 739 * @c: UBIFS file-system description object 740 */ 741 static void free_wbufs(struct ubifs_info *c) 742 { 743 int i; 744 745 if (c->jheads) { 746 for (i = 0; i < c->jhead_cnt; i++) { 747 kfree(c->jheads[i].wbuf.buf); 748 kfree(c->jheads[i].wbuf.inodes); 749 } 750 kfree(c->jheads); 751 c->jheads = NULL; 752 } 753 } 754 755 /** 756 * free_orphans - free orphans. 757 * @c: UBIFS file-system description object 758 */ 759 static void free_orphans(struct ubifs_info *c) 760 { 761 struct ubifs_orphan *orph; 762 763 while (c->orph_dnext) { 764 orph = c->orph_dnext; 765 c->orph_dnext = orph->dnext; 766 list_del(&orph->list); 767 kfree(orph); 768 } 769 770 while (!list_empty(&c->orph_list)) { 771 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 772 list_del(&orph->list); 773 kfree(orph); 774 dbg_err("orphan list not empty at unmount"); 775 } 776 777 vfree(c->orph_buf); 778 c->orph_buf = NULL; 779 } 780 781 /** 782 * free_buds - free per-bud objects. 783 * @c: UBIFS file-system description object 784 */ 785 static void free_buds(struct ubifs_info *c) 786 { 787 struct rb_node *this = c->buds.rb_node; 788 struct ubifs_bud *bud; 789 790 while (this) { 791 if (this->rb_left) 792 this = this->rb_left; 793 else if (this->rb_right) 794 this = this->rb_right; 795 else { 796 bud = rb_entry(this, struct ubifs_bud, rb); 797 this = rb_parent(this); 798 if (this) { 799 if (this->rb_left == &bud->rb) 800 this->rb_left = NULL; 801 else 802 this->rb_right = NULL; 803 } 804 kfree(bud); 805 } 806 } 807 } 808 809 /** 810 * check_volume_empty - check if the UBI volume is empty. 811 * @c: UBIFS file-system description object 812 * 813 * This function checks if the UBIFS volume is empty by looking if its LEBs are 814 * mapped or not. The result of checking is stored in the @c->empty variable. 815 * Returns zero in case of success and a negative error code in case of 816 * failure. 817 */ 818 static int check_volume_empty(struct ubifs_info *c) 819 { 820 int lnum, err; 821 822 c->empty = 1; 823 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 824 err = ubi_is_mapped(c->ubi, lnum); 825 if (unlikely(err < 0)) 826 return err; 827 if (err == 1) { 828 c->empty = 0; 829 break; 830 } 831 832 cond_resched(); 833 } 834 835 return 0; 836 } 837 838 /* 839 * UBIFS mount options. 840 * 841 * Opt_fast_unmount: do not run a journal commit before un-mounting 842 * Opt_norm_unmount: run a journal commit before un-mounting 843 * Opt_err: just end of array marker 844 */ 845 enum { 846 Opt_fast_unmount, 847 Opt_norm_unmount, 848 Opt_err, 849 }; 850 851 static match_table_t tokens = { 852 {Opt_fast_unmount, "fast_unmount"}, 853 {Opt_norm_unmount, "norm_unmount"}, 854 {Opt_err, NULL}, 855 }; 856 857 /** 858 * ubifs_parse_options - parse mount parameters. 859 * @c: UBIFS file-system description object 860 * @options: parameters to parse 861 * @is_remount: non-zero if this is FS re-mount 862 * 863 * This function parses UBIFS mount options and returns zero in case success 864 * and a negative error code in case of failure. 865 */ 866 static int ubifs_parse_options(struct ubifs_info *c, char *options, 867 int is_remount) 868 { 869 char *p; 870 substring_t args[MAX_OPT_ARGS]; 871 872 if (!options) 873 return 0; 874 875 while ((p = strsep(&options, ","))) { 876 int token; 877 878 if (!*p) 879 continue; 880 881 token = match_token(p, tokens, args); 882 switch (token) { 883 case Opt_fast_unmount: 884 c->mount_opts.unmount_mode = 2; 885 c->fast_unmount = 1; 886 break; 887 case Opt_norm_unmount: 888 c->mount_opts.unmount_mode = 1; 889 c->fast_unmount = 0; 890 break; 891 default: 892 ubifs_err("unrecognized mount option \"%s\" " 893 "or missing value", p); 894 return -EINVAL; 895 } 896 } 897 898 return 0; 899 } 900 901 /** 902 * destroy_journal - destroy journal data structures. 903 * @c: UBIFS file-system description object 904 * 905 * This function destroys journal data structures including those that may have 906 * been created by recovery functions. 907 */ 908 static void destroy_journal(struct ubifs_info *c) 909 { 910 while (!list_empty(&c->unclean_leb_list)) { 911 struct ubifs_unclean_leb *ucleb; 912 913 ucleb = list_entry(c->unclean_leb_list.next, 914 struct ubifs_unclean_leb, list); 915 list_del(&ucleb->list); 916 kfree(ucleb); 917 } 918 while (!list_empty(&c->old_buds)) { 919 struct ubifs_bud *bud; 920 921 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 922 list_del(&bud->list); 923 kfree(bud); 924 } 925 ubifs_destroy_idx_gc(c); 926 ubifs_destroy_size_tree(c); 927 ubifs_tnc_close(c); 928 free_buds(c); 929 } 930 931 /** 932 * mount_ubifs - mount UBIFS file-system. 933 * @c: UBIFS file-system description object 934 * 935 * This function mounts UBIFS file system. Returns zero in case of success and 936 * a negative error code in case of failure. 937 * 938 * Note, the function does not de-allocate resources it it fails half way 939 * through, and the caller has to do this instead. 940 */ 941 static int mount_ubifs(struct ubifs_info *c) 942 { 943 struct super_block *sb = c->vfs_sb; 944 int err, mounted_read_only = (sb->s_flags & MS_RDONLY); 945 long long x; 946 size_t sz; 947 948 err = init_constants_early(c); 949 if (err) 950 return err; 951 952 #ifdef CONFIG_UBIFS_FS_DEBUG 953 c->dbg_buf = vmalloc(c->leb_size); 954 if (!c->dbg_buf) 955 return -ENOMEM; 956 #endif 957 958 err = check_volume_empty(c); 959 if (err) 960 goto out_free; 961 962 if (c->empty && (mounted_read_only || c->ro_media)) { 963 /* 964 * This UBI volume is empty, and read-only, or the file system 965 * is mounted read-only - we cannot format it. 966 */ 967 ubifs_err("can't format empty UBI volume: read-only %s", 968 c->ro_media ? "UBI volume" : "mount"); 969 err = -EROFS; 970 goto out_free; 971 } 972 973 if (c->ro_media && !mounted_read_only) { 974 ubifs_err("cannot mount read-write - read-only media"); 975 err = -EROFS; 976 goto out_free; 977 } 978 979 /* 980 * The requirement for the buffer is that it should fit indexing B-tree 981 * height amount of integers. We assume the height if the TNC tree will 982 * never exceed 64. 983 */ 984 err = -ENOMEM; 985 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 986 if (!c->bottom_up_buf) 987 goto out_free; 988 989 c->sbuf = vmalloc(c->leb_size); 990 if (!c->sbuf) 991 goto out_free; 992 993 if (!mounted_read_only) { 994 c->ileb_buf = vmalloc(c->leb_size); 995 if (!c->ileb_buf) 996 goto out_free; 997 } 998 999 err = ubifs_read_superblock(c); 1000 if (err) 1001 goto out_free; 1002 1003 /* 1004 * Make sure the compressor which is set as the default on in the 1005 * superblock was actually compiled in. 1006 */ 1007 if (!ubifs_compr_present(c->default_compr)) { 1008 ubifs_warn("'%s' compressor is set by superblock, but not " 1009 "compiled in", ubifs_compr_name(c->default_compr)); 1010 c->default_compr = UBIFS_COMPR_NONE; 1011 } 1012 1013 dbg_failure_mode_registration(c); 1014 1015 err = init_constants_late(c); 1016 if (err) 1017 goto out_dereg; 1018 1019 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1020 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1021 c->cbuf = kmalloc(sz, GFP_NOFS); 1022 if (!c->cbuf) { 1023 err = -ENOMEM; 1024 goto out_dereg; 1025 } 1026 1027 if (!mounted_read_only) { 1028 err = alloc_wbufs(c); 1029 if (err) 1030 goto out_cbuf; 1031 1032 /* Create background thread */ 1033 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, 1034 c->vi.vol_id); 1035 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1036 if (!c->bgt) 1037 c->bgt = ERR_PTR(-EINVAL); 1038 if (IS_ERR(c->bgt)) { 1039 err = PTR_ERR(c->bgt); 1040 c->bgt = NULL; 1041 ubifs_err("cannot spawn \"%s\", error %d", 1042 c->bgt_name, err); 1043 goto out_wbufs; 1044 } 1045 wake_up_process(c->bgt); 1046 } 1047 1048 err = ubifs_read_master(c); 1049 if (err) 1050 goto out_master; 1051 1052 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1053 ubifs_msg("recovery needed"); 1054 c->need_recovery = 1; 1055 if (!mounted_read_only) { 1056 err = ubifs_recover_inl_heads(c, c->sbuf); 1057 if (err) 1058 goto out_master; 1059 } 1060 } else if (!mounted_read_only) { 1061 /* 1062 * Set the "dirty" flag so that if we reboot uncleanly we 1063 * will notice this immediately on the next mount. 1064 */ 1065 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1066 err = ubifs_write_master(c); 1067 if (err) 1068 goto out_master; 1069 } 1070 1071 err = ubifs_lpt_init(c, 1, !mounted_read_only); 1072 if (err) 1073 goto out_lpt; 1074 1075 err = dbg_check_idx_size(c, c->old_idx_sz); 1076 if (err) 1077 goto out_lpt; 1078 1079 err = ubifs_replay_journal(c); 1080 if (err) 1081 goto out_journal; 1082 1083 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); 1084 if (err) 1085 goto out_orphans; 1086 1087 if (!mounted_read_only) { 1088 int lnum; 1089 1090 /* Check for enough free space */ 1091 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) { 1092 ubifs_err("insufficient available space"); 1093 err = -EINVAL; 1094 goto out_orphans; 1095 } 1096 1097 /* Check for enough log space */ 1098 lnum = c->lhead_lnum + 1; 1099 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1100 lnum = UBIFS_LOG_LNUM; 1101 if (lnum == c->ltail_lnum) { 1102 err = ubifs_consolidate_log(c); 1103 if (err) 1104 goto out_orphans; 1105 } 1106 1107 if (c->need_recovery) { 1108 err = ubifs_recover_size(c); 1109 if (err) 1110 goto out_orphans; 1111 err = ubifs_rcvry_gc_commit(c); 1112 } else 1113 err = take_gc_lnum(c); 1114 if (err) 1115 goto out_orphans; 1116 1117 err = dbg_check_lprops(c); 1118 if (err) 1119 goto out_orphans; 1120 } else if (c->need_recovery) { 1121 err = ubifs_recover_size(c); 1122 if (err) 1123 goto out_orphans; 1124 } 1125 1126 spin_lock(&ubifs_infos_lock); 1127 list_add_tail(&c->infos_list, &ubifs_infos); 1128 spin_unlock(&ubifs_infos_lock); 1129 1130 if (c->need_recovery) { 1131 if (mounted_read_only) 1132 ubifs_msg("recovery deferred"); 1133 else { 1134 c->need_recovery = 0; 1135 ubifs_msg("recovery completed"); 1136 } 1137 } 1138 1139 err = dbg_check_filesystem(c); 1140 if (err) 1141 goto out_infos; 1142 1143 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1144 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1145 if (mounted_read_only) 1146 ubifs_msg("mounted read-only"); 1147 x = (long long)c->main_lebs * c->leb_size; 1148 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)", 1149 x, x >> 10, x >> 20, c->main_lebs); 1150 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1151 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)", 1152 x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1153 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1154 ubifs_msg("media format %d, latest format %d", 1155 c->fmt_version, UBIFS_FORMAT_VERSION); 1156 1157 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1158 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1159 dbg_msg("LEB size: %d bytes (%d KiB)", 1160 c->leb_size, c->leb_size / 1024); 1161 dbg_msg("data journal heads: %d", 1162 c->jhead_cnt - NONDATA_JHEADS_CNT); 1163 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X" 1164 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 1165 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3], 1166 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], 1167 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], 1168 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); 1169 dbg_msg("fast unmount: %d", c->fast_unmount); 1170 dbg_msg("big_lpt %d", c->big_lpt); 1171 dbg_msg("log LEBs: %d (%d - %d)", 1172 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1173 dbg_msg("LPT area LEBs: %d (%d - %d)", 1174 c->lpt_lebs, c->lpt_first, c->lpt_last); 1175 dbg_msg("orphan area LEBs: %d (%d - %d)", 1176 c->orph_lebs, c->orph_first, c->orph_last); 1177 dbg_msg("main area LEBs: %d (%d - %d)", 1178 c->main_lebs, c->main_first, c->leb_cnt - 1); 1179 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1180 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1181 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1182 dbg_msg("key hash type: %d", c->key_hash_type); 1183 dbg_msg("tree fanout: %d", c->fanout); 1184 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1185 dbg_msg("first main LEB: %d", c->main_first); 1186 dbg_msg("dead watermark: %d", c->dead_wm); 1187 dbg_msg("dark watermark: %d", c->dark_wm); 1188 x = (long long)c->main_lebs * c->dark_wm; 1189 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1190 x, x >> 10, x >> 20); 1191 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1192 c->max_bud_bytes, c->max_bud_bytes >> 10, 1193 c->max_bud_bytes >> 20); 1194 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1195 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1196 c->bg_bud_bytes >> 20); 1197 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1198 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1199 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1200 dbg_msg("commit number: %llu", c->cmt_no); 1201 1202 return 0; 1203 1204 out_infos: 1205 spin_lock(&ubifs_infos_lock); 1206 list_del(&c->infos_list); 1207 spin_unlock(&ubifs_infos_lock); 1208 out_orphans: 1209 free_orphans(c); 1210 out_journal: 1211 destroy_journal(c); 1212 out_lpt: 1213 ubifs_lpt_free(c, 0); 1214 out_master: 1215 kfree(c->mst_node); 1216 kfree(c->rcvrd_mst_node); 1217 if (c->bgt) 1218 kthread_stop(c->bgt); 1219 out_wbufs: 1220 free_wbufs(c); 1221 out_cbuf: 1222 kfree(c->cbuf); 1223 out_dereg: 1224 dbg_failure_mode_deregistration(c); 1225 out_free: 1226 vfree(c->ileb_buf); 1227 vfree(c->sbuf); 1228 kfree(c->bottom_up_buf); 1229 UBIFS_DBG(vfree(c->dbg_buf)); 1230 return err; 1231 } 1232 1233 /** 1234 * ubifs_umount - un-mount UBIFS file-system. 1235 * @c: UBIFS file-system description object 1236 * 1237 * Note, this function is called to free allocated resourced when un-mounting, 1238 * as well as free resources when an error occurred while we were half way 1239 * through mounting (error path cleanup function). So it has to make sure the 1240 * resource was actually allocated before freeing it. 1241 */ 1242 static void ubifs_umount(struct ubifs_info *c) 1243 { 1244 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1245 c->vi.vol_id); 1246 1247 spin_lock(&ubifs_infos_lock); 1248 list_del(&c->infos_list); 1249 spin_unlock(&ubifs_infos_lock); 1250 1251 if (c->bgt) 1252 kthread_stop(c->bgt); 1253 1254 destroy_journal(c); 1255 free_wbufs(c); 1256 free_orphans(c); 1257 ubifs_lpt_free(c, 0); 1258 1259 kfree(c->cbuf); 1260 kfree(c->rcvrd_mst_node); 1261 kfree(c->mst_node); 1262 vfree(c->sbuf); 1263 kfree(c->bottom_up_buf); 1264 UBIFS_DBG(vfree(c->dbg_buf)); 1265 vfree(c->ileb_buf); 1266 dbg_failure_mode_deregistration(c); 1267 } 1268 1269 /** 1270 * ubifs_remount_rw - re-mount in read-write mode. 1271 * @c: UBIFS file-system description object 1272 * 1273 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1274 * mode. This function allocates the needed resources and re-mounts UBIFS in 1275 * read-write mode. 1276 */ 1277 static int ubifs_remount_rw(struct ubifs_info *c) 1278 { 1279 int err, lnum; 1280 1281 if (c->ro_media) 1282 return -EINVAL; 1283 1284 mutex_lock(&c->umount_mutex); 1285 c->remounting_rw = 1; 1286 1287 /* Check for enough free space */ 1288 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) { 1289 ubifs_err("insufficient available space"); 1290 err = -EINVAL; 1291 goto out; 1292 } 1293 1294 if (c->old_leb_cnt != c->leb_cnt) { 1295 struct ubifs_sb_node *sup; 1296 1297 sup = ubifs_read_sb_node(c); 1298 if (IS_ERR(sup)) { 1299 err = PTR_ERR(sup); 1300 goto out; 1301 } 1302 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1303 err = ubifs_write_sb_node(c, sup); 1304 if (err) 1305 goto out; 1306 } 1307 1308 if (c->need_recovery) { 1309 ubifs_msg("completing deferred recovery"); 1310 err = ubifs_write_rcvrd_mst_node(c); 1311 if (err) 1312 goto out; 1313 err = ubifs_recover_size(c); 1314 if (err) 1315 goto out; 1316 err = ubifs_clean_lebs(c, c->sbuf); 1317 if (err) 1318 goto out; 1319 err = ubifs_recover_inl_heads(c, c->sbuf); 1320 if (err) 1321 goto out; 1322 } 1323 1324 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1325 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1326 err = ubifs_write_master(c); 1327 if (err) 1328 goto out; 1329 } 1330 1331 c->ileb_buf = vmalloc(c->leb_size); 1332 if (!c->ileb_buf) { 1333 err = -ENOMEM; 1334 goto out; 1335 } 1336 1337 err = ubifs_lpt_init(c, 0, 1); 1338 if (err) 1339 goto out; 1340 1341 err = alloc_wbufs(c); 1342 if (err) 1343 goto out; 1344 1345 ubifs_create_buds_lists(c); 1346 1347 /* Create background thread */ 1348 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1349 if (!c->bgt) 1350 c->bgt = ERR_PTR(-EINVAL); 1351 if (IS_ERR(c->bgt)) { 1352 err = PTR_ERR(c->bgt); 1353 c->bgt = NULL; 1354 ubifs_err("cannot spawn \"%s\", error %d", 1355 c->bgt_name, err); 1356 return err; 1357 } 1358 wake_up_process(c->bgt); 1359 1360 c->orph_buf = vmalloc(c->leb_size); 1361 if (!c->orph_buf) 1362 return -ENOMEM; 1363 1364 /* Check for enough log space */ 1365 lnum = c->lhead_lnum + 1; 1366 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1367 lnum = UBIFS_LOG_LNUM; 1368 if (lnum == c->ltail_lnum) { 1369 err = ubifs_consolidate_log(c); 1370 if (err) 1371 goto out; 1372 } 1373 1374 if (c->need_recovery) 1375 err = ubifs_rcvry_gc_commit(c); 1376 else 1377 err = take_gc_lnum(c); 1378 if (err) 1379 goto out; 1380 1381 if (c->need_recovery) { 1382 c->need_recovery = 0; 1383 ubifs_msg("deferred recovery completed"); 1384 } 1385 1386 dbg_gen("re-mounted read-write"); 1387 c->vfs_sb->s_flags &= ~MS_RDONLY; 1388 c->remounting_rw = 0; 1389 mutex_unlock(&c->umount_mutex); 1390 return 0; 1391 1392 out: 1393 vfree(c->orph_buf); 1394 c->orph_buf = NULL; 1395 if (c->bgt) { 1396 kthread_stop(c->bgt); 1397 c->bgt = NULL; 1398 } 1399 free_wbufs(c); 1400 vfree(c->ileb_buf); 1401 c->ileb_buf = NULL; 1402 ubifs_lpt_free(c, 1); 1403 c->remounting_rw = 0; 1404 mutex_unlock(&c->umount_mutex); 1405 return err; 1406 } 1407 1408 /** 1409 * commit_on_unmount - commit the journal when un-mounting. 1410 * @c: UBIFS file-system description object 1411 * 1412 * This function is called during un-mounting and it commits the journal unless 1413 * the "fast unmount" mode is enabled. It also avoids committing the journal if 1414 * it contains too few data. 1415 * 1416 * Sometimes recovery requires the journal to be committed at least once, and 1417 * this function takes care about this. 1418 */ 1419 static void commit_on_unmount(struct ubifs_info *c) 1420 { 1421 if (!c->fast_unmount) { 1422 long long bud_bytes; 1423 1424 spin_lock(&c->buds_lock); 1425 bud_bytes = c->bud_bytes; 1426 spin_unlock(&c->buds_lock); 1427 if (bud_bytes > c->leb_size) 1428 ubifs_run_commit(c); 1429 } 1430 } 1431 1432 /** 1433 * ubifs_remount_ro - re-mount in read-only mode. 1434 * @c: UBIFS file-system description object 1435 * 1436 * We rely on VFS to have stopped writing. Possibly the background thread could 1437 * be running a commit, however kthread_stop will wait in that case. 1438 */ 1439 static void ubifs_remount_ro(struct ubifs_info *c) 1440 { 1441 int i, err; 1442 1443 ubifs_assert(!c->need_recovery); 1444 commit_on_unmount(c); 1445 1446 mutex_lock(&c->umount_mutex); 1447 if (c->bgt) { 1448 kthread_stop(c->bgt); 1449 c->bgt = NULL; 1450 } 1451 1452 for (i = 0; i < c->jhead_cnt; i++) { 1453 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1454 del_timer_sync(&c->jheads[i].wbuf.timer); 1455 } 1456 1457 if (!c->ro_media) { 1458 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1459 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1460 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1461 err = ubifs_write_master(c); 1462 if (err) 1463 ubifs_ro_mode(c, err); 1464 } 1465 1466 ubifs_destroy_idx_gc(c); 1467 free_wbufs(c); 1468 vfree(c->orph_buf); 1469 c->orph_buf = NULL; 1470 vfree(c->ileb_buf); 1471 c->ileb_buf = NULL; 1472 ubifs_lpt_free(c, 1); 1473 mutex_unlock(&c->umount_mutex); 1474 } 1475 1476 static void ubifs_put_super(struct super_block *sb) 1477 { 1478 int i; 1479 struct ubifs_info *c = sb->s_fs_info; 1480 1481 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1482 c->vi.vol_id); 1483 /* 1484 * The following asserts are only valid if there has not been a failure 1485 * of the media. For example, there will be dirty inodes if we failed 1486 * to write them back because of I/O errors. 1487 */ 1488 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1489 ubifs_assert(c->budg_idx_growth == 0); 1490 ubifs_assert(c->budg_dd_growth == 0); 1491 ubifs_assert(c->budg_data_growth == 0); 1492 1493 /* 1494 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1495 * and file system un-mount. Namely, it prevents the shrinker from 1496 * picking this superblock for shrinking - it will be just skipped if 1497 * the mutex is locked. 1498 */ 1499 mutex_lock(&c->umount_mutex); 1500 if (!(c->vfs_sb->s_flags & MS_RDONLY)) { 1501 /* 1502 * First of all kill the background thread to make sure it does 1503 * not interfere with un-mounting and freeing resources. 1504 */ 1505 if (c->bgt) { 1506 kthread_stop(c->bgt); 1507 c->bgt = NULL; 1508 } 1509 1510 /* Synchronize write-buffers */ 1511 if (c->jheads) 1512 for (i = 0; i < c->jhead_cnt; i++) { 1513 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1514 del_timer_sync(&c->jheads[i].wbuf.timer); 1515 } 1516 1517 /* 1518 * On fatal errors c->ro_media is set to 1, in which case we do 1519 * not write the master node. 1520 */ 1521 if (!c->ro_media) { 1522 /* 1523 * We are being cleanly unmounted which means the 1524 * orphans were killed - indicate this in the master 1525 * node. Also save the reserved GC LEB number. 1526 */ 1527 int err; 1528 1529 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1530 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1531 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1532 err = ubifs_write_master(c); 1533 if (err) 1534 /* 1535 * Recovery will attempt to fix the master area 1536 * next mount, so we just print a message and 1537 * continue to unmount normally. 1538 */ 1539 ubifs_err("failed to write master node, " 1540 "error %d", err); 1541 } 1542 } 1543 1544 ubifs_umount(c); 1545 bdi_destroy(&c->bdi); 1546 ubi_close_volume(c->ubi); 1547 mutex_unlock(&c->umount_mutex); 1548 kfree(c); 1549 } 1550 1551 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1552 { 1553 int err; 1554 struct ubifs_info *c = sb->s_fs_info; 1555 1556 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1557 1558 err = ubifs_parse_options(c, data, 1); 1559 if (err) { 1560 ubifs_err("invalid or unknown remount parameter"); 1561 return err; 1562 } 1563 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1564 err = ubifs_remount_rw(c); 1565 if (err) 1566 return err; 1567 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) 1568 ubifs_remount_ro(c); 1569 1570 return 0; 1571 } 1572 1573 struct super_operations ubifs_super_operations = { 1574 .alloc_inode = ubifs_alloc_inode, 1575 .destroy_inode = ubifs_destroy_inode, 1576 .put_super = ubifs_put_super, 1577 .write_inode = ubifs_write_inode, 1578 .delete_inode = ubifs_delete_inode, 1579 .statfs = ubifs_statfs, 1580 .dirty_inode = ubifs_dirty_inode, 1581 .remount_fs = ubifs_remount_fs, 1582 .show_options = ubifs_show_options, 1583 .sync_fs = ubifs_sync_fs, 1584 }; 1585 1586 /** 1587 * open_ubi - parse UBI device name string and open the UBI device. 1588 * @name: UBI volume name 1589 * @mode: UBI volume open mode 1590 * 1591 * There are several ways to specify UBI volumes when mounting UBIFS: 1592 * o ubiX_Y - UBI device number X, volume Y; 1593 * o ubiY - UBI device number 0, volume Y; 1594 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1595 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1596 * 1597 * Alternative '!' separator may be used instead of ':' (because some shells 1598 * like busybox may interpret ':' as an NFS host name separator). This function 1599 * returns ubi volume object in case of success and a negative error code in 1600 * case of failure. 1601 */ 1602 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1603 { 1604 int dev, vol; 1605 char *endptr; 1606 1607 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1608 return ERR_PTR(-EINVAL); 1609 1610 /* ubi:NAME method */ 1611 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1612 return ubi_open_volume_nm(0, name + 4, mode); 1613 1614 if (!isdigit(name[3])) 1615 return ERR_PTR(-EINVAL); 1616 1617 dev = simple_strtoul(name + 3, &endptr, 0); 1618 1619 /* ubiY method */ 1620 if (*endptr == '\0') 1621 return ubi_open_volume(0, dev, mode); 1622 1623 /* ubiX_Y method */ 1624 if (*endptr == '_' && isdigit(endptr[1])) { 1625 vol = simple_strtoul(endptr + 1, &endptr, 0); 1626 if (*endptr != '\0') 1627 return ERR_PTR(-EINVAL); 1628 return ubi_open_volume(dev, vol, mode); 1629 } 1630 1631 /* ubiX:NAME method */ 1632 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1633 return ubi_open_volume_nm(dev, ++endptr, mode); 1634 1635 return ERR_PTR(-EINVAL); 1636 } 1637 1638 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1639 { 1640 struct ubi_volume_desc *ubi = sb->s_fs_info; 1641 struct ubifs_info *c; 1642 struct inode *root; 1643 int err; 1644 1645 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1646 if (!c) 1647 return -ENOMEM; 1648 1649 spin_lock_init(&c->cnt_lock); 1650 spin_lock_init(&c->cs_lock); 1651 spin_lock_init(&c->buds_lock); 1652 spin_lock_init(&c->space_lock); 1653 spin_lock_init(&c->orphan_lock); 1654 init_rwsem(&c->commit_sem); 1655 mutex_init(&c->lp_mutex); 1656 mutex_init(&c->tnc_mutex); 1657 mutex_init(&c->log_mutex); 1658 mutex_init(&c->mst_mutex); 1659 mutex_init(&c->umount_mutex); 1660 init_waitqueue_head(&c->cmt_wq); 1661 c->buds = RB_ROOT; 1662 c->old_idx = RB_ROOT; 1663 c->size_tree = RB_ROOT; 1664 c->orph_tree = RB_ROOT; 1665 INIT_LIST_HEAD(&c->infos_list); 1666 INIT_LIST_HEAD(&c->idx_gc); 1667 INIT_LIST_HEAD(&c->replay_list); 1668 INIT_LIST_HEAD(&c->replay_buds); 1669 INIT_LIST_HEAD(&c->uncat_list); 1670 INIT_LIST_HEAD(&c->empty_list); 1671 INIT_LIST_HEAD(&c->freeable_list); 1672 INIT_LIST_HEAD(&c->frdi_idx_list); 1673 INIT_LIST_HEAD(&c->unclean_leb_list); 1674 INIT_LIST_HEAD(&c->old_buds); 1675 INIT_LIST_HEAD(&c->orph_list); 1676 INIT_LIST_HEAD(&c->orph_new); 1677 1678 c->highest_inum = UBIFS_FIRST_INO; 1679 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1680 1681 ubi_get_volume_info(ubi, &c->vi); 1682 ubi_get_device_info(c->vi.ubi_num, &c->di); 1683 1684 /* Re-open the UBI device in read-write mode */ 1685 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1686 if (IS_ERR(c->ubi)) { 1687 err = PTR_ERR(c->ubi); 1688 goto out_free; 1689 } 1690 1691 /* 1692 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 1693 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1694 * which means the user would have to wait not just for their own I/O 1695 * but the read-ahead I/O as well i.e. completely pointless. 1696 * 1697 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1698 */ 1699 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1700 c->bdi.unplug_io_fn = default_unplug_io_fn; 1701 err = bdi_init(&c->bdi); 1702 if (err) 1703 goto out_close; 1704 1705 err = ubifs_parse_options(c, data, 0); 1706 if (err) 1707 goto out_bdi; 1708 1709 c->vfs_sb = sb; 1710 1711 sb->s_fs_info = c; 1712 sb->s_magic = UBIFS_SUPER_MAGIC; 1713 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1714 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 1715 sb->s_dev = c->vi.cdev; 1716 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 1717 if (c->max_inode_sz > MAX_LFS_FILESIZE) 1718 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 1719 sb->s_op = &ubifs_super_operations; 1720 1721 mutex_lock(&c->umount_mutex); 1722 err = mount_ubifs(c); 1723 if (err) { 1724 ubifs_assert(err < 0); 1725 goto out_unlock; 1726 } 1727 1728 /* Read the root inode */ 1729 root = ubifs_iget(sb, UBIFS_ROOT_INO); 1730 if (IS_ERR(root)) { 1731 err = PTR_ERR(root); 1732 goto out_umount; 1733 } 1734 1735 sb->s_root = d_alloc_root(root); 1736 if (!sb->s_root) 1737 goto out_iput; 1738 1739 mutex_unlock(&c->umount_mutex); 1740 1741 return 0; 1742 1743 out_iput: 1744 iput(root); 1745 out_umount: 1746 ubifs_umount(c); 1747 out_unlock: 1748 mutex_unlock(&c->umount_mutex); 1749 out_bdi: 1750 bdi_destroy(&c->bdi); 1751 out_close: 1752 ubi_close_volume(c->ubi); 1753 out_free: 1754 kfree(c); 1755 return err; 1756 } 1757 1758 static int sb_test(struct super_block *sb, void *data) 1759 { 1760 dev_t *dev = data; 1761 1762 return sb->s_dev == *dev; 1763 } 1764 1765 static int sb_set(struct super_block *sb, void *data) 1766 { 1767 dev_t *dev = data; 1768 1769 sb->s_dev = *dev; 1770 return 0; 1771 } 1772 1773 static int ubifs_get_sb(struct file_system_type *fs_type, int flags, 1774 const char *name, void *data, struct vfsmount *mnt) 1775 { 1776 struct ubi_volume_desc *ubi; 1777 struct ubi_volume_info vi; 1778 struct super_block *sb; 1779 int err; 1780 1781 dbg_gen("name %s, flags %#x", name, flags); 1782 1783 /* 1784 * Get UBI device number and volume ID. Mount it read-only so far 1785 * because this might be a new mount point, and UBI allows only one 1786 * read-write user at a time. 1787 */ 1788 ubi = open_ubi(name, UBI_READONLY); 1789 if (IS_ERR(ubi)) { 1790 ubifs_err("cannot open \"%s\", error %d", 1791 name, (int)PTR_ERR(ubi)); 1792 return PTR_ERR(ubi); 1793 } 1794 ubi_get_volume_info(ubi, &vi); 1795 1796 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 1797 1798 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev); 1799 if (IS_ERR(sb)) { 1800 err = PTR_ERR(sb); 1801 goto out_close; 1802 } 1803 1804 if (sb->s_root) { 1805 /* A new mount point for already mounted UBIFS */ 1806 dbg_gen("this ubi volume is already mounted"); 1807 if ((flags ^ sb->s_flags) & MS_RDONLY) { 1808 err = -EBUSY; 1809 goto out_deact; 1810 } 1811 } else { 1812 sb->s_flags = flags; 1813 /* 1814 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 1815 * replaced by 'c'. 1816 */ 1817 sb->s_fs_info = ubi; 1818 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 1819 if (err) 1820 goto out_deact; 1821 /* We do not support atime */ 1822 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 1823 } 1824 1825 /* 'fill_super()' opens ubi again so we must close it here */ 1826 ubi_close_volume(ubi); 1827 1828 return simple_set_mnt(mnt, sb); 1829 1830 out_deact: 1831 up_write(&sb->s_umount); 1832 deactivate_super(sb); 1833 out_close: 1834 ubi_close_volume(ubi); 1835 return err; 1836 } 1837 1838 static void ubifs_kill_sb(struct super_block *sb) 1839 { 1840 struct ubifs_info *c = sb->s_fs_info; 1841 1842 /* 1843 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()' 1844 * in order to be outside BKL. 1845 */ 1846 if (sb->s_root && !(sb->s_flags & MS_RDONLY)) 1847 commit_on_unmount(c); 1848 /* The un-mount routine is actually done in put_super() */ 1849 generic_shutdown_super(sb); 1850 } 1851 1852 static struct file_system_type ubifs_fs_type = { 1853 .name = "ubifs", 1854 .owner = THIS_MODULE, 1855 .get_sb = ubifs_get_sb, 1856 .kill_sb = ubifs_kill_sb 1857 }; 1858 1859 /* 1860 * Inode slab cache constructor. 1861 */ 1862 static void inode_slab_ctor(void *obj) 1863 { 1864 struct ubifs_inode *ui = obj; 1865 inode_init_once(&ui->vfs_inode); 1866 } 1867 1868 static int __init ubifs_init(void) 1869 { 1870 int err; 1871 1872 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 1873 1874 /* Make sure node sizes are 8-byte aligned */ 1875 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 1876 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 1877 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 1878 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 1879 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 1880 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 1881 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 1882 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 1883 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 1884 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 1885 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 1886 1887 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 1888 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 1889 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 1890 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 1891 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 1892 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 1893 1894 /* Check min. node size */ 1895 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 1896 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 1897 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 1898 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 1899 1900 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 1901 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 1902 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 1903 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 1904 1905 /* Defined node sizes */ 1906 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 1907 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 1908 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 1909 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 1910 1911 /* 1912 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 1913 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 1914 */ 1915 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 1916 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 1917 " at least 4096 bytes", 1918 (unsigned int)PAGE_CACHE_SIZE); 1919 return -EINVAL; 1920 } 1921 1922 err = register_filesystem(&ubifs_fs_type); 1923 if (err) { 1924 ubifs_err("cannot register file system, error %d", err); 1925 return err; 1926 } 1927 1928 err = -ENOMEM; 1929 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 1930 sizeof(struct ubifs_inode), 0, 1931 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 1932 &inode_slab_ctor); 1933 if (!ubifs_inode_slab) 1934 goto out_reg; 1935 1936 register_shrinker(&ubifs_shrinker_info); 1937 1938 err = ubifs_compressors_init(); 1939 if (err) 1940 goto out_compr; 1941 1942 return 0; 1943 1944 out_compr: 1945 unregister_shrinker(&ubifs_shrinker_info); 1946 kmem_cache_destroy(ubifs_inode_slab); 1947 out_reg: 1948 unregister_filesystem(&ubifs_fs_type); 1949 return err; 1950 } 1951 /* late_initcall to let compressors initialize first */ 1952 late_initcall(ubifs_init); 1953 1954 static void __exit ubifs_exit(void) 1955 { 1956 ubifs_assert(list_empty(&ubifs_infos)); 1957 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 1958 1959 ubifs_compressors_exit(); 1960 unregister_shrinker(&ubifs_shrinker_info); 1961 kmem_cache_destroy(ubifs_inode_slab); 1962 unregister_filesystem(&ubifs_fs_type); 1963 } 1964 module_exit(ubifs_exit); 1965 1966 MODULE_LICENSE("GPL"); 1967 MODULE_VERSION(__stringify(UBIFS_VERSION)); 1968 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 1969 MODULE_DESCRIPTION("UBIFS - UBI File System"); 1970